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Abstract – We show that it is possible to solve the cosmological constant (CC) problem in a
discrete quantum gravity theory based on Regge calculus by using the effective action approach
and a special path-integral measure. The effective cosmological constant is given as a sum of
3 terms: the classical CC, the quantum gravity CC and the matter CC. Since the observations
can only measure the sum of these 3 terms, we can choose the classical CC to be equal to the
negative value of the matter CC. Hence the effective CC is given only by the quantum gravity CC,
which is determined by the path-integral measure. Since the path-integral measure depends on a
free parameter, this parameter can be chosen such that the effective CC gives the observed value.

Copyright c© EPLA, 2015

Introduction. – The cosmological-constant problem
(for a review and references see [1]) is the problem of
explaining the presently observed value of the cosmolog-
ical constant (CC) within a quantum theory of matter
and gravitation. In any quantum gravity (QG) theory
there should be a natural length scale, which is the Planck
length lP ≈ 10−35 m. Consequently, the quantum correc-
tion to the classical value of the CC should be of order
l−2
P . However, this natural theoretical value is 10122 times
larger from the observed value, see [1], and the problem is
to explain this huge discrepancy. It is expected that an ex-
planation should be provided by a well-defined QG theory.
String theory has an explanation based on the landscape
of string vacuua [2], but many physicists find this expla-
nation unsatisfactory because it is a multiverse argument.
Other known QG theories, like loop quantum gravity and
spin-foam (SF) models (see [3] and [4] for reviews and ref-
erences) as well as the casual dynamical triangulations [5],
have not been able to provide an explanation.

Recently a generalization of SF models of QG was pro-
posed, under the name of spin-cube (SC) models [6,7].
The SC models were proposed in order to solve the two
key problems of SF models: obtaining the correct classical

(a)E-mail: amikovic@ulusofona.pt
(b)E-mail: vmarko@ipb.ac.rs

limit and enabling the coupling of fermionic matter. This
is achieved by introducing the edge lengths for a given
triangulation of spacetime as independent variables and a
constraint which relates the spins for the triangles with
the corresponding triangle areas. A spin-cube model is
equivalent to a Regge state-sum model (RSS), and it has
general relativity (GR) as its classical limit [7]. A sys-
tematic study of the semiclassical approximation for RSS
models was started in [8], by using the effective action
approach. It was also shown in [8] that an appropriate
choice of the simplex weights, or equivalently by choosing
the path-integral (PI) measure, one can obtain a naturally
small CC, of the same order of magnitude as the observed
value. However, the calculation in [8] did not take into
account the contribution from the matter sector, and as is
well known, the perturbative matter contributions to CC
are huge compared to the observed value, see [1].

Effective action for matter and gravity. – In order
to see what the effect of matter on the value of CC is, we
will consider a scalar field φ on a 4-manifold M with a
metric g such that the scalar-field action is given by

Ss(g, φ) =
1

2

∫

M

d4x
√

|g| [gμν ∂μφ∂νφ − U(φ)] , (1)

where U(φ) is a polynomial of degree greater than or
equal to 2.
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When the metric g is non-dynamical, the equations of
motion of (1) are invariant under the constant shifts of the
potential U . However, we know that the metric is dynami-
cal, so that the constant shifts in U will give contributions
to the cosmological constant term. These classical shifts
of the potential will affect the value of the classical cosmo-
logical constant Λc, so that we will assume that Λc �= 0.

The QG theory we are going to use will be based on
the assumption that the structure of spacetime at short
distances is given by a piecewise linear manifold T (M),
which corresponds to a triangulation of M . The classical
geometry of T (M) is described by a choice of the edge
lengths Lǫ, 1 ≤ ǫ ≤ E, which are positive and satisfy the
triangle inequalities. The action (1) becomes

SRs =
1

2

∑

σ

Vσ(L)
∑

k,l

gkl
σ (L)φ′

kφ′

l − 1

2

∑

ν

V ∗

ν (L)U(φν),

(2)
where Vσ is the 4-volume of a 4-simplex σ ∈ T (M), gkl

σ is
the inverse matrix of the metric in σ given by

g
(σ)
kl =

L2
0k + L2

0l − L2
kl

L0kL0l
, (3)

φ′

k = (φνk
− φν0

)/L0k and V ∗

ν is the volume of the dual
cell for a vertex point ν of T (M), see [9].

The quantum corrections due to gravity and matter fluc-
tuations can be described by using the effective action,
which will be based on the following classical action:

S(L, φ) =
SRc(L)

GN
+ SRs(L, φ), (4)

where

SRc = −
F

∑

∆=1

A∆(L)θ∆(L) + ΛcV4(L) (5)

is the Regge action with a classical CC and GN is Newton’s
constant. A∆(L) is the area of a triangle Δ ∈ T (M), θ∆ is
the deficit angle and V4 is the 4-volume of T (M). We will
introduce a classical CC length Lc given by Λc = ±1/L2

c.
The path integral for the action (4) is given by

Z =

∫

DE

μ(L)dEL

∫

RV

V
∏

ν=1

dφνeiS(L,φ)/�, (6)

where the integration region DE is a subset of R
E
+ where

the triangle inequalities hold. The measure μ has to be
chosen such that it makes Z finite and μ has to allow a
semiclassical expansion for the effective action for large Lǫ.
If we also require to have the diffeomorphism invariance
of the leading terms in the effective action when E ≫ 1,
then the simplest choice is

μ(L) = exp(−V4(L)/L4
0), (7)

where L0 is a free parameter, which will be determined by
the observed value of the cosmological constant. L0 has a

dimension of a length, which is necessary in order to make
V4(L)/L4

0 dimensionless.
Since

S(L, φ)/� = SRc(L)/l2P + GNSRs(L, φ)/l2P

= SRm(L, φ)/l2P (8)

the effective action (EA) equation becomes

eiΓ (L,φ)/l2
P =

∫

DE(L)

dEl

∫

RV

dV χ

× exp

[

iS̄Rm(L + l, φ + χ)/l2P

− i
∑

ǫ

∂Γ

∂Lǫ
lǫ/l2P − i

∑

π

∂Γ

∂φπ
χπ/l2P

]

, (9)

where we have introduced S̄Rm = S̄Rc +GNSRs(L, φ) and
S̄Rc = SRc + il2P V4/L4

0. The integration region DE(L) is
a subset of R

E obtained by translating the region DE by
the vector −L, see [8]. The imaginary term in S̄Rm comes
from the measure (7). This measure also ensures that we
can use the approximation DE(L) ≈ R

E when Lǫ → ∞
in (9) in order to solve it perturbatively in l2P , see [8]. The
reason is that Lǫ are positive, so that when Lǫ → ∞

DE(L) ≈ [−L1, ∞) × · · · × [−LE, ∞). (10)

Consequently the Gaussian integral from QFT

I =

∫

∞

−∞

e−zx2/�−wxdx =

√

π�

z
e�w2/4z, (11)

which generates the perturbative series in � because

log I = C − 1

2
log z +

�w2

4z
(12)

is analytic in �, is replaced by the integral

IL =

∫

∞

−L

e−zx2/�−wxdx. (13)

Since

IL =

√

π�

z
e�w2/4z

[

1

2
+

1

2
erf

(

L

√

z

�
+

w

2

√

�

z

)]

,

(14)
then

log IL = C − 1

2
log z +

�w2

4z

+

√

�

πz

e−zL̄2/�

2L̄

[

1 + O

(

�

zL̄2

)]

, (15)

where L̄ = L + �w/2z. Since (15) is non-analytic in �,
this will introduce the non-perturbative terms of O(1/�)
and we will not be able to solve the EA equation pertur-
batively. However, given that Re z = −(log μ)′′, the non-
perturbative terms will be suppressed for large Lǫ because
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Re(L, zL) → +∞ for the measure (7). Therefore, the ex-
ponential path integral measure (7) will give a quantum
theory with a well-defined semiclassical limit.

Given a classical action, the perturbative solution of the
corresponding EA equation can be obtained by using the
EA diagrams, see [10]. It will be convenient to introduce
a dimensionless field

√
GN φ, so that

√
GN φ → φ and

SRm = SRc + SRs. The perturbative solution will be then
given by

Γ (L, φ) = SRm(L, φ) + l2P Γ1(L, φ) + l4P Γ2(L, φ) + · · · ,

(16)

where Γn are given by the EA diagrams corrected by the
measure contributions, see [8].

We expect that the expansion (16) will be semiclassical
for L ≫ lP and φ ≪ 1. This can be verified by studying
the one-dimensional (E = 1) toy model for the potential

U(φ) = ω2

2 φ2 + λ
4!φ

4, where �ω = m is the matter field
mass and λ is the matter self-interaction coupling con-
stant. The toy-model classical action can be taken to be

SRm(L, φ) =

(

L2 +
L4

L2
c

)

θr(L)

+ L2

[

φ2 +
L2

L2
m

(φ2 + aφ4)

]

θm(L), (17)

where Lm = 1/ω, λ/4! = a/L2
m, θr(L) and θm(L) are

C∞ homogeneous functions of degree zero, while the PI
measure can be taken to be μ = exp(−L4/L4

0).
Note that the perturbative solution of an EA equation

is a complex function, so that we need to perform a QG
analog of the Wick rotation. This can be done by making
a transformation Γ → ReΓ ± ImΓ , see [11], so that the
physical effective action will be given by

Seff = (ReΓ ± ImΓ )/GN . (18)

The sign ambiguity will be fixed by requiring that the
effective CC is positive.

The effective cosmological constant. – The first-
order quantum correction to the classical action (4) is
determined by

Γ1 = i
V4

L4
0

+
i

2
Tr log

(

SLL SLφ

SLφ Sφφ

)

, (19)

where Sxy are the submatrices of the Hessian matrix for
SRm. Since

SLL = O(L2),

SLφ = O(L3)O(φ),

Sφφ = O(L4)[1 + O(φ2)],

(20)

for L large, then

Γ1 = i
V4(L)

L4
0

+
i

2
Tr log SLL+

i

2
Tr log Sφφ+O(φ2). (21)

The first term in (21) is the QG correction to the
classical CC, while the matter sector will give a quan-
tum correction to CC from the third term. This can be
seen by considering the smooth manifold approximation
when E ≫ 1. In this case the third term in (21) can be
calculated by using the continuum approximation

SRs(L, φ) ≈ Ss(g, φ), (22)

and the corresponding QFT in curved spacetime.
Let us consider an edge-length configuration such that

Lǫ ≥ LK ≫ lP . (23)

This condition ensures that the QG corrections are small
and if LK ≪ Lm, we can calculate Tr log Sφφ by using
the Feynman diagrams for Ss with the UV momentum
cutoff �/LK = K. Consequently the corresponding CC
contribution will be given by the flat space vacuum energy
density, since

δΓ1(L) ≡ Tr log Sφφ

∣

∣

φ=0
≈

VM

∫ K

0

dk k3 log(k2 + ω2) + Ωm(R, K), (24)

where

Ωm(R, K) = a1K
2

∫

M

d4x
√

|g| R

+ log
K

ω

∫

M

d4x
√

|g|
[

a2R
2 + a3R

μνRμν

+ a4R
μνρσRμνρσ + a5∇2R

]

+ O
(

L2
K/L2

)

, (25)

see [12] for the values of the constants ak. Therefore, the
only O(L4) term in δΓ1 is

c1V4(L)K4 log(K/ω) = c1
V4(L)

L4
K

log(Lm/LK), (26)

where c1 is a numerical constant.
By using (18) and (26) we obtain that the one-loop CC

is given by

Λ1 = ± 1

2L2
c

+ Λμ + c1
l2P

2L4
K

log(K/ω), (27)

where c1 is a numerical constant of O(1). We can write
this as

Λ1 = Λμ + Λc + Λm. (28)

Higher-order contributions. – It is not difficult to
see that the higher-order quantum corrections to CC will
preserve the structure (28), so that

Λ = Λμ + Λc + Λm (29)

will be valid exactly.
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The reason is that Γ (L, φ) = Γg(L) + Γm(L, φ) and

Γm(L, φ) = V4(L)Ueff(φ), (30)

for constant φ, so that the matter quantum fluctuations
can only contribute to Λ additively. As far as the QG
corrections are concerned, there are no corrections to Λμ

beyond the one-loop order. This happens because the
large-L asymptotics of Γg(L) is determined by the asymp-
totics of

log S̄′′

Rc = log O(L2/L̄2
c) + log θ1(L) + log

[

1 + O(L̄2
c/L2)

]

,
(31)

where θ1 is a homogeneous function of degree zero and

Γ̄g,n(L) = O
(

(L̄2
c/L4)n−1

)

, (32)

for n > 1, where Γ̄g,n is the contribution from the n-loop
EA diagrams for the action S̄Rc and

L̄2
c = L2

c

(

1 + il2P L2
c/L4

0

)−1
. (33)

Consequently,

Γg,1(L) = O(L4/L4
0) + log O(L2/L2

c)

+ log θ1(L) + O(L2
c/L2), (34)

and
Γg,n(L) = O((L2

0c)
1−nL2

c/L2), (35)

where n > 1 and L0c = L2
0/Lc. The perturbative solution

is then valid for lP /L0c < 1, which is equivalent to L0 >√
lP Lc. Consequently, the QG corrections will be small if

Lǫ ≫ lP and
L0 ≫

√

lP Lc. (36)

The matter contributions will have a general form Λm =
l2P K4f(λ̄, K/ω), where λ̄ = λl2P and f(x, y) is a C∞

function obtained by summing all one-particle irreducible
vacuum Feynman diagrams for U(φ) = ωφ2/2 + λφ4/4!
QFT.

The exact CC can be now written as

Λ = Λμ + Λc + Λm =
l2P

2L4
0

± 1

L2
c

+ l2P K4f(λ̄, K/ω). (37)

The dependence of Λ on the free parameters L0 and Lc is
such that we can set

Λc + Λm = ± 1

L2
c

+ l2P K4f(λ̄, K/ω) = 0, (38)

so that Lc is determined by Λm. Then the condition (38)
gives

Λ = Λμ =
l2P

2L4
0

. (39)

Note that Λ > 0 if we choose the plus sign in (39).
Equation (39) will determine the parameter L0, since

the observed value of Λ is given by l2P Λ ≈ 10−122, so that
L0 ≈ 10−5 m. Note that this value of L0 satisfies L0 ≫ lP ,

which is consistent with the condition (36) for the validity
of the semi-classical approximation. This agrees with the
fact that CC can be observed only in the semiclassical
regime of a QG theory.

Note that one can choose Λc + Λm = C/l2P , where C
is an arbitrary number, so that Λ = Λμ + C/l2P . This
gives L0/lP = (Λl2P − C)−1/4, and the only restriction on
the value of C is that L0(C) ≫ lP . This restriction gives
−1 ≪ C < 10−122 so that one can choose the natural value
C = 0. The value C = 0 is considered natural because it
can be a consequence of some principle or a symmetry.

Choosing Λc + Λm = 0 is not a fine tuning because we
do not need to know the values of Λc and Λm. In the usual
QFT approach to the CC problem, it is assumed that there
is no a quantum gravity contribution and Λc = 0 so that
Λ = Λm. Since Λm depends on the cutoff K, then at
each order of the perturbation theory one has to adjust
K in order to obtain the observed value of Λ. This is
difficult to realize, because a natural cutoff K = 1/lP
gives contributions of O(1), while the desired value is of
O(10−122).

One could assume that Λc �= 0 and that QFT can
produce a non-perturbative value for Λm. Then Λ =
Λc + Λm = C/l2P and one could take C which gives the
observed value of Λ. However, this approach is not sat-
isfactory, because it gives C = O(10−122) and does not
explain why Λcl

2
P cancels Λml2P to 122 decimal places. On

the other hand, if Λ was zero, then C = 0, and this value
would not be a problem, because, as we mentioned earlier,
C = 0 could be a consequence of some symmetry or a prin-
ciple, like supersymmetry, where Λc = Λm = 0. However,
in the real world Λ > 0 and supersymmetry is broken,
and consequently the approach based on a supersymmet-
ric QFT has not produced a solution to the CC problem.

Conclusions. – We have shown that the CC problem
can be solved in a discrete QG theory based on the Regge
formulation of GR. In this case the QG contributions to
CC can be calculated explicitly, and they are given by a
simple expression (39). The matter contributions to CC
are given by the sum of 1PI Feynman vacuum diagrams
for the matter QFT with a physical momentum cut-off
�/LK , where LK ≫ lP . This contribution cannot be cal-
culated explicitly, but it will have some definite value Λm,
because our theory is based on a finite path integral (6)
and the effective action is defined non-perturbatively via
eq. (9). Since Λ is given by (29), we can choose Λc such
that Λc = −Λm so that Λ = Λμ = l2P /2L4

0, where L0 is a
free parameter from the path integral measure. By choos-
ing L0 ≈ 10−5 m we obtain the presently observed value of
the CC. This value of L0 is natural for our approach, be-
cause it satisfies L0 ≫ lP , so that it is consistent with the
condition L0 ≫

√
lP Lc for the validity of the semiclassical

approximation.

Note that in the standard approach to the CC prob-
lem, see [1], the CC value is determined solely by the
quantum fluctuations of matter and the classical value,

40008-p4
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so that Λ = Λm + Λc. From a QG perspective, this is
an oversimplification and the reason why the CC problem
appeared. If the QG contribution is ignored, one then en-
counters the problem of how to arrange the cancellation of
the matter contributions to 122 decimal places, by sum-
ming terms which are of O(1), since the natural cut-off
in the corresponding QFT is LK = lP . In our approach,
we also use a QFT, but our QFT is an effective QFT,
see [13], since it is an approximation for a more funda-
mental theory. Hence we can take LK ≫ lP and therefore
l2P Λm = O(l4P /L4

K) ≪ 1. However, our Λm is still much
bigger than the observed value, since LK < 10−20 m. This
is because LK is a scale where QG corrections are small
and the usual perturbative QFT is still valid, and from the
LHC experiments we know that QFT is valid at 10−20 m.
But when we take into account the QG contributions to
CC and a non-zero classical CC, this problem is solved by
canceling the matter contribution by appropriately choos-
ing the value of the classical CC. Note that the individual
terms in (29) cannot be observed and only the sum can
be measured. For example, the Casimir experiment does
not measure Λm but it measures the force F ∝ U ′

eff(φ). In
exact SUSY theories Λm = 0, so that our mechanism can
still work by choosing Λc = 0, since (39) is still valid for
Λc = 0, see [8].

Note that the transformation

Λc + Λm → Λc + Λm + C′/l2P , Λμ → Λμ − C′/l2P (40)

does not change Λ. However, it is not clear whether (40) is
a symmetry of the effective action. If (40) is a symmetry,
we can choose any value of C, as long as L0(C) ≫ lP .
However, it is more likely that (40) is not a symmetry,
so that we will have a class of theories whose observables
may depend on C. Since C = 0 is an allowed value, it is
the best candidate for a preferred value. In order to test
how our theory depends on the value of C, one would have
to find observables which depend on C and compare them

with the observed values. This can be done by computing
more terms of the perturbative effective action.
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