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ABSTRACT
We have studied different geometry of the galaxy and the influence of certain geometry on
the possible derivation of non-linear equation. We discussed soliton solutions of the derived
non-linear equations and the properties of the morphologies resulting from these solutions.
For thick disc, perturbations of the equilibrium state cause the non-linear Korteveg de Vries
equation, and the stable solution of that equation results in the ring shape, while for the thin
disc, for the similar type of perturbations, non-linear Schrodinger equation is derived with
stable solution of the spiral shape.

Key words: waves – galaxies: general – galaxies: spiral – galaxies: structure.

1 IN T RO D U C T I O N

Spiral structure in galaxies has been studied in both observational
and theoretical field, mainly during the 20th century. First, B. Lind-
blad formulated the hypothesis that the large-scale spiral structure
in galaxies is quasi-stationary, in spite of the presence of differential
rotation in the disc (Lindblad 1963). Due to observed differential
rotation, any material structure could not persist for a long time,
but would be stretched on a very short time-scale. This is known as
the winding dilemma. In contrast, as the conclusion of the Lindblad
work, the idea was introduced in the early 1960s that the spiral
arms, if associated with a wave phenomenon, could survive differ-
ential rotation as a quasi-stationary pattern (Lin & Shu 1964). There
are a few levels at which validity of the density wave theory has
been questioned. The main discussions are posed on generation and
maintenance of density waves (Lin & Bertin 1995).

There are, in general, three different theoretical models that can
be used to investigate stellar component of galaxies, orbital, kine-
matic and dynamical one. Here, we recall just two of them to un-
derline difference and difficulties. A kinematic model specifies the
spatial density of stars and their kinematics at each point without
questioning whether a gravitational potential exists in which the
given density distribution and kinematics constitute a steady state.
To treat galaxy dynamically is more complex and plausible, since
it is necessary to relate the galactic gravitational potential, in which
there is substantial contribution to the local acceleration from a
disc, a bulge and a dark halo, to the mass density. Recently, more
dynamical models of our Galaxy have been explored by Binney
(2012), using complex gravitational potential that is generated by
three discs (gas and both thin and thick stellar discs), a bulge and
a dark halo. There are a number of papers studying the same prob-
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lem from different points of research interests, such as (El-Zanta &
Haßlera 1998; Bratek, Jalocha & Kutschera 2008).

Apart from these studies, there is also number of non-linear ap-
proaches to density waves. In numerical studies, using simulations,
complex system has been treated in non-linear regime (Sellwood
1985, 1986). Turbulent behaviour of the interstellar medium was
studied by number of authors such as Wada, Meurer & Norman
(2002), and this kind of research is very useful since the turbulence
is transient phase that could lead, under certain conditions, to soli-
ton formation. There is also non-linear study of the accretion disc
(Heinemann & Papaloizou 2012), resulting in a non-linear Burg-
ers’ equation and sawtooth waves, that could be used to understand
transient physical processes from linear waves to possible stable
non-linear structure. Theoretical research concerning possible soli-
ton solution was given by Norman (1978) for the first time.

In this paper, our aim is not to investigate complexity but rather
to study theoretically, weakly non-linear dynamics of different sim-
plified galaxy models, using reductive perturbation method (RPM),
with the primary emphasis on possible soliton solutions. Solitons
are able to overcome mentioned difficulties in density wave theory.
In order to use proper coordinate transformation, it is necessary
to analyse stability of the linearized system of equations, and to
define proper parameter regime. Each model is useful in verifying
the more complex models, especially in testing the simulations and
numerics used to explain dynamics of galaxies.

2 G OV E R N I N G E QUAT I O N S

The density wave model consists of transport equations for the
mass density ρ and the momentum ρv, together with the Poisson’s
equation that relates the density to the gravitational potential φ. The
equilibrium state of the system is described as a rotation with an
angular velocity �(r) about z-axis under the balance of centrifugal
and gravitational forces in a frame rotating with constant angular
velocity �0. Then, the equilibrium velocity is v0ϕ = (� − �0)r,
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where �2r = ∂φ0/∂r . The quantities φ0 and ρ0 are the equilibrium
potential and the density, respectively.

The dispersive property originates from the coupled Pois-
son equation, which is a second-order elliptic partial differential
equation.

Depending on the Poisson equation three different geometries
could be considered.

Case (a): the infinitely long cylinder. The simplest solution of
Poisson’s equation is obtained concerning one-dimensional motion
of the infinite fluid. The Poisson equation reads as

∂2φ

∂x2
= ρ − v2 (1)

if rotation is present in the system, or

∂2φ

∂x2
= ρ − 1 (2)

if there is no rotation.
Hence, the geometry of the model is infinitely long cylinder,

and the coordinate x corresponds to azimuthal one. In this model,
the galaxy is considered as fluid with both rotation and pressure,
assuming radial velocity component to be much less than azimuthal
one, and � = const.

We consider the density wave that propagates in the ϕ direction
and approximate spatial derivative as

1

r

∂

∂ϕ
= ∂

∂x
. (3)

Then, the set of equations that describes this model has the form

∂ρ

∂t
+ ∂

∂x
(ρv) = 0 (4)

∂v

∂t
+ v

∂v

∂x
= −Kγργ−2 ∂ρ

∂x
− ∂φ

∂x
(5)

∂2φ

∂x2
= ρ − v2, (6)

where v is the x component of the velocity and all variables
are normalized as: ρ = ρ0ρ̄, p = 2πGρ2

0R
2p̄, v = (2πGρ2

0 )1/2Rv̄,

φ = 2πGρ2
0R

2φ̄, x = R/
√

2x̄, t = (2πGρ2
0 )−1/2 t̄ .

We have supposed polytropic fluid and that the variations of ρ

and p take place adiabatically: 1
ρ
∇p = ∇( γK

γ−1 ργ−1) for γ �= 1, or
1
ρ
∇p = ∇(Klogρ) for γ = 1.
Case (b): infinitely thin disc. The model of Lin and Shu assumes

delta function for the density in z-direction and approximates Pois-
sons equation by

∂φ(r, z = 0)

∂r
= ±2πiGσ (7)

in the vicinity of spiral arms, where σ represents surface mass den-
sity. Then, relation between surface density and two-dimensional
potential is σ = − k

2πG
φ(z = 0), where k = − i

φ

∂φ

∂r
(Lin & Shu

1964). Here, the geometry of the model is infinitely thin disc.
Within this approximation it is necessary to examine more com-

plicated two-dimensional motion of the fluid model of the galaxy,
but we simplified it neglecting the pressure. This simplification will
have no influence on the possibility of deriving integrable non-linear
equation.

In the cylindrical coordinates, the governing equations for two-
dimensional fluid model describing the galaxy, are written as

∂ρ

∂t
+ 1

r

∂

∂r
(rρvr ) + 1

r

∂

∂ϕ
(ρvϕ) = 0 (8)

∂vr

∂t
+ vr

∂vr

∂r
+ vr

r

∂vϕ

∂ϕ
− v2

ϕ

r
= −∂φ

∂r
(9)

∂vϕ

∂t
+ vr

∂vr

∂r
+ vϕ

r

∂vϕ

∂ϕ
+ vrvϕ

r
= −1

r

∂φ

∂ϕ
(10)

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂ϕ2
+ ∂2φ

∂z2
= 4πGρ, (11)

where vr and vϕ are radial and azimuthal velocity components.
The last equation will be approximated using Lin and Shu asymp-

totic solution, and we use notation ρ for surface density. Coordinates
r and ϕ are normalized by mean wavelength of the carrier wave in
the radial direction 2πR/λ, where R is the radial size of the galaxy
and λ � 1 is a dimensionless constant from the Lin–Shu derivation,
t by the period of the carrier wave 2π/ω, ρ by ρ0, both components
of velocity by the phase velocity ωR/λ, φ by ω2R2/λ2 and G by
ω2R/(2ρ0λ).

Case (c): thick disc. In this paper, we propose more realistic
solution, introducing Gaussiansin the z-direction instead of delta
function, f(z) for potential and g(z) for density. Then, we can ap-
proximately express Poissons equation in dimensionless form as
follows:

A∇2
⊥φ̄ + Bφ̄ = ρ̄, (12)

where φ̄, ρ̄ are two-dimensional potential and density, respectively,
normalized in the same way as in case (b), A = a/(4Gc), B =
b/(4Gc) are constants dependent on the thickness of the disc L by
way of a, b and c given by

a = 1

2L

∫ L

−L

f (z) dz = f1(L) (13)

b = 1

2L

∫ L

−L

f ′′(z) dz = f2(L) (14)

c = 1

2L

∫ L

−L

g(z) dz = f3(L) (15)

and ∇2
⊥ denotes two-dimensional Laplacian in the plane perpendic-

ular to z. In order to find analytical solution, we assume ∇2
⊥ 	 ∂2

∂2z
,

and vz 	 v⊥, which is correct as long as the disc is not too thick.
Note that for B = 0 we can restore infinitesimally thin disc approxi-
mation, taking g(z) = δ(z). Governing equations in this case are the
same as in case (b), only the Poisson equation (11) is replaced by
equation (12).

3 LI NEAR STA BI LI TY ANALYSI S

Before making the choice of transformation of coordinates and
expansion of variables in order to derive possible non-linear equa-
tion, it is necessary to discuss parameter regime. Linear dispersion
relation is very useful since its form can suggest the type of the
non-linear equation. We do it invoking linear stability analysis for
each case. The wavenumber and density for each case is defined
separately, although the same notation is used.
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Case (a): concerning the gravitational force, there is known Jeans
criterion for the stability of a finite spherical, non-rotating system
with gravity and pressure (Jeans 1902) as

k2c2 > 4πGρ, (16)

where k is the total wavenumber in radial direction, due to spher-
ical symmetry, and c is the sound velocity. Jeans criterion is valid
only locally, as long as the inhomogeneity of the system needs to
be recognized. For a uniformly rotating infinite-length cylindrical
column, Chandrasekhar proved that Jeans criterion is unaffected by
rotation, except for modes with wave numbers perpendicular to the
axis of rotation (Chandrasekhar 1981). In the previous section, per-
turbing and linearizing the system equations (4)–(6), assuming that
all quantities are proportional to ei(ωt−kx), we obtain the dispersion
relation

(ω − k)2k2 + k2 − γ k4 − 2(ω − k)k = 0. (17)

Note that in this model gravitational instability is suppressed by the
rotation, since we treat perturbations in azimuthal direction. Then,
we consider only linearly stable waves in order to apply RPM
(Jaffrey & Kawahara 1982) and to obtain the non-linear equation.

Case (b): For differentially rotating thin disc, linearizing equa-
tions (8)–(10), using equation (7) and assuming plane wave type
variation as f = f (r)ei(kr+mϕ−ωt), we obtain the dispersion rela-
tion

(ω − m�)2 = κ2 − 2πGρ0|k|, (18)

where ω − m� is Doppler-shifted frequency and κ is epicyclic
frequency due to differential rotation

κ2 = 2�

(
2� + r

(
d�

dr

))
. (19)

Equation (18) is the same as obtained by Lin & Shu (1964), but
for pressureless medium. For a pressureless medium, (ω − m�)
becomes negative if

κ2 < 0, (20)

so the disc is unstable. This is the rotational instability due to ex-
ponentially growing departure of particles from circular orbits, and
the growing rate is given by κ .

Stability parameter is defined by k2 = κ2

2πGρ0
, so all waves with

k < k2 are purely stable. For this parameter regime, dark soliton
solution was obtained (Kondoh, Teramoto & Yoshida 2000). The
problem is that such consideration results in dark soliton solution
with diminishing density, and has no spiral pattern. It is due to
improper coordinate transformation used in reductive perturbation
expansion.

Taking initial limitation on the wavenumber into account, namely
k > k1, where k1 =max

{
1
r ,

ρ′
0(r)

ρ0(r)

}
(sign ’ denotes derivative with re-

spect to r), one finds that observational data suggests having k1 ≈
k2 in real galaxy (Bertin 2000). Marginal stability, as introduced
above in terms of local dispersion relation, identifies a very impor-
tant condition for the basic state. In fact, if the system is far from it
on the side of instability, then it is expected to be subject to rapidly
growing perturbations, which are bound to change the properties of
the basic state in a short dynamical time-scale. It is often said for
this point of astrophysical applications, that violently unstable mod-
els are just the wrong choice of basic state (Bertin 2000), (Toomre
1964). Observed systems are generally well beyond such a transient
dynamical state, or such a rapidly evolving dynamical state would
be very hard to catch by the observer. On the other side of marginal

Figure 1. Marginal stability curve for the zero-thickness fluid model with-
out pressure; ω2 is Doppler-shifted frequency and is normalized by epicyclic
frequency; wavenumber k is normalized by critical wavenumber k2; part de-

fined by ω2

κ2 > 0 is stable and for ω2

κ2 < 0 is unstable region.

stability, if the disc is well within a locally stable regime, not only
would the local instabilities be absent, but wave propagation would
also be inhibited altogether. Hence, the relevant regimes for the
galaxy disc must be close to the threshold of instability (Fig. 1).
In this case, new transformation of variables has to be introduced,
different from the stable case (the reason is that in marginal stability
frequency goes to zero, so group velocity becomes infinite).

Before taking thickness of the disc into account, it is necessary to
underline two points. First, the sign of wavenumber can be positive
or negative (equation 18) defining two possible branches of waves,
leading and trailing. An important effect that might distinguish
between these two branches is differential rotation. Density waves
are propagated primarily by gravitational forces, but they would be
modified by differential rotation, if the non-linear terms, omitted
in linear description, were included. This effect is similar to that
of fluid motion that leads to the distortion of acoustic waves. In
that case, a density decrease in the direction of wave propagation
tends to be accentuated into compression shock, while a density
decrease would tend to be smoothed out by the motion of fluid.
Thus, only the trailing waves are stable in the presence of non-
linear effects. Next, inspecting the dispersion relation for gaseous
disc when the pressure cannot be neglected, there is additional term
c2k2. However, pressure and differential rotation work in the same
way, balancing the non-linearity. That means, omitting the pressure,
the general conclusion on the non-linear effects is not reduced; it
is just modified through the parameters related with dispersive and
non-linear terms.

Case (c): finite thickness of the disc is responsible for the different
value of critical wavenumber due to appearance of parameters A
and B in Poasson’s equation (12). It will result in the more complex
dispersion relation, comparing to one obtained in Lin–Shu model,
for the zero-thickness fluid model. Dispersion relation in this case
has a form

(ω − m�)2 = κ2 − 4πGρ0mk̂2

1 + k̂2
, (21)

where k̂2 = k2

n
, and m = 1/A, n = 1/B.

Marginal stability criterion holds for this case as well, so the
coordinate transformation can be used in the same way as for thin
disc. Non-linear equation will be of the same type as for thin disc,
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but with different coefficients of non-linear and dispersive terms.
Using those coefficients, one can control the validity of applied
finite thickness approximation, comparing with observed values for
the galaxies.

4 N O N - L I N E A R E QUAT I O N S

In the previous section, we have summarized instabilities that are
possible to occur in different galaxy models. Using WKJB analy-
sis, Lin and Shu have proposed that gravitational instability is the
basis for formation of the spiral pattern in the infinitesimally thin
disc galaxies. Proposed theory resolved winding dilemma problem,
assuming that the matter in the galaxy can maintain density waves
through gravitational interaction in the presence of a differential
rotation (even neglecting pressure). How density waves can persist
quasi-stationary for a long time, remains unresolved. Several au-
thors searched for different possible mechanisms that can replenish
waves (Toomre 1969; Mark 1976; Bertin et al. 1989), but still there
is no complete understanding. One possibility could be derivation
of non-linear equation, that has stable soliton solution, mainly be-
cause that approach avoids involvement of some other objects which
additionally complicate analysis.

We try to overcome that difficulty just keeping the higher or-
der terms in perturbation expansions, which were omitted in linear
approach, deriving the non-linear equation with localized solution.
Such solutions exist whenever dispersive effects are counterbal-
anced by non-linear effects and coherent structure can be formed.
The Korteveg de Vries (KdV) and the non-linear Schrodinger (NLS)
equation are expressions of that balancing. Some of these coherent
structures are stable and have been found experimentally (Mitchell
& Driscoll 1996).

In order to obtain either of these two equations, we introduce
asymptotic, RPM, which has been developed for non-linear disper-
sive wave problem (Jaffrey & Taniuti 1964). The scale transforma-
tion,

ξ = εα(x − λt), τ = εβ t, (22)

introduced by Gardner and Morikawa, may be derived from the
linearized asymptotic behaviour of long waves (Jaffrey & Taniuti
1964). Using combination of this transformation of coordinates with
a perturbation expansion of the dependent variables, one can obtain
single non-linear equation (KdV or NLS). This type of perturbation
has generally been developed and formulated by Taniuti and his
collaborators (Jaffrey & Taniuti 1964).

Case (a): we transform coordinates and expand variables as

ξ = ε1/2(x − V t), τ = ε3/2t (23)

ρ = 1 +
n=1∑
∞

∞∑
m=−∞

εnρ(n,m)(ξ, τ )E, (24)

v = 1 +
n=1∑
∞

∞∑
m=−∞

εnv(n,m)(ξ, τ )E, (25)

φ =
n=1∑
∞

∞∑
m=−∞

εnφ(n,m)(ξ, τ )E, (26)

where ε is a small parameter, E = ei(ωt−kx) with k belonging to the
linearly stable domain discussed in the previous section for this case

and V is group velocity. Set of equations is obtained from the lowest
order of ε3/2:

v(1,0) = 1

2
ρ(1,0), φ(1,0) = 1 − 4Kγ

4
ρ(1,0), V = 3

2
. (27)

KdV-type equation is obtained from the order of ε5/2, as following:

∂

∂τ
φ(1,0) + 3

1 − 4Kγ
φ(1,0) − 1 − 4Kγ

8

∂3

∂ξ 3
φ(1,0) = 0. (28)

This type of non-linear equation has a solution in the form:

φ(ξ, τ ) = φ∞ + a sech2

[
(ξ − V τ )

( a

12b

)1/2
]

, (29)

where φ∞ denotes the boundary value of φ(1, 0) at (ξ − Vτ ) → ±∞,
a is amplitude of the wave relative to the constant solution φ∞ at
infinity, b = 27

8(1−4Kγ )2 and V is the speed of the soliton. The solu-
tion of such non-linear equation represents the soliton, stable and
localized solution, which, although derived under certain assump-
tions, can be used as a control parameter in numerical simulations.
Also, it can be understood as a kind of equilibrium that could be
perturbed and create some new structures. This soliton is travelling
along azimuthal direction creating the ring structure. The width of
the soliton b represents the width of the ring and could be used to
compare properties of the obtained structure with the properties of
observed rings.

Case (b): as we mentioned in the previous section, a new transfor-
mation of variables has to be introduced for this case, according to
Watanabe (Watanabe 1969), contrary to the stable case (the reason
is that frequency goes to zero in marginal stability, so group velocity
becomes infinite). Stretched coordinates and expansion of variables
in this case are given as

ξ = ε(τ − cr), η = ε2r, (30)

where τ = t + �ϕ. Consequently, spatial and time derivatives will
be

∂

∂r
= −εc

∂

∂ξ
+ ε2 ∂

∂η
,

∂

∂τ
= ε

∂

∂ξ
, (31)

together with 1
r

= ε2 1
η

.
Variable expansions have the form

ρ = ρ0 +
n=1∑
∞

∞∑
m=−∞

εnρ(n,m)(ξ, η)E, (32)

vr =
n=1∑
∞

∞∑
m=−∞

εnv(n,m)r (ξ, η)E, (33)

vϕ = r� +
n=1∑
∞

∞∑
m=−∞

εnv(n,m)
ϕ (ξ, η)E, (34)

where E = ei(kr−ωτ ).
Substituting equations (30) and (31) into equations (8)–(10) with

respect to equation (7), we derive non-linear equation following
procedure of RPM. We separate terms with respect to the order of
small parameter ε as follows:

ε1 : m = 0, v1,0
ϕ = a1ρ

1,0, a1 = −iπG

�
, v1,0

r = 0; (35)

m = 1, ω2 = κ2 − 2πGρ0k, v1,1
r = a2ρ

1,1, a2 = −ω

kρ0
,

(36)

MNRAS 441, 565–570 (2014)

 by guest on M
ay 26, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Non-linear density waves for galaxies 569

v1,1
ϕ = a3ρ

1,1, a3 = −iκ2

2�kρ0
. (37)

ε2 : m = 0, ρ1,0 = 0, v2,0
ϕ = a4ρ

2,0, a4 = −iπG

�
, (38)

v2,0
r = a5ρ

1,1, a5 = 2ω

kρ2
0

; (39)

m = 1,
∂ω

∂k
= πGρ0

ω
= c, ρ2,1 = 0, (40)

v2,1
r = b1

∂

∂ξ
ρ1,1, b1 = ρ0ca2 − 1

iρ0k
, (41)

v2,1
ϕ = b2

∂

∂ξ
ρ1,1, b2 = a3 − κ2

2�
b1

iω
; (42)

m = 2, v2,2
r = b3(ρ1,1)

2
, b3 =

1
2 ika2

2 + 1
2

k�
ω

a2a3 + iπGk
ω

a2

iω + κ2

4iω
− iπGkρ0

ω

,

(43)

ρ2,2 = b4(ρ1,1)
2
, b4 = k

ω
a2 + ρ0k

ω
, (44)

v2,2
ϕ = b5(ρ1,1)

2
, b5 = 1

2

k

ω
a2a3 − κ2

4iω�
b3; (45)

ε3 : m = 0, ρ2,0 = 0; m = 1,
ω

2πG
b2 + 2�

2iπG
b3 = b1; (46)

From equation (46), after substituting all coefficients, we obtain the
NLS equation:

i
∂

∂η
ρ1,1 + P

∂2

∂ξ 2
ρ1,1 + Q

∣∣ρ1,1
∣∣2

ρ1,1 = 0, (47)

where P = − k2
κ2 = 1

2
∂2k
∂ω2 < 0, and Q = − 3

2
κ2

k2ρ2
0

< 0, which im-

plies PQ > 0 and consequently bright soliton solution. The solution
of equation (47) has the form:

ρ1,1(ξ, η) = ρa

eiψ

ch

(√
Q
2P

ρa(ξ − 2Pη)

) , (48)

ψ = P (
Q

2P
ρ2

a − 1)η + ξ. (49)

Here, ρa is relative amplitude of the soliton, its velocity of travel
is the coefficient P,

√
Q/2Pρa is the width of the soliton, all in

dimensionless units, and ψ is the phase.
Going back to the original coordinates, we have obtained solitary

structure with enhanced density along the spiral, which explains the
observed pattern (Fig. 2). The solitary solution resolves the main
difficulty from the linear theory is removed, e.g. the problem of
searching for generators of spiral wave and mechanism that maintain
waves for a long time-scale (quasi-stationarity assumption). Also,
it is likely that the transport of the mass by solitons away from the
considered region of the disc into outer regions will keep the disc
in a state close to the threshold of stability for a long time. This fact
might be responsible for the relative stability of the spiral structure
as a whole. Finally, this solution provides a fine oscillatory structure
inside the soliton, with a space period much smaller than the width

Figure 2. Bright soliton solution.

of the soliton. This property could explain the appearance of large
density gradients within spiral arms, responsible for understanding
the star formation process.

In order to make some rough estimates for the arms of the Galaxy
in the neighbourhood of the Solar system, we take the follow-
ing values from the observations: mass density in the disc (1–
3)10−24 g cm−3, thickness of the flat system (0.1–0.2) kpc, which
implies surface density (3–5)10−4 g cm−2, half-width of the arm
0.5 kpc, enhancement of the mean density in the arm ≈5/100,
which implies ρa ≈ 0.3, � ≈ 10−151/s, and κ ≈ √

2�. Then,
equation (48) indicates that group velocity of the soliton is P =
3 × 105 cm s−1. A more detailed comparison of the observed struc-
tures with our proposed model would request solving the non-linear
integro-differential equations involving the boundary conditions at
the centre.

Case (c): we extend non-linear analysis in the more realistic
case, taking finite thickness effect into account. It will result in
the dispersion relation (21), in a contrast with the Lin–Shu model,
where dispersion relation is linear with respect to k. Resulting non-
linear equation will be of the same type as in case (b), but with
different coefficients of non-linear and dispersive terms. Using those
coefficients, one can control the validity of used finite thickness
approximation, comparing it to the observed galactic parameters.

We transform coordinates as in case (b), invoking again physical
restrictions for the galaxy (marginal stability case), and expanding
variables in the same way, but we have approximated the potential
using Poisson’s equation given by equation (12), as follows:

φ = − r2�2

2
+

n=1∑
∞

∞∑
m=−∞

εnφ(n,m)(ξ, η)ei(kr−ωτ ). (50)

Here, spatial and time derivatives are

∂

∂r
= −εc

∂

∂ξ
+ ε2 ∂

∂η
,

∂

∂τ
= ε

∂

∂ξ
. (51)

Following the same procedure as in case (b), one obtains the
NLS equation

i
∂

∂η
ρ1,1 + W

∂2

∂ξ 2
ρ1,1 + Z

∣∣ρ1,1
∣∣2

ρ1,1 = 0, (52)
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but in this case coefficients related to dispersive and non-linear
terms, W = − k2

nκ2 and Z = − 3
2

nκ2

k2ρ2
0

will be dependent on the thick-

ness of the disc n. Since those coefficients give velocity and width
of the soliton, respectively, comparing with observed structure, it
is possible to evaluate when the finite thickness approximation is
necessary to be involved for the given galaxy. Comparing these two
soliton parameters for zero-thickness model and finite thickness
model, one finds that spiral arm in the first case is wider than in
the latter one. It is expectable because the same material amount
would be redistributed taking vertical direction into account. Also,
the fact that the same type of non-linear equation is obtained is in
agreement with the linear stability analysis.

5 SU M M A RY A N D C O N C L U S I O N

In this paper, we have studied weakly non-linear dynamics of differ-
ent galaxy models, using RPM, with the primary emphasis on pos-
sible soliton solutions. Linear stability analysis of different galaxy
models, which is necessary for defining parameter regime, has been
conducted. We have studied the influence of finite-thickness of the
galaxy disc on dispersive properties of the system. We underline that
the purpose of this paper is not to describe full galactic dynamics
but rather to derive possible non-linear equation which has stable
localized solution for simplified models. The soliton existence gives
physical answer for the permanent density wave phenomenon as a
balance between the tendency of the dispersion to propagate the
wave inwards, and non-linearity that tends to hold it up. This type
of solution is useful for comparison with numerical simulations that
treat more realistic models and with the observations, or for evalu-
ation of dominance of each mechanism that occurs in real galaxy.
We have not treated terms which we have already found that would
not influence the type of the non-linear equation; for example, pres-
sure, that undoubtedly exists in most galaxies, would not change
the necessary and sufficient conditions for derivation of integrable
non-linear equation. It will change only the parameters of non-
linear and dispersive term, giving better agreement with observed
patterns. In one-dimensional model, KdV type of non-linear equa-
tion has been derived. For a twodimensional model, using Lin–Shu
approximation, the NLS equation has been derived. The solution is
bright soliton propagating along the spiral. We have extended two-
dimensional analysis for galaxies solving Poisson’s equation in a
different manner and obtain NLS equation. The last one is with dif-
ferent coefficients for non-linear and dispersive terms, which means
different properties of soliton. The first type of non-linear equation,
namely KdV, is applicable as long as the azimuthal velocity is dom-
inant, together with the assumption of relatively thick disc. In that
case, the ring shape could be formed, with restriction that certain
structure cannot be formed at any distance from the galactic centre,
but the radial distance is defined by restriction 	 1

r
∂
∂ϕ

= m
r

, where
m is positive integer and could be understood as number of rings.
The second type of non-linear equation, namely NLS, is applicable
when radial and azimuthal components of motions are coupled, as
long as 1

kr
	 1. The last restriction is related with the condition

of the finite amplitude perturbations. We have shown that derived
velocity of the soliton is in good agreement with the observations.
The advantage of the second type is fine structure inside the soli-
tary envelope, that might be used to explain any process within
spiral arms with scales shorter than the width of soliton. Comparing
soliton properties with observational data, it is possible to control
validity of the approximation that was made for each model. How-
ever, neither of these models is able to explain stretched structures,
such as barred or elliptical galaxies. It would be very interesting to
investigate the transient models, the dynamical scale on which the
thickness of the galaxy changes and consequently, change the struc-
ture. If there is any correlation between the age of the galaxies and
their thickness, how does it evolve? There is the remaining problem
of the inner part of galaxy with the singularity in the centre, that
would also be interesting to consider in non-linear regime. Both
aspects will be treated in further research.
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ABSTRACT

An analytical expression for the mean free path of single-charged cosmic ray particles, especially for positrons, is derived in isotropic
plasma wave turbulence, where the crucial scattering of cosmic ray particles with small pitch-angle cosines is caused by resonant
cyclotron interactions with oblique magnetosonic waves. In this calculation, viscous damping effects are included, which results in
broadening of the resonance function. It is demonstrated that including resonance function broadening ensures a finite mean free path
for cosmic ray energies, for which previously reported types of turbulence predicted an infinitely large mean free path.

Key words. scattering

1. Introduction

A Galactic bulge-to-disk ratio of the luminosity of diffuse
511 keV positron annihilation radiation is, as measured by
INTEGRAL, four times larger than a stellar bulge to disk ratio of
the Galactic supernovae (SNe). SNe are thought to be the princi-
pal source of the annihilating positrons. This large discrepancy
has started a search for new sources. It has been shown that the
measured 511 keV luminosity ratio can be understood well in the
context of a Galactic SN origin when the differential propagation
of these MeV positrons in the various phases of the interstellar
medium is taken into consideration (Higdon et al. 2009), since
these relativistic positrons must first slow down to energies less
than 10 eV before they can annihilate.

A large number of potential sources have been proposed over
the years: cosmic ray interaction with the interstellar medium
(Ramaty et al. 1970), pulsars (Sturrock 1971), radioactive nu-
clei produced in SN (Clayton 1973), compact objects (Ramaty
& Lingelfelter 1979), dark matter (Boehm 2004), and micro-
quasars (Guessoum et al. 2006). Some of these theories either
are problematic or have a wide range of uncertainties. For ex-
ample, the predicted distributions of positrons from radionuclei
synthesized in SN are only marginally compatible with obser-
vations (Milne et al. 2002). However, the recent mapping of the
Galaxy at 511 KeV (Knödlseder et al. 2005) has placed severe
constraints on the possible positron sources.

On the other hand, the positron excess in Galactic cosmic
ray positrons above 10 GeV has been confirmed by PAMELA
(Adriani et al. 2009). The most recent confirmation of the
PAMELA result on positrons in the Galaxy cosmic ray spec-
trum has just been published (Aguilar et al. 2013). There are
several astrophysical explanations for possible sources of these
positrons, such as dark matter annihilation (Hooper et al. 2009)
or decay (Arvanitaki et al. 2009). According to a recent in-
vestigation (Pohl & Eichler 2009), Fermi measurements of the
high-latitude γ-ray background (Abdo et al. 2009) constrain

a decaying-dark-matter origin for the GeV Galactic positron
anomaly measured by PAMELA.

To quantify scattering mean free paths for MeV interstel-
lar positrons, an analytic approximation has been used (Teufel
& Schlickeiser 2002) for slab-like dynamical turbulence, which
predict that is a mean free path in MeV energies proportional
to r1/3, where r is defined as particle rigidity. This model for GeV
particles predicts an infinitely large mean free path. The other
slab plasma-wave turbulence model (Schlickeiser et al. 2010),
which is more plausible when compared to the dynamical one,
predicts an infinite positron scattering mean free path at MeV
energies, while it has finite values proportional to r1/3 for GeV
energies.

Here, we propose a damped plasma wave turbulence model,
which can assure a finite mean free path for MeV and GeV
positrons, and compare our result with results of previously
mentioned models.

A key parameter for the cosmic ray transport is the parallel
spatial diffusion coeffcient κ = vλ/3, which is conventionally ex-
pressed in terms of the mean free path λ along the background
magnetic field and the particle speed v. In many studies, the
parallel mean free path also controls the perpendicular spatial
diffusion coefficient κ⊥ = ακ‖, which is assumed to be propor-
tional to κ‖ due to the lack of a rigorous theory of perpendic-
ular diffusion. When discussing the ratio of perpendicular and
parallel mean free path, it has been published from proton ob-
servations that 0.02 < λ⊥/λ‖ < 0.083 over the rigidity range
of 0.5MV < R < 5GV (Palmer 1982), which assures parallel
mean free path values to be high enough that we can neglect the
perpendicular component. Hereafter, we only consider parallel
mean free path.

The scattering mean free path is the result of resonant
particle-wave interactions of cosmic ray particles with the tur-
bulent component of cosmic magnetic fields, and thus depends
on the nature and geometry of cosmic turbulent magnetic fields
(Schlickeiser 2002). Many observations of plasma turbulence
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in the solar wind indicate that the turbulent magnetic field is a
mixture of slab (i.e., parallel to the ordered background magnetic
field) waves, a dominating 2D component (Bieber et al. 1996)
with a negligible contribution to particle scattering (Shalchi
& Schlickeiser 2004), and obliquely propagating magnetosonic
waves that reveal through electron density fluctuations because
of their compressive nature. In the static magnetosonic limit,
the scattering rate from the 2D component vanishes (Shalchi &
Schlickeiser 2004).

For small amplitude waves, an appreciable interaction be-
tween a wave and a particle arises only when the particle is
moving at nearly the parallel wave phase speed. The interaction
is resonant and the subsequent physics is close to that of Fermi
acceleration: particles with v‖ slightly greater than ω/k‖ suffer a
trailing collision with a wave compression and slow down, while
particles with v‖ slightly less than ω/k‖ are stuck by a compres-
sion and speed up. This process could be called resonant Fermi
acceleration, but the usual term is transit-time acceleration or
transit-time damping (TTD). The name is given because the res-
onance condition can be rewritten as λ‖/v‖ ≈ t, where t is the
wave period and λ‖ = 2π/kη is the parallel wavelength. That
means a wave and a particle will interact strongly when the par-
ticle transit time across the wave compression is approximately
equal to the period.

Schlickeiser & Miller (1998) and Schlickeiser & Vainio
(1999) have investigated the quasilinear interactions of charged
particles with Alfven and magnetosonic plasma modes. A cos-
mic ray particle of given velocity v, Lorentz factor γ = (1 −
(v2/c2))−1/2, pitch angle cosine µ = v‖/v, mass m, the speed
of light c, charge qi = e|Zi|Q with Q = sgn(Zi), and gyrofre-
quency Ωc = QΩ with Ω = qiB0/(mcγ) interacts with waves
whose wavenumber k, cosine of propagation angle η = k‖/k, and
real frequency f obey the resonance condition f (k) = vµkη+nΩc
for entire n ∈ [−∞,∞]. For slab(η = 1) Alfven waves, only gy-
roresonant interactions with n = 1 are possible. In contrast, the
n = 0 resonance for obliquely propagating fast magnetosonic
waves, which do not include gyroresonance interactions (n , 1),
is possible due to their compressive magnetic field component.
The n = 0 interactions are referred to as transit-time damp-
ing (TTD). Using n = 0 the resonance condition requires the par-
allel cosmic ray velocity vµ = f /(kη) f /k ' VA to be greater than
the Þfinite phase velocity of magnetosonic waves, which is given
by the Alfven speed. TTD interactions therefore only occur for
cosmic ray particles with pitch-angle cosines µ > |VA/v| = ε. At
these pitch angle cosines, TTD interactions provide most of the
particle scattering.

Thus, the crucial scattering in small µ is provided for ener-
getic particles by only gyroresonances with slab plasma waves
and oblique magnetosonic waves (Schlickeiser et al. 2010):

λ=
3v
8

∫ ε

−ε

dµ

(
1 − µ2

)
Dslab
µµ (µ) + Dg−ms

µµ (µ)
'

3VA

4[Dslab
µµ (0) + Dg−ms

µµ (0)]
· (1)

According to Schlickeiser & Miller (1998), the magnetosonic
contribution Dg−ms

µµ (0) ' εDslab
µµ (0) for energetic particles (ε � 1)

is much smaller than the slab contribution for similar turbu-
lence power spectra of slab and magnetosonic waves. However,
this latter reduction is not justied for cosmic ray positrons with
Lorentz factors γ < mp/me = 1836. These positrons no LH
polarized slab waves to find resonantly interact with, so that
Dslab
µµ (0)− > 0. In this case, the contribution from gyroresonant

interactions with magnetosonic waves provides small but finite
scattering (Schlickeiser et al. 2010).

It is the purpose of this work to involve oblique magene-
tosonic waves and quantitatively investigate the influence of
wave damping on the quasilinear scattering mean free paths
of cosmic rays, especially for positrons with Lorentz factors
γ < mp/me = 1836. In a plasma in rough equipartition of ki-
netic and magnetic pressure, oblique magnetosonic waves are
expected to be overdamped by Landau absorption (Fedorenko
1992). Thus, the second-order Fermi acceleration using oblique
fast magnetosonic waves cannot work in a plasma in rough
equipartiton (Achterberg 1979). It is possible to overcome this
difficulty either by considering that this mechanism works, in
the interstellar medium with small β (relatively cold medium) or
by including the finite wave cascading that exists in the interstel-
lar medium. Due to the large amplitude of interstellar turbulence,
there is no doubt that wave cascading exists and will then trans-
fer this spectral energy to higher wavenumbers. One property
of the diffusion equation for isotropic turbulence (Eq. (11.3.6),
Schlickeiser 2002) is that it yields finite positive wave spectral
energy densities at all wavenumbers k, even if the net damping
rate is negative in some wavenumber intervals.

We show then that the inclusion of resonance broadening
caused by wave damping in the resonance function guarantees
that the transit-time damping contribution holds at small pitch
angle cosines µ ≤ |Va/v|, unlike the case of neglible wave
damping (Vukcevic & Schlickeiser 2007). We expect that TTD
makes an overwhelming contribution to particle scattering be-
cause the cosmic ray particle interacts with the whole wave spec-
trum in this interaction. This contrasts gyroresonances that sin-
gle out individual resonant wave numbers (Schlickeiser 2003).
However, quantitative analysis of gyroresonance contribution
in damped plasma wave turbulence will be studied in a sepa-
rate, forthcoming investigation. Therefore we only consider the
TTD-contribution to particle scattering in the following and as-
sume n = 0 both in the resonance function and in the calculation
of the Fokker-Planck coefficients.

In Sect. 2, we present the general plasma wave turbulence
and relevant magnetohydrodynamic plasma modes. In Sect. 3,
we calculate the Fokker-Planck coefficient for fast mode waves
and discuss relevant domains for application to cosmic ray
positrons. In Sect. 4, we derived the Fokker-Planck coefficient
for slow mode waves. The analytical expressions of a mean free
path for fast and slow plasma waves and the comparison with dif-
ferent previously reported turbulence models are given in Sect. 5.
The summary and conclusion are presented in the last section.

2. Plasma wave turbulence

According to our discussion in the paragraph above and in the
two paragraphs after Eq. (1), the relevant mean free path for the
positrons with Lorentz factor γ < mp/me = 1836 in small pitch-
angle cosine becomes

λ '
3VA

4DTTD
µµ (0)

· (2)

Hereafter, we omit TTD notation and keep only notation for rel-
evant magnetosonic waves. The Fokker-Planck coefficient Dµµ

is computed by employing the Kubo formula (Kubo 1957),

Dµµ =

∫ ∞

0
dt〈µ̇(t)µ̇(0)〉. (3)

A111, page 2 of 10



M. Vukcevic: The scattering mean free path of cosmic ray particles in isotropic damped plasma wave turbulence

The pitch-angle variation µ̇(t) is obtained from the
Newton-Lorentz equation:

µ̇ =
Ω

√
1 − µ2

B0

[
c
v

√
1 − µ2δE|| +

i
√

2

[
eiφ

(
δBr + iµ

c
v
δEr

)
− e−iφ

(
δBl − iµ

c
v
δEl

)]]
. (4)

In these equations, we use pitch-angle cosine µ, the particle
speed v, the gyrophase φ, the cosmic ray particle gyrofrequency
in the background field B0 and the turbulent fields δBl,r and δEl,r,
which are related to the left-handed and right-handed polarized
field components. The term δE|| is parallel component relative to
the background magnetic field.

The simplest method to calculate Dµµ is the application of
perturbation theory (Jokipii 1966). In this case, we have ap-
plied a quasilinear approximation for a fluctuating electric and
magnetic field, a quasistationary turbulence condition, and the
existence of a finite correlation time tc. The last two assump-
tions guarantee a diffusive behavior of transport (Shalchi &
Schlickeiser 2004). The assumption of homogeneous turbulence
will imply that the turbulence fields at different wavevectors are
uncorrelated.

Next, we define the properties of the plasma turbulence that
will be considered. We follow the approach for the electromag-
netic turbulence that represents the Fourier transforms of the
magnetic and electric field fluctuations as a superposition of N
individual weakly damped plasma modes of frequencies:

ω = ω j(k) = ωR, j(k) − iγ j(k), (5)

where j = 1, ...N, which can have both the real and imaginary
parts with |γ j| � |ωR, j|, so that

[B(k, t),E(k, t)] =

N∑
j=1

[
B j(k),E j(k)

]
e−iω jt. (6)

Damping of the waves is counted with a positive γ j > 0.
In the case we consider here, the time integration of the

Fokker-Planck coefficient Dµµ yields the Lorentzian resonance
function:

R j(γ j) =

∫ ∞

0
du e−i(k‖v‖+ωR, j+nΩ)u−γ ju

=
γ j(k)

γ2
j (k) + [k‖v‖ + ωR, j(k) + nΩ)]2

· (7)

The detailed derivation of the Fokker-Planck coefficient for this
case (vanishing magnetic helicity and isotropic turbulence) is
performed in the PhD Thesis of Vukcevic (2007), which con-
trasts the case of negligible damping γ− > 0 (Schlickeiser 2001)
in which the use of the δ-function representation

lim
γ−>0

γ

γ2 + ξ2 = πδ(ξ), (8)

reduces the resonance function (7) to sharp δ-functions,

R j(γ = 0) = πδ(k‖v‖ + ωR, j + nΩ). (9)

Next, it is necessary to specify the geometry of the plasma wave
turbulence itself through the correlation tensors, which will be
adopted throughout this work in the form (Mattheus & Smith
1981) of

P j
αβ(k) =

g
j
i (k)

k2

[
δαβ −

kαkβ
k2 + iσ(k)εαβλ

kλ
k

]
, (10)

where σ(k) is the magnetic helicity and the function g(k) de-
termines different turbulence geometries. This was to illustrate
the result, although this model is not in accord with the known
polarization properties of fast-mode waves at oblique angles.

2.1. Relevant magnetohydrodynamic plasma modes

It has been already emphasized that there is no TTD for shear
Alfven waves (Teufel et al. 2003) in the case of negligible damp-
ing, and the gyroresonant interactions provided by shear Alfven
waves is small compared to the same contribution provided by
fast magnetosonic waves (Vukcevic & Schlickeiser 2007). As
a consequence, we consider only fast and slow magnetosonic
waves.

2.1.1. Fast magnetosonic plasma modes

For the fast plasma modes, we use a simplified dispersion
relation,

ωR ' jkVA, (11)

which is relevant at wavenumbers kc � k � ξkc, where
kc = ωp,i/c is the inverse ion skin length, and ξ =√

mp/me = 43.
In the dispersion equation, forward ( j = 1) and backward

( j = −1) moving fast mode waves are described. The associated
electric field and magnetic field polarizations are (Dogan et al.
2006)

δEL = −δER, δE‖ = 0, δBL = δBR, δB‖ , 0. (12)

2.1.2. Slow magnetosonic plasma modes

The dispersion relation for slow magnetosonic waves in low-β
plasma reads (Dogan et al. 2006)

ω2
R ' k2V2

A

(
η2β

1 + β
+

η4β2

(1 + β)3

)
(13)

with η = cos θ and β as the ratio of thermal and magnetic pres-
sure. In the last equation, we neglect the second term in brack-
ets in the first approximation, since it is one order smaller than
the first term. The associated electric field and magnetic field
polarizations are

δEL = −δER, δE‖ = 0, δBL = δBR, δB‖ , 0. (14)

Consideration of the dispersion relation in high frequencies
could change the result, since we expect nondispersive effects
in that range. The polarization of the waves in that domain could
also affect the transport coefficients through the correlation ten-
sors. However, a detailed inspection of the dispersion relation
in the high-frequency domain is needed to draw a quantitative
conclusion, and it will be discussed in a separate investigation.

2.2. Damping rate

The damping of magnetosonic waves is caused by both colli-
sionless Landau damping and collisional viscous damping and
by Joule damping and ion-neutral friction. The dominant contri-
bution is provided by viscous damping with the rate calculated
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for plasma parameters of the diffuse intercloud medium (Spanier
& Schlickeiser 2005)

γF =
1

12
βV2

Aτik2
[
sin2 θ + 5 × 10−9 cos2 θ

]
= 2.9 × 105βV2

Ak2
[
sin2 θ + 5 × 10−9 cos2 θ

]
(15)

in terms of the ion-ion collisional time τi = 3.5 × 106 s. Except
at very small propagation angles, the second term in Eq. (15) is
negligible, and we infer

γF ' 2.9 × 105βV2
Ak2 sin2 θ = αFk2 sin2 θ, (16)

where αF = 1
12βV2

Aτi.

3. Fast mode waves

With Eqs. (11) and (16), the resonance function (7) for forward
and backward moving fast mode waves becomes

R
j
F(n) =

αFk2 sin2 θ

(αFk2 sin2 θ)2 + [kvµ cos θ + jVAk + nΩ)]2
, (17)

which describes both gyroresonant (n , 0) and transit-time
damping (n = 0) wave-particle interactions.

The non-vanishing parallel magnetic field component B‖ , 0
(see Eq. (12)) of fast mode waves allows TTD interactions
with n = 0, so that we procede with n = 0. The resonance
function (17) becomes

R
j
F(0) =

αFk2 sin2 θ

(αFk2 sin2 θ)2 + [kvµ cos θ + jVAk]2

=
αF(1 − η2)

(αFk(1 − η2))2 + [vµη + jVA]2 · (18)

Throughout this work, we consider isotropic turbulence g j(k) =
g j(k). Modifications due to different turbulence geometries are
possible and will be the subject of further analysis (in particular
anisotropic turbulence).

For energetic cosmic ray particles with v � VA, the
pitch-angle Fokker-Planck coefficient then simplifies as

DF
µµ '

Ω2

4B2
0

(
1 − µ2

) ∑
j=±1

∫ ∞

−∞

dk
∫ 1

−1
dη R j

F(0)g j(k)J2
1 (W)

(
1 + η2

)
, (19)

where J1(W) is a Bessel function with the argument W =
v
|Ω|
· k⊥

√
1 − µ2 = RL · k⊥

√
1 − µ2 that involves the cosmic ray

Larmor radius RL = v/|Ω|.
We further simplify Eq. (19) by assuming equal intensity of

forward and backward waves (a vanishing cross helicity of each
plasma mode):

g+(k) = g−(k) =
1
2
gtot(k), (20)

which reads as

DF
µµ'

Ω2

8B2
0

(
1 − µ2

) ∑
j=±1

∫ ∞

−∞

dk
∫ 1

−1
dη R j

F(0)g j
tot(k)J2

1 (W)
(
1 + η2

)
. (21)

To illustrate our results, we adopt a Kolmogorov-type power
law dependence on g j(k) above and below some minimum and
maximum wavenumber kmin and kmax, respectively

gtot(k) = gtotk−q (22)

for kmin < k < kmax.
The magnetic energy density in wave component j is

given by

(δB j)2 =

∫ ∞

0
dkg j(k) (23)

which implies

gtot = (q − 1)(δB)2/
(
k1−q

min − k1−q
max

)
w (q − 1) (δB)2 kq−1

min (24)

for kmax � kmin.
With Eqs. (22), (23), (24) the pitch-angle Fokker-Planck

coefficient DF
µµ reads as

DF
µµ '

Ω2

4B2
0

(q − 1)(δB)2kq−1
min

(
1 − µ2

) ∫ kmax

kmin

dkk−q

∫ 1

−1
dη RF(0)J2

1(W)
(
1 + η2

)
. (25)

Now, we must approximate the resonance function (Eq. (18)). In
doing this, we consider two cases:

a) η < ηc;
b) η > ηc,

where ε = VA/v and ηc = ε/µ. The parameter ηc divides the
integration domain with respect to η, in which either VA, vµη or
both values are relevant. By using DF

µµ(−µ) = DF
µµ(µ) and the

substitution s = RLk
√

1 − µ2 and RL = v/|Ω|, we derive

DF
µµ ' αF(q − 1)(kminRL)q−1

(
δB
B0

)2 (
1 − µ2

) q+1
2

∫ ∞

kminRL

√
1−µ2

dss−q

×


∫ min(1,ε/µ)

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
1

α2
F(1−η2)2 s2

R2
L(1−µ2) + V2

A

+

∫ 1

min(1,ε/µ)
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
1

α2
F(1−η2)2 s2

R2
L(1−µ2) + (vµη)2

 · (26)

3.1. High values of µ > ε

For large pitch-angles µ > ε we obtain

DF
µµ(µ > ε) '

(q − 1)
αF

(kminRL)q−1
(
δB
B0

)2 (
1 − µ2

) q+3
2

×

∫ ∞

kminRL

√
1−µ2

dss−q
[ ∫ ε/µ

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
+

1(
1 − η2)2 s2 +

R2
L(1−µ2)V2

A
α2

F

+

∫ 1

ε/µ

dη
(
1 − η4

)
J2

1

(
s
√

1 − η2

)

×
1(

1 − η2)2 s2 +
R2

L(1−µ2)(vµη)2

α2
F

]
· (27)
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3.2. Small values µ < ε

This case is important when treating damped waves. For the
small pitch-angles µ < ε, we obtain

DF
µµ(µ < ε) ' αF(q − 1)(kminRL)q−1

(
δB
B0

)2 (
1 − µ2

) q+1
2

×

∫ ∞

kminRL

√
1−µ2

dss−q


∫ 1

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)

×
1

α2
F(1−η2)2 s2

R2
L(1−µ2) + V2

A

 · (28)

We have already discussed that inclusion of resonance broad-
ening due to wave damping in the resonance function guaran-
tees dominance of transit-time damping. The main contribution
of wave damping comes exactly in the region |µ| < ε that is
relevant for deriving the spatial diffusion coefficient and related
mean free path, both of which are given by the average over µ of
the inverse of Dµµ. Therefore, we can further consider only the
case Dµµ(µ = 0), which simplifies the analysis enormously and
reads as

DF
µµ(µ = 0) '

Ω2(q − 1)R2
L

4αF
(kminRL)q−1

(
δB
B0

)2 ∫ ∞

kminRL

dss−q

×

∫ 1

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
1

(1 − η2)2s2 +
V2

AR2
L

α2
F

· (29)

In the last equation, s = kRL, and each term under integration is
dimensionless.

4. Slow mode waves

With Eqs. (13) and (16), the resonance function (7) for slow
mode waves becomes

R
j
S(n) =

2.9×105βV2
Ak2 sin2θ(

2.9×105βV2
Ak2sin2 θ

)2
+

[
kvµ cos θ+ jVAkη

√
β

1+β +nΩ)
]2 · (30)

The non-vanishing parallel magnetic field component B‖ , 0
(see Eq. (14)) of slow mode waves allows TTD interactions
with n = 0, so that we procede with n = 0. The resonance
function (30) becomes

R
j
S (0) =

2.9 × 105βV2
Ak2 sin2 θ(

2.9 × 105βV2
Ak2 sin2 θ

)2
+

[
kvµ cos θ + jVAkη

√
β

1+β

]2

=
αF sin2 θ(

αFk sin2 θ
)2

+

[
vµ cos θ + jVAη

√
β

1+β

]2 , (31)

where αF is the same as in the fast mode case.
Following the same procedure for fast mode waves in Sect. 3,

we assume (20), (22), (23), and imply (24). We derive

DS
µµ '

Ω2

4B2
0

(
1 − µ2

) ∑
j=±1

∫ ∞

−∞

dk
∫ 1

−1
dη R j

S (0)g j(k)J2
1(W)

×

(1 + η2
) (

1 + µ2ε2η2 β

1 + β

)
− 4µ jεη

√
β

1 + β

 , (32)

which can be simplified if we consider the energetic cosmic ray
particles v � VA, or namely, the last two terms, to be small
(order of ε and ε2) and neglected. Then, we obtain the same
expression as in the case for fast mode waves:

DS
µµ '

Ω2

4B2
0

(q − 1)(δB)2kq−1
min

(
1 − µ2

) ∫ kmax

kmin

dkk−q

×

∫ 1

−1
dη RS(0)J2

1(W)
(
1 + η2

)
. (33)

Next, we have to approximate the resonance function for slow
mode waves. As in the fast mode case, there are two cases:

a) η < ηS
c ;

b) η > ηS
c ,

where

ηS
c =

ε

µ

β

1 + β
· (34)

Note that ηS
c < η

F
c . Using DS

µµ(−µ) = DS
µµ(µ) and the substitution

s = RLk
√

1 − µ2, we derive

DS
µµ ' αF(q − 1)(kminRL)q−1

(
δB
B0

)2 (
1 − µ2

) q+1
2

×

∫ ∞

kmin

RL√
1−µ2

dss−q


∫ min

(
1, εµ

β
1+β

)

0
dη

(
1 − η4

)
× J2

1

(
s
√

1 − η2

)
1

α2
F(1−η2)2 s2

R2
L(1−µ2) + V2

Aη
2 β

1+β

+

∫ 1

min
(
1, εµ

β
1+β

)

×dη
(
1−η4

)
J2

1

(
s
√

1−η2

)
1

α2
F(1−η2)2 s2

R2
L(1−µ2) +(vµη)2

, (35)

where ε = VA/v.

4.1. High values of µ > ε

For large pitch-angles µ > ε we obtain

DS
µµ(µ > ε) '

(q − 1)
αF

(kminRL)q−1
(
δB
B0

)2 (
1 − µ2

) q+3
2

×

∫
kmin

RL

√
1 − µ2∞dss−q

×


∫ εβ

µ(1+β)

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)

×
1

(1 − η2)2s2 +
R2

L(1−µ2)V2
Aη

2 β
1+β

α2
F

+

∫ 1

εβ
µ(1+β)

dη
(
1 − η4

)
J2

1

(
s
√

1 − η2

)

×
1

(1 − η2)2s2 +
R2

L(1−µ2)(vµη)2

α2
F

 · (36)
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4.2. Low values of µ < ε

This case is important for treating damped waves for the same
reason as discussed for fast mode waves (Sect. 3). For the small
pitch-angles µ < ε, we obtain

DS
µµ(µ < ε) ' αF(q − 1)(kminRL)q−1

(
δB
B0

)2 (
1 − µ2

) q+1
2

×

∫
kmin

RL

√
1−µ2∞ds s−q

×


∫ 1

0
dη

(
1−η4

)
J2

1

(
s
√

1−η2

)
1

α2
F(1−η2)2 s2

R2
L(1−µ2) +V2

Aη
2 β

1+β

 , (37)

or for µ = 0, we read

DS
µµ(µ = 0) '

Ω2(q − 1)R2
L

4αF
(kminRL)q−1

(
δB
B0

)2 ∫
kmin

R∞L dss−q
∫ 1

0
dη (1 − η4)J2

1(s
√

1 − η2)
1

(1 − η2)2s2 +
V2

Aη
2 β

1+βR2
L

α2
F

 · (38)

In the last equation, s = kRL.

5. Cosmic ray mean free path

5.1. Fast mode waves

In this section, we calculate the mean free path, which is con-
nected with the spatial diffusion coefficient through

λ =
3κ
v

=
3v
4

∫ 1

0
dµ

(1 − µ2)2

Dµµ
· (39)

For the case in which we are interested, we can write

λ0F =
3κ
v

=
3v
4

1
Dµµ(µ = 0)

∫ ε

0
dµ =

3
4

VA

DF
µµ(µ = 0)

= 3
αF

(q − 1)VA
(kminRL)1−q

( B0

δB

)2 1
G
, (40)

where

G =

∫ ∞

kminRL

dss−q
∫ 1

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
×

1

(1 − η2)2s2 +
V2

AR2
L

α2
F

· (41)

Now, we consider two limits: kminRL � 1, and kminRL � 1,
where kminRL = T = E and is normalized with respect to
Ec = Tc =

kc
kmin

mec2. Expressing kmin = Lmax/2π in the terms
of the longest wavelength of isotropic fast mode waves, kc =
Ω0,e/vA = ωp,e/c and for following plasma conditions (vA =

33.5 km
s , B0

δB = 1, Beck 2007), Tc = 10.7n1/2
e ( Lmax

10 pc ) × 109 MV).
For these values, the particle mean free path is measured by
λ1 = 9αF

VA
( B0
δB )2. We have used interplanetary plasma conditions

that have been used in both models (Schlickeiser et al. 2010;
Teufel & Schlickeiser 2002) for comparison. We note that for
interstellar medium plasma conditions, λ1 is one or two orders
of magnitude larger than for interplanetary conditions, which is
also a reasonable value.

For kminRL � 1:
This case is treated in detail in Appendix A, where we derive

G(T � 1) =
2
5

10−14

q
T−(q+2), (42)

λ0F(T � 1) =
15αF

VA

q
q − 1

( B0

δB

)2

1014T 3. (43)

At relativistic rigidities, we find that λ0 ∼ T 3. As we consider
certain positron energies 1–100 GeV, this case is not relevant.
For kminRL � 1:

This case is treated in detail in Appendix A, where we derive

G(T � 1) =
1
3

1
q − 1

T 1−q, (44)

λF0(T � 1) =
9αF

VA

( B0

δB

)2

· (45)

In this energy limit, the mean free path is constant with respect
to T , which is relevant for considered positron energies.

5.2. Slow mode waves

In this subsection, we calculate the mean free path which is con-
nected with the spatial diffusion coefficient through

λS =
3κS

v
=

3v
4

∫ 1

0
dµ

(1 − µ2)2

DS
µµ

· (46)

For the case for which we are interested, we can write

λS0 =
3κS

v
=

3v
4

1
DS
µµ(µ = 0)

∫ ε

0
dµ =

3
4

VA

Dµµ(µ = 0)

= 3
αF

(q − 1)VA
(kminRL)1−q

( B0

δB

)2 1
G
, (47)

where

G =

∫ ∞

kminRL

dss−q
∫ 1

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
×

1

(1 − η2)2s2 +
V2

Aη
2 β

1+βR2
L

α2
F

· (48)

We consider two limits: kminRL � 1, and kminRL � 1, where
kminRL = T = E and is normalized with respect to Ec.

For kminRL � 1:
This case is treated in detail in Appendix B, where we derive

G(T � 1) =

√
2
π

|b/(b − 1)| + | log(1 − b)|
qp2 T−(q+2), (49)

λ0S(T�1)=
3αF
√

2VA

q
(q−1)

( B0

δB

)2

×
πp2

|b/(b − 1)| + | log(1 − b)|
T 3, (50)

where T = kminRL and b � 1.
At relativistic rigidities, we find that λ0S ∼ T 3.
For kminRL � 1:
This case is treated in detail in Appendix B, where we derive

G(T � 1) =
1
3

1
q − 1

T 1−q, (51)

λ0S (T � 1) =
9αF

VA

( B0

δB

)2

· (52)
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In this energy domain, the mean free path is constant with re-
spect to T , which is important for cosmic ray positrons with
Lorentz factor γ < mp/me = 1836. Although the mean free path
for slow magnetosonic waves has the same expression as in the
case for fast waves for energies less than Tc, the low energy limit
here is caused by plasma-β (Appendix B). However, it is always
less than Tc and does not violate previous conditions.

The turbulence model considered in this paper ensures that
all energy particles below the Tc value are scattered by the
proposed resonant interaction.

Considering dynamical magnetic slab turbulence and ran-
dom sweeping slab turbulence (Teufel & Schlickeiser 2002),
there is a sharp cutoff of the turbulence power spectrum at kmin.
The consequence is that the mean free path for all particles with
energies higher than 1010 eV with typical parameters rapidly
grows and becomes larger than the size of ambient interstellar
medium. For the slab plasma waves model (Schlickeiser et al.
2010) at rigidities less than 2 × 108 eV, the positron mean free
path becomes infinitely large. It is because these positrons find
no LH polarized slab waves with which to resonantly interact. In
the turbulence model proposed in this paper, the positron mean
free path does not depend on energy, in domain from 105 eV to
1012 eV.

The comparison of our result with previously reported tur-
bulence models are given in Fig. 1, where the mean free path
is in units of λ1 = 0.2β AU (AU = 1.5 × 1013 cm). To inter-
pret the MeV positrons propagation and explain their diffusion,
the model of the dynamical turbulence can be applied. However,
this model fails to explain transport mechanisms for energetic
positrons with energies of 100 GeV. In contrast, the slab gyrores-
onat plasma wave turbulence model is able to hold on energetic
GeV positrons but fails in explaining the transport properties
of MeV positrons. The isotropic damped magnetosonic plasma
wave turbulence model, which is proposed in this paper, seems
to be more plausible, since it covers energies in both domains.
This model could be used in modeling turbulence that scatters
positrons, resolving the problems stated by the results of either
the INTEGRAL or PAMELA experiments.

The inclusion of viscous damping implies either steep tur-
bulence spectra (q > 2.4) for isotropic turbulence with fixed
values of kmax and kmin, or the existence of high wavenum-
ber cutoff for isotropic turbulence with a spectral index q =
5/3 (Spanier & Schlickeiser 2005). To justify the use of kmax
and kmin in our model, it is necessary to assume turbulence
with a spectral index that is not less than 2.4. This value is
higher than the Kolmogorov value of 5/3 (Kolmogorov 1941)
or Kraichan-Iroshnikov value of 3/2 (Kraichnan 1965), but both
theories consider an inertial range, where damping effects have
been neglected. Interstellar medium has strong damping fea-
tures, which does not mean that there is no inertial range. It could
be that there is an intermediate regime between the inertial and
dissipation range. Thus, the request for steep turbulence spectra
is not in contradiction to neither Kolmogorov theory, or our cal-
culation, in which there is only a restriction on q to be greater
than 1.

The broadening of the resonance function could also be in-
sured by nonlinear treatment of the specific turbulence model.
Nonlinear theory (second order theory of Shalchi 2005) applied
to the magnetostatic slab model (Shalchi et al. 2009) would lead
to a broadened resonance function that is similar to the one ob-
tained for the random sweeping model, which is linear (Teufel
& Schlickeiser 2002). We have already mentioned that this lin-
ear model could be used to explain MeV positrons but fails for
GeV positrons. Thus, we expect, at least mathematically, that
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Fig. 1. The positron mean free path. The black line represents the mean
free path obtained using the slab turbulence model and gyroresonant in-
teractions, which exhibit a cutoff at particle energies less than 2×108 eV.
The red line is the mean free path obtained using the dynamical mag-
netic slab turbulence, or the random sweeping slab turbulence model,
which exhibit a sharp cutoff at particle energies of 1010 eV. The blue line
is the mean free path obtained using isotropic magnetosonic damped
plasma wave turbulence, which remains constant for particle energies
from 105 eV to 1012 eV. All mean free paths are normalized with re-
spect to the λ1 value.

inclusion of nonlinear effects to the slab model would have the
cutoff at the same wavenumbers as in the random sweeping lin-
ear model. However, it would be useful to compare timescales of
nonlinear effects and damping effects within the same turbulence
model, in order to make a general conclusion on the importance
of each of them.

6. Summary and conclusion

We have investigated the implications of isotropically distributed
interstellar damped plasma waves on the scattering mean free
path on the cosmic ray positrons with a Lorentz factor γ <
mp/me = 1836. We show that inclusion of resonance broaden-
ing due to wave damping in the resonance function guarantees
that dominance of transit-time damping also holds for cosmic
ray particles at small pitch angle cosines µ ≤ |Va/v|, unlike the
case of negligible wave damping.

For small rigidities, or consequently low energies T < Tc,
the mean free path is constant with respect to energy. The mean
free path at high energies T > Tc approaches a much steeper
dependence, namely λ ∼ T 3 for both fast and slow waves.

It is difficult to draw any general conclusion on the ratio
of fast and slow modes mean free path, since there is an in-
tegral dependence on the pitch angle and the plasma-beta pa-
rameter are mixed in the latter case. For cold plasma, the mean
free path of slow mode merges to the mean free path of the fast
one, as expected. However, this turbulence model is able to en-
sure scattering of the cosmic ray positrons with Lorentz factor
γ < mp/me = 1836 via resonant interaction.

Appendix A: Evaluation of the function G for fast
mode waves

The task is to calculate the function G (41):

G =

∫ ∞

kminRL

dss−q
∫ 1

0
dη (1 − η4)J2

1

(
s
√

1 − η2

)
×

1

(1 − η2)2s2 +
V2

AR2
L

α2
F

· (A.1)
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First, it is possible to evaluate the term V2
AR2

L
α2

F
∼ 1014 for used

plasma parameters (Sect. 5). We then evaluate G in two energy
limits.

Case G(kminRL � 1)

For energies T � 1 we substitute s = xT . Then, (A.1) reads as

G =

∫ ∞

1
dxx−qT−(1+q)

∫ 1

0
dη (1 − η4)J2

1

(
xT

√
1 − η2

)
×

1
(1 − η2)2x2 + 1014 = T−(1+q)

∫ ∞

1
dxx−q

×

∫ 1− 1
2xT

0
dη (1 − η4)

 1

πxT
√

1 − η2

1
(1 − η2)2x2 + 1014

+

∫ 1

1− 1
2xT

dη
(
1 − η4

) 1
4

x2T 2
(
1 − η2

)
×

1(
1 − η2)2 x2 + 1014

)
, (A.2)

where we use the approximations of Bessel functions for large
and small arguments (Abramowitz & Stegun 1972):

Jν(z � 1) ≈

√
2
πνz

cos
(
νz −

(2ν + 1)π
4

)
, (A.3)

implying

J2
1(z � 1) =

1

πxT
√

1 − η2

(
1 − sin

(
2xT

√
1 − η2

))
'

1

πxT
√

1 − η2
(A.4)

(1/ξ � sin ξ/ξ) for the argument, z = xT � 1, and

Jν(z � 1) ≈
(z/2)ν

Γ(ν + 1)
, (A.5)

implying

J2
1(z � 1) =

1
4

x2T 2
(
1 − η2

)
(A.6)

for the argument z = xT � 1. We then obtain

T (1+q)G(T � 1) =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1

1− 1
2xT

dη
(
1 − η4

)
(1 − η2)

(1 − η2)2x2 + 1014

+
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1 − η4)√
1 − η2

1
(1 − η2)2x2 + 1014

−
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

1− 1
2xT

dη
(1 − η4)√

1 − η2

1
(1 − η2)2x2 + 1014 =

I3 + I1 − I2. (A.7)

Next, we simplify further, namely keeping only terms with re-
spect to 1 − η of the lowest order, and we evaluate each integral:

I2 =
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1
2xT

0
dm

4m
√

2m

1
4m2x2 + 1014

=
2
3

10−14

π(q + 3/2)
T−

5
2 , (A.8)

where we substitute m = 1 − η.

I3 =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1
2xT

0
dm 4m

2m
1014 ==

1
12

10−14

q
T−1,

(A.9)

where we have used the same substitution as in the previous case
and where 1014 � 4m2x2. We note that I2 � I3.

I1 =
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1−η4)√
1−η2

1
1014 =

5
16

10−14

q
1
T
·

(A.10)

Combining all these three integrals, we obtain

G(T � 1) =
2
5

10−14

q
T−(q+2). (A.11)

Case G(kmin RL � 1)

For energies T � 1, we use the approximation for Bessel
function (A.5). Then, (A.1) reads as

G(T � 1) =
1
4

∫ 1

kminRL

dss−q
∫ 1

0
dη

(
1−η4

) (
1−η2

)
s2(

1−η2)2 s2+
V2

AR2
L

α2
F

=
1
4

∫ 1

T
dss−q

∫ 1

0
dη

(
1 + η2

)
−

M2

4

×

∫ 1

T
dss−q

∫ 1

0
dη

(
1 + η2

)
×

1(
1 − η2)2 s2 + M2

= I5 − I4, (A.12)

where M2 =
V2

AR2
L

α2
F

. We then evaluate each integral:

I5 =
1
4

∫ 1

T
dss−q

∫ 1

0
dη

(
1 + η2

)
=

1
3(q − 1)

(
T 1−q − 1

)
'

1
3(q − 1)

T 1−q, (A.13)

since T � 1, and q > 1.

I4=
M2

4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2)

1
(1 − η2)2s2 + M2

=
1
4

∫ 1

T
dss−qI6, (A.14)

where

I6 =

∫ 1

0
dη

(
1 + η2

) 1((
1 − η2)2 s2/M2

)
+ 1
· (A.15)

The exact solution of integral I6 reads as

(−1)1/4


(−2i + n) arctan

(
(−1)1/4
√
−i+n

)
√
−i + n

+

i(2i + n) arctan
(

(−1)3/4

√
−i + n

)
√
−i + n


2n
√

1 + n2
,

(A.16)
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where n2 = M2/s2. We can evaluate I6 by

I6 ≈
1

2n3 , (A.17)

which for I4 gives

I4 ≈
1

8M3

1
4 − q

(
1 − T (4−q)

)
· (A.18)

To compare I4 and I5 and calculate G(T � 1), we have to con-
sider two cases, which are (1 < q < 4) and steep (4 < q < 6)
turbulence spectrum.

For (1 < q < 4) the integral I4 ∼
1

4−q , while I4 ∼
1

q−4 T q−4 for
(4 < q < 6). However, M3 exists in both cases in the denomi-
nator of I4, which implies that I4 � I5. According to Eq. (A.12)
then:

G(T � 1) =
1
3

1
q − 1

T 1−q. (A.19)

Appendix B: Evaluation of the function G
for slow mode waves

The task is to calculate the function G (48),

G =

∫ ∞

kminRL

dss−q
∫ 1

0
dη

(
1 − η4

)
J2

1

(
s
√

1 − η2

)
1(

1 − η2)2 s2 +
V2

Aη
2 β

1+βR2
L

α2
F

· (B.1)

and evaluate it in two energy limits.

Case G(kminRL � 1)

For energies T � 1 we substitute s = xT . Then, (B.1) reads as

G =

∫ ∞

1
dxx−qT−(1+q)

∫ 1

0
dη

(
1 − η4

)
J2

1

(
xT

√
1 − η2

)
×

1(
1 − η2)2 x2 + p2η2

= T−(1+q)
∫ ∞

1
dxx−q

∫ 1− 1
2xT

0
dη (1 − η4)

1

πxT
√

1 − η2

×
1

(1−η2)2x2+p2η2

+

∫ 1

1− 1
2xT

dη
(
1−η4

) 1
4

x2T 2
(
1−η2

) 1(
1−η2)2 x2 + p2η2

 ,
(B.2)

where p2 = (V2
AR2

Lβ)/(α2
F(1 + β)). We have used

Jν(z � 1) ≈

√
2
πνz

cos
(
νz −

(2ν + 1)π
4

)
, (B.3)

implying

J2
1(z � 1) =

1

πxT
√

1 − η2

(
1 − sin

(
2xT

√
1 − η2

))
'

1

πxT
√

1 − η2
(B.4)

(1/ξ � sin ξ/ξ) for the argument, z = xT � 1, and

Jν(z � 1) ≈
(z/2)ν

Γ(ν + 1)
, (B.5)

implying

J2
1(z � 1) =

1
4

x2T 2
(
1 − η2

)
(B.6)

for the argument z = xT � 1. We then obtain

T (1+q)G(T � 1) =
T 2

4

∫ ∞

1
dxx−q+2

∫ 1

1− 1
2xT

dη
(
1 − η4

)
×

(1 − η2)
(1 − η2)2x2 + p2η2 +

1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dη

(1 − η4)√
1 − η2

1
(1 − η2)2x2 + p2η2 −

1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

1− 1
2xT

dη
(1 − η4)√

1 − η2

1
(1 − η2)2x2 + p2η2

= I3 + I1 − I2. (B.7)

Next, we evaluate each integral in turn as in the case of fast mode
waves.

I2=
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1
2xT

0
dm

4m
√

2m

1
4m2x2 + p2(1 − m)2

=
1
πT

∫ ∞

1
dxx−(q+1)I′2(m, x), (B.8)

where we substitute m = 1 − η.

I3=
T 2

4

∫ ∞

1
dxx−q+2

∫ 1
2xT

0
dm

8m2

p2(1 − m)2 + 4m2x2

=
T 2

4

∫ ∞

1
dxx−q+2I′3(m, x), (B.9)

where we have used the same substitution as in the previous case.

I1=
1
πT

∫ ∞

1
dxx−(q+1)

∫ 1

0
dm

4m
√

2m

1
p2(1 − m)2 + 4m2x2

=
1
πT

∫ ∞

1
dxx−(q+1)I′1(m, x). (B.10)

To compare functions under integration with respect to m, we
write out the following integrals

I′2(m, x)=
∫ 1

2xT

0
dm

4m
√

2m

1
4m2x2 + p2(1 − m)2 (B.11)

=
2
√

2
p2

∫ 1
2xT

0
dm f1, (B.12)

I′3(m, x)=
∫ 1

2xT

0
dm

8m2

p2(1 − m)2 + 4m2x2 =
8
p2

∫ 1
2xT

0
dm f2,

(B.13)

I′1(m,x)=

∫ 1

0
dm

4m
√

2m

1
p2(1 − m)2 + 4m2x2 =

2
√

2
p2

∫ 1

0
dm f1,

(B.14)
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where f1 = m
(1−m)2 and f2 = m2

(1−m)2 . We have approximated the de-

nominator as (1−m)2, as long as 4x2

p2 � 1 holds (which is ensured
by consideration of T � 1). Analyzing f1 and f2 in given inter-
vals of integration we deduce that I2 < I3 < I1. However, this
case is not of particular interest, so we make a rough estimation
on G.

Integral I′1 diverges for m = 1, so we integrate to m = b < 1.
Combining all, we obtain

G(T � 1) =

√
2
π

|b/(b − 1)| + | log (1 − b)|
qp2 T−(q+2). (B.15)

Case G(kminRL � 1)

For energies T � 1, we use the approximation for Bessel func-
tion (B.5). Then, (B.1) reads as

G(T � 1) =
1
4

∫ 1

kminRL

dss−q
∫ 1

0
dη

(
1 − η4

)
×

(1 − η2)s2

(1 − η2)2s2 +
V2

AR2
Lη

2β

α2
F(1+β)

=
1
4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2) −

p2

4∫ 1

T
dss−q

∫ 1

0
dη

(
1 + η2

)
×

η

(1 − η2)2s2 + p2η2

= I5 − I4, (B.16)

where p2 =
V2

AR2
Lβ

α2
F(1+β) . We then evaluate each integral.

I5 =
1
4

∫ 1

T
dss−q

∫ 1

0
dη (1 + η2) =

1
3(q − 1)

(T 1−q − 1)

'
1

3(q − 1)
T 1−q, (B.17)

since T � 1.
To estimate I4, we write

I4=
p2

4

∫ 1

T
dss−q

∫ 1

0
dη

(
1 + η2

) η2

(1 − η2)2s2 + p2η2

=
1
4

∫ 1

T
dss−qI6, (B.18)

where

I6 =

∫ 1

0
dη(1 + η2)

η2

((1 − η2)2w2) + η2 (B.19)

and w2 = s2/p2. Here, we compare functions in integrals I5 with
respect to η, namely f1 = (1 + η2), and in I6 namely f2 = (1 +

η2) η2

((1−η2)2w2)+η2 .
We find that I5 � I6 for w2 � 1 over the interval [0, 1]. For

10−14 < w2 < 1, we still have I5 > I4. Only at w2 6 10−14,
I5 < I6 (low energy value is caused by this limitation; namely,
we consider T � 1). However, this treatment is valid as long as
T > β

1+β
, which is always less than 1.

As long as I5 dominates, we obtain

G(T � 1) =
1
3

1
q − 1

T 1−q. (B.20)
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ABSTRACT

The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the
scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the
crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions
with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and
positrons are derived for the case of constant frequency-independent magnetic helicity values σ and different
values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions.
The positron mean free path is not affected by the dissipation range spectral index k as these particles can only
cyclotron-resonate for rigidity values larger than R0 = mpc = 938 MV. Proton and antiproton mean free paths are
only slightly affected by the dissipation range spectral index k at small rigidities R < R0. The negatron mean free
path is severely affected by the dissipation range spectral index k at rigidities smaller than R0. At high rigidities
R � R0, all particle species approach the same power-law dependence ∝ R2−s determined by the inertial range
spectral index s = 5/3. The magnetic helicity value σ affects the value of the mean free path. At all rigidities,
the ratio of the antiproton to proton mean free paths equals the constant (1 + σ )/(1 − σ ), which also agrees
with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic
rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.

Key words: cosmic rays – diffusion – magnetic fields – plasmas – Sun: particle emission

Online-only material: color figures

1. INTRODUCTION

The scattering mean free path of cosmic-ray particles in
interplanetary and interstellar turbulent magnetic fields is a key
quantity for particle astrophysics, as it determines the diffusive
escape time from cosmic systems, the anisotropy of galactic
cosmic rays, the acceleration time scale of diffusive shock accel-
eration, the modulation of galactic and anomalous cosmic rays
in the expanding solar wind, and, via its rigidity dependence,
the chemical composition of ultra-high-energy cosmic rays. The
scattering mean free path results from resonant particle-wave in-
teractions of cosmic-ray particles with the turbulent component
of cosmic magnetic fields and thus depends on the nature and ge-
ometry of cosmic turbulent magnetic fields (Schlickeiser 2002).
In situ measurements of plasma turbulence in the solar wind
indicate that the turbulent magnetic field is a mixture of slab
(i.e., parallel to the ordered background magnetic field) waves,
a dominating two-dimensional component (Bieber et al. 1996),
with a negligible contribution to particle scattering (Shalchi &
Schlickeiser 2004), and obliquely propagating magnetosonic
waves that, due to their compressive nature, reveal themselves
through electron density fluctuations. In the magnetostatic limit,
the scattering rate from the two-dimensional component van-
ishes (Shalchi & Schlickeiser 2004), so that particle scattering
is solely due to resonant interactions with the slab Alfvén waves
and obliquely propagating fast magnetosonic waves.

Schlickeiser & Miller (1998) and Schlickeiser & Vainio
(1999) have investigated the quasilinear interactions of charged
particles with these two plasma modes. A cosmic-ray particle
of given velocity v, Lorentz factor γ = (1− (v2/c2))−1/2, pitch-
angle cosine μ, mass m, charge qi = e|Zi |Q with Q = sgn(Zi),

and gyrofrequency Ωc = QΩ with Ω = qiB0/(mcγ ) interacts
with waves whose wavenumber k, cosine of propagation angle
η = k‖/k, and real frequency f obey the resonance condition:

f (k) = vμkη + nΩc (1)

for the entire n ∈ [−∞,∞]. For slab (η = 1) Alfvén waves,
only gyroresonant interactions with n = ±1 are possible. In
contrast, for obliquely propagating fast magnetosonic waves,
besides gyroresonance interactions (n �= 1), also the n =
0 resonance is possible due to their compressive magnetic
field component. The n = 0 interactions are referred to as
transit-time damping (TTD). Using n = 0, the resonance
condition (1) requires the parallel cosmic-ray velocity vμ =
f/(kη) � f/k 	 VA to be greater than the finite phase
velocity of magnetosonic waves, given by the Alfvén speed.
TTD interactions therefore only occur for cosmic-ray particles
with pitch-angle cosines |μ| � VA/v = ε. At these pitch-angle
cosines, TTD interactions provide most of the particle scattering.

For energetic particles, the crucial scattering in the interval
of small |μ| � VA/v = ε 
 1 is then provided only by
gyroresonances with slab plasma waves that below the non-
relativistic electron gyrofrequency consist of the right-handed
(RH) polarized Alfvén–Whistler-electron cyclotron branch and
the left-handed (LH) polarized Alfvén-proton cyclotron branch,
and gyroresonances with fast magnetosonic waves. If slab-
mode waves and obliquely distributed magnetosonic waves have
comparable intensities, the TTD scattering rates of energetic
particles at pitch-angle cosines |μ| > ε become so large that
the mean free path is well approximated with an integral of
the slab-mode (Dslab

μμ ) contribution and the contribution from
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gyroresonant interactions with magnetosonic waves (Dg−ms
μμ )

that extends from μ = −ε 
 1 to ε (Schlickeiser & Miller
1998; Schlickeiser 1999; Vainio 2000):

λ 	 3v

8

∫ ε

−ε

dμ
(1 − μ2)

Dslab
μμ (μ) + D

g−ms
μμ (μ)

	 3VA

4
[
Dslab

μμ (0) + D
g−ms
μμ (0)

] . (2)

According to Schlickeiser & Miller (1998) for similar turbu-
lence power spectra of slab and magnetosonic waves, the mag-
netosonic contribution D

g−ms
μμ (0) 	 εDslab

μμ (0) for energetic par-
ticles (ε 
 1) is much smaller than the slab contribution, so that

λ 	 3VA

4Dslab
μμ (0)

, (3)

which will be used in the following. We note, however, that this
latter reduction is not justified for cosmic-ray positrons with
Lorentz factors γ < mp/me = 1836. We will demonstrate
below that these positrons find no LH polarized slab waves
to resonantly interact with, so that here Dslab

μμ (0) → 0. In
this case, the contribution from gyroresonant interactions with
magnetosonic waves provides small but finite scattering. This
subject will be studied in a separate, forthcoming investigation
as the calculation of D

g−ms
μμ (0) is rather involved.

For gyroresonant interactions with slab Alfvén waves of
cosmic-ray particles with μ = 0, the resonance condition (1)
reduces to the cyclotron condition f = ±ΩZ, implying with
f > 0 that the scattering of positively (Q = 1) charged
particles, such as protons (p+) and positrons (e+), at μ = 0 is
caused by resonant cyclotron interactions with the LH polarized
slab waves, whereas negatively (Q = −1) charged particles,
such as negatrons (e−) and antiprotons (p−), cyclotron-interact
with the RH polarized slab waves. For a net polarization of slab
waves, i.e., non-zero values of the magnetic helicity σ , different
values of the scattering mean free path for positively and
negatively charged cosmic-ray particles result. Such a difference
is of high interest for the interpretation of the recently observed
dramatic rise in the positron fraction of galactic cosmic-ray
electrons (Adriani et al. 2009) between 10 GeV and 300 GeV.

Besides the net polarization of slab waves, the mean free
path of energetic particles can also be influenced by the
observed steepening of magnetic field fluctuation power spectra
in the solar wind. In situ spacecraft measurements of plasma
turbulence in the solar wind yield magnetic fluctuation spectra
J (f ) ∝ f −α which are power laws in the observed frequency
f. At small frequencies f � 0.2 Hz 	 Ωp below the non-
relativistic proton gyrofrequency, the spectral index is measured
to be about the Kolmogorov value −5/3 (Smith et al. 2006;
Podesta et al. 2007), which therefore is referred to as the “inertial
range.” In the range f ∈ [0.2, 0.5] Hz, the measurements
indicate a distinct spectral break to steeper spectra (Leamon
et al. 1998; Smith et al. 2006; Alexandrova et al. 2008). At
higher observed frequencies up to 100 Hz, higher spectral
indices with 2 < α < 4.5 are measured (Denskat et al.
1983; Bale et al. 2005; Sahraoui et al. 2009; Kiyani et al.
2009; Alexandrova et al. 2009). These higher frequency range
spectra are referred to as “dissipation range” again by analogy
with neutral fluid turbulence (Saito et al. 2008). Because high
frequency turbulence above the spectral breakpoint is relatively
weak (|δ �B|2 
 B2

0 ), this dissipation regime may be thought

of as an ensemble of weakly interacting fluctuations which are
individually described by linear dispersion theory. Then a likely
explanation for higher spectral indices is that these fluctuations
are weakly damped dispersive waves (Stawicki et al. 2001;
Alexandrova et al. 2008).

It is the purpose of this work to quantitatively investigate
the influences of a net polarization of slab plasma waves and
of the established spectral steepening of magnetic fluctuation
spectra in the dissipation range on the quasilinear scattering
mean free paths of cosmic-ray, and especially solar energetic,
particles. Because of the measured small turbulence levels
(qL = |δ �B|2/B2

0 
 1), the application of quasilinear particle
transport theory, which is a perturbation theory to the lowest
order in qL, is well justified. Of particular interest are differences
in the rigidity dependence of the mean free path of cosmic-ray
protons, antiprotons, negatrons, and positrons caused by either
(1) the dissipation range steepening of magnetic fluctuation
power spectra or (2) different wave powers in RH and LH
polarized slab waves, which via resonant cyclotron interactions
determine the relevant scattering rate of energetic particles.

2. QUASILINEAR SCATTERING MEAN FREE PATH

The pitch-angle scattering Fokker Planck coefficient for
cosmic-ray particles with μ = 0 is caused by resonant cyclotron
interactions with the LH and RH polarized slab waves so that

Dslab
μμ (0) = π2 Ω2

B2
0

[∫ Ωe

0
df Ps,RH(f )δ(f + ΩQ)

+
∫ Ωp

0
df Ps,LH(f )δ(f − ΩQ)

]
, (4)

where Ω = Ω0/γ denotes the absolute value of the particle’s
gyrofrequency. Equation (4) accounts for the non-existence of
LH polarized slab waves at wave frequencies above the non-
relativistic proton cyclotron frequency.

The power spectra of LH, Ps,LH(f ) = (1+σ )Js(f )/2, and RH,
Ps,RH(f ) = (1 − σ )Js(f )/2, polarized slab waves are related to
the total power Js(f ) = Ps,LH(f ) + Ps,RH(f ) of the slab mode
as a function of wave frequency,

(δBs)
2 = 2π

∫ ∞

f0

df Js(f ), (5)

where f0 = 10−4Ωp denotes the lowest observed frequency of
plasma waves. For constant, frequency-independent magnetic
helicity values σ , we obtain

Dslab
μμ (0) = π2 Ω2

2B2
0

[(1 − σ )Js(−ΩQ)H [−Q]H [Ωe + ΩQ]

+ (1 + σ )Js(ΩQ)H [Q]H [Ωp − ΩQ]]

= π2Ω2

B2
0

Js(Ω)G(σ, Ω,Q), (6)

where H [x] denotes the Heaviside step function and with the
charge-sign-dependent function:

G(σ, Ω,Q) = (1 − σ )H [Ωe + ΩQ]H [−Q]

+ (1 + σ )H [Ωp − ΩQ]H [Q]. (7)

Accounting for the slab contribution to the observed
turbulence that additionally contains oblique magnetosonic tur-
bulence and two-dimensional turbulence, by the slab factor
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η = (δBS)2/(δBtotal)2 	 0.15 (Bieber et al. 1996) in the so-
lar wind, we relate Js(f ) = ηJ (f ) to the observed magnetic
fluctuation spectra which we represent as

J (f ) = J0f
−s[

1 + f

Ωp

]k
H [f − f0] . (8)

Here, s = 5/3 represents the inertial range spectral index,
whereas k accounts for the measured steepening in the dissi-
pation range. We then obtain for Equation (6)

Dslab
μμ (0) = π2ηJ0Ω2−s

2B2
0

H [Ω − f0][
1 + Ω

Ωp

]k
G(σ, Ω,Q). (9)

Consequently, the mean free path (Equation (3)) becomes

λ(γ ) = 3VAB2
0

2π2ηJ0G(σ, Ω,Q)

(
γ

Ω0

)2−s

×
[

1 +
Ω0

Ωpγ

]k

H

[
Ω0

f0
− γ

]
. (10)

J0 is related to the total fluctuating magnetic field component
(δBtotal)2 as

(δBtotal)
2 = 2π

∫ ∞

f0

df J (f ) = 2πJ0

∫ ∞

f0

df
f −s[

1 + f

Ωp

]k
,

(11)
where we inserted Equation (7). For s + k > 1, the integral can
be solved in terms of hypergeometric functions so that

(δBtotal)
2 = 2πJ0

s + k − 1

f 1−s
0(

1 + f0

Ωp

)k

×F

(
k, 1; s + k; 1

1 + f0

Ωp

)
	 2πJ0

s − 1
f 1−s

0 , (12)

where the latter approximation holds because of the small
observed value f0 = 10−4Ωp. Replacing J0 in Equation (10),
we obtain

λ(γ ) = 3

π (s − 1)ηG(σ, Ω,Q)

B2
0

(δBtotal)2

VA

Ω0

(
Ω0

f0

)s−1

× γ 2−s

[
1 +

Ω0

Ωpγ

]k

H

[
Ω0

f0
− γ

]
. (13)

Expressing the Alfvén speed VA = Ωpc/ωp,p in terms of the
proton plasma frequency ωp,p, we find

λ(γ ) = λ0
Ωp

Ω0

(
Ω0

f0

)s−1
γ 2−s

G(σ, Ω,Q)

×
[

1 +
Ω0

Ωpγ

]k

H

[
Ω0

f0
− γ

]
(14)

with the constant

λ0 = 3c

πη(s − 1)ωp,p

B2
0

(δBtotal)2
. (15)

Table 1
Function G for Different Cosmic-ray Particles

Particle Q G

Protons 1 (1 + σ )H [γ -1]

Antiprotons 1 (1 − σ )H [γ -1]

Negatrons −1 (1 − σ )H [γ -1]

Positrons 1 (1 + σ )H [γ − α], α = mp/me = 1836

The charge-sign-dependent function G is calculated in Table 1
for cosmic-ray protons, antiprotons, positrons (e+), and nega-
trons (e−). Antiprotons and negatrons interact with RH polar-
ized slab waves for all values of the particle Lorentz factor,
whereas protons interact with LH polarized slab waves for all
values of the particle Lorentz factor. However, positrons inter-
act with LH polarized slab waves only if their Lorentz factor
is higher than the mass ratio α = 1836. Because there are no
LH polarized slab waves above the proton cyclotron frequency,
only the mean free path of negatrons at Lorentz factors γ < α
will be heavily influenced by the spectral steepening of the mag-
netic fluctuation power spectrum in the dissipation range. The
absence of LH polarized slab waves above the proton cyclotron
frequency can be best seen from the plot of the dispersion re-
lation f = ω = ω(k‖) shown as a dashed line in Figure 1 of
Steinacker & Miller (1992).

In the next section, we will calculate the rigidity dependence
of the mean free path for the four particle species adopting the
following standard interplanetary plasma parameters: the gas
density ne = 10n1 cm−3, the turbulence level b = δBtotal/B0 =
0.1b0.1, the slab ratio η = 0.15η0.15, the inertial spectral index
s = 5/3 and f0 = 10−4f0,−4Ωp. For these values, the mean
free path (Equation (14)) is given by

λ(γ ) = λ1

(
Ωp

Ω0

)2−s
γ 2−s

G(σ, Ω,Q)

×
[

1 +
Ω0

Ωpγ

]k

H

[
Ω0

f0
− γ

]
(16)

with the constant

λ1 = λ0

(
Ωp

f0

)s−1

= 0.22

f
2/3
0,−4η0.15b

2
0.1n

1/2
1

AU, (17)

whose value compares favorably well with the observed particle
mean free paths in the interplanetary medium (Dröge 2000).

We note that in the interstellar medium the observed electron
density fluctuation spectrum (Armstrong et al. 1995) extends to
much smaller frequencies f0,−4 = 10−4 yielding n1 = 0.1 for
the constant λ1 = 2.3 × 1015 cm, which again is a reasonable
value.

3. MEAN FREE PATH FOR PROTONS, ANTIPROTONS,
NEGATRONS, AND POSITRONS

For cosmic-ray protons, antiprotons, negatrons, and positrons,
we derive the mean free paths from Equation (16) and Table 1
as

λp+ (γp) = λ1

1 + σ
γ 2−s

p

[
1 +

1

γp

]k

H

[
Ωp

f0
− γp

]
, (18)

λp−(γp) = 1 + σ

1 − σ
λp+ (γp), (19)
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Figure 1. Scattering mean free path of cosmic-ray protons and antiprotons in
units of λ1/(1+σ ) and λ1/(1−σ ), respectively, as a function of particle rigidity
for three values of the dissipation range spectral index k = 0 (full curve),
k = 1/3 (dashed curve), and k = 0.5 (dot-dashed curve).

(A color version of this figure is available in the online journal.)

λe+ (γe) = λ1

1 + σ

(γe

α

)2−s
[

1 +
α

γe

]k

× H [γe − α] H

[
αΩp

f0
− γe

]
, (20)

and

λe−(γe) = λ1

1 − σ

(γe

α

)2−s
[

1 +
α

γe

]k

H

[
αΩp

f0
− γe

]
, (21)

respectively. For these four singly charged particle species, the
rigidity R = p equals the particle momentum so that the Lorentz
factors are

γp,e =
√

1 +

(
R

mp,ec2

)2

. (22)

For solar wind turbulence parameters, these mean free paths
are shown in Figures 1–3 as a function of particle rigidity for
different values of the dissipation range spectral index k.

Figure 1 indicates that the proton and antiproton mean free
paths are only slightly affected by the dissipation range spectral
index k at small rigidities. In agreement with Equations (18)
and (19), the proton and antiproton mean free paths approach
the constant values

λp+,p− (Rp → 0) = 2kλ1

1 ± σ
. (23)

At relativistic rigidities R � R0 = mpc = 938 MV, both mean
free paths increase ∝ R2−s = R1/3. At all rigidities, the ratio
of the antiproton to proton mean free paths equals the constant
(1 + σ )/(1 − σ ).

The positron mean free path shown in Figure 2 is not affected
by the dissipation range spectral index k. In order to resonate
with LH polarized slab waves, the positron rigidity has to be
larger than R � αmec = R0. At lower rigidities, the positron
mean free path is infinitely large for this type of turbulence
model. At high rigidities R � R0, the positron mean free path

Figure 2. Scattering mean free path of cosmic-ray positrons in units of λ1/(1+σ )
as a function of particle rigidity for solar wind scattering conditions and three
values of the dissipation range spectral index k = 0 (full curve), k = 1/3
(dashed curve), and k = 0.5 (dot-dashed curve).

(A color version of this figure is available in the online journal.)

equals the same power-law dependence of the proton mean free
path

λe+ (R � R0) = λ1

1 + σ

(
R

mpc

)2−s

= λp(R � R0). (24)

The negatron mean free path shown in Figure 3 is heavily
influenced by the dissipation range spectral index at negatron
rigidities below R0. In agreement with Equation (20), the
negatron mean free path approaches the constant value:

λe− (Re → 0) = λ1

1 − σ

(1 + α)k

α2−s
	 λ1

1 − σ
αk+2−s . (25)

At high rigidities r � R0, the negatron mean free path
approaches the power-law dependence:

λe−(R � R0) = λ1

1 − σ

(
R

mpc

)2−s

= 1 + σ

1 − σ
λp(R � R0)

= 1 + σ

1 − σ
λe+ (R � R0), (26)

which differs from the positron and the proton mean free path by
the constant factor (1 + σ )/(1 − σ ), reflecting that negatrons in-
teract with RH polarized waves, whereas the positively charged
protons and positrons interact with LH polarized waves. Only
for the case of linearly (σ = 0) polarized slab waves, all four
particle species have the same value of the mean free path at the
same relativistic rigidity.

Dröge (2000, 2003) has compared the rigidity dependence of
proton and electron mean free paths for several solar flare events
with numerically calculated mean free paths including also the
dissipation range steepening for linearly (σ = 0) polarized slab
waves. In Figure 4, we therefore show the electron and proton
mean free paths for the dissipation range spectral index k = 1/2
and two different values of the magnetic helicity σ = −0.7, 0.5.
One notices that non-zero values of the magnetic helicity have
a drastic influence on the absolute values of the proton and
electron mean free paths. In agreement with Equation (26), a
negative value of σ , indicating more RH than LH polarized slab
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Figure 3. Scattering mean free path of cosmic-ray negatrons in units of
λ1/(1 − σ ) as a function of particle rigidity for solar wind scattering conditions
and five values of the dissipation range spectral index.

(A color version of this figure is available in the online journal.)

waves, implies a smaller electron compared to the proton mean
free path. Electrons are scattered more often by the excess of RH
polarized waves than protons, implying a smaller mean free path
that is inversely proportional to the scattering rate. Alternatively,
the excess of LH polarized waves implied by positive values of σ
lead to smaller proton mean free path compared to the electron
mean free path. By fitting the two parameters k and σ to the
measured proton and negatron mean free paths of individual
solar flare events, it is therefore possible to infer the dissipation
range spectral index and the magnetic helicity state for each
event. The same difference results for the mean free paths of
relativistic negatrons and positrons: for positive σ > 0 the
positron mean free path is a factor (1 − σ )/(1 + σ ) smaller
than the negatron mean free path, whereas for negative σ < 0
the positron mean free path is larger than the negatron mean free
path by the same factor.

4. SUMMARY AND CONCLUSIONS

We have investigated the influence of the polarization state
and the dissipation range spectral steepening of slab plasma
waves on the scattering mean free path of single-charged
cosmic-ray particles in a turbulence model, where the crucial
scattering of cosmic-ray particles with small pitch-angle cosines
is caused by resonant cyclotron interactions with slab plasma
waves. Because positively (negatively) charged cosmic rays
resonate with the LH (RH) polarized slab waves, different
values of the scattering mean free path for positively and
negatively charged cosmic-ray particles result for non-zero
magnetic helicity values σ . The mean free paths are also affected
by the observationally established steepening of the power
spectrum of magnetic fluctuations at frequencies above the non-
relativistic proton gyrofrequency. Analytical expressions for the
mean free path of protons, antiprotons, negatrons, and positrons
are derived for the case of constant frequency-independent
magnetic helicity values and different values of the dissipation
range spectral index k for characteristic interplanetary and
interstellar plasma conditions.

The positron mean free path is not affected by the dissipation
range spectral index k as these particles can only cyclotron-
resonate for rigidity values larger than R0 = mpc = 938 MV.
Proton and antiproton mean free paths are only slightly affected

Figure 4. Scattering mean free path of cosmic-ray negatrons and protons in
units of λ1 as a function of particle rigidity for the dissipation range spectral
index k = 1/2 and the two magnetic helicity values σ = 0.5 (full curves) and
σ = −0.7 (dashed curves). The proton curves are constants at rigidities less
than 500 MV, whereas the electron curves exhibit a dip near 500 MV.

(A color version of this figure is available in the online journal.)

by the dissipation range spectral index k at small rigidities
R < R0. The negatron mean free path is severely affected by
the dissipation range spectral index k at rigidities smaller than
R0. At high rigidities R � R0, all particle species approach the
same power-law dependence ∝ R2−s determined by the inertial
range spectral index s = 5/3.

The magnetic helicity value σ affects the value of the mean
free path. At all rigidities, the ratio of the antiproton to proton
mean free paths equals the constant (1 + σ )/(1 − σ ), which also
agrees with the ratio of the negatron to the proton and positron
mean free paths at relativistic rigidities. At relativistic rigidities,
the positron and proton mean free paths agree, as do the negatron
and antiproton mean free paths. Using the measured rigidity
variations of proton and negatron mean free paths of individual
solar flare events, it is therefore possible to infer the dissipation
range spectral index and the magnetic helicity state for each
event.

The reported charge-sign-dependent differences in the mean
free paths distinguish this plasma-wave interaction model of
cosmic-ray particles from other magnetostatic transport models
such as the dynamical turbulence and random sweeping model
(Bieber et al. 1994), which omit finite frequency effects and
thus the influence of wave polarization on the particle scatter-
ing at small pitch-angle cosines. Establishing experimentally
therefore differences in the scattering rates of positively and
negatively charged particles, as e.g., by positron/electron-ratio
and antiproton/proton-ratio observations, would therefore favor
this plasma-wave interaction model.
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ABSTRACT

Context. The mean free path and anisotropy of galactic cosmic rays is calculated in weak plasma wave turbulence that is isotropically
distributed with respect to the ordered uniform magnetic field.
Aims. The modifications on the value of the Hillas energy, above which cosmic rays are not confined to the Galaxy, are calculated.
The original determination of the Hillas limit has been based on the case of slab turbulence where only parallel propagating plasma
waves are allowed.
Methods. We use quasilinear cosmic ray Fokker-Planck coefficients to calculate the mean free path and the anisotropy in isotropic
plasma wave turbulence.
Results. In isotropic plasma wave turbulence the Hillas limit is enhanced by about four orders of magnitude to Ec = 2.03 ×
105An1/2

e (Lmax/10 pc) PeV resulting from the dominating influence of transit-time damping interactions of cosmic rays with obliquely
propagating magnetosonic waves.
Conclusions. Below the energy Ec the cosmic ray mean free path and the anisotropy exhibit the well known E1/3 energy dependence.
At energies higher than Ec both transport parameters steepen to a E3-dependence. This implies that cosmic rays even with ultrahigh
energies of several hundreds of EeV can be rapidly pitch-angle scattered by interstellar plasma turbulence, and are thus confined to
the Galaxy.

Key words. ISM: cosmic rays – ISM: magnetic fields – plasmas – scattering

1. Introduction

To unravel the nature of cosmic sources that accelerate cos-
mic rays to ultrahigh energies has been identified as one of
the eleven fundamental science questions for the new century
(Turner et al. 2002). Cosmic rays with energies up to at least
1014 eV are likely accelerated at the shock fronts associated with
supernova remnants (for review see Blandford & Eichler 1987).
Radio emissions and X-rays give conclusive evidence that elec-
trons are accelerated there to near-light speed (Koyama et al.
1995, 1997; Tanimori et al. 2001; Allen et al. 1997; Slane et al.
1999; Borkowski et al. 2001). The HESS observations of su-
pernova remnants up to ∼100 TeV provide direct evidence of
very high energy particle acceleration in the shocks (Aharonian
et al. 2004, 2005), while the leptonic or hadronic nature of
these gamma-rays is currently being disputed (e.g. Enomoto
et al. 2002; Reimer & Pohl 2002). The supernova remnant ori-
gin would be consistent with the observed GeV excess of diffuse
galactic gamma radiation from the inner Galaxy (Büsching et al.
2001), although the GeV excess has been found to be present
in all directions including galactic latitudes where no supernova
remnants are present and the outer Galaxy (Strong et al. 2004).
This indicates that the origin of the GeV excess is more complex

� Appendices are only available in electronic form at
http://www.aanda.org

and is not straightforwardly connected with supernova remnants
in the inner Galaxy.

More puzzling are the much higher energy cosmic rays with
energies as large as 1020.5 eV. It has been argued (Lucek & Bell
2000; Bell & Lucek 2001; Hillas 2006) that, due to the am-
plification of the magnetic field in the shock, the acceleration
of cosmic rays in young supernova remnants is possible up to
∼1018 eV. This implies that such particles may have a Galactic
origin. For ultrahigh-energy (1018−1020.5 eV) cosmic rays an ex-
tragalatic origin is favored by many researchers. Extragalactic
ultrahigh-energy cosmic rays (UHECRs) coming from cosmo-
logical distances ≥50 Mpc should interact with the universal
cosmic microwave background radiation (CMBR) and produce
pions. For an extragalactic origin of UHECRs the detection or
non-direction of the Greisen-Kuzmin-Zatsepin cutoff resulting
from the photopion attenuation in the CMBR will have far-
reaching consequences not only for astrophysics but also for fun-
damental particle physics as e.g. the breakup of Lorentz sym-
metry (Coleman & Glashow 1997) or the non-commutative
quantum picture of spacetime (Amelio-Camelia et al. 1998).

Radio synchrotron radiation intensity and polarisation sur-
veys of our own and external galaxies (for review see Sofue
et al. 1986) have revealed that the interstellar medium is trans-
versed by large-scale ordered magnetic fields with superposed
plasma wave turbulence. The Galactic magnetic field has a reg-
ular and a random component of about equal strength. The
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turbulent field has a broad spectrum of scales with the largest one
being 10−100 pc (e.g. Beck 2007, and references therein). This
could be compared with the gyroradius of ∼1 pc for 1015 eV par-
ticles, or ∼1 kpc for 1018 eV particles. The conventional size
of the Galactic halo derived from abundances of radioactive
isotopes in cosmic rays is about 4−6 kpc (Ptuskin & Soutoul
1998; Strong & Moskalenko 1998; Webber & Soutoul 1998).
The turbulent magnetic field may thus present a mechanism for
isotropization of Galactic cosmic rays up to 1017−1018 eV (see,
e.g., Candia et al. 2003).

According to the current understanding (reviewed in
Schlickeiser 2002) the relativistic charged particles (hereafter
referred to as cosmic ray particles) in these space plasmas
are confined and accelerated by resonant interactions in these
weakly random electromagnetic fields. In the presence of low-
frequency magnetohydrodynamic plasma waves, whose mag-
netic field component is much larger than their electric field
component, the particle’s phase space distribution function ad-
justs rapidly to a quasi-equilibrium through pitch-angle diffu-
sion, which is close to the isotropic distribution. The isotropic
part of the phase space distribution function F(z, p, t) obeys the
diffusion-convection-equation

∂F
∂t
− S 0 =

∂

∂z

[
κ
∂F
∂z

]
− V
∂F
∂z

+
p
3
∂V
∂z
∂F
∂p
+

1
p2

∂

∂p

[
p2AM

∂F
∂p
− p2 ṗLossF

]
− F

Tc
(1)

where the parallel spatial diffusion coefficient κ, the cosmic ray
bulk speed V and the momentum diffusion coefficient A are
determined by pitch-angle averages of three Fokker-Planck
coefficients

κ =
v

3
λ =
v2

8

∫ 1

−1
dµ

(1 − µ2)2

Dµµ(µ)
, (2)

V = u +
1

3p2

∂

∂p
(p3D), D =

3v
4p

∫ 1

−1
dµ(1 − µ2)

Dµp(µ)

Dµµ(µ)
, (3)

AM =
1
2

∫ 1

−1
dµ

⎡⎢⎢⎢⎢⎢⎣Dpp(µ) − D2
µp(µ)

Dµµ(µ)

⎤⎥⎥⎥⎥⎥⎦ · (4)

In Eq. (1) the space coordinate z is parallel to the uniform back-
ground magnetic field B0, S 0 is the source term, ṗLoss and Tc
describe continuous and catastrophic momentum loss processes.
See also Appendix A for a glossary and definitions of important
symbols.

For many years the theoretical development of the resonant
wave-particle interactions has mainly concentrated on the spe-
cial case that the plasma waves propagate only parallel or an-
tiparallel to the ordered magnetic field – the socalled slab turbu-
lence. In this case only cosmic ray particles with gyroradii RL
smaller than the longest parallel wavelength L‖,max of the plasma
waves can resonantly interact. Obviously this condition is equiv-
alent to a limit on the maximum particle rigidity R:

R =
p
Z
≤ eB0L‖,max. (5)

An alternative way to express the condition (5) is

E15/Z ≤ 40 ·
(

B0

4 µ G

) (
L‖,max

10 pc

)
, (6)

where E15 denotes the cosmic ray particle energy in units of
1015 eV. The limit set by the right hand side of Eq. (6) is re-
ferred to as Hillas limit (Hillas 1984). According to this limit,
cosmic ray protons of energies larger than 40 PeV = 4 × 1016 eV
cannot be confined or accelerated in the Milky Way, and an ex-
tragalactic origin for this cosmic ray component has to be in-
voked. Moreover, as the cosmic ray mean free path in case of
spatial gradients is closely related to the cosmic ray anisotropy
(Schlickeiser 1989, Eq. (94)), the Hillas limit (6) implies strong
anisotropies at energies above 40 PeV which have not been
observed by the KASKADE experiment (Antoni et al. 2004;
Hörandel et al. 2006).

It is the purpose of this work to investigate how the Hillas
limit (6) is affected if we discard the assumption of purely
slab plasma waves, i.e. if we allow for oblique propagation an-
gles θ of the plasma waves with respect to the ordered mag-
netic field component. There is ample observational evidence
that obliquely propagating magnetohydrodynamic plasma waves
exist in the interstellar medium (Armstrong et al. 1995; Lithwick
& Goldreich 2001; Cho et al. 2002). In particular, we will con-
sider the alternative extreme limit that the plasma waves prop-
agation angles are isotropically distributed around the magnetic
field direction. It has been emphasised before by Schlickeiser &
Miller (1998) referred to as SM) that oblique propagation an-
gles of fast magnetosonic waves leads to an order of magnitude
quicker stochastic acceleration rate as compared to the slab case,
since the compressional component of the obliquely propagating
fast mode waves allows the effect of transit-time damping accel-
eration of cosmic ray particles. Here we will demonstrate that
the obliqueness of fast mode and shear Alfven wave propagation
also modifies the resulting parallel spatial diffusion coefficient
and the Hillas limit.

2. Relevant magnetohydrodynamic plasma modes

Most cosmic plasmas have a small value of the plasma beta
βP = c2

S/V
2
A, which is defined by the ratio of the ion sound cS

to Alfven speed VA, and thus indicates the ratio of thermal to
magnetic pressure. For low-beta plasmas the two relevant mag-
netohydrodynamic wave modes are the

(1) incompressional shear Alfven waves with dispersion relation

ω2
R = V2

Ak2
‖ (7)

at parallel wavenumbers |k‖| � Ωp,0/VA, which have no
magnetic field component along the ordered background
magnetic field δBz (‖ B0) = 0,

(2) the fast magnetosonic waves with dispersion relation

ω2
R = V2

Ak2, k2 = k2
‖ + k2

⊥ (8)

for wavenumbers |k| � Ωp,0/VA, which have a compressive
magnetic field component δBz � 0 for oblique propagation
angles θ = arccos(k‖/k) � 0.

In the limiting case (commonly referred to as slab model)
of parallel (to B0) propagation (θ = k⊥ = 0) the shear
Alfven waves become the left-handed circularly polarised
Alfven-ion-cyclotron waves, whereas the fast magnetosonic
waves become the right-handed circularly polarised Alfven-
Whistler-electron-cyclotron waves.

Schlickeiser & Miller (1998) investigated the quasilinear in-
teractions of charged particles with these two plasma waves. In
case of negligible wave damping the interactions are of reso-
nant nature: a cosmic ray particle of given velocity v, pitch angle
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cosine µ and gyrofrequency Ωc = Ωc,0/γ interacts with waves
whose wavenumber and real frequencies obey the condition

ωR(k) = vµk‖ + nΩc, (9)

for entire n = 0,±1,±2, . . .

2.1. Resonant interactions of shear Alfven waves

For shear Alfven waves only interactions with n � 0 are possible.
These are referred to as gyroresonances because inserting the
dispersion relation (7) in the resonance condition (9) yields for
the resonance parallel wavenumber

k‖,A =
nΩc

±VA − vµ , (10)

which apart from very small values of |µ| ≤ VA/v typically equals
the inverse of the cosmic ray particle’s gyroradius, k‖,A � n/RL
and higher harmonics.

2.2. Resonant interactions of fast magnetosonic waves

In contrast, for fast magnetosonic waves the n = 0 resonance
is possible for oblique propagation due its compressive mag-
netic field component. The n = 0 interactions are referred to
as transit-time damping, hereafter TTD. Inserting the dispersion
relation (8) into the resonance condition (9) in the case n = 0
yields

vµ = ±VA/ cos θ (11)

as necessary condition which is independent from the wavenum-
ber value k. Apparently all super-Alfvenic (v ≥ VA) cosmic ray
particles are subject to TTD provided their parallel velocity vµ
equals at least the wave speeds ±VA. Hence Eq. (11) is equiva-
lent to the two conditions

|µ| ≥ VA/v, v ≥ VA. (12)

Additionally, fast mode waves also allow gyroresonances (n � 0)
at wavenumbers

kF =
nΩc

±VA − vµ cos θ
, (13)

which is very similar to Eq. (10).

2.3. Implications for cosmic ray transport

The simple considerations of the last two subsections allow us
the following immediate conclusions:

(1) With TTD-interactions alone, it would not be possible to
scatter particles with |µ| ≤ VA/v, i.e., particles with pitch angles
near 90◦. Obviously, these particles have basically no parallel ve-
locity and cannot catch up with fast mode waves that propagate
with the small but finite speeds ±VA. In particular this implies
that with TTD alone it is not possible to establish an isotropic
cosmic ray distribution function. Gyroresonances are needed to
provide the crucial finite scattering at small values of µ.

(2) Conditions (11) and (12) reveal that TTD is no gyroradius
effect. It involves fast mode waves at all wavenumbers pro-
vided the cosmic ray particles are super-Alfvenic and have large
enough values of µ as required by Eq. (12). Because gyroreso-
nances occur at single resonant wavenumbers only, see Eqs. (10)
and (13), their contribution to the value of the Fokker-Planck

coefficients in the interval |µ| ≥ VA/v is much smaller than
the contribution from TTD. Therefore for comparable intensi-
ties of fast mode and shear Alfven waves, TTD will provide
the overwhelming contribution to all Fokker-Planck coefficients
Dµµ, Dµp and Dpp in the interval |µ| ≥ VA/v. At small values
of |µ| < VA/v only gyroresonances contribute to the values of
the Fokker-Planck coefficients involving according to Eqs. (10)
and (13) wavenumbers at k‖,A = kR � ±nΩc/VA.

(3) The momentum diffusion coefficient (4)

AM =
1
2

∫ 1

−1
dµ [Dpp(µ) − D2

µp(µ)

Dµµ(µ)
] = AT + A2 (14)

has contributions both from transit-time damping of fast mode
waves,

AT �
∫ 1

VA/v

dµDTTD
pp (µ), (15)

and from second-order Fermi gyroresonant acceleration by shear
Alfven waves (Schlickeiser 1989)

A2 =
1
2

∫ 1

−1
dµ

⎡⎢⎢⎢⎢⎢⎣DA
pp(µ) − [DA

µp(µ)]2

DA
µµ(µ)

⎤⎥⎥⎥⎥⎥⎦ · (16)

(4) On the other hand, the spatial diffusion coefficient (2)

κ =
v2

8

∫ 1

−1
dµ(1 − µ2)2 D−1

µµ (µ) (17)

is given by the integral over the inverse of the Fokker-Planck co-
efficient Dµµ, so here the small values of Dµµ due to gyroresonant
interactions in the interval |µ| < VA/v determine the spatial dif-
fusion coefficient and the corresponding parallel mean free path

κ = vλ/3 � v
2

8

∫ VA/v

−VA/v

dµ

DG
µµ(µ)

· (18)

The gyroresonances can be due to shear Alfven waves or fast
magnetosonic waves. For relativistic cosmic rays the relevant
range of pitch angle cosines |µ| ≤ vA/v is very small allowing
us the approximation DG

µµ(µ) � DG
µµ(0) so that

κ = vλ/3 � v
2

4
ε

DG
µµ(0)

=
vVA

4DG
µµ(0)

· (19)

(5) According to Eq. (90) of Schlickeiser (1989) the streaming
cosmic ray anisotropy due to spatial gradients in the cosmic ray
density is given by

δ =
Fmax − Fmin

Fmax + Fmin
=

1
2F
v

4
∂F
∂z

∫ 1

−1
dµ(1 − µ2) D−1

µµ(µ) (20)

which also is determined by the smallest value of Dµµ around
µ = 0. Approximating again Dµµ(µ) � DG

µµ(0) for |µ| ≤ ε =
VA/v we derive with Eq. (19) the direct proportionality of the
cosmic ray anisotropy with the parallel mean free path, i.e.

δ � v
8
∂F
∂ ln z

2VA

vDG
µµ(0)

=
VA

4
1

DG
µµ(0)

∂F
∂ ln z

=
1
3
λ
∂F
∂ ln z

· (21)

Introducing the characteristic spatial gradient of the cosmic ray
density 〈z〉−1 ≡ (1/F)|∂F/∂z| Eq. (21) reads

δ =
λ

3〈z〉 · (22)

Cosmic ray gradients derived from diffuse galactic GeV
gamma-ray emissivities (Strong & Mattox 1996) suggest a value
of 〈z〉 � 2 kpc.
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3. Quasilinear cosmic ray mean free path
and anisotropy isotropic plasma wave turbulence

Throughout this work we consider isotropic linearly polarised
magnetohydrodynamic turbulence so that the components of the
magnetic turbulence tensor for plasma mode j is

P j
lm(k) =

g j(k)
8πk2

(
δlm − kkkm

k2

)
. (23)

The magetic energy density in wave component j then is

(δB)2
j =

∫
d3k

3∑
i=1

Pii(k) =
∫ ∞

0
dkg j(k). (24)

We adopt a Kolmogorov-like power law dependence (index q >
1) of g j(k) above the minimum wavenumber kmin

g j(k) = g j
0k−q for k > kmin. (25)

The normalisation (24) then implies

g
j
0 = (q − 1)(δB)2

jk
q−1
min . (26)

Moreover we adopt a vanishing cross helicity of each plasma
mode, i.e. equal intensity of forward and backward moving
waves, so that g j

0 refers to the total energy density of each mode.
According to Eq. (30) of SM the Fokker-Planck coeffi-

cients DF
µµ and DF

pp = ε
2 p2Dµµ with ε = VA/v for fast mode

waves are the sum of contributions from transit-time damp-
ing (T) and gyroresonant interactions (G):

DF
µµ(µ) =

πΩ2(1 − µ2)

4B2
0

[DT(µ) + DG(µ)] (27)

with

DT(µ) = (q − 1)(δB)2
F|Ω|−1(RLkmin)q−1H[|µ| − ε]

×1 + (ε/µ)2

|µ|
[
(1 − µ2)(1 − (ε/µ)2)]q/2

×
∫ ∞

U
ds s−(1+q) J2

1(s), (28)

where the lower integration boundary is

U = kminRL

√
(1 − µ2)(1 − (ε/µ)2), (29)

and η = cos θ. RL = v/|Ω| denotes the gyrofrequency of the
cosmic ray particle, H is the Heaviside’ step function and J1(s)
is the Bessel function of the first kind.

The gyroresonant contribution from fast mode waves is

DG(µ) =
q − 1

2
(δB)2

F kq−1
min

∞∑
n=1

∑
j=±1

∫ 1

−1
dη(1 + η2)

×
∫ ∞

kmin

dkk−q[J
′
n(kRL

√
(1 − η2)(1 − µ2)]2

×
[
δ(k[vµη− jVA]+nΩ)+δ(k[vµη− jVA] − nΩ)

]
. (30)

On the other hand shear Alfven waves provide only gyroresonant
(n � 1) interactions yielding

(
DA
µµ,D

A
µp,D

A
pp

)
= π(q − 1)Ω2(1 − µ2)kq−1

min

(δB)2
A

32B2
0

∞∑
n=1

×
∑
j=±1

(
[1 − jµε]2, jεp[1 − jµε], (εp)2

) ∫ 1

−1
dη(1 + η2)

×
∫ ∞

kmin

dk k−q
[
δ
([
vµ − jVA

]
ηk + nΩ

)
+δ

([
vµ − jVA

]
ηk − nΩ

)][
(Jn−1(kRL

√
(1 − µ2)(1 − η2)

+Jn+1(kRL

√
(1 − µ2)(1 − η2)

]2
. (31)

According to SM at particle pitch-angles outside the interval
|µ| ≥ ε transit-time damping provides the dominant and over-
whelming contribution to these Fokker-Planck coefficients. This
justifies the approximations to derive Eqs. (19) and (21) for the
cosmic ray mean free path and anisotropy, respectively, Both
transport parameters are primarily fixed by the small but finite
scattering due to gyroresonant interactions in the interval |µ| < ε.
We then derive

λ � 3v
8

∫ ε

−ε
dµ(1 − µ2)2 [DF

µµ(µ) + DA
µµ(µ)]

−1

� 3vε
4[DF

µµ(µ = 0) + DA
µµ(µ = 0)]

, (32)

and

δ =
1
3
λ
∂F
∂ ln z

� vε

4[DF
µµ(µ = 0) + DA

µµ(µ = 0)]
∂F
∂ ln z

· (33)

In the following, we consider both transport coefficients for pos-
itively charged cosmic ray particles with Ω > 0 especially in the
limit kminRL � 1.

3.1. Gyroresonant Fokker-Planck coefficients at µ = 0

At µ = 0 the contribution from shear Alfven waves to the pitch-
angle Fokker-Planck coefficient is according to Eq. (23)

DA
µµ(µ = 0) � π(q − 1)Ω2kq−1

min (δB)2
A

16B2
0

∞∑
n=1

∫ ∞

kmin

dk k−q−1

×
⎛⎜⎜⎜⎜⎝1 + n2Ω2

V2
Ak2

⎞⎟⎟⎟⎟⎠ H

[
k − nΩ

VA

] ⎡⎢⎢⎢⎢⎢⎢⎣Jn−1

⎛⎜⎜⎜⎜⎜⎜⎝RL

√
k2 − n2Ω2

V2
A

⎞⎟⎟⎟⎟⎟⎟⎠
+Jn+1

⎛⎜⎜⎜⎜⎜⎜⎝RL

√
k2 − n2Ω2

V2
A

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

2

, (34)

where we readily performed the η-integration. Substituting
t = RL[k2 − (n2Ω2/V2

A)]1/2, and using VA/Ω = εRL, Eq. (34)
reduces to

DA
µµ(µ = 0) � π(q − 1)Ω(δB)2

A

16εB2
0

[kminRL]q−1
∞∑

n=1

∫ ∞

UA

dt t

×
(
t2 +

2n2

ε2

) [
t2 +

n2

ε2

]−(q+4)/2

(Jn−1(t) + Jn+1(t))2 (35)
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where

UA = max

⎛⎜⎜⎜⎜⎜⎝0,
[
R2

Lk2
min −

n2

ε2

]1/2⎞⎟⎟⎟⎟⎟⎠ . (36)

Likewise the contribution from gyroresonant interactions with
fast mode waves is according to Eqs. (27) and (30)

DF
µµ(µ = 0) � π(q − 1)Ω2kq−1

min (δB)2
F

4VAB2
0

[VA

Ω

]q ∞∑
n=1

×n−qH

[
n − kminVA

Ω

] ∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

(37)

where we performed the k-integration. With VA/Ω = εRL,
Eq. (37) becomes

DF
µµ(µ = 0) � π(q − 1)Ω(δB)2

F

4B2
0

[kminRLε]q−1
∞∑

n=1

n−q

×H[n − εRLkmin]
∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

. (38)

The Bessel function integral in Eq. (38)

I1 =

∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

(39)

has been calculated asymptotically by SM to lowest order in the
small quantity ε = VA/v� 1 as

I1 � 3
2
ε

n
(40)

yielding

DF
µµ(µ = 0) � 3π(q − 1)Ωε(δB)2

F

4B2
0

[kminRLε]
q−1

×
∞∑

n=1

n−(q+1)H[n − εRLkmin]. (41)

In Appendix B we evaluate the Bessel function integral in
Eq. (35)

I2=

∫ ∞

UA

dt t

(
t2+

2n2

ε2

) [
t2+

n2

ε2

]−(q+4)/2

×(Jn−1(t)+Jn+1(t))2 (42)

for small and large values of kminRLε.
For values kminRLε ≤ 1 we obtain approximately

I2(kminRLε ≤ 1) � 8
π
εq+2n−q

[
1 + (−1)n1.00813

]
(43)

yielding

DA
µµ(µ = 0, kminRLε ≤ 1) � (q − 1)Ωε2(δB)2

A

21+qB2
0

×[kminRLε]q−1
[
2.00813ζ(q)+ 0.00813ζ(q, 0.5)

]
, (44)

in terms of the zeta and the generalised zeta functions of
Riemann (Whittaker & Watson 1978).

For values of kminRLε > 1 we obtain Eq. (43) for values of
n ≥ N + 1, where N = inf[kminRLε] is the largest integer smaller
than εRLkmin, while for smaller n

I2(kminRLε > 1, n = N) � 4εq+2N−(q+1) (45)

and

I2(kminRLε > 1, n ≤ N − 1) � 4n2

π(q + 3)
U−(q+3)

A . (46)

According to Eq. (35) this yields

DA
µµ(µ = 0, kminRLε > 1) � (q − 1)Ωε2(δB)2

A

2B2
0

[kminRLε]q−1

⎡⎢⎢⎢⎢⎢⎢⎣ π

2Nq+1
+

ε

2(q + 3)

N−1∑
n=1

n−(q+1)

⎡⎢⎢⎢⎢⎢⎣
(
RLkminε

n

)2

− 1

⎤⎥⎥⎥⎥⎥⎦
−(q+3)/2

+

∞∑
n=N+1

n−q[1 + (−1)n1.00813]

⎤⎥⎥⎥⎥⎥⎦ . (47)

Comparing the Fokker-Planck coefficients from fast mode
waves (41) and Alfven waves (Eqs. (44) and (47)) we note that
the latter one is always smaller by the small ratio ε = VA/v than
the first one:

DA
µµ(µ = 0) � εDF

µµ(µ = 0) (48)

so that the gyroresonant contribution from Alfven waves can be
neglected in comparison to the gyroresonant contribution from
fast mode waves.

3.2. Cosmic ray mean free path

Neglecting DA
µµ(µ = 0) we obtain for the cosmic ray mean free

path (32)

λ(γ) � 3vε
4DF
µµ(µ = 0)

=
1

π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)1−q∑∞
n=1 n−(q+1)H[n − εRLkmin]

, (49)

which exhibits the familiar Lorentzfactor dependence ∝βγ2−q �
γ2−q at Lorentzfactors γ ≤ γc below a critical Lorentz factor
defined by

γc = kc/kmin (50)

with kc = Ω0,p/VA = ωp,i/c being the inverse ion skin length.
The Lorentzfactor dependence λ ∝ γ2−q especially holds at
rigidities 1 ≤ kminRL ≤ ε = c/VA, in a rigidity range where
the slab turbulence model would predict an infinitely large mean
free path.

Expresing kmin = 2π/Lmax in terms of the longest wavelength
of isotropic fast mode waves Lmax = 10 pc yields

γc =
ωp,iLmax

2πc
= 2.16 × 1011n1/2

e

(
Lmax

10 pc

)
· (51)

The corresponding cosmic ray hadron energy is

Ec = Aγcmpc2 = 2.03 × 105An1/2
e

(
Lmax

10 pc

)
PeV (52)

which is four orders of magnitude larger than the Hillas limit (6)
for equal values of the maximum wavelength. This difference
demonstrates the dramatic influence of the plasma turbulence
geometry (slab versus isotropically distributed waves) on the
confinement of cosmic rays in the Galaxy. With isotropically
distributed fast mode waves, even ultrahigh energy cosmic rays
obey the scaling λγq−2 = const.
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Only, at ultrahigh Lorentzfactors γ > γc or energies E > Ec
the mean free path (49) approaches the much steeper dependence

λ(γ > γc) � 1
π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)2 ∝ βγ3 � γ3, (53)

independent from the turbulence spectral index q. Here the mean
free path quickly attains very large values gretaer than the typical
scales of the Galaxy.

3.3. Anisotropy

Because of the direct proportionality between mean free path
and anisotropy, the cosmic ray anisotropy (33) shows the same
behaviour as a function of energy:

δ(E) � 1
3π(q − 1)

B2
0

(δB)2
F

∂F
∂ ln z

× RL(kminRLε)1−q∑∞
n=1 n−(q+1)H[n − εRLkmin]

(54)

which is proportional δ(E ≤ Ec) ∝ E2−q at energies below Ec
and δ(E > Ec) ∝ E3 at energies above Ec. In particular we obtain
no drastic change in the energy dependence of the anisotropy at
PeV energies. Quantitatively, with Eq. (22), q = 5/3 and VA =
20 km s−1 we find

δ(E) = 0.152

(
Lmax

10 pc

) ( 〈z〉
2 kpc

)−1 (
(B0/δB)F

10

)2

× (E/Ec)1/3∑∞
n=1 n−(8/3)H[n − (E/Ec)]

· (55)

At Ec = 20 EeV energies we calculate an anisotropy of less than
15 percent, whereas at smaller energies the anisotropy values
decrease proportional to (E/Ec)1/3.

4. Summary and conclusions

We have investigated the implications of isotropically distributed
interstellar magnetohydrodynamic plasma waves on the scatter-
ing mean free path and the spatial anisotropy of high-energy
cosmic rays. We demonstrate a drastic modification of the en-
ergy dependence of both cosmic ray transport parameters com-
pared to previous calculations that have assumed that the plasma
waves propagate only parallel or antiparallel to the ordered mag-
netic field (slab turbulence). In case of slab turbulence cos-
mic rays with Larmor radius RL resonantly interact with plasma
waves with wave vectors at kres = R−1

L . If the slab wave turbu-
lence power spectrum vanishes for wavenumbers less than kmin,
as a consequence then cosmic rays with Larmor radii larger
than k−1

min cannot be scattered in pitch-angle, causing the so-
called Hillas limit for the maximum energy EH

15 = 40Z ·
(B0/4 µG)(L‖,max/10 pc) of cosmic rays being confined in the
Galaxy. At about these energies this would imply a drastic in-
crease in the spatial anisotropy of cosmic rays that has not been
detected by KASKADE and other air shower experiments.

In case of isotropically distributed interstellar magnetohy-
drodynamic waves we demonstrated that the Hillas energy EH is
modified to a limiting total energy that is about 4 orders of mag-
nitude larger Ec = 2.03 × 105An1/2

e (Lmax/10 pc) PeV, where A
denotes the mass number and Lmax the maximum wavenumber of
isotropic plasma waves. Below this energy the cosmic ray mean
free path and the anisotropy exhibit the well known E2−q energy

dependence, where q = 5/3 denotes the spectral index of the
Kolmogorov spectrum. At energies higher than Ec both trans-
port parameters steepen to a E3-dependence. This implies that
cosmic rays even with ultrahigh energies of several tens of EeV
can be rapidly pitch-angle scattered by interstellar plasma turbu-
lence, and are thus confined to the Galaxy.

The physical reason for the four orders of magnitude higher
value of the limiting energy is the occurrence of dominating
transit-time damping interactions of cosmic rays with magne-
tosonic plasma waves due to their compressive magnetic field
component along the ordered magnetic field. This n = 0 reso-
nance is not a gyroresonance implying that cosmic rays interact
with plasma waves at all wavenumbers provided that the cos-
mic ray parallel speed (transit speed) equals the parallel phase
speed of magnetosonic waves. Only at small values of the cos-
mic ray pitch-angle cosine |µ| ≤ ε = VA/v, where the cosmic ray
particles spiral at nearly ninety degrees with very small paral-
lel speeds less than the minimum magnetosonic phase speed VA,
gyroresonant interactions are necessary to scatter csomic rays.
However, the gyroresonance condition of cosmic rays at µ = 0
reads kres = (RLε)−1 instead of the slab condition kres = (RL)−1

causing the limiting energy enhancement from EH to Ec by the
large factor ε−1 = c/VA � O(104).
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Appendix A: Glossary and definitions of important
symbols

A = m/mp : cosmic ray particle mass or nucleon number

AM : momentum diffusion coefficient os cosmic rays

β : cosmic ray velocity in units of c

βP = c2
S/V

2
A : plasma beta

B0 : uniform magnetic field strength

δB : strength of total fluctuating magnetic fields

δBF : strength of fast magnetosonic plasma wave

magnetic fields

δBA : strength of shear Alfven plasma wave

magnetic fields

c : vacuum speed of light

cS =

√
2kBT/mp : ion sound speed

γ = E/mc2 = (1 − β2)−1/2 : cosmic ray Lorentz factor

γc = Ec/mc2 : critical cosmic ray Lorentz factor where

the energy dependence of the mean free path changes

Di j : Fokker-Planck coefficient

δ(p) : cosmic ray anisotropy

E = γmc2 : total kinetic energy of cosmic ray particle

Ec = γcmc2 : critical cosmic ray total kinetic energy where the

energy dependence of the mean free path changes

ε = VA/c : ratio of Alfven speed to speed of light

F(z, p, t) : isotropic part of cosmic ray phase space density

g j(k) ∝ k−q : magnetic field turbulence

spectrum of plasma wave mode j

Jn(x) : Bessel function of first kind and order n

k = (kx, ky, kz) : plasma wave vector

and its cartesian components

k‖ = kz = k cos θ : component of plasma wave vector

parallel to uniform magnetic field

k⊥ =
√

k2
x + k2

y = k sin θ : component of plasma wave

vector perpendicular to uniform magnetic field

kmin = 2π/λmax : minimum wavenumber of plasma waves

kc = ωp,i/c : inverse ion skin length

κ = vλ/3: spatial diffusion coefficient of cosmic rays

parallel to uniform magnetic field

λ = 3κ/v : parallel mean free path of cosmic rays

λmax = 2π/kmin : maximum wavenumber of plasma waves

Lmax : maximum wavenumber of isotropic fast

magnetosonic waves

Ł‖,max : maximum wavenumber of parallel propagating

(slab) plasma waves

m = Amp : mass of cosmic ray particle

mp : proton mass

µ = p‖/p : pitch angle cosine of cosmic ray particle

ne : number density of electrons in interstellar medium

ωR : real part of plasma wave frequency

ωp,i =

√
4πnee2/mp : proton plasma frequency

in interstellar ionized gas

Ωc,0 = |ZeB0/mc| : nonrelativistic gyrofrequency of

cosmic ray particle in uniform magnetic field B0

Ωc = Ωc,0/γ : relativistic gyrofrequency of cosmic

ray particle in uniform magnetic field B0

Ωp,0 = eB0/mpc : nonrelativistic gyrofrequency of proton

in uniform magnetic field B0

p : total momentum of cosmic ray particle

ṗLoss : continuous momentum loss rate

of cosmic ray particle

P j
lm(k) : magnetic turbulence tensor for plasma mode j

q : spectral index of turbulence power law spectrum

R = p/Z : rigidity of cosmic ray particle

RL = v/Ωc : gyroradius of cosmic ray particle

in uniform magnetic field B0

T : temperature of interstellar gas

Tc : catastrophic loss time of cosmic ray particle

θ = arccos(k‖/k) : propagation angle of plasma wave

with respect to uniform magnetic field direction

u : velocity of plasma wave-carrying interstellar gas

v = βc : velocity of cosmic ray particle

V : cosmic ray bulk speed

VA = B0/
√

4πmpne : Alfven velocity

Z : cosmic ray particle charge or atomic number
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Appendix B: Asymptotic calculation of the integral
(42)

The task is to calculate the integral (42)

I2=

∫ ∞

UA

dt t

(
t2+

2n2

ε2

) [
t2+

n2

ε2

]−(q+4)/2 [
(Jn−1(t) + Jn+1(t)

]2
, (56)

for small and large values of kminRL using the approximations of
Bessel functions for small and large arguments (Abramowitz &
Stegun 1972), yielding

J2
n (t � 1) � t2n

22nΓ2[n + 1]
, (57)

and

J2
n (t � 1) � 1

πt
[1 + (−1)n sin(2t)]. (58)

According to Eq. (36)

UA = max

⎛⎜⎜⎜⎜⎜⎝0,
[
R2

Lk2
min −

n2

ε2

]1/2⎞⎟⎟⎟⎟⎟⎠ ,
the lower integration boundary UA = 0 in the case kminRLε ≤ 1
which includes in particular the limit kminRL � 1 because ε � 1.

4.1. Case kminRLε ≤ 1

With the identity

Jn−1(t) + Jn+1(t) =
2nJn(t)

t
(59)

we obtain

I2(kminRLε ≤ 1) = 4n2

[
W

[
q + 2

2

]
+

n2

ε2
W

[
q + 4

2

]]
(60)

where

W[α] ≡
∫ ∞

0
dt t−1 J2

n(t)[
t2 + n2

ε2

]α · (61)

With the asymptotics (57) and (58) we obtain

W[α] �
(
ε

n

)2α [ 1
22nΓ2[n + 1]

∫ 1

0
dtt2n−1

+
1
π

∫ n/ε

1
dtt−2[1 + (−1)n sin(2t)]

]

+
1
π

∫ ∞

n/ε
dtt−2(1+α)[1 + (−1)n sin(2t)]

�
(
ε

n

)2α
[
1
π

[
1 + (−1)n1.00813− ε

n

− (−1)n

2

(
ε

n

)2
cos

(
2n
ε

)]
+

1
n22n+1Γ2[n + 1]

]

+
1

π(1 + 2α)

(
ε

n

)1+2α
+

(−1)n

π
j1, (62)

where we use

2
∫ ∞

1
dx x−2 sin x = 2(sin(1) −Ci(1)) = 1.00813

and where

j1 =
∫ ∞

n/ε
dtt−2−2α sin 2t = 22α

[
ı−2−2αΓ

[
−(1 + 2α),−2ı

n
ε

]

+(−ı)−2−2αΓ

[
−(1 + 2α), 2ı

n
ε

]]
(63)

in terms of the incomplete gamma function. For large arguments
(n/ε)� 1 we obtain asymptotically

j1 � 1
2

(
ε

n

)2+2α
cos

(
2n
ε

)
· (64)

Collecting terms we find to lowest order in εn � 1

W[α] � 1
π

(
ε

n

)2α
[
1 + (−1)n1.00813+

π

n22n+1Γ2[n + 1]

]
(65)

so that

I2(kminRLε ≤ 1) � 8
π
εq+2n−q

×
[
1 + (−1)n1.00813 +

π

n22n+1Γ2[n + 1]

]
· (66)

4.2. Case kminRLε > 1

In this case UA = 0 for n ≥ N+1, and UA =
√

(RLkmin)2 − (n/ε)2

for n ≤ N, where

N = inf[εRLkmin] (67)

denotes the largest integer smaller than εRLkmin. Hence we
obtain again Eq. (66) for n ≥ N + 1

I2(kminRLε > 1, n ≥ N + 1) � 8
π
εq+2n−q

×
[
1 + (−1)n1.00813 +

π

n22n+1Γ2[n + 1]

]
· (68)

For values of n ≤ N we find that

I2(kminRLε > 1, n ≤ N) = 4n2

[
V

[
q + 2

2

]
+

n2

ε2
V

[
q + 4

2

]]
(69)

where

V[α]≡
∫ ∞

UA

dt t−1 J2
n(t)

[t2 + n2

ε2
]α
=

(
ε

n

)2α
∫ ∞

εUA/n
dt t−1 J2

n(nt/ε)

[1 + t2]α
· (70)

We may express

kminRLε = N(1 + φ) (71)

with φ < 1/N, so that the lower integration boundary in (70) is

ε

n
UA =

[(
kminRLε

n
− 1

) (
kminRLε

n
+ 1

)]1/2

=
N
n

[(
1 + φ − n

N

) (
1 + φ +

n
N

)]1/2
· (72)
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In cases where N ≥ 2, Eq. (72) yields that for all values of n
such that 1 ≤ n ≤ N − 1 the lower integration boundary εn UA is
greater unity. Using the expansion (58) in this case we find that

V[α, n ≤ N − 1] � 1
π

(
ε

n

)2α+1
∫ ∞

εUA/n
dt t−2−2α

×
[
1 + (−1)n sin

(
2nt
ε

)]
� 1
π(1 + 2α)

U−(2α+1)
A

×
[
1 + (−1)n 1 + 2α

2UA
cos(2UA)

]
� U−(2α+1)

A

π(1 + 2α)
(73)

In the remaining case n = N the lower integration boundary (72)

ε

N
UA =

√
φ(2 + φ) ≤ √

2.5φ < 1 (74)

is smaller unity, so that we approximate Eq. (70) in this case by

V[α, n = N] �
(
ε

N

)2α
[∫ 1

εUA/N
dt t−1 J2

N

(Nt
ε

)

+

∫ ∞

1
dt t−1−2α J2

N

(Nt
ε

)]
�

(
ε

N

)2α

×
[

j2 +
ε

πN(1 + 2α)

(
1 + (−1)n(1 + 2α)

ε

2N
cos

(
2N
ε

))]
(75)

where we approximate

j2 =
∫ 1

εUA/N
dt t−1 J2

N(
Nt
ε

) <

∫ ∞

0
dt t−1 J2

N

(Nt
ε

)
=

1
2N

(76)

by its upper limit to obtain

V[α, n = N] �
(
ε
N

)2α

2N
· (77)

Collecting terms in Eq. (69) we derive

I2(kminRLε > 1, n = N) � 4εq+2N−(q+1) (78)

and

I2(kminRLε > 1, n ≤ N − 1) � 4n2

π(q + 3)
U−(q+3)

A (79)
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SUMMARY: In this paper, weakly nonlinear dynamics of spiral galaxies is stud-
ied, using reductive perturbation method. One primarely aims at the derivation
of possible soliton solution for two dimensional geometry, in the state of marginal
stability. In order to use proper coordinate transformation, it was necessary to
analyze stability of the linearized system of equations, and to define proper param-
eter regime. Such parameter regime is in agreement with the observational data,
too. The influence of finite-thickness of the galaxy disk on dispersive properties of
the system is studied, extending approximate solution of Poisson’s equation. For
both cases, infinitesimaly thin disk and disk of finite thickness, the same type of
NLS equation is derived, but with different coefficients for nonlinear and dispersive
terms. This means that corresponding soliton solutions have different properties.
By comparing soliton properties with observational data it is possible to control
validity of approximation for different geometry of the model.

Key words. Galaxies: spiral – Galaxies: kinematics and dynamics – Methods:
analytical

1. INTRODUCTION

Spirals are rather common structures pro-
duced in many different systems such as atmospheric
flows, some self-catalyzed chemical reactions, a va-
riety of networks (neurons, circuits or ecosystems),
and some life forms. The seminal work of Lin and
Shu (Bertin 2000) succeeded in producing a spiral
solution of a linearized density wave equation. In
the present work, we consider a nonlinear dispersive
wave model to study nearly collisionless dynamics
of the spiral galaxies, using reductive perturbation
method (Jaffrey and Taniuti 1964), with the em-
phasis on possible soliton solutions. Two different
geometries of the disk are discussed, and the cor-
responding solutions of the nonlinear equation are
given.

2. GOVERNING EQUATIONS

The density wave model consists of transport
equations for the mass density ρ and the momentum
ρν, together with the Poisson’s equation that relates
the density to the gravitational potential φ. The
equilibrium state of the system is described as a rota-
tion with an angular velocity Ω(r) about z-axis under
the balance of centrifugal and gravitational forces in
a frame rotating with constant angular velocity Ω0.
Then, the equilibrium velocity is ν0ϕ = (Ω − Ω0)r,
where Ω2r = −∂φ0/∂r. The quantities φ0 and ρ0

are the equilibrium potential and the density, respec-
tively. The dispersive property originates from the
coupled Poisson’s equation, which is a second-order
elliptic partial differential equation.
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Case (a): The model of Lin and Shu assumes
delta function for the density in z-direction and ap-
proximates Poisson’s equation by

∂φ(r, z = 0)
∂r

= ±2πiGσ, (1)

in the vicinity of spiral arms, where σ represents sur-
face mass density (Lin and Shu 1964). Here, the ge-
ometry of the model is infinitely thin disk.

Case (b): In this paper we propose more re-
alistic solution, introducing in the z-direction Gaus-
sians instead of delta function, f(z) for potential and
g(z) for density. Then, we can approximately express
Poisson’s equation in dimensionless form as follows:

A∇⊥φ̂+Bφ̂ = φ̂, (2)

where φ̂, ρ̂ are two-dimensional (r and ϕ depen-
dent) potential and density, respectively, A =
−a/(4πGc), B = −b/(4πGc) are constants depen-
dent on thickness of the disk L by way of a, b and c
given by:

a = (1/2L)
∫ L

−L

f(z)dz, b = (1/2L)
∫ L

−L

f ′′(z)dz,

c = (1/2L)
∫ L

−L

g(z)dz, (3)

and ∇2
⊥ denotes two-dimensional Laplacian in the

plane perpendicular to z.

3. NONLINEAR EQUATION WITH
SPIRAL SOLITON SOLUTION

Case (a): Let us first examine two-dimensional
fluid model of the infinitesimally thindisk galaxy
(Lin-Shu approximation). We normalize r and ϕ by
means of the wave length of the carrier wave in the
radial direction, 2πR/λ, where R is the radial size of

-2 -1 1 2

-3

-2

-1

1

Fig. 1. Marginal stability curve for the zero thick-
ness fluid model. x axis represents wave number k
normalized by critical wave number k2, and y axis
represents Doppler shifted frequency ω2 normalized
by epicyclic frequency κ2.

the galaxy and λ � 1 is a dimensionless constant
resulting from the Lin-Shu derivation; t is normal-
ized by the period of the carrier wave 2π/ω, ρ by
ρ0, both components of velocity by the phase ve-
locity ωR/λ, φ by ω2R2/λ2 and G by ω2R/(2ρ0λ).
Introducing τ = t+ ϕ/Ω, the set of governing equa-
tions will be somewhat reduced. Before making the
choice of transformation of coordinates and expan-
sion of variables, it is necessary to discuss parameter
regime. Dispersion relation in this case will be (Fig.
1):

ω2 = κ2 − 2πGρ0|k|. (4)

Stability parameter is defined by k2 =
κ2/(2πGρ0), so that all waves with k < k2 are purely
stable. For this regime, dark soliton solution has
already been obtained (Kondoh et al. 2000). The
problem is that this solution has dark soliton solution
with diminishing density, and has no spiral pattern.

Taking into account initial limitation on k,
namely k > k1 (where k1 =max{1/r, f ′/f}, f =
ρ0(r) and prime denotes the derivative with respect
to r), we find that observational data suggest k ≈ k2.
Marginal stability, as introduced above in terms of
local dispersion relation, defines a very important
condition for the basic state. In fact, if the system is
far on the side of instability, then it can be expected
from it to be subject to rapidly growing perturba-
tions, which are bound to change the properties of
the basic state on a short dynamical time scale. In
astrophysical applications, it is often said that vi-
olently unstable models are just the wrong choice
of basic state (Bertin 2000). The relevant regimes
for the galaxy disk must be close to the instability
threshold. In this case, a new transformation of vari-
ables has to be introduced according to Watanabe
(Watanabe 1969), different from the stable case (the
reason being that, in marginal stability, frequency
goes to zero, so that the group velocity becomes in-
finite). Starched coordinates and expansion of vari-
ables in our case are given as:

ξ = ε(τ − cr), η = ε2r,

ρ = ρ0 +
∞∑

n=1

∞∑
m=−∞

εnρn,m(ξ, η)ei(kr−ωt), (5)

νfi = rΩ +
∞∑

n=1

∞∑
m=−∞

εnνn,m
ϕ (ξ, η)ei(kr−ωt).

Substituting (5) into governing equations (the trans-
port equations of mass density and momentum), and
using Lin-Shu solution (1) instead of Poisson’s equa-
tion, we derive the nonlinear equation:

i
∂ρ1,1

∂η
+ P

∂2ρ1,1

∂ξ2
+Q|ρ1,1|2ρ1,1, (6)

in which P = −k2/κ
2 = −1/2(∂k/∂ω2) < 0, and

Q = −(3/2)κ2/(k2ρ
2
0) < 0, so that PQ > 0. This

12
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type of equation has bright soliton solution moving
in the ξ direction:

ρ1,1(ξ, η) = ρ0
eiν

ch(
√

(B/2A)ρ0(ξ − 2Aη))
,

ψ = A

(
B

2A
ρ2

a − 1
)
η + ξ. (7)

Going back to the original coordinates, one obtains
the solitary structure solution with enhanced density
along the spiral, which explains the observed pattern
(see Fig. 2).

Case (b): We extend nonlinear analysis to the
more realistic case, taking the finite thickness effect
into account by way of the Poisson’s equation (2). It
will yield for k (marginal stability case), a NLS equa-
tion with the coefficients A and B dependent of n
(B/A = n that includes information about the thick-
ness). Since these coefficients determine the ampli-
tude, width and velocity of the soliton, a compar-
ison with the structure observed, makes it possible
to decide when the finite thickness approximation is
necessary for a given galaxy.

Fig. 2. Enhanced density along the spiral in 3d;
solution of Eq.(4).

4. CONCLUSION

In this paper we studied weakly nonlinear dy-
namics of different galaxy models, using reductive
perturbation method, with the emphasis on possi-
ble soliton solutions. For 2-dimensional model, us-
ing Lin-Shu approximation, the NLS equation was
derived. Solution is the bright soliton, propagating
along the spiral. Having established the solitary so-
lution, we eliminate the main difficulty from the lin-
ear theory, that is the problem of searching gener-
ators of spiral wave and mechanism that maintains
waves on a long time scale (quasy-stationarity as-
sumption). We extended the 2-dimensional analysis
for galaxies by solving the Poisson’s equation in a
different manner and obtaining NLS equation. The
latter is with coefficients different for nonlinear and
dispersive terms, which means different properties of
soliton. Comparing the evaluated soliton properties
with the observational data, one can control the va-
lidity of approximations used in either of the models.
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Originalni nauqni rad

U ovom radu je prouqavana slabo neli-
nearna dinamika spiralnih galaksija, upotre-
bom reduktivne perturbacione metode. Os-
novni ciǉ je odre�ivaǌe mogu�eg solitonskog
rexeǌa za dvodimenzionu geometriju, za sis-
tem koji je u staǌu graniqne stabilnosti. U
ciǉu upotrebe odgovaraju�e transformacije
koordinata neophodno je prethodno izvrxiti
analizu linearizovanog sistema jednaqina i
definisati odgovaraju�i re�im parametara.
Re�im parametara definisan na ovaj naqin
u saglasnosti je sa posmatraqkim podacima.
Prouqen je uticaj konaqne debǉine galak-
tiqkog diska na disperzivne osobine sistema,

rexavaju�i Poasonovu jednaqinu u proxire-
nom obliku u odnosu na prethodno aproksi-
mativno rexeǌe Poasonove jednaqine koje su
predlo�ili Lin i Xu. U oba sluqaja, za
beskonaqno tanak disk, kao i za disk konaqne
debǉine, izveden je isti oblik nelinearne
Xredingerove jednaqine, ali sa razliqitim
koeficijentima uz nelinearni i disperzivni
qlan. Ovo znaqi da odgovaraju�a soliton-
ska rexeǌa imaju razliqite osobine. Pore-
�eǌem osobina solitona sa posmatraqkim po-
dacima mogu�e je kontrolisati da li je ko-
rix�ena aproksimacija za geometriju modela
opravdana.
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