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Prefa
eThe �fth Petrov International Symposium on High Energy Physi
s, Cosmologyand Gravity was organized by the Bogolyubov Institute for Theoreti
al Physi
sof the National A
ademy of S
ien
es of Ukraine and the Walter Thirring Inter-national Institute for Mathemati
al Physi
s, Astrophysi
s and Nu
lear Investiga-tions (Ukraine); and supported by the Austrian A
ademy of S
ien
es, the NationalA
ademy of S
ien
es of Ukraine, the Austro-Ukrainian Institute for S
ien
e andTe
hnology, the Slovak Resear
h Centre (Slovakia), the Cze
h Resear
h Centre(Cze
h Republi
), the Hadroni
 Press In
. and the Proje
t No. 1202.094-12 ofthe Central European Initiative Cooperation Fund. This Symposium is dedi
atedto the 85th anniversary of the outstanding Austrian physi
ist Walter Thirring.Walter Thirring international 
ooperation with N. Bogolyubov Institute for Theo-reti
al Physi
s of the National A
ademy of S
ien
es of Ukraine, in Kyiv, and withthe respe
ted Walter Thirring Institute for Mathemati
al Physi
s, Astrophysi
s,and Nu
lear Investigations in the Trans
arpathian Region of Ukraine had an e�e
t
learly transgressing s
ienti�
 poli
y: it helped to establish 
onta
ts of Ukrainians
ienti�
 institutions with Western European s
ienti�
 institutions. This interna-tional 
ooperation in the frame of Bogolyubov-Petrov and Thirring-Kummer-Wesss
ienti�
 s
hools have helped to guarantee a stimulating atmosphere whi
h 
on-tinues to attra
t the bright students whi
h the 
ommunity of physi
ists in Europeneeds to a

omplish its further s
ienti�
 goals. These Pro
eedings are limitedto the appli
ations of new mathemati
al methods in High Energy Physi
s, Cos-mology and Gravity. There are based on invited talks given at the forum wheres
ientists and students with di�erent professional ba
kgrounds 
an dis
us 
on-
epts whi
h are relevant to more than one �eld, and propose new mathemati
almethods for solutions of yet unsolved fundamental problems.v



0This 
olle
tion is also reprinted in Journal �Algebras, Groups and Geometries�(2012, Vol. 29, issues n. 1�3). And it is re
ommended to resear
hers in variousareas of High Energy Physi
s, Cosmology and Gravity, on the one hand, andto graduate and postgraduate students as an introdu
tion into self-
onsistentmodern mathemati
al methods appli
ations in High Energy Physi
s, Cosmologyand Gravity too.
S. S. Moskaliuk Kosivska Poliana, De
ember 2012



Alexey Chopovsky1,M. Eingorn, A. ZhukSpheri
al 
ompa
ti�
ation of twoextra dimensions in Kaluza-Kleingeometries: approximate solitonsolutions2Odessa National University named after I.I. Me
hnikov,2, Dvoryanskaya street, Odessa 65082, Ukrainee-mail: alexey.
hopovsky�gmail.
omMultidimensional Kaluza-Klein models with toroidal 
ompa
ti�
ationof extra dimensions fa
e a severe problem. It lies in 
ontradi
tion withthe gravitational tests (the perihelion shift, the de�e
tion of light, thetime delay of radar e
hoes and PPN parameters) for a dust-like mat-ter sour
e of the gravitational �eld. One of the alternative 
hoi
es of1This resear
h was 
o-�nan
ed by the Austrian A
ademy of S
ien
es in the framework ofthe 
ollaboration with the National A
ademy of S
ien
es of Ukraine on Modern Problems inAstroparti
le Physi
s.2Based on invited talks given at the 5th Petrov International Symposium on High EnergyPhysi
s, Cosmology and Gravity (April 29�May 5, 2012, Kyiv, Ukraine), whi
h were partiallysupported by the Proje
t No. 1202.094-12 of the Central European Initiative Cooperation Fund.1



2the further development dire
tion lies in the 
hange of the 
ompa
t-i�
ation type. A

ording to this possible 
hoi
e, we 
onsider two ex-tra dimensions 
ompa
ti�ed on a two-sphere, representing the 
urvedinternal spa
e. In order to provide this 
urvature, we introdu
e theba
kground matter in the form of a perfe
t �uid with the va
uumequation of state in the external spa
e and an arbitrary equation ofstate in the internal spa
e, as well as a bare multidimensional 
osmo-logi
al 
onstant. Then we perturb the ba
kground by the non-dust-likematter sour
e of the gravitational �eld, possessing tension in the in-ternal spa
e. As a result, we arrive at approximate soliton solutionsand impose experimental 
onstraints on their parameters in order tosatisfy the gravitational tests.1 Introdu
tionThe sear
h of a 
ommon prin
iple, whi
h des
ribes the phenomenologi
al pluralityof the physi
al world, brought modern theoreti
al physi
s into the deep ontolog-i
al 
risis. This 
risis is underlain by the impudent infringement of the O

am'sprin
iple, a

ording to whi
h �entities must not be multiplied beyond ne
essity�.It is 
lear that any theoreti
al model may be 
alled a physi
al one only relativeto a spe
ial sphere of reality, where its predi
tions are experimentally veri�ed or,at least, do not 
ontradi
t the observational data. Beyond su
h sphere, the modelrepresents just an abstra
tive logi
al 
onstru
t that is absolutely separated fromphysi
al reality. However, nowadays we diagnose the impetuous growth of a tumorof new theoreti
al essen
es, while their ontologi
al status remains inde�nite. Inthis situation the problems of revealing of physi
ally inadequate theories be
omereally relevant. As a vivid example we 
an 
onsider multidimensional theories ingeneral and Kaluza�Klein models in parti
ular.On the one hand, the signi�
ant in
rease of Kaluza�Klein models popularity inlast de
ades was 
aused by the well-known problems, whi
h arise in the Standard
SU(3)×SU(2)×U(1) model, su
h as the hierar
hy problem [1℄, or the fa
t that theStandard model does not in
lude gravity. An attempt to solve these problems hasbeen undertaken in supersymmetri
 models, su
h as superstring and M-theories



3[2℄. These theories 
an be 
onsistently formulated only in the dimensionalities ofthe fundamental spa
e-time D = 10 and D = 11 
orrespondingly. In both theoriesadditional spatial dimensions are 
ompa
ti�ed on the energy s
ale unattainablewithin the limits of sub-Plan
kian physi
s, or, in other words, they are based onthe Kaluza�Klein approa
h.On the other hand, the Kaluza�Klein models in their original formulation[3, 4℄ fa
e a serious problem. As it was shown in [5℄, the models with toroidal
ompa
ti�
ation of extra spatial dimensions 
ontradi
t the experimental data.In parti
ular, the gravitational �eld of a point-like massive sour
e with dust-likeequation of state was 
onsidered in this arti
le in the weak �eld approximation.In General Relativity we 
an use this approa
h to derive formulas for su
h e�e
ts,as the Mer
ury perihelion shift, the de�e
tion of light by the Sun, the frequen
yshift, and the Shapiro time delay of radar e
hoes [6℄.General Relativity is in brilliant a

ordan
e with experiments that 
he
k thesee�e
ts, or, in other words, with 
lassi
al gravitational tests. Also these tests imposestrong restri
tions on the numeri
al values of the so-
alled PPN parameters β and
γ [7�10℄, whi
h are the 
oe�
ients in the Robertson�Eddington expansion of themetri
s in powers of a small perturbation parameter 2ϕ/c2 in isotropi
 spheri
al
oordinates r3, θ, φ:

ds2 ≈
(
1 +

2ϕ

c2
+ β

2ϕ2

c4
+ ...

)
c2dt2−

−
(
1− γ

2ϕ

c2
+ ...

)
(
dr23 + r23dθ

2 + r23 sin
2 θdφ2

)
, (1)where ϕ is the gravitational potential. For example, in the �rst order in pertur-bation the de�e
tion of light is de�ned by the expression

δφ = (1 + γ)
rg

ρ
, (2)where rg is the gravitational radius. For the perihelion shift per one revolution wehave the formula

δφ =
1

3
(2− β + 2γ)

3πrg

a (1− e2) . (3)



4If a planet (or a satellite) is on the superior 
onjun
tion (the far side of theSun from the Earth), then the formula for the Shapiro time delay is de�ned bythe formula
δt = (1 + γ)

rg

c
ln

(
4r⊕rpl
R2
Sun

)
. (4)The tightest 
onstraint on the parameter γ 
omes from the Shapiro time delayexperiment using the Cassini spa
e
raft

γ = 1 + (2.1 ± 2.3)× 10−5. (5)This value is 
ompletely 
onsistent with General Relativity, where γ is equalto the unity. Thus, separating the linear in perturbation metri
 mode in a 
ertainmultidimensional model, we 
an dete
t the deviation of theoreti
al predi
tionsfrom experimental data 
omparing the obtained value for γ with the unity. It is
lear that the signi�
ant di�eren
e between this numbers points to a 
ertain �awin the 
onsidered model.Su
h analysis of Kaluza�Klein models with toroidal topology of additionaldimensions has been 
arried out in [5℄. The authors have shown that in the 
aseof three-dimensional external (non-
ompa
t) spa
e and dust-like equations of statein both internal and external spa
es the following relation ful�lls for the parameter
γ:

γ =
1

D − 2
, (6)where D is the total number of spatial dimensions. This result does not dependon the sizes of the extra dimensions. Therefore, point-like gravitating sour
es arein 
on
ordan
e with experiments only in the three-dimensional spa
e.The exa
t soliton solutions of the Einstein equations were investigated in [11,12℄. In these solutions a gravitating sour
e is uniformly smeared over the inter-nal spa
e and its nonrelativisti
 gravitational potential exa
tly 
oin
ides with theNewtonian one. A new 
lass of solutions, 
alled latent solitons, whi
h are indis-tinguishable from General Relativity and at the same time are the only obje
tswhi
h satisfy the gravitational experiments at the same level of a

ura
y as Gen-eral Relativity, was obtained in [10℄. To get these solutions, the matter sour
e



5must have tension in the internal spa
e instead of the dust-like equation of state,and this is a distin
tive feature of these solutions. In parti
ular, bla
k strings andbla
k branes belong to this 
lass. However, the physi
al meaning of su
h strange
hara
teristi
 as tension in the internal spa
e for ordinary astrophysi
al obje
tsis not 
lear.Thus, in the 
ase of toroidal 
ompa
ti�
ation, on the one hand we arrive at the
ontradi
tion with the experimental data for the physi
ally reasonable gravitatingsour
e in the form of a point-like mass, and on the other hand we have no problemwith the experiments for bla
k strings or branes but arrive at very strange equationof state in the internal spa
es. How 
ommon is this problem for the Kaluza-Kleinmodels? To understand it, we investigate a model with spheri
al 
ompa
ti�
ationof the internal spa
e.Our �rst goal is to get a bla
k brane solution with spheri
al topology of twoextra dimensions.2 Bla
k brane with spheri
al 
ompa
ti�
ationSo, to start with, let us 
onsider the six-dimensional stati
 metri
s in the form
ds2 = Ã(r̃3)c

2dt2 + B̃(r̃3)dr̃
2
3 + C̃(r̃3)

(
dθ2 + sin2 θdφ2

)
+

+Ẽ(r̃3)
(
dξ2 + sin2 ξdη2

)
, (7)where tilde denotes the �S
hwarzs
hild-like� parameterization for the metri
s andthe three-dimensional radial 
oordinate. Similar to the bla
k strings or branes withthe �at internal spa
e, here the metri
 
oe�
ients depend only on the absolutevalue of the three-dimensional radius-ve
tor. These 
oe�
ients 
an be found withthe help of the six-dimensional Einstein equation

Rik = κ6

(
Tik −

1

4
Tgik −

1

2
Λ6gik

)
, κ6 ≡ 2S5G̃6/c

4 , (8)here Λ6 is a bare 
osmologi
al 
onstant, S5 is the total solid angle and G̃6 isthe gravitational 
onstant in the six-dimensional spa
e-time. However, in the 
aseof the six-dimensional spa
e-time with spheri
al 
ompa
ti�
ation of the internal



6spa
e, we should introdu
e additional matter whi
h provides the nonzero inter-nal spa
e 
urvature. Let the 
omponents of the energy-momentum tensor of thismatter have the form
Tik =

{
ε(r̃3)gik for i = k = 0, ... , 3;

−ω1ε(r̃3)gik for i = k = 4, 5.
(9)Its tra
e reads T = 2(2− ω1)ε(r̃3). In the language of a perfe
t �uid, we havea va
uum-like equation of state in the external spa
e, but an arbitrary equationof state with the parameter ω1 in the internal spa
e. Then the Einstein equationsredu
e to the following system of fundamentally di�erent equations:

R00

Ã
= −

1

4Ã′C̃2Ẽ2

(
Ã′ 2C̃2Ẽ2

ÃB̃

)
=
κ6

2
(ω1ε− Λ6) , (10)

R11

B̃
= −

1

4Ã′

(
Ã′ 2

ÃB̃

)
−

1

2C̃ ′

(
C̃ ′2

B̃C̃

)
−

1

2Ẽ′

(
Ẽ′2

B̃Ẽ

)
=
κ6

2
(ω1ε− Λ6) , (11)

R22

C̃
=

1

C̃
−

1

4C̃ ′ÃC̃Ẽ2

(
C̃ ′2ÃẼ2

B̃

)
=
κ6

2
(ω1ε− Λ6) , (12)

R44

Ẽ
=

1

Ẽ
−

1

4Ẽ′ÃẼC̃2

(
Ẽ′2ÃC̃2

B̃

)
= −

κ6

2
[(2 + ω1)ε+ Λ6], (13)where prime denotes the derivative with respe
t to the 
oordinate r̃3. In the 
aseof bla
k strings or branes with toroidal 
ompa
ti�
ation, the internal spa
e is�at. Now, we require that the internal spa
e is exa
tly the two-sphere, that is thefun
tion Ẽ is 
onstant. Therefore, from the equation (13) we get the relation

−
1

a2
= −

κ6

2
[(2 + ω1)ε+ Λ6] , (14)whi
h is valid for identi
ally 
onstant ε, whi
h we denote as epsilon with abar. On the other hand, equations (10), (11) and (12) exa
tly 
oin
ide with theva
uum four-dimensional S
hwarzs
hild equations if the following 
ondition holds:

ε̄ = Λ6/ω1 . (15)



7Substituting this value of the ba
kground matter energy density into the equa-tion (14), we get the relation
ε̄ =

1

(1 + ω1)κ6a2
, (16)The obtained equalities allows to 
on
lude that be
ause of positiveness of theba
kground energy density ω1 > −1. The parameter ω1, whi
h determines thestate in the internal state, is not �xed and takes part in �ne-tuning between ε̄ and

Λ6. Choosing di�erent values of this parameter (with the va
uum-like equationof state in the external spa
e), we 
an simulate di�erent forms of matter. Inparti
ular, ω1 = 1 and ω1 = 2 
orrespond to the monopole form-�elds (the Freund-Rubin s
heme of 
ompa
ti�
ation) and the Casimir e�e
t, respe
tively. As anexample, let's 
onsider the 
ase of the Freund-Rubin stable 
ompa
ti�
ation withtwo-forms
Fik =

{ √
g2 εikf for i = k = 4, 5;

0 otherwise;
(17)where g2 is the determinant of the metri
s on the internal sphere, εik is the totallyantisymmetri
 Levi-Civita tensor and f is a 
onstant whi
h we de�ne below.Hen
e, the energy-momentum tensor is determined by

Tik =





f2

8π
· gik, for i, k = 0, ... , 3;

−
f2

8π
· gik, for i, k = 4, 5.

(18)The 
omparison of this expression with the ba
kground energy-momentum tensorshows that the parameter of the equation of state in the internal spa
e ω1 isequal to the unity. Similarly, we 
an 
onsider the stabilization by means of theCasimir e�e
t where ω1 = 2. It is also worth noting that in the 
ase of the zero
osmologi
al 
onstant, the parameter ω1 should also be equal to zero. Therefore,the homogeneous matter with the re
eived energy-momentum tensor providesspheri
al 
ompa
ti�
ation of the internal spa
e.In the usual four-dimensional spa
e-time, the S
hwarzs
hild metri
s is 
reatedby a 
ompa
t (for example, point-like) spheri
ally symmetri
 gravitating mattersour
e. Thus, to get the external spa
etime in the form of the S
hwarzs
hild



8metri
s, we have to introdu
e su
h obje
t whi
h is spheri
ally symmetri
 in theexternal spa
e and uniformly smeared over the internal spa
e. Let the energy-momentum tensor of this perturbation have the following nonzero 
omponents:
T̂00 = ε̂g00, T̂αα = 0, α = 1, 2, 3

T̂44 = −p̂1g44 , T̂55 = −p̂1g55 .
(19)Note that 44 and 55 
omponents of the energy-momentum tensor are gen-erally nonzero. Then the total energy-momentum tensor is the superposition ofthe ba
kground one and the energy-momentum tensor of the perturbation. Inthe weak-�eld limit we 
an suppose that the energy density is approximately

ρ̂c2, where rho with a hat is the multidimensional rest mass density, and for theparti
le uniformly smeared over the internal spa
e, multidimensional and three-dimensional rest mass densities are proportional to ea
h other, namely, they're
onne
ted by the relation
ρ̂ =

ρ̂3

V2
, (20)where V 2 is the volume of the internal sphere. Also in the 
ase of a pointlikegravitating mass the three-dimensional rest mass density is proportional to thedelta-fun
tion of the position ve
tor in the external spa
e.Now it is the 
ru
ial point of our reasoning.Taking into a

ount only the gravitating matter sour
e and keeping in mindthat we want to get the S
hwarzs
hild solution in the external spa
e, it 
an beeasily realized that the only non-zero 
omponents of the Ri

i tensor should havethe following form:

R00 =
1

2
κ6ε̂g00 ≈

1

2
κN ρ̂3c

2g00 , (21)

Rαα = −
1

2
κ6ε̂gαα ≈ −

1

2
κN ρ̂3c

2gαα, α = 1 , 2 , 3, (22)

R44 = 1, R55 = sin2 ξ , (23)where κ6/V2 = κN ≡
8πGN

c4
, GN is the Newton's gravitational 
onstant. Andnow, substituting these 
omponents of the Ri

i tensor as well as the 
omponents



9of the total energy-momentum tensor of the perturbed system in the Einstein�Hilbert equations, one 
an see that these equations are 
ompatible only if thefollowing equation of state holds:
p̂1 = −

1

2
ε̂ (24)For example, the 00-
omponent of the Einstein equation is given by (10),and we see that the left-hand side of the equation identi
ally 
oinsides with theright-hand side only if the sour
e has the equation of state (24):

R00 =
1

2
κ6ε̂g00 = κ6

[
ε̂−

1

4
(ε̂− 2p̂1)

]
g00 (25)Similarly, all other nontrivial 
omponents also give the same equation of state.That is the gravitating matter sour
e should have tension in the internal spa
e asit takes pla
e for the bla
k strings or branes with toroidal 
ompa
ti�
ation.Therefore, the required exa
t solution of the �eld equations, whi
h is 
alled inthe 
onsidered 
ase the bla
k brane with spheri
al 
ompa
ti�
ation, is presentedhere:

ds2 =

(
1−

rg

r̃3

)
c2dt2 −

(
1−

rg

r̃3

)−1

dr̃23 − r̃23dΩ2
2 − a2

(
dξ2 + sin2 ξdη2

)
, (26)So, the matter sour
e of this bla
k brane 
onsists of two parts. First, it is thehomogeneous 
omponent with �ne-tuning 
onditions, whi
h provides spheri
al
ompa
ti�
ation of the internal spa
e. Se
ond, it is the gravitating obje
t whi
h isspheri
ally symmetri
 and 
ompa
t in the external spa
e and uniformly smearedover the internal spa
e. It has negative pressure in the extra dimensions. This
omponent provides the S
hwarzs
hild-like metri
s in the external spa
etime.To 
al
ulate formulas for the famous gravitational experiments or expressionsfor parameterized post-Newtonian (PPN) parameters, it is usually 
onvenient torewrite the metri
s in isotropi
 (with respe
t to our three-dimensional spa
e)
oordinates. The S
hwarzs
hild-like radial 
oordinate and the isotropi
 radial 
o-ordinate are 
onne
ted by the relation:

r̃3 = r3

(
1 +

rg

4r3

)2

. (27)



10For example, in isotropi
 
oordinates the linear in perturbation expression forthe metri
s, similar to the Eddington�Robertson expansion in General Relativity,is given by the approximate equality:
ds2 ≈

(
1 +

2ϕN

c2

)
c2dt2 −

(
1−

2ϕN

c2

)
(
dx2 + dy2 + dz2

)
−

−a2
(
dξ2 + sin2 ξdη2

)
. (28). This equality shows, that the PPN-parameter γ = 1. It's also not di�
ult todemonstrate, that the PPN parameter β is also equal to the unity, similar to Gen-eral Relativity. Therefore, our bla
k brane satis�es the gravitational experimentsat the same level of a

ura
y as General Relativity.3 Approximate soliton solutionsNow we shall 
onsider the other problem. It arises from the following question:are the obje
ts, whi
h provide the bla
k brane metri
s, the only sour
es whi
hsatisfy the gravitational experiments in the Kaluza�Klein models with spheri
altopology of additional dimensions? To get the answer, let's note, that in GeneralRelativity, the weak-�eld limit is a good approximation to 
al
ulate the above-mentioned gravitational experiments. In this limit, a gravitating massive body(e.g., a point-like mass) has dust-like equations of state. Obviously, the physi
alsense of su
h approa
h should be preserved in multidimensionality, and it's naturalto generalize this approa
h to our model.Let us investigate the most general 
ase, where, instead of the dust-likeequations of state in all spatial dimensions, we suppose the following energy-momentum tensor of the perturbation:

T̂00 ≈ ρ̂c2, T̂αα = 0, α = 1, 2, 3

T̂44 ≈ Ωρ̂c2a2, T̂55 ≈ Ωρ̂c2a2 sin2 ξ.
(29)Here Ω denotes a 
ertain parameter. Con
erning the energy-momentum tensorof the ba
kground matter, we suppose that perturbation does not 
hange theequations of state in the external and internal spa
es, i.e. ε̄ and ω1 are 
onstant



11and still satisfy the �ne-tuning 
onditions (15). For example, if we had a monopoleform-�elds (
orresponding to ω1 = 1) before the perturbation, the same type ofmatter we shall have after the perturbation. Therefore, the energy-momentumtensor of the perturbed ba
kground is de�ned by
T̃ik ≈

{ (
ε̄+ ε1

)
gik, i, k = 0, ..., 3;

−ω1

(
ε̄+ ε1

)
gik, i, k = 4, 5,

(30)where the 
orre
tion ε1 is of the same order of magnitude as the perturbation.Further we shall see that existen
e of su
h 
orre
tion provides the �eld equa-tions 
onsisten
y. The total energy-momentum tensor is the superposition ofthe 
orresponding tensors of the perturbed ba
kground and the perturbation:
Tik = T̃ik + T̂ik.In the 
ase of uniformly smeared (over the internal spa
e) perturbation, theperturbed metri
s preserves its diagonal form and in isotropi
 
oordinates is givenby formulas

ds2 = Ac2dt2 +Bdx2 + Cdy2 +Ddz2 + Edξ2 + Fdη2, (31)

A ≈ 1 +A1(r3), B ≈ −1 +B1(r3) ,

C ≈ −1 + C1(r3), D ≈ −1 +D1(r3) ,

E ≈ −a2 + E1(r3), F ≈ −a2 sin2 ξ + F 1(r3) ,

(32)where we take into a

ount the spheri
al symmetry of the perturbation withrespe
t to the external spa
e. All the terms indexed by the unity are of the orderof perturbation. To �nd these 
oe�
ients, we should solve the Einstein�Hilbertequation, whi
h is redu
ed now to the system of linear equations:
△3A

1 = κ6ω1ε
1 +

(
3

2
+ Ω

)
κ6ρ̂c

2 , (33)

△3B
1 = △3C

1 = △3D
1 = −κ6ω1ε

1 +

(
1

2
− Ω

)
κ6ρ̂c

2 , (34)

△3E
1 = (2 + ω1)κ6a

2ε1 −
2

a2
E1 +

(
1

2
+ Ω

)
κ6ρ̂c

2a2 , (35)



12where the triangle is the three-dimensional Lapla
e operator. It is very helpful toanalyze the non-diagonal 
omponents of the �eld equation. Using the geometri
properties of the perturbation (namely, the spheri
al symmetry with respe
t tothe external spa
e and the uniform smearing over the internal sphere) we alsoobtain the relations
F 1 = E1 sin2 ξ, △3E

1 =
a2

2

(
△3A

1 −△3B
1
)
=

=
a2

2

[
2κ6ω1ε

1 + (1 + 2Ω)κ6ρ̂c
2
]
. (36)The 
omparison of (35) and (36) gives

κ6ε
1 =

E1

a4
. (37)Hen
e the introdu
tion of the ba
kground energy-momentum tensor pertur-bation is totally legitimate, be
ause only in the 
ase of nonzero ε1 the system oflinearized �eld equations is 
onsistent in the general 
ase. The substitution of therelation (37) ba
k into (36) gives the Helmholtz equation:

△3E
1 −

ω1

a2
E1 =

(
1

2
+ Ω

)
κ6ρ̂c

2a2 =

(
1

2
+ Ω

)
8πGN

c2
a2m△(r3), (38)where for the smeared extra dimensions the perturbation rest mass density isproportional to the delta-fun
tion of the position ve
tor in the external spa
e. Ifthe parameter Ω 6= −1/2, then the negative value of ω1 results in the nonphysi
alos
illating solution. Hen
e, in the 
ase of positive ω1, the solution of this equationis given by

E1 = a2
ϕN

c2
(1 + 2Ω) e−r3/λ , λ = a

/√
ω1 , (39)

ϕN denotes the Newton's potential of a perturbation. It's easy now to obtain themetri
 
orre
tions A1 and B1:
A1 =

2ϕN

c2
+
E1

a2
=

2ϕN

c2

[
1 +

(
1

2
+ Ω

)
exp (−r3/λ)

]
, (40)
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B1 =

2ϕN

c2
−
E1

a2
=

2ϕN

c2

[
1−

(
1

2
+ Ω

)
exp (−r3/λ)

]
. (41)Thus, to get agreement with gravitational experiments, 
oe�
ients A1 and B1should be very 
lose to ea
h other. In General Relativity, A1 is exa
tly equal to

B1. In our model, we 
an satisfy this 
ondition in two 
ases.First 
ase: Ω = −1/2. Obviously, this is the 
ase of the previous problem withthe bla
k brane, and we just reprodu
e this exa
t solution in the weak-�eld limit.Here, the parameter ω1 is not �xed and satis�es the 
ondition ω1 > −1 in
ludingthe 
ase of the zero ω1, when a bare 
osmologi
al 
onstant is absent.Se
ond 
ase: Ω 6= −1/2, r3 ≫ λ. Here, the metri
s asymptoti
ally approa
hesto (28), in
luding the physi
ally reasonable 
ase of the dust-like equation of state
Ω = 0. Therefore, the se
ond 
ase is 
alled the asymptoti
 bla
k brane. Thepositiveness of the state parameter ω1 is the ne
essary 
ondition of the 
onsidered
ase.The metri
 
orre
tion term A1 des
ribes the nonrelativisti
 gravitational po-tential: A1 = 2ϕ

/
c2. Therefore, this potential a
quires the Yukawa 
orre
tionterm. The Yukawa intera
tion is 
hara
terized by two parameters: the parameter

λ, whi
h de�nes the 
hara
teristi
 range of this intera
tion, and the parameter
α in front of the exponential fun
tion. In our 
ase α = 1/2 + Ω. There exists astrong restri
tion on these parameters from the inverse square law. If, for example,omega is not equal to −1/2, the upper limit for λ is given by the relation

λmax = (a/
√
ω1) ≈ 6× 10−3
m. (42)In view of this relation we have also a possibility to estimate the upper limitof the size of the internal spa
e for a �xed value of the state parameter. Letus estimate now the Yukawa 
orre
tion term for the gravitational experimentsin the Solar system. We 
an take astrophysi
al external distan
es, for example,
omparable with the radius of the Sun. Therefore, with very high a

ura
y we
an drop the Yukawa 
orre
tion term, and arrive at the 
ase of the asymptoti
bla
k brane.



144 Con
lusionsThus, now let us summarize all the results of the present work in the form of ashort 
on
lusion. In this work we found a metri
s for a bla
k brane with spheri-
al 
ompa
ti�
ation of the internal spa
e. This is the exa
t solution of the Ein-stein equations. To get su
h solution, we should �rst prepare the 
orrespondingba
kground with the �at external spa
e-time and the 
urved internal spa
e (thetwo-sphere). For this purpose, we should in
lude a matter sour
e in the form ofa homogeneous perfe
t �uid with the va
uum equation of state in the external(our) spa
e and an arbitrary equation of state in the internal spa
e. The model
an also 
ontain a bare multidimensional 
osmologi
al 
onstant. To get spheri
al
ompa
ti�
ation, parameters of the perfe
t �uid should be �ne-tuned. The pres-en
e of su
h perfe
t �uid is the main di�eren
e from the well-known bla
k braneswith toroidal 
ompa
ti�
ation. In the latter 
ase we do not need to introdu
e anadditional perfe
t �uid, be
ause the ba
kground here is �at for both external andinternal spa
es.The next step is to 
onstru
t a S
hwarzs
hild-like metri
s in the externalspa
e-time. To perform it, we in
luded a gravitating obje
t whi
h is spheri
allysymmetri
 and 
ompa
t in the external spa
e as well as uniformly smeared overthe internal spa
e. We have shown that the Einstein equations are 
ompatibleonly if this obje
t has negative pressure (i.e. tension) in the internal spa
e. Itshould be noted that the gravitating matter sour
e for bla
k branes with toroidal
ompa
ti�
ation has pre
isely the same equation of state in the internal spa
e.Then, we generalized our investigations to the 
ase where the ba
kground withspheri
al 
ompa
ti�
ation is perturbed by a matter sour
e whi
h has the dust-like equation of state in the external spa
e and an arbitrary equation of state inthe internal spa
e. In the weak-�eld limit, we found solutions of the linearizedEinstein equations. One 
ase of the parameter 
hoi
e reprodu
es the weak-�eldlimit of the exa
t solution. In the other 
ase the metri
 
oe�
ients a
quire theYukawa 
orre
tion terms whi
h are negligibly small at three-dimensional distan
esmu
h greater than the 
hara
teristi
 range of the Yukawa intera
tion. At thesedistan
es, the metri
s asymptoti
ally tends to the weak-�eld limit of the exa
tbla
k brane solution. We named the se
ond 
ase the asymptoti
 bla
k brane.Obviously, in the 
ase of spheri
al 
ompa
ti�
ation, the exa
t bla
k branes and



15the asymptoti
 bla
k branes satisfy the gravitational experiments at the same levelof a

ura
y as General Relativity. Hen
e, we have two theoreti
al possibilities tosatisfy observational restri
tions, but we still don't know whi
h of them is 
loserto physi
al reality.Referen
es1 N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004(1999); arXiv:hep-ph/9807344.2 J. Pol
hinski, String Theory, Volume 2: Superstring Theory and Beyond(Cambridge University Press, Cambridge, 1998).3 Th. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. d. Preuss. Akad.d. Wiss., 966 (1921).4 O. Klein, Quantentheorie and fünfdimensionale Relativitätstheorie,Zeits
hrift fr Physik 37, 895 (1926).5 M. Eingorn and A. Zhuk, Class. Quant. Grav. 27, 205014 (2010); arXiv:gr-q
/1003.5690.6 C.M. Will,Was Einstein Right? Testing Relativity at the Century (100 Yearsof Relativity: Spa
etime Stru
ture � Einstein and Beyond, World S
ienti�
,Singapore, 2005); arXiv:gr-q
/0504086.7 N. Straumann, General Relativity and Relativisti
 Astrophysi
s (Springer-Verlag, Berlin, Heidelberg, 1984).8 C.M. Will, Theory and Experiment in Gravitational Physi
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György DarvasFinsler geometry in the presen
eof isotopi
 �eld 
harges appliedfor gravity3Institute for Resear
h Organisation of the Hungarian A
ademy of S
ien
es,18, Nádor St., Budapest, H-1051 Hungarye-mail: darvasg�iif.huThe paper spe
i�es the 
onservation of the isotopi
 �eld-
harge spinon the gravitational intera
tion, and dis
usses one of the 
onsequen
es.First, the isotopi
 �eld-
harges of the gravitational �eld will be de�ned,followed by a short presentation how the 
onservation of the isotopi
�eld-
harge spin has been derived. It will be shown that in the presen
eof a kineti
 gauge �eld the metri
 of the gravitational �eld and its 
ur-vature should follow a Finsler geometry, that means in the presen
e ofan isotopi
 mass �eld, the metri
 and the 
urvature depend also on ve-lo
ity. In parti
ular, the gµν metri
 tensor, and 
onsequently the a�ne
onne
tion �eld and the 
urvature tensor formed from its derivatives,depend on spa
e-time plus velo
ity 
o-ordinates. We insert this met-ri
 in the formula of the a�ne 
onne
tion �eld, and the Ri

i tensor.3Based on invited talks given at the 5th Petrov International Symposium on High EnergyPhysi
s, Cosmology and Gravity (April 29�May 5, 2012, Kyiv, Ukraine), whi
h were partiallysupported by the Proje
t No. 1202.094-12 of the Central European Initiative Cooperation Fund.17



18These extended formulas will be applied to one side of the Einsteinequation, while on the other side there appears the stress-energy ten-sor spe
i�ed in the presen
e of an isotopi
 mass �eld. We 
on
ludethat due to the velo
ity dependen
e, the S
hwarzs
hild solution 
annotbe applied! It must be repla
ed by a Finslerian solution. Finally, as anexample, we will predi
t that this solution may give a more a

urate
al
ulation for the pre
ession of the perihelion of Mer
ury. GeneralTheory of Relativity was based in a signi�
ant part on the equivalen
eprin
iple. This prin
iple states equivalen
e between the mass of gravityand the mass of inertia. At the same time, this statement de
lares thatgravitational and inertial masses are not identi
al, for equivalen
e 
anbe observed between non-identi
al physi
al properties. Papers [1℄-[12℄dealt in detail with this ambiguity. It is analysed in [13℄. In [14℄-[15℄is formulated an assumption that the �eld 
harges of the gravitational�eld � gravitational and inertial are not only equivalent in their mea-sured quantity, there exists an invarian
e between them. This means,that there is a symmetry a

ording to whi
h they are inter
hangeable.They 
an be 
onsidered as ma
ros
opi
ally indistinguishable physi
alproperties of matter, whi
h behave as isotopes of ea
h other. Sin
ethey are qualitatively not identi
al, we have the right to distinguishthem in our physi
al equations, although we 
an 
al
ulate with themlike with equivalent value quantities. As shown in [13℄-[15℄, mass ofgravity is asso
iated with the potential part V of an obje
t's Hamil-tonian and mass of inertia is asso
iated with the kineti
 part T ofan obje
t's Hamiltonian. A

ording to this observation we 
an 
all themass of gravity as (s
alar) potential mass, and the mass of inertia askineti
 mass. For kineti
 mass is asso
iated with (and, a

ording toSTR, depending on) the velo
ity of a massive obje
t in a given refer-en
e frame, it 
an be des
ribed in a velo
ity dependent (kineti
) �eld,while gravitational mass belongs to a (s
alar) �eld depending solelyon the spa
e-time 
o-ordinates. [16℄-[17℄ proved the mathemati
al ex-isten
e of a gauge invarian
e in a velo
ity dependent gauge �eld. Thismathemati
al derivation led to two 
onserved Noether 
urrents that ex-ist simultaneously. This result [14℄-[15℄ predi
ted at �rst, a 
onserved



19quantity - 
alled isotopi
 �eld 
harge spin - and, at se
ond, the ex-
hange of two gauge quanta (bosons) between intera
ting mass units.One of them 
an be identi�ed with the earlier assumed graviton. Theother boson - let's 
all it `dion' [14℄ - whi
h appears in the equationsdue to the 
onsideration of a velo
ity dependent gauge �eld, is new,and is a 
onsequen
e of the 
onservation of the isotopi
 �eld 
hargespin. The paper presents how did the equivalen
e prin
iple applied inGTR lead to the assumption of the isotopi
 �eld 
harge spin and its
onservation, and to the predi
tion of an additional boson ex
hange.The invarian
e between isotopi
 �eld 
harges in the presen
e of a ve-lo
ity dependent gauge �eld, and the 
onservation of the isotopi
 �eld
harge spin were extended to the �eld 
harges of other physi
al inter-a
tion �elds [14℄-[15℄, sin
e the mathemati
al proof [16℄-[17℄ allowedgeneral intera
ting kineti
 gauge �elds. This predi
ted the ex
hange ofadditional gauge bosons in ele
troweak and strong intera
tions as well.The result is part of the `new physi
s' expe
ted for many years in highenergy physi
s [18℄-[22℄, and is a 
andidate to repla
e the SUSY as-sumption. The di�eren
e between SUSY and the isotopi
 �eld 
hargespin assumption is that the former renders fermion-boson pairs as new-born brothers to ea
h other, while the latter does fermion-fermion andboson-boson twins. There are only the boson twins new and to be dis-
overed, sin
e the twin brothers of fermions originate in splitting theexisting ones and are assumed to be identi�ed with the long `known'pairs de�ned by the equivalen
e prin
iple.1 INTRODUCTIONThis paper treats fundamental physi
al intera
tions starting from two preliminaryassumptions.i) Although mass of gravity and mass of inertia are equivalent quantities intheir measured values, they are qualitatively not identi
al physi
al entities.We take into 
onsideration this di�eren
e in our equations. Then this `equiv-alen
e is not identity' prin
iple is extended to sour
es of further fundamentalintera
tion �elds, other than gravity.



20ii) Physi
al intera
tions o

ur between these qualitatively di�erent entities.These two assumptions do not 
ontradi
t to any known physi
al theory, however,they allow another interpretation of fa
ts built in our explanations of physi
alexperien
e. Based on them we demonstrate the existen
e of an invarian
e betweenthe two isotopi
 forms of the �eld 
harges, and formulate 
ertain 
onsequen
es inour view on the physi
al stru
ture of matter.2 THE NOTION OF ISOTOPIC FIELD CHARGESAND THEIR DYNAMICS2.1 Equivalen
e does not mean identityIn a stri
t sense, identi
al obje
ts 
annot be equivalent. Only qualitatively di�erentobje
ts 
an be 
ompared to 
on
lude a quantitative equivalen
e between them.Equivalen
e always presumes the existen
e of at least one property, in whi
h the
ompared obje
ts di�er. (Isotopi
 spin is a good example how to avoid ambiva-len
e.)The equivalen
e prin
iple is one of the main pillars of the general theoryof relativity (GTR). It states the equivalen
e of the gravitational and inertialmasses. Let's 
onsider the mass of gravity and the mass of inertia as two di�erentproperties of matter. For the same massive obje
t 
an behave on
e as a sour
e ofgravity, then as a measure of inertia, we will imagine them as two isotopi
 statesof the same property, 
alled mass of the obje
t.As mu
h as the mass is the �eld 
harge of the gravitational �eld, we will 
all itstwo isotopi
 states as isotopi
 �eld 
harges for the gravitational intera
tion. Thegravitational mass is asso
iated with the (s
alar) potential part of that intera
tion,while the inertial mass with the kineti
 part. In GTR the latter is attributed to themomentum densities, while the former is asso
iated with the gravitational �eldenergy. They are separated within the stress-energy tensor (Tµν), but a

ordingto the general relativity prin
iple they 
an be transformed into ea
h other; - weshould add, at least in their quantitatively equivalent values. GTR does not makeany statement about the qualitative transformation of the two kinds of massesinto ea
h other. This was a reason to identify them. The need for a qualitativetransformation simply has not emerged. Nevertheless, we show that it 
annot



21be avoided. So, we introdu
e distin
tion between masses of gravity and inertiain our equations. (In a similar way, the ele
tri
 
harge - i.e., the sour
e of theele
tromagneti
 �eld - is the �eld 
harge of the ele
tromagneti
 intera
tion; �avourand lepton 
harge - are the sour
es of the weak �eld; the 
olour 
harge - i.e., thesour
e of the strong �eld - is the �eld 
harge of the strong intera
tion.) The sour
es- �eld 
harges - are assumed to be realised in the matter �eld, while they serveas sour
es for gauge �elds. Are they really the same, or 
an one distinguish thetwo agents? The mass of gravity and the mass of inertia are 
onsidered as twoequivalent quantity isotopi
 states of the �eld 
harge of the gravitational �eld.They represent two di�erent qualities. Their 
on
epts express two properties ofmatter, whose existen
e originates in di�erent experien
es. Physi
s establishedquantitative relations between them (i.e., equal values), however this fa
t doesnot vanish their qualitative di�eren
e. We argue that we have all reason to makedistin
tion between them in our theories.When we introdu
e the two isotopi
 �led 
harges in our equations, they willdestroy 
ertain symmetries of those equations. This 
ontradi
ts to our experien
e.Therefore, there must be an invarian
e that 
ompensates and restores the spoiledsymmetry. To avoid the 
ontradi
tion between experien
e and theory, we assumethat the two kinds of 
harges of the gravitational �eld, should be transformedinto ea
h other by a gauge transformation. Su
h a gauge transformation shouldinvolve the existen
e of a 
onserved property that we de�ne in the following way.Sin
e the required transformation a�e
ts the isotopi
 states of the individual�eld-
harges (we mark it with k [`dalet' the fourth letter of the Hebrewalphabet℄), this transformation must be performed in a spe
ial gauge �eld;andsin
e these states 
an o

upy two positions in that gauge �eld, it must be aspin-like property, therefore, we will 
all this property as Isotopi
 Field-Charge Spin (IFCS) and denote it by ∆, and we will refer to the invarian
etransformation what we are seeking for as isotopi
 �eld-
harge gauge trans-formation. This assumption assumes the existen
e of a lo
al gauge �eld, inwhi
h the isotopi
 �eld-
harge spin 
an rotate and o

upy two states and
on
ludes a 
onserved (non-Abelian) 
urrent and a 
orresponding 
lass of
SU(2) type invarian
es.



22For the same obje
t 
an behave, e.g., in the gravitational �eld, on
e as the sour
eof a gravitational for
e, and in another frame of referen
e as a sour
e of a(kineti
) inertial for
e (
f., 
ovarian
e prin
iple), they must be able to gettransformed into ea
h other. Non-Abelian 
hara
ter and arbitrariness in-volve that the orientation of the isotopi
 �eld-
harge spin is of no physi
alsigni�
an
e. If we determine the proper form of this invarian
e transfor-mation, it will 
ountera
t the loss of symmetry between the two kinds of�eld-
harges, and bring our equations in 
omplian
e with the experimentalobservations.The required invarian
e shows 
ertain formal similarities to YM-type invarian
es[23℄-[24℄. However, it must di�er from them in at least two features. On
e,the 
on
erned physi
al property, namely the isotopi
 �eld 
harge (IFC, k),is a quite di�erent physi
al property than the isotopi
 states of nu
leons.Se
ondly, the gauge �eld, and 
onsequently the gauge transformation thatrotates the isotopi
 �eld 
harge spin (IFCS, ∆) in this gauge �eld, are quitedi�erent from the isotopi
 gauge �eld derived for the isotopi
 spin transfor-mation. (For spe
i�
ation, see se
tion 2.)The existen
e of su
h an invarian
e transformation provides us with a symmetry,and 
onsequently with a 
onservation law, with the 
onservation of the introdu
ednew property (∆) of the �eld-
harges. The 
onservation of isotopi
 �eld-
hargespin is identi
al with the requirement of invarian
e of all intera
tions under iso-topi
 �eld-
harge spin rotation (in the gauge �eld where it is interpreted). A
-
ordingly, all physi
al intera
tions should be invariant under a transformationin a spe
i�
 gauge �eld, more pre
isely, under a rotation of the property, 
alledisotopi
 �eld-
harge spin (∆). [15℄-[17℄ proved that invarian
e transformation.2.2 Intera
tion between the isotopi
 �eld 
hargesWhen we take a measure on an obje
t, we have no experien
e that we foundit in one or the opposite isotopi
 state. Would we observe a single parti
le, itwere either in one or in the other IFCS state. We 
an 
all the two states aspotential and kineti
, s
alar and ve
tor, or bound and free states. However, ourmeasurement re
ords a mixture of the two states. Nevertheless, we do not observe



23the individual IFCS states. Our observation suggests that they behave as beingin both states, ea
h measured obje
t 
an o

upy both a potential (bound) and akineti
 (free) IFCS state. In the la
k of experien
e to 
at
h a parti
le in one or theother stable state, we have good reason to assume that they permanently 
hangetheir states. (Randomly or with a stable frequen
y, they may probably follow asimilar me
hanism like quarks do during their 
olour 
hange via gluon ex
hange).Let us 
onsider a model of a doublet, when a parti
le 
an be in a potentialstate (V ) and in a kineti
 state (T ). A

ording to its a
tual state it has potentialor kineti
 energy respe
tively. A

ording to our observation all parti
les possessboth. We 
an interpret the phenomenon in the following way: In a probabilisti
model we 
an 
onsider that the wave fun
tion of the given parti
le may be ina potential state with amplitude ψT , or in a kineti
 state with amplitude ψT .We dete
t a probabilisti
 mixture in a measurement. In a large set of parti
les(e.g., in the 
ase of a massive body 
onsisting of many parti
les) the probabilitiesrea
h a stable proportion and we observe stabilised measurable potential andkineti
 energies in a given referen
e frame. A harmoni
 os
illator model presumesthe permanent 
hange of a single parti
le between its two isotopi
 �eld 
hargestates. A parti
le in a potential state plays the role of the sour
e of a s
alar �eld.Therefore a potential isotopi
 �eld 
harge (we denote by kV ) is a s
alar quantity. Aparti
le in a kineti
 state serves as a 
urrent sour
e of a ve
tor �eld. So a kineti
isotopi
 �eld 
harge (we denote by kT ) plays roles in three ve
tor 
omponentsa

ording to three, dire
ted, independent 
omponents of a �eld 
harge 
urrent.An important 
onsequen
e of the swit
h between the two IFC states is that theisotopi
 �eld 
harges must 
ommute between a s
alar and three 
omponents of ave
tor quantity, a

ording to the velo
ity 
omponents of the kineti
 state in thegiven referen
e frame.2.3 Isotopi
 �eld 
harges in the gravitational �eldAs a 
onsequen
e of the distin
tion between mV andmT , as well as the asso
iationof the energy 
ontent with the mass mV and the 
omponents of the momentumwith mT , we lose also the symmetry of the Tµν energy-momentum tensor. Toretain symmetry in Einstein's �eld equations we must require again the invarianttransformation of mV and mT into ea
h other in an appropriate gauge �eld.We refer to Mills [24℄ who foresaw the possible generalisation of YM type gauge



24invarian
e in general relativity �in 
lose analogy with the 
urvature tensor�. Ifwe 
onsider the energy-momentum tensor (in whi
h both isotopi
 states of massappear) as the sour
e of the gravitational �eld, then - in the usual way - a s
alarand a ve
tor potential 
an be separated. (A hypotheti
 ve
tor potential is justi�edby a non-stati
 e�e
t, e.g., a

eleration, in the �eld.) Although, unlike QED, thereis no analogy with the meaning of a ve
tor potential of the ele
tromagneti
 �eld,the 
onsideration of the kineti
 (inertial) mass as an individual physi
al propertyagainst the gravitational mass may lend 
ertain meaning to a gravitational ve
torpotential. We 
an explain this so, that m4 in T44 does not 
ompose a fourth
omponent of a four-ve
tor in the 
lassi
al theory of gravitation where there is asingle s
alar mass, while if we 
onsider now m4 = mV , the three 
omponents ofthe kineti
 mass mT 
an 
ompose a three-ve
tor, however Ti4 will not form a fourve
tor either.To maintain the Lorentz invarian
e of our physi
al equations in the grav-itational �eld, we must demand to restore the invarian
e of (−→mT

mV

) under anadditional transformation that should 
ountera
t the loss of symmetry 
aused bythe introdu
tion of two isotopi
 states of mass. We dis
uss that transformation inse
tion 2. Further, in the 
ase of gravitation the relation of the s
alar and the ve
-tor �elds are not linear even if we have not made distin
tion between the potentialand kineti
 masses. The non-linearity is 
oded in the relation of the tensors [25℄at the left side of the Einstein equation (in units c = 1),
Rµν −

1

2
Rgµν +Λgµν = 8πGTµνor Gµν + Λgµν = 8πGTµν where the Einstein tensor is de�ned as Gµν = Rµν −

1
2Rgµν whose 
ovariant derivative must vanish.Sin
e our Tµν tensor on the right side has already lost its symmetry, we 
antake Λgµν into a

ount within a modi�ed T ′

µν - handling the gravitational andkineti
 masses in it together with the dark energy - and we get the followingformally symmetri
 equation:
Gµν = 8πGT ′

µν .(The disadvantage of this apparently quasi-symmetri
 form is that the metri
tensor gµν appears in the expressions at both sides of the equation.) It is only our



25enigmati
 hope that the asymmetry hidden inside T ′
µν will be restored with the
onservation of the IFCS for the isotopi
 gravitational �eld 
harges together withthe dark energy. Nevertheless, even if the latter fails, the symmetry of the energy-momentum tensor 
an be saved by the invariant gauge transformation of theIFCS. The most important analogy is between the behaviour of the potential andthe kineti
 �eld 
harges of the individual �elds that makes probable to 
onje
turethat a unique transformation will assure their invarian
e (
f., se
tion 2).4(See in details in se
tions 3-4.)3 CONSERVATION OF THE ISOTOPIC FIELDCHARGE SPINDistorted symmetry of our equations5 - what is not in a

ordan
e with experien
e- 
an be restored by proving that there exists an invarian
e between the twinbrothers of the �eld 
harges (sour
es of the �elds) split a

ording to the introdu
ednew property (∆). Invarian
e means that parti
les, disposed with these properties,
an be ex
hanged. The �ex
hange rate� (gauge) depends on the velo
ity of thekineti
 �eld 
harge 
ompared to the respe
tive matter �eld (i.e., to the s
alarpotential �eld 
harge in rest in that �eld). The validity of the assumption 
anbe veri�ed by demonstrating the existen
e of the gauge bosons that mediate the4We must add to the 
onje
ture of the �unique� transformation a few remarks. As [26℄ stated,�In 
ontrast to the symmetry or invarian
e requirement in STR, the prin
iple in GTR is mostoften presented as stri
tly speaking a 
ovarian
e requirement.� Gauge theories behave like GTR,at least in this respe
t. General 
ovarian
e �is not tied to any geometri
al regularity of theunderlying spa
etime, but rather the form invarian
e (
ovarian
e) of laws under arbitrary smooth
oordinate transformations� [26, p. 34℄. Weyl [27℄ found that the more general geometry resultingfrom admitting lo
al 
hanges 
alled gauges des
ribed not only gravity but also ele
tromagnetism.He showed also that the 
onservation laws of Noether follow in two distin
t ways in theories withlo
al symmetries. This led to the Bian
hi identities, whi
h hold between the 
oupled equationsof motion, and whi
h are due to the lo
al gauge invarian
e of a
tion. Later [28℄ demonstratedthat the 
onservation of the ele
tri
 
harge followed from the lo
al gauge invarian
e in the sameway as does energy-momentum 
onservation from 
o-ordinate invarian
e in GTR.5A

ording to Higgs [29℄: �The idea that the apparently approximate nature of the internalsymmetries of elementary-parti
le physi
s is the result of asymmetries in the stable solutions ofexa
tly symmetri
 dynami
al equations, rather than an indi
ation of asymmetry in the equationsthemselves, is an attra
tive one.� Please, 
ompare this noti
e with Wigners 
on
ern [30℄!



26ex
hange. This invarian
e as soon as proven means a new symmetry prin
iple ofnature. This perspe
tive is 
hallenging!Se
tion 2.2 below presents the main lines of the mathemati
al proof [17℄ ofsu
h invarian
e. The demonstration of the predi
ted gauge bosons is left to theexperien
e.3.1 Velo
ity dependent phenomenaWe know 
ertain phenomena in 
lassi
al physi
s that depend on velo
ity in a givenreferen
e frame. As examples, there 
an be mentioned �rst the kineti
 energy, thenthe Lorentz for
e, and the 
ovariant e�e
t of the Lorentz transformation [(xµ)′ =
Λµν (ν)xν for spa
e-time ve
tors, and (Fµν)′ = Λµα(ν)Λνβ(ν)F

αβ for the ele
tro-magneti
 �eld tensor℄. Des
riptions of the mentioned phenomena handle the spa
e-time 
o-ordinates as indire
t variables. The Lorentz invarian
e depends only on thevelo
ity di�eren
e between the 
ompared systems. In general, kineti
 quantitiesdepend �rst on velo
ity in the 
hosen referen
e frame, and only indire
tly, through
ν = ν(xi, t) on the spa
e-time variables. As [24℄ observed, �Hamilton's prin
iplewas �rst dis
overed in 
onne
tion with me
hani
al systems, where the Lagrangianturns out to be the di�eren
e between the kineti
 and potential energies, but theprin
iple is easily extended to in
lude velo
ity-dependent for
es of 
ertain types�,in
luding, e.g., the magneti
 for
e on a moving, ele
tri
ally 
harged parti
le.It is not surprising that phenomena related solely to the kineti
 part of theHamiltonian (T ) 
an be des
ribed in a velo
ity dependent, i.e., kineti
 �eld
DT = D[ν(xi, t)] where the dependen
e on the lo
al 
o-ordinates is indire
t. Thisdoes not dis
lose the possibility of lo
alisation of the theory in spa
e-time, how-ever, it does not ensure it automati
ally. Lo
al symmetry in a kineti
 �eld meansthat the obje
ts, �elds or physi
al laws in question are invariant under a lo
altransformation, namely under a set of 
ontinuously in�nite number of separatetransformations with an arbitrarily di�erent one at every velo
ity in the givenreferen
e frame.The isotopi
 �eld 
harge (IFC, k) as a property 
an be identi�ed in the 
aseof the gravitational �eld with the properties of the masses of gravity and inertiarespe
tively. The potential isotope of k(kV ) depends dire
tly on spa
e-time 
o-ordinates. The physi
al state of the kineti
 isotope of k(kT ) depends primarilyon the 
omponents of its velo
ity (and indire
tly on its spa
e-time 
o-ordinates).



27When we try to spe
ify physi
al phenomena that distinguish kineti
 behaviour ofobje
ts from their behaviour in a �eld 
aused by another, potential sour
e (i.e.,
kV ) we should make attempt to seek for a des
ription in a velo
ity dependent�eld.3.2 Mathemati
al ba
kground of the 
onservation of ∆For the sake of the des
ription of the mentioned distin
tion, we introdu
e a gauge�eld Dµ, that depends primarily on velo
ity. We derived a set of 
onserved 
ur-rents in su
h a �eld [17℄. The mathemati
al treatment is as mu
h general aspossible, while we made a spe
i�
ation. Namely, Noethers se
ond theorem allowsthe dependen
e of the 
on
erned �elds (on whi
h the Lagrangian depends) onany, general 
o-ordinate. Certain physi
al theories restri
t themselves on the fourspa
e-time 
o-ordinates as dependent variables. We dis
uss �elds that depend on
o-ordinates in the velo
ity four-spa
e, (and handle the spa
e-time 
o-ordinatesas indire
t variables).For the e�e
ts of a general non-Abelian group on the lo
al gauge invarian
e areto be des
ribed, we refer to the [24℄ review paper. We partially use the methodsof his des
ription of YM type gauge �elds. We introdu
e a new type of lo
alisedgauge �eld that does not 
oin
ide with the isotopi
 spins YM �eld, marked by
B in [23℄ and [24℄; this �eld, marked by D, is per de�ntionem di�erent fromthe YM �eld.6 In our dis
ussion, the D gauge �eld, introdu
ed below, dependsdire
tly on the velo
ity-spa
e 
oordinates, while the matter �eld depends dire
tlyon the four dimensional spa
e-time 
o-ordinates. In other words, this means thatalthough we primarily use 
oordinates of the velo
ity-spa
e, our derivations areindire
t and in
lude derivatives with respe
t to the spa
e-time 
o-ordinates (
f.,the introdu
tion of the relativisti
 λνµ tensor below) and play important role inour 
on
lusions. This is an expression of the fa
ts that we observe the physi
alevents (o

urring even in the velo
ity spa
e) with respe
t to the 4D spa
e-time,on the one hand, and that our operators should e�e
t 
omplex ψ(xν) �elds whi
hdepend on the four spa
e-time 
o-ordinates, on the other.We extend the role of the 
o-ordinates to a set of generalised variables alikeNoether [31℄ did. These variables may be the four spa
e-time 
o-ordinates or6Although we use the letter �D� to denote this gauge �eld, in [24℄ and many other publi
ationsthat letter denoted the 
ovariant derivative, whi
h we will mark by 
areted (
apped) derivationmark ∂̂.



28they may be others (and their number may vary). In her mathemati
al termsof invariant variational problems, the spa
e-time 
o-ordinates did not play a dis-tinguished role. A

ording to her se
ond theorem, other variables, among others(e.g., velo
ity-spa
e 
o-ordinates), are allowed whi
h may impli
itly depend onthe spa
e-time 
o-ordinates. For pra
ti
al reasons we repla
e the f(ẋµ, xν) depen-den
e with a f(ẋµ(xν)) dependen
e. The lo
alisation is present here too (in theabove generalised, Noetherian sense), although it makes us possible another wayof 
al
ulating it.We were seeking for invarian
e between s
alar �elds and (gauge) ve
tor �elds thatdes
ribe kineti
 pro
esses, the latter depending therefore primarily on velo
ity. Forthis reason, we 
onsider Lagrangians whi
h depend on matter �elds ϕk, and gauge�elds Dµ̇,α, whi
h all depend - in simple mathemati
al terms - on parameters. Inphysi
al terms these parameters are generally identi�ed with the four spa
e-time
o-ordinates. In our spe
i�
 
ase the dependen
e of D on xµ will be given by theformula: Dµ̇ = Dµ

(
∂xµ

∂x4

), or in another form Dµ̇ = Dµ [ẋ
µ(xν)]. The 2nd theoremof Noether is just about Lagrangians, whi
h depend on arbitrary number of �eldswith arbitrary �nite number of derivatives by arbitrary number of parameters. We
an apply her theorem here be
ause in mathemati
al terms she did not spe
ify ei-ther the physi
al-mathemati
al 
hara
ter or the number of appli
able parameters.Our 
onsideration will be justi�ed by the �nal result, whi
h demonstrates that ina boundary situation, namely in the absen
e of a velo
ity-dependent gauge �eldwe obtain the same 
urrents that were derived in a spa
e-time dependent �eld,(
f. Eqs. (4) and (7) below). In other words, in the absen
e of relativisti
ally highvelo
ities or a

eleration, the e�e
t of the velo
ity dependent gauge �eld 
an benegle
ted, and we get ba
k to the same 
urrents as derived in the semi-
lassi
al,only spa
e-time dependent gauge's 
ase. At the same time, in the presen
e of avelo
ity dependent gauge �eld, we derived new 
onserved Noether 
urrents [17℄.3.2.1 Noether's 
urrents for gauge invarian
e lo
alised in the velo
ityspa
eThe presentation dis
usses general, non-Abelian 
ase. Let's �rst introdu
e a (ki-neti
) D �eld lo
alised in the velo
ity spa
e, with 
omponents Dµ̇ = Dµ̇(ẋ

µ),where ẋµ = ẋµ(xν); (µ, ν = 1, 2, 3, 4); (dotted indi
es denote the velo
ity-spa
e
omponents).



29We introdu
e a λνµ tensor de�ned as λνµ = ∂µẋ
ν = ∂ẋν

∂xµ
(Lorentz invarianta

eleration), whi
h 
hara
terises the 
hanges of the velo
ity-spa
e 
omponentsin the spa
e-time.Lo
alisation will be taken into 
onsideration in this way (we refer to the gen-eralised interpretation of lo
alisation as de�ned above).7In general, we base on a transformation group G and the transformations of itselements into ea
h other T [G∞,ρ] = T [pα(xβ)], where the number of parametersare arbitrary �nite numbers (α = 1, . . . , ρ)); , (β = 1, . . . , σ). The p are parameterson whi
h the transformations, 
onstituting the group elements, depend. They takethe form of fun
tions pα(xβ) and their derivatives. The group transformationsdepend on p and are �nitely di�erentiable. Gmay take the form of di�erent groups,depending on the 
on
rete form of intera
tion in subje
t, namely SO(3, 1), U(1),

SU(2), SU(3) in the 
ases of the fundamental physi
al intera
tions.We 
onsider a Lagrangian density L(ϕk,Dµ̇,α), where ϕk, (k = 1, . . . , n) arethe matter �elds - whi
h also in
ludes the velo
ity �eld ẋµ = ẋµ(xν) �, and Dµ̇,α,
(α = 1, . . . , N), are the (kineti
) gauge �elds. We assume, that L(ϕk,Dµ̇,α) isinvariant under the lo
al transformations of a 
ompa
t, simple Lie group G gen-erated by Tα, (α = 1, . . . , N), where [Tα, Tβ ] = iCγαβTγ , and CY γ

αβ are the so-
alledstru
ture 
onstants, 
orresponding to the a
tually 
onsidered individual physi
alintera
tions symmetry group.8 For examples, in the 
ase of SU(2) symmetry, G
onsists of 2 × 2 matri
es with 3 independent 
omponents, representing a statedoublet, and in the 
ase of SU(3) its matrix has 8 independent 
omponents, rep-resenting a state triplet. For simpli
ity we assume that the matter �elds belongto a single, n-dimensional representation of G.Let us 
onsider a lo
al transformation V (ẋ) ∈ G parameterised by pα(ẋ) thata
ts on ψ as ψ = V ψ′

V (ẋ) = e−ipα(ẋ)TαThe in�nitesimal transformations of the matter- and the gauge �elds determine7Relativisti
 
ovarian
e under Lorentz transformation S(Λ) and its 
onsequen
es are a stan-dard part of quantum �eld theory textbooks for long, e.g., [32, Se
. 2.1.3℄. Here we take intoa

ount time derivatives of Lorentz transformed velo
ities.8We partly follow the 
lues by Higgs [29℄ and Weinberg [33℄ at the beginning of their pa-pers with the ex
eption that we 
onsider di�erent dependen
ies in the potential and kineti
Hamiltonian terms.



30the 
ovariant derivatives of ψ in the gauge �eld. (For invarian
e, we 
an requirethat the derivatives of ψ 
oin
ide with the derivatives of V ψ′). The in�nitesimaltransformations 
an be formulated as follows:
δϕk = −ipα(ẋ)(Tα)klϕl(ẋ) (k = 1, . . . , n) , (1)where the Tα are matrix-representation operators generating the group G, withthe above 
ommutation rule [Tα, Tβ ] = iCγαβTγ , and

δDµ,α =
1

2
∂ρ̇pα(ẋ)∂µẋ

ρ + Cγαβpβ(ẋ)Dµ̇,γ(ẋ) (α = 1, . . . , N) (2)where ∂ρ̇ = ∂
∂ẋρ , and ג (Hebrew g, gimel) denotes a general 
oupling 
onstant,whi
h 
an be repla
ed by a 
on
rete 
oupling 
onstant for ea
h individual physi
alintera
tion.For the indu
ed in�nitesimal transformation δL of the Lagrangian density

L(ϕk,Dµ̇,α), on using the �eld equations for both the matter and the gauge �elds,one obtains
δL = ∂µ

(
∂L

∂(∂µϕk)
δϕk +

∂L

∂(∂µDν,α)
δDν,α

)
. (3)One would like to des
ribe the events, resulted in the intera
tion between thematter �eld and the kineti
 (velo
ity-spa
e dependent) gauge �eld, as they areobserved from the usual 4D spa
e-time. Therefore one needs to apply derivativesby the spa
e-time 
o-ordinates. Substituting from (1) and (2) into (3), using thenotation ∂ẋν

∂xµ
= ∂µẋ

ν = λνµ (Lorentz invariant a

eleration), and a permutation ofthe indi
es, one 
an obtain
δL =∂µ

(
∂L

∂(∂µϕk)
(−i)pα(ẋ)(Tα)klϕl(ẋ)

)
+

+ ∂µ

(
∂L

∂(∂µDν̇,α)

1

ג
∂ρ̇pα(ẋ)λ

ρ
ν

)
+ δµ

(
∂L

∂(∂µDµ̇,α)
Cγαβpβ(ẋ)Dν̇,γ(ẋ)

)
.We have derived from here the following two sets of equations:

J
(1)ν
α (x) = ∂µF

(1)µν
α (x) ∂νJ

(1)ν
α = 0 (4)

J
(2)ν
α = ∂µF

(2)µν
α ∂νJ

(2)ν
α = 0 (5)
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ompleted with
∂L

∂(∂µDµ̇,α)
λρν +

∂L

∂(∂νDµ,α)
λρµ = 0 (6)this set (4)-(6) demonstrates, that in the presen
e of a kineti
 (velo
ity-dependent)gauge �eld, there exist two (families of) 
onserved Noether 
urrents. Although thetwo 
onserved 
urrents are not independent, in the presen
e of a kineti
 gauge �eldthey exist simultaneously. (One 
an easily see, that λνµ mixes the 
omponents ofthe gauge-�eld 
urrents depending on the 4D velo
ity spa
e in a similar way, likethe Lorentz transformation mixes the 
o-ordinates of four-ve
tors in the 4D spa
e-time; sin
e the λνµ tensor was de�ned to 
hara
terise the 
hanges of the velo
ity-spa
e 
omponents - a

elerations - in the spa
e-time.) Taking into a

ount the
onditions how we have obtained these 
urrents, one 
an write J (1)µ

α as
J (1)µ
α (ẋ) = iג

∂L

∂(∂ν , ϕk)
(Tα)klϕi(ẋ) . (7)The most signi�
ant 
on
lusion of the above 
ited derivation (
f., [17℄) is thatin the presen
e of a kineti
 gauge �eld D, there appear extra J (2)ν

α 
onserved
urrents. Taking into a

ount 
onditions of the derivation of J (2)ν
α , one 
an writeit in the form

J (2)ν
α = iג

[
∂L

∂(∂µϕk)
(Tα)klϕl(ẋ)λ

ν
µ − CγαβDω̇,β(ẋ)λ

ω
µ × F (2)µν

γ (x)

]
. (8)Their dependen
e on the velo
ity-spa
e gauge is apparent, although, none of the
onserved ve
tor 
urrents involve the gauge parameters pα(ẋ) and their deriva-tives.>From (4) and (7), 
onsidering 
onsequen
es of (6), one obtains

∂µF
(1)µν
α (ẋ) = iג

∂L

∂(∂νϕk)
(Tα)klϕl(ẋ) . (9)>From (5) and (8), 
onsidering the 
on
rete forms of the 
ovariant derivatives,one obtains

∂̂µF
(2)µν
α (x) = iג

∂L

∂(∂µϕk)
(Tα)klϕl(ẋ)λ

ν
µ . (10)



323.3 Mathemati
al 
on
lusionsFirst 
on
lusion - of the 
onserved Noether 
urrent (4) - is a 
onserved quantity:Conservation of the �eld 
harge (k).Se
ond 
on
lusion - of the 
onserved Noether 
urrent (5) - is another 
onservedquantity: Conservation of the isotopi
 �eld 
harge spin (∆).Further, we 
ould derive, in the usual way, the total isotopi
 �eld 
harge spin
∆ =

i

ג

∫
J (2)4d3x .whi
h is independent of time and independent of Lorentz transformation. J (2)µdoes not transform as a ve
tor, while ∆ transforms as a ve
tor under rotations inthe isotopi
 �eld 
harge spin �eld.3.4 Physi
al 
on
lusionsCoupling of the two 
onserved quantities (k and ∆), what is based on the depen-den
e of the two 
urrents J (1)µ

α and J (2)µ
α on ea
h other, has physi
al 
onsequen
es.The quantities, whose 
onservation they represent, and whi
h are 
oupled (by

λνµ = ∂µẋ
ν), exist simultaneously. The derived 
onservation law veri�es just theinvarian
e between two isotopi
 states of the �eld 
harges, namely between thepotential kV and the kineti
 kT what we intended to prove. We obtained, thatin the presen
e of kineti
 �elds we have two 
onserved 
urrents that are e�e
-tive simultaneously. The kineti
 gauge �eld D is present simultaneously with theintera
ting matter [ϕ] and gauge [B] �elds. The presen
e of D 
orresponds tothe property of the �eld 
harges k of the individual �elds that they split in twoisotopi
 states, and analogously to the isotopi
 spin, we named these two statesisotopi
 �eld 
harge spin what we denoted by ∆. The sour
e of the isotopi
 �eld
harge spin (∆) is the �eld ϕ(ẋ), in intera
tion with the kineti
 gauge �eld D.The physi
al meaning of ∆ 
an be understood, when we spe
ify the transfor-mation group asso
iated with the D �eld, whi
h des
ribes the transformations of

k (i.e., the isotopi
 �eld 
harges). k 
an take two (potential and kineti
) isotopi
states kV and kT in a simple unitary abstra
t spa
e. Their symmetry group is
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SU(2), that 
an be represented by 2 × 2 Tα matri
es. There are three indepen-dent Tα that may transform into ea
h other, following the rule [Tα, Tβ ] = iCγαβTγ ,where the stru
ture 
onstants 
an take the values 0, ±1. Let T1 and T2 be thosewhi
h do not 
ommute with T3; they generate transformations that mix the di�er-ent values of T3, while this �third� 
omponent's eigenvalues represent the membersof a ∆ doublet. For the isotopi
 �eld 
harges 
ompose a k doublet of kV and kT ,the �eld's wave fun
tion 
an be written as

ψ =

(
ψT
ψV

)
. (11)(11) is the wave fun
tion for a single parti
le whi
h may be in the �potentialstate�, with amplitude ψV , or in the �kineti
 state�, with amplitude ψT . ψ in (11)represents a mixture of the potential and kineti
 states of the k, and there are

Tα that govern the mixing of the 
omponents ψV and ψT in the transformation.
Tα (α = 1, 2, 3) are representations of operators whi
h 
an be taken as the three
omponents of the isotopi
 �eld 
harge spin, ∆1, ∆2, ∆3 that follow the same(non-Abelian) 
om-mutation rules as do the Tα matri
es, [∆1,∆2] = i∆3, et
.These operators represent the 
harges of the isotopi
 �eld 
harge spin spa
e, and
ψ are the �elds on whi
h the operators of the gauge �elds a
t.The quanta of theD �eld should 
arry isotopi
 �eld 
harge spin∆. The∆ dou-blet, as a 
onserved quantity, is related to the two isotopi
 states of �eld 
harges
(k), and the asso
iated operators (∆i) indu
e transitions from one member of thedoublet to the other.3.5 Interpretation of the isotopi
 �eld 
harge spin 
onservationInvarian
e between kV and kT means that they 
an substitute for ea
h other arbi-trarily in the intera
tion between �eld 
harges of any given fundamental physi
alintera
tion. They appear at a probability between [0, 1℄ in a mixture of states inthe wave fun
tion ψ (11) so that the Hamiltonian of a single parti
le os
illatesbetween V and T , while the Hamiltonian of a 
omposite system is a mixture of theos
illating 
omponents of the parti
les that 
onstitute the system. The individualparti
les in a two-parti
le system are either in the V or in the T state respe
tively,and swit
h between the two roles permanently; while the observable value of H is



34the expe
ted value of the mixture of the a
tual states of the two, always oppositestate parti
les.The invarian
e between kV and kT (what is ensured by the 
onservation of
∆), and their ability to swap, means also that they 
an restore the symmetry inthe physi
al equations whi
h was lost when we repla
ed the general k (in our 
asemass m) by their isotopes kV and kT (
on
retely mV and mT ).9We denote the predi
ted quanta of the D �eld by δ. We 
all this hypotheti
alboson �dion�, after the Greek term meaning `�ee', `�ight', `rout' in English. The
δ quanta (dions) 
arry the ∆ (isotopi
 �eld 
harge spin as a physi
al property:
harge of the D �eld). A

ording to the IFCS model, gravitational intera
tiontakes pla
e between two massive parti
les wit the simultaneous ex
hange of agraviton and a dion.Starting from the equivalen
e prin
iple, through the qualitative distin
tionof the masses of gravity and inertia as isotopi
 �eld 
harges of the gravitational�eld and intera
tion between them, we 
on
luded the predi
tion of a boson thatmediates their intera
tion.4 Finsler geometry in the presen
eof isotopi
 �eld 
hargesLet us spe
ify (9) for the gravitational �eld [35℄. The right side of the equation
ontains the s
alar �eld that serves for the sour
e of the gravitational �eld. The
ג 
an be repla
ed by the gravitational 
oupling 
onstant g. As we noti
ed, thedependen
e on the gauge �elds is on the left side of the equation (9). F (1)µν(ẋ)must satisfy the

Tµν = FµλFλν +
1

4
δµνg

κσFλσg
λρFκρidentity for the energy-momentum tensor Tµν . (In order to bring this form in
omplian
e with the indi
es in (9), one should raise the indi
es by multiplyingwith the metri
 tensor gβγ in the right side.) This energy-momentum tensor Tµν
an be expressed by the way of the Einstein equation

Tµν = − 1

8πGN
(Rµν −

1

2
Rgµν + Λgµν) (12)9Consequen
es of the appli
ation of e�e
tive �eld theories were analysed e.g., in philosophyby E. Castellani [34℄ and in physi
s by S. Weinberg [22℄.
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where Rµν is the Ri

i tensor de�ned by the help of the derivatives of the metri
tensor gµν ,R is the Ri

i s
alar formed from the Ri

i tensor (Riemann 
urvature)and the metri
 tensor, and Λ is a 
onstant of Nature, as well as GN the 
onstantof Newton.The metri
 tensor gµν and its derivatives depend on the lo
alisation of thegiven point in the spa
e-time in the General Theory of Relativity (GTR), and aresubje
t of Riemann geometry. In the presen
e of a kineti
 �eld, that means, iso-topi
 mass �eld D (mass being the �eld-
harge of the gravitational �eld), however,the 
urvature depends also on velo
ity. (Whose velo
ity? On the a
tual inertialvelo
ity of atest unit-mass pla
ed in a given spa
e-time point in the referen
eframe�xed to the sour
e of a s
alar gravitational �eld ϕ whi
h appears on the right side



36of (9).) The gµν metri
 tensor, and 
onsequently the a�ne 
onne
tion �eld andthe 
urvature tensor formed from its derivatives, depend on spa
e-time and velo
-ity 
o-ordinates. With the appearan
e of the dependen
e on the velo
ity ve
tor,the 
urvature be
omes dependent on its dire
tion in ea
h spa
e-time point. Thedire
tion (additional parameter) attributed to ea
h spa
e-time point is de�ned bythe orientation of the velo
ity of a test unit-mass in the given spa
e-time point,
v

|ν| . The 
urvature 
an no more follow a �simple� Riemann geometry, it follows aFinsler geometry whose metri
 is de�ned by the dependen
e of gµν on (xσ and)
ẋρ. Of 
ourse, the spa
e-time plus four-velo
ity dependen
e of the metri
 tensor
gµν a�e
ts its all derivatives, in
luding the formation of the a�ne 
onne
tion�eld (from �rst derivatives) and the Riemann 
urvature (or Ri

i tensor, se
ond,
ovariant derivative)

Γλµν =
1

2
[∂µgλν + ∂νgλµ − ∂λgµν ] Γλµν = gλρΓρµνand

Rµν = ∂µΓ
λ
νλ − ∂λΓλµν + ΓλµσΓ

σ
νλ − ΓλσλΓ

σ
µν .The solution of the Einstein equation in velo
ity dependent �eld with Finslergeometry must ne
essarily lead to solutions di�erent from that of S
hwarzs
hild.5 The role of the isotopi
 �eld 
harge spin 
onservationThe role of equation (12) is to retain the invarian
e between the two isotopi
forms, namely gravitational and inertial, of masses. The importan
e of this is tosave the 
ovarian
e of our equations. Sin
e there appear two di�erent kinds of(isotopi
) masses in the energy-momentum �four-ve
tor� (in the fourth 
olumn of

Tµν) it does no more transform as a ve
tor, and Lorentz transformation 
an nomore guarantee alone the 
ovarian
e of our equations.As a 
onsequen
e of the distin
tion between mV and mT , as well as the as-so
iation of the energy 
ontent with the mass mV and the 
omponents of themomentum with mT , we lose also the symmetry of the Tµν energy-momentumtensor. To retain symmetry in Einstein's �eld equations we must require againthe invariant transformation of mV and mT into ea
h other in an appropriate



37gauge �eld, namely in D. We refer to [24℄ who foresaw the possible generalisa-tion of YM type gauge invarian
e in general relativity �in 
lose analogy with the
urvature tensor�. If we 
onsider the energy-momentum tensor (in whi
h bothisotopi
 states of mass appear) as the sour
e of the gravitational �eld, then - inthe usual way - the s
alar and the ve
tor potential 
an be separated. See, m4 in
T44 does not 
ompose a fourth 
omponent of a four-ve
tor in the 
lassi
al theoryof gravitation where there is a single s
alar mass. If we 
onsider now m4 = mV ,the three 
omponents of the kineti
 mass mT 
an 
ompose a three-ve
tor, how-ever Tµ4 will not form a four ve
tor either. To maintain the Lorentz invarian
e ofour physi
al equations in the gravitational �eld, we must demand to restore theinvarian
e of (−→mT

mV

) under an additional transformation that should 
ountera
tthe loss of symmetry 
aused by the introdu
tion of two isotopi
 states of mass. Wedis
ussed that transformation in se
tion 2. Further, in the 
ase of gravitation therelation of the s
alar and the ve
tor �elds are not linear even if we have not madedistin
tion between the potential and kineti
 masses. The non-linearity is 
odedin the relation of the tensors [25℄ at the right side of the Einstein equation (12)(in units c = 1), or we 
an write Gµν +Λgµν = 8πGTµν where the Einstein tensoris de�ned as Gµν = Rµν − 1
2Rgµν whose 
ovariant derivative must vanish.Sin
e our Tµν tensor has already lost its symmetry, we 
an take Λgµν intoa

ount within a modi�ed Tµν - handling the gravitational and kineti
 masses init together with the dark energy - and we get the following formally symmetri
equation: Gµν = 8πGT ′

µν .The symmetry of the energy-momentum tensor 
an be saved by the invariantgauge transformation of the IFCS. The most important analogy is between thebehaviour of the potential and the kineti
 �eld 
harges of the individual �elds thatmakes probable to postulate a unique transformation to assure their invarian
e(
f., se
tion 2).10 So the invarian
e under the Lorentz transformation 
ombined10As [26℄ stated, �In 
ontrast to the symmetry or invarian
e requirement in STR, the prin
iplein GTR is most often presented as stri
tly speaking a 
ovarian
e requirement.� Gauge theoriesbehave like GTR, at least in this respe
t. General 
ovarian
e �is not tied to any geometri
alregularity of the underlying spa
etime, but rather the form invarian
e (
ovarian
e) of lawsunder arbitrary smooth 
oordinate transformations� [26, p. 34℄. [27℄ found that the more generalgeometry resulting from admitting lo
al 
hanges 
alled gauges des
ribed not only gravity butalso ele
tromagnetism. He showed also that the 
onservation laws of Noether follow in two



38with the invarian
e of the isotopi
 �eld 
harge spin �eld provide together the
ovarian
e of the gravitational equation. However, this 
ombined transformationshould now be taken into 
onsideration in a �eld with a metri
 depending on allspa
e-time and velo
ity 
o-ordinates, following a Finsler geometry.6 AppendixComparison of the invarian
e properties in 
lassi
al GTR and in the IFCS modelIn 
lassi
al physi
s, 
onservation laws - as 
onsequen
es of the invarian
e prop-erties of the investigated systems - 
an be obtained by integration of the Euler-Lagrange equations of motion of 
lassi
al me
hani
al point systems. A

ording toHamilton's prin
iple the variation of the a
tion integral of the systems Lagrangianmust be zero. These 
onservation laws in
lude the 
onservation of the energy -invarian
e under translation in time. That 
onserved energy is equivalent with awell determined amount of mass E = mc2, where m = mV is gravitational mass,and this 
onservation law does not provide any information on the quantity ofkineti
 mass.In general relativisti
 treatment, the sour
e of the gravitational �eld is the Tµνmomentum-energy stress tensor, whi
h in
ludes the sour
es of inertial and grav-itational e�e
ts as well. Applying the same variational method and integrationfor the Einstein equation (using [+ + + �℄ signature) we derive the 
onservationof the −T44 element of the Tµν momentum-energy stress tensor. −T44 is energydensity of the gravitational �eld, and is proportional to a 
ertain amount of mass.A

ording to invarian
e under translations in the Minkowski spa
e (Lorentz trans-formation) the 
onserved 
urrent 
an be written in the form
∂µTµν ≡ ∂µ

(
Lδµν − ∂νϕr

∂L

∂∂µϕr

)
= 0where ϕr denote fun
tions on whi
h (and their �rst derivatives) the Lagrangianmay depend.distin
t ways in theories with lo
al symmetries. This led to the Bian
hi identities, whi
h holdbetween the 
oupled equations of motion, and whi
h are due to the lo
al gauge invarian
e ofa
tion. Later [28℄ demonstrated that the 
onservation of the ele
tri
 
harge followed from thelo
al gauge invarian
e in the same way as does energy-momentum 
onservation from 
o-ordinateinvarian
e in GTR.



39The Einstein equation
Rµν −

1

2
Rgµν +Λgµν = 8πGTµνprovides the elements of Tµν in whi
h - a

ording to the left side - the 
ontributionof the kineti
 and potential 
omponents are mixed by the gµν 
urvature tensor.Applying the usual integration method and Gauss' theorem, we get the fourth
olumn of the momentum-energy stress tensor for a 
onserved quantity, what isno else than the four-momentum density, whi
h behaves like a four-ve
tor andwhose individual 
omponents are
Pν =

1

ic

∫
T4νdVor separated

Pk =
1

ic

∫
T4kdV =

1

ic

∫
∂kϕi

∂L

∂∂4ϕi
dV (k = 1, 2, 3) ;

H = −icP4 = −
∫
T44dV =

∫
(∂4∂i

∂L

∂∂4ϕi
− L)dVwhat are 
onsidered the 
onserved total momentum and energy of the �eld re-spe
tively.If we take into a

ount the qualitative di�eren
e between the massesmT (whatappear in the 
omponents of Pk) and mV (what appears in H) that are mixedby the 
urvature tensor gµν in the elements of Tµν , this 
onsideration will involvethe mixed mT and mV dependen
e of the Lagrangians as well. As a 
onsequen
e,

Pk and H 
annot be 
onsidered separately, and independently of ea
h other,
onserved quantities. (We do not investigate here the ambiguous interpretationsof invariant mass.) The 
ovarian
e of the gravitational equation 
an no more bese
ured by the Lorentz invarian
e alone. The lost symmetry of nature 
an berestored only with the shown invarian
e between the isotopi
 mass states (as�eld 
harges of the gravitational �eld, 
onservation of ∆) whi
h are rotated in anisotopi
 �eld 
harge spin gauge �eld. The 
ovarian
e of the gravitational equationis a result of invarian
e under the 
ombination of the Lorentz transformation androtation in the isotopi
 �eld 
harge �eld. In the latter 
ase the four 
omponents of
(Pk[mT ],H[mV ]) transform as isove
tors. Due to the IFCS gauge transformation,
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e-time +)velo
ity dependent gauge �eld, whose metri
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onsequently, depends also on thevelo
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ase of spheri
al 
ompa
ti�
ation a dust-like matter sour
e also satis-�es them under 
ertain 
onditions, imposed on the parameters of themodel. However, there is the other problemati
 aspe
t in this 
ase.Together with the perturbation of the ba
kground matter, whi
h pro-vides the internal spa
e 
urvature, the dust-like sour
e looks like ane�e
tive sour
e, whi
h has the non-dust-like equation of state in theexternal spa
e. Again introdu
ing tension, one 
an avoid this di�
ulty,but tension itself has no 
lear physi
al origin. Thus, this possibility isnot satisfa
tory enough.1 Introdu
tionThe multidimensionality of spa
etime is an essential property of the modern theo-ries of uni�
ation su
h as superstrings, supergravity and M-theory, whi
h have themost self-
onsistent formulation in spa
etime with extra spatial dimensions [1℄.Obviously, these physi
al theories should be 
onsistent with observations. For ex-ample, in the weak �eld limit they must satisfy the gravitational experimentssu
h as the perihelion shift, the de�e
tion of light and the time delay of radare
hoes. It is well known that general relativity is in good agreement with theseexperiments [1℄. Therefore, in order to investigate the similar 
orresponden
e formultidimensional theories, in our re
ent papers [3℄- [9℄, we investigated 
lassi
algravitational tests (the perihelion shift, the de�e
tion of light and the time delayof radar e
hoes) in Kaluza-Klein (KK) models.We paid attention mainly to theories with toroidal 
ompa
ti�
ation of extra di-mensions, i.e. with 
ompa
t and �at internal spa
es. These theories are very popu-lar in the literature devoted to KK models. Generalizing the standard approa
h [7℄of general relativity, we supposed that the ba
kground metri
s (in the absen
e ofthe matter sour
e) is �at for our external four-dimensional spa
etime and all in-ternal spa
es, and a pointlike matter sour
e has dustlike equations of state in allspatial dimensions. To our surprise, the obtained formulas strongly 
ontradi
t theobservations [3℄.It turned out that in order to satisfy the experimental data, the matter sour
eshould have negative parameters in equations of state in the internal spa
es (ten-sion) [4,5℄. For example, latent solitons have tension and satisfy the gravitational



45tests at the same level of a

ura
y as general relativity [5℄. The uniform bla
kstrings and bla
k branes are parti
ular examples of the latent solitons. The simi-lar situation takes pla
e for nonlinear (with respe
t to the s
alar 
urvature) KKtheories with toroidal 
ompa
ti�
ation [6,7℄. Here, a pointlike mass with the dust-like equation of state in all spatial dimensions also 
ontradi
ts the observations [6℄,but there are two 
lasses of asymptoti
 latent solitons, whi
h are in agreementwith the observations at the same level of a

ura
y as general relativity [7℄. Forboth of these 
lasses, a gravitating mass has tension in the internal spa
e withun
lear physi
al origin.Let us note that the metri
 
oe�
ients for uniform bla
k strings/branes dependonly on the three-dimensional radius-ve
tor. Therefore, a matter sour
e is uni-formly smeared over the extra dimensions and the nonrelativisti
 gravitationalpotential exa
tly 
oin
ides with the Newtonian one.Then, we generalized our investigation to the 
ase of KK models with spher-i
al 
ompa
ti�
ation of the internal spa
e [8, 9℄. Here, the ba
kground metri
sis not �at be
ause the internal spa
e (e.g., the two-sphere) is 
urved. To 
reatesu
h ba
kground, we need to introdu
e the ba
kground matter. A pointlike (and,for example, dustlike) mass disturbs this ba
kground. In the presen
e of a bare
osmologi
al 
onstant the perturbed metri
 
oe�
ients have the Yukawa type
orre
tions with respe
t to the usual Newtonian gravitational potential. These
orre
tions are negligible in the Solar system, and the 
onsidered model satis�esthe gravitational tests.Moreover, all models with spheri
al 
ompa
ti�
ation, where a matter sour
e hasthe dustlike equation of state p̂0 = 0 in the external (our) spa
e and an arbitraryequation of state p̂1 = Ωε̂ in the internal spa
e, satisfy asymptoti
ally (in the re-gion of the negligibly small Yukawa intera
tion) the gravitational experiments [9℄.However, in all models with Ω 6= −1/2 a gravitating matter sour
e a
quires e�e
-tive relativisti
 pressure in the external (our) spa
e. Obviously, this situation 
annot be a

eptable for ordinary astrophysi
al obje
ts su
h as our Sun. Therefore,in spite of the agreement (asymptoti
al) with the gravitational experiments, su
hmodels fail with the observations. Only in the 
ase of tension Ω = −1/2, a mat-ter sour
e remains dustlike in the external spa
e. Therefore, tension also plays a
ru
ial role in models with spheri
al 
ompa
ti�
ation as in the 
ase of toroidal
ompa
ti�
ation. The only problem is to explain the physi
al origin of tension



46for ordinary astrophysi
al obje
ts. In this paper we present a brief review of ourresults, whi
h prejudi
e KK models.2 Linear modelswith toroidal 
ompa
ti�
ationIn this se
tion we analyze very brie�y linear with respe
t to the s
alar 
urvature
R KK models with toroidal 
ompa
ti�
ation of the internal spa
es.2.1 Pointlike massFirst, we investigate a model with a pointlike massive gravitating sour
e in theweak �eld limit. It means that the gravitational �eld is weak, i.e. the metri
s isonly slightly perturbed from its �at spa
etime value:

1gik ≈ ηik + hik . (1)Here, the metri
 
orre
tion terms hik ∼ O(1/c2), where c is the speed of light,
i, k = 0, 1, . . . ,D, and D is a total number of the spatial dimensions. In the weak�eld limit, the only nonzero 
omponent of the energy-momentum tensor for apointlike mass at rest is T00 ≈ ρDc

2 ∼ O(c2). ρD is a D-dimensional rest massdensity, and for a pointlike mass m we have ρD = mδ(rD). Usually, we deal withthe 
ase of matter sour
es, whi
h are uniformly smeared over the extra dimensions[11℄. In this 
ase, the metri
 
oe�
ients may depend only on 
oordinates of theexternal spa
e and the nonrelativisti
 three-dimensional rest mass density ρ3 is
onne
ted with the D-dimensional one as follows: ρD = ρ3/VD′ = mδ(r3)/VD′ ,where D′ = D − 3 is a total number of the extra dimensions and VD′ is a totalvolume of the unperturbed internal spa
es. For example, if ai are periods of tori,then we have VD′ =
∏D′

i=1 ai. The Einstein equation
2Rik =

2SDG̃D
c4

(
Tik −

1

D − 1
gikT

)
, (2)where SD = 2πD/2/Γ(D/2) is a total solid angle (a surfa
e area of the (D − 1)-dimensional sphere of the unit radius) and G̃D is the gravitational 
onstant in the
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(D = D+1)-dimensional spa
etime, is redu
ed to a system of linearized equationswith the following nonzero solutions [3℄:

3h00 = −2(D − 2)

D − 1

2GNm

c2r3
, (3)

hαα = − 2

D − 1

2GNm

c2r3
, α = 1, 2, 3 , (4)

hµµ = − 2

D − 1

2GNm

c2r3
, µ = 4, 5, . . . ,D , (5)where we introdu
e the Newtonian gravitational 
onstant

6GN =
SD
4π

G̃D
VD′

. (6)Hereafter, the Latin indi
es i, k = 0, . . . ,D, the Greek indi
es α, β = 1, 2, 3 andthe Greek indi
es µ, ν = 4, 5, . . . ,D.It is well known that in order to satisfy the gravitational experiments (su
h as thede�e
tion of light and the time delay of radar e
hoes) at the level of a

ura
y ofgeneral relativity, the metri
 
oe�
ients h00 and hαα should 
oin
ide with ea
hother. However, Eqs. (3) and (4) show that for the 
onsidered model h00/hαα =

D− 2 and this ratio does not depend on the size of the internal spa
e. So, we 
annot make it equal to a unity. This is the �rst problemati
 aspe
t to be mentioned.On the other hand, h00 de�nes the nonrelativisti
 gravitational potential: h00 =

2ϕ/c2. For example, in general relativity h̃00 = 2ϕN/c
2 = −2GNm/

(
c2r3

) and
h̃00 = h̃αα. In our 
ase, the Newtonian gravitational potential a
quires a prefa
tor
2(D − 2)/(D − 1).2.2 Latent solitons, bla
k strings and bla
k branesAbove, we 
onsider the 
ase of a pointlike mass with the dustlike equations ofstate in all spatial dimensions. However, there is a 
lass of exa
t stati
 spheri
allysymmetri
 (with respe
t to the external spa
e) soliton solutions (see, e.g., [4, 5℄)with nonzero equations of state in the extra dimensions:

10Tµµ ≈ ωµ
1

VD′
ρ3(r3)c

2 ≈ ωµT00, µ = 4, 5, . . . ,D . (7)



48These solutions are de�ned by the parameters γµ, whi
h are 
onne
ted with theequation of state parameters ωµ [5℄:
11ωµ =

γµ − 1 + τ

2− τ , (8)where τ =
∑D

µ=4 γµ. In the weak �eld limit, the metri
 
orre
tion terms for thesesolutions read [5℄:
12h00 = −2(D − 2)

D − 1

2GNm

c2r3
− 2Ω

D − 1

2GNm

c2r3
, (9)

hαα = − 2

D − 1

2GNm

c2r3
+

2Ω

D − 1

2GNm

c2r3
, (10)

hµµ = − 2

D − 1

2GNm

c2r3
− 2

(
ωµ −

Ω

D − 1

)
2GNm

c2r3
, (11)where Ω =

∑D
µ=4 ωµ. Obviously, the se
ond terms in Eqs. (12)-(14) are due tononzero equations of state in the extra dimensions. Solutions with

16Ω = −D − 3

2
(12)we 
all latent solitons. In this 
ase h00 and hαα exa
tly 
oin
ide with the New-tonian expressions and with ea
h other: h00 = h̃00 = hαα = h̃αα. Bla
k stings

(D = 4) and bla
k branes (D > 4) are parti
ular 
ases of the latent solitons withthe same equations of state (ωµ = −1/2) in all extra dimensions. For these par-ti
ular 
ases, ea
h hµµ = 0, i.e. ea
h s
ale fa
tor of the internal spa
es is 
onstant.Sin
e Ω < 0, all or some of ωµ should be negative. This is the se
ond problemati
aspe
t to be mentioned.3 Nonlinear modelswith toroidal 
ompa
ti�
ationIn this se
tion we brie�y analyze nonlinear f(R) KK models with toroidal 
om-pa
ti�
ation of the internal spa
es. In the 
ase of nonzero equations of state (10)



49in the extra dimensions, the 
orre
tion terms read [7℄
18h00 = −

2(D − 2)

D − 1

2GNm

c2r3
− 2Ω

D − 1

2GNm

c2r3
− 4a

D − 1
R , (13)

hαα = − 2

D − 1

2GNm

c2r3
+

2Ω

D − 1

2GNm

c2r3
+

4a

D − 1
R , (14)

hµµ = − 2

D − 1

2GNm

c2r3
− 2

(
ωµ −

Ω

D − 1

)
2GNm

c2r3
+

4a

D − 1
R , (15)where a ≡ (1/2)f ′′(0) and the s
alar 
urvature

21R =
1− Ω

2aD

2GNm

c2r3
exp

[
−
(
D − 1

4|a|D

)1/2

r3

]
. (16)It is 
lear that the se
ond terms in (18)-(20) take pla
e due to the nonzero equa-tions of state in the extra dimensions (ωµ,Ω 6= 0) and the third terms originatefrom the nonlinearity of the model (a 6= 0). The Eq. (21) shows that nonlinearitygenerates the Yukawa intera
tion with the mass [(D − 1)/(4|a|D)]1/2 [6℄.3.1 Pointlike massLet us �rst 
onsider the 
ase of a pointlike gravitating sour
e at rest, i.e. with thedustlike equation of state in all spatial dimensions: ωµ = 0, µ = 4, 5, . . . ,D ⇒

Ω = 0. In this 
ase, the se
ond terms in Eqs. (18)-(20) disappear and we arriveat equations of the subse
tion 2.1 with the admixture of the Yukawa intera
tion.Similar to the linear 
ase, this situation also 
ontradi
ts the observational data [6℄.3.2 Asymptoti
 latent solitons, bla
k strings and bla
k branesNow, we want to 
onsider solutions, whi
h are in agreement with the gravitationaltests (the de�e
tion of light and the time delay of radar e
hoes). In the 
ase of thelinear models, it takes pla
e for the latent solitons. Therefore, we should take intoa

ount tension in the internal spa
es: Ω 6= 0. Unfortunately, it is impossible toget exa
t soliton solutions in the 
ase of an arbitrary fun
tion f(R). Therefore, inthe paper [7℄, we proposed two types of asymptoti
 solutions with h00 = h̃00 and
hαα = h̃αα ⇒ h00 = hαα. These asymptoti
 latent solitons exist in the regions
r3 ≫

√
|a| and r3 ≪√

|a|. Let us 
onsider these two regions separately.



503.2.1 r3 ≫
√
|a|.In this asymptoti
 region, the exponent in (21) is negligible and we 
an dropthe third terms in the Eqs. (18)-(20). In other words, the e�e
t of nonlinearityis negligibly small and we arrive at the 
ase of the subse
tion 2.2. Here, Ω =

−(D − 3)/2.3.2.2 r3 ≪
√
|a|.In this 
ase, we 
an repla
e the exponent in (21) by a unity. Here, the e�e
t ofnonlinearity is not negligible. After substitution (21) into (18) and (19) we get

22h00 = −
2GNm

c2r3

[
1 +

D − 3

D − 1
+

2Ω

D − 1
+

2(1− Ω)

D(D − 1)

]
, (17)

hαα = −2GNm

c2r3

[
1− D − 3

D − 1
− 2Ω

D − 1
− 2(1− Ω)

D(D − 1)

]
. (18)It 
an be easily seen that for

24Ω = −D − 2

2
(19)we have h00 = h̃00 and hαα = h̃αα ⇒ h00 = hαα.4 Spheri
al 
ompa
ti�
ationof the internal spa
eIn this se
tion we 
onsider a model with spheri
al 
ompa
ti�
ation of the internalspa
e, where the ba
kground metri
s is de�ned on a produ
t manifold M4 ×M2.Here, M4 des
ribes the external four-dimensional �at spa
etime and M2 
orre-sponds to a two-dimensional sphere with the radius (the internal spa
e s
alefa
tor) a. To 
reate su
h spa
etime with the 
urved internal spa
e, we shouldintrodu
e the ba
kground matter. As we have shown in our papers [8, 9℄, thismatter simulates a perfe
t �uid with the va
uum equation of state in the externalspa
e. In the internal spa
e (the two-sphere) the parameter of the equation ofstate is

27ω1 =
Λ6

1/[(2S5G̃6/c4)a2]− Λ6

, (20)



51where Λ6 is a bare multidimensional 
osmologi
al 
onstant. Di�erent forms ofmatter 
an simulate su
h perfe
t �uid. For example, ω1 = 1 and ω1 = 2 
orre-spond to the Freund-Rubin me
hanism of 
ompa
ti�
ation and the Casimir e�e
t,respe
tively. In the 
ase Λ6 = 0 we get the dustlike equation of state with theparameter ω1 = 0. For ω1 > 0 the internal spa
e is stabilized [9℄. In this model,the Eq. (6) takes the form 4πGN = S5G̃6/(4πa
2), where we take into a

ountthat the volume of the internal spa
e VD′ ≡ V2 = 4πa2. The ba
kground metri
sand matter are perturbed by a pointlike massive sour
e with dustlike equationsof state in all spatial dimensions. In the 
ase ω1 > 0 the 
orre
tion terms read [9℄

28h00 = −2GNm

c2r3
− GNm

c2r3
exp

(
−
√
ω1

a
r3

)
, (21)

hαα = −2GNm

c2r3
+
GNm

c2r3
exp

(
−
√
ω1

a
r3

)
. (22)So, we have the Yukawa intera
tion with the mass squared ω1/a
2. Obviously, theadmixture of su
h intera
tion to h00 and hαα is negligible for su�
iently largeYukawa masses. Exa
tly this situation takes pla
e for the gravitational tests inthe Solar system [9℄. Here, h00 = hαα with very high a

ura
y, and we a
hievegood agreement with the gravitational tests for the 
onsidered model. Obviously,models with ω1 ≤ 0 do not satisfy the experimental data.However, even for ω1 > 0 we have the third problemati
 aspe
t to be mentioned.As we pointed out in the papers [8, 9℄, the matter sour
e in the KK models withspheri
al 
ompa
ti�
ation should 
onsist of two parts. First, it is the homogeneousperfe
t �uid whi
h provides spheri
al 
ompa
ti�
ation of the internal spa
e. Se
-ond, it is the gravitating mass, whi
h is �nite (i.e. pointlike) in the external spa
eand uniformly smeared over the internal spa
e. The total energy-momentum ten-sor is the sum of these parts with the following nonzero 
omponents:

a1 T 0
0 ≈ ε̄+ ε1 + ρ̂(r3)c

2 , Tαα ≈ ε̄+ ε1 , α = 1, 2, 3 , (23)
T 4
4 = T 5

5 ≈ −ω1ε̄− ω1ε
1 − Ωρ̂(r3)c

2 , (24)where ε̄ is the energy density of the homogeneous perfe
t �uid, ρ̂(r3) is the restmass density of the �nite gravitating mass and ε1 is the ex
itation of the ba
k-ground matter energy density by this mass. The ba
kground matter is �ne-tunedwith the radius a of the two-sphere: ε̄ = [(1 + ω1)κ6a
2]−1, and a free parameter
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ω1 de�nes the equation of state of this matter in the internal spa
e. The modelmay also in
lude a six-dimensional 
osmologi
al 
onstant Λ6, whi
h is �ne-tunedwith the parameters of the model: Λ6 = ω1ε̄. This bare 
osmologi
al 
onstant isabsent if ω1 = 0. It is assumed that the gravitating matter sour
e has the dustlikeequation of state in the external (our) spa
e p̂0 = 0 and an arbitrary equationof state p̂1 ≈ Ωρ̂(r3)c

2 in the internal spa
e. We also suppose that this sour
e isuniformly smeared over the internal spa
e: ρ̂(r3) = ρ̂3(r3)/V2. In the 
ase of apointlike mass in the external spa
e ρ̂3(r3) = mδ(r3).The metri
s for the 
onsidered model in isotropi
 
oordinates takes the form (seefor details [8, 9℄)
ds2 = Ac2dt2 +Bdx2 + Cdy2 +Ddz2 + E(dξ2 + sin2 ξdη2)with A ≈ 1 + A1(r3), B ≈ −1 + B1(r3), C ≈ −1 + C1(r3), D ≈ −1 + D1(r3),

E ≈ −a2 + E1(r3), where all metri
 perturbations A1, B1, C1,D1, E1 are of theorder O(1/c2) and 
an be found with the help of the Einstein equations. Theyread
a4A1 =

2ϕN
c2

+
E1

a2
, B1 = C1 = D1 =

2ϕN
c2
− E1

a2
, (25)

E1 = a2
ϕN
c2

(1 + 2Ω) e−r3/λ, λ ≡ a/√ω1 , (26)where the Newton's potential is ϕN = −GNm/r3. The solution (26) takes pla
efor ω1 > 0. In the opposite 
ase ω1 < 0, we get the nonphysi
al os
illating solution.If Ω 6= −1/2, the Eq. (26) demonstrates that the Yukawa intera
tion is generated.The admixture of su
h intera
tion to A1, B1, C1,D1 is negligible at distan
es
r3 ≫ λ (i.e. for the large Yukawa mass √ω1/a), and we a
hieve good agreementwith the gravitational tests in this region. Exa
tly this situation takes pla
e inthe Solar system [8℄.The Einstein equations also lead to the following important relationship: ε1 =

E1/
(
κ6a

4
). The Eq. (26) shows that this ba
kground perturbation is lo
alizedaround the gravitating mass and falls o� exponentially with the distan
e r3 fromit. Therefore, the bare gravitating mass is 
overed by this �
oat�. For an externalobserver, this 
oated gravitating mass is 
hara
terized by the e�e
tive energy-



53momentum tensor with the following nonzero 
omponents:
a8T

0(eff)
0 ≈ ε1 + ρ̂(r3)c

2 = −(1 + 2Ω)
mc2

2V 2
2 r3

exp

(
−
√
ω1

a
r3

)
+

1

V2
mc2δ(r3),

Tα(eff)α ≈ ε1 = −(1 + 2Ω)
mc2

2V 2
2 r3

exp

(
−
√
ω1

a
r3

)
, α = 1, 2, 3 , (27)

T
4(eff)
4 = T

5(eff)
5 ≈ −ω1ε

1 − Ωρ̂(r3)c
2

= (1 + 2Ω)
ω1mc

2

2V 2
2 r3

exp

(
−
√
ω1

a
r3

)
− Ω

V2
mc2δ(r3) .These 
omponents de�ne the e�e
tive energy density and pressure of the 
oatedgravitating mass. From the Eq. (27) we 
on
lude that this mass a
quires rela-tivisti
 pressure p̂(eff)0 = −Tα(eff)α in the external spa
e. We see that the e�e
tiveenergy density ε̂(eff) = T

0(eff)
0 and e�e
tive pressure in the external (our) spa
e

p̂
(eff)
0 = −Tα(eff)α depend on the parameter Ω, whi
h de�nes the equation ofstate of the bare gravitating mass in the internal spa
e. It 
an be easily seen thatthe equality Ω = −1/2 is the only possibility to a
hieve p̂(eff)0 = 0 for our model.It means that the bare gravitating mass should have tension with the equationof state p̂1 = −ε̂/2 in the internal spa
e. Then, the e�e
tive and bare energydensities 
oin
ide with ea
h other and the gravitating mass remains pressurelessin our spa
e. In the internal spa
e the gravitating mass still has tension with theparameter of state −1/2. Therefore, tension plays a 
ru
ial role for models withspheri
al 
ompa
ti�
ation.
5 Con
lusionsIn this paper we investigated failure with the gravitational tests for (linear as wellas nonlinear with respe
t to the s
alar 
urvature) KK models with toroidal andspheri
al 
ompa
ti�
ations of the internal spa
es, when the gravitating mattersour
e is dustlike with respe
t to all spatial dimensions. We demonstrated thatintrodu
tion of tension (negative relativisti
 pressure in the internal spa
es) 
ansave the situation, but only in mathemati
al sense.
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ase of spheri
al 
ompa
ti�
ation of three and more extra dimensionsin Kaluza-Klein geometries. In detail we 
onsider the internal spa
e inthe form of the three-sphere and arrive at 
orresponding approximatesolutions, satisfying the experimental data.1 Introdu
tionAny physi
al theory is 
orre
t until it does not 
ontradi
t the experimental data.Obviously, the Kaluza-Klein model is no ex
eption to this rule. There is a numberof the well-known gravitational experiments in the Solar system, e.g., the de�e
-tion of light and the time delay of radar e
hoes. In the weak �eld limit, all thesee�e
ts 
an be expressed via parameterized post-Newtonian (PPN) parameters βand γ [1,2℄. These parameters take di�erent values in di�erent theories of gravity.There are stri
t experimental restri
tions on these parameters [3�6℄. The tightest
onstraint on γ 
omes from the Shapiro time-delay experiment using the Cassinispa
e
raft: γ−1 = (2.1±2.3)×10−5. General Relativity is in good agreement withall gravitational experiments [7℄. Here, the PPN parameters β = 1 and γ = 1. TheKaluza-Klein model should also be tested by the above-mentioned experiments.In our previous papers [8, 9℄ we have investigated this problem in the 
aseof spheri
al 
ompa
ti�
ation of the 2-dimensional internal spa
e. In 
ontrast tothe 
ase of toroidal 
ompa
ti�
ation the ba
kground metri
s was not �at but hadtopology R × R3 × S2. To make the internal spa
e 
urved, we introdu
ed ba
k-ground matter. We demonstrated that this matter 
an be simulated by a perfe
t�uid with the va
uum equation of state in the external spa
e and an arbitraryequation of state with the parameter ω1 in the internal spa
e. Our model 
on-tained also a bare multidimensional 
osmologi
al 
onstant Λ6. We perturbed thisba
kground by a point-like mass and 
al
ulated the perturbed metri
 
oe�
ientsin the weak �eld approximation up to the order 1/c2. In the 
ase ω1 > 0, thesemetri
 
oe�
ients a
quired the Yukawa 
orre
tion terms with respe
t to the usualNewtonian gravitational potential. The Yukawa intera
tion was 
hara
terized byits mass whi
h was proportional to √ω1. The terrestrial inverse square law exper-iments [10℄ restri
t su
h 
orre
tions and provide strong bounds on parameters ofthe model, e.g., on the radius of the internal two-sphere. This radius is in manyorders of magnitude less than the radius of the Sun. Obviously, in the Solar sys-



57tem we 
ould drop the Yukawa 
orre
tion terms with very high a

ura
y, andthe parameterized post-Newtonian parameter γ was equal to 1 similar to GeneralRelativity. Therefore, our model satis�ed the gravitational experiments (the de-�e
tion of light and the time delay of radar e
hoes) at the same level of a

ura
yas General Relativity.In the present paper we generalize our previous results to the 
ase of spheri
al
ompa
ti�
ation of three and more extra dimensions (and a non-dust-like mattersour
e of the gravitational �eld as perturbation).2 Ba
kground metri
s and matter requiredfor spheri
al 
ompa
ti�
ationLet us start from the 7-dimensional diagonal metri
s
ds2 = Adt2 +Bdx2 + Cdy2 +Ddz2 + Edξ2 + Fdη2 +Gdζ2 ,where A,B,C,D,E, F,G are fun
tions of t, x, y, z, ξ, η, ζ, and �nd the 
orrespond-ing diagonal 
ovariant Ri

i tensor 
omponents for the ba
kground metri
 
oe�-
ients

A = 1, B = C = D = −1 , E = −a2 sin2 ζ sin2 η, F = −a2 sin2 ζ,G = −a2 ,where a is a radius of the three-sphere, representing the internal spa
e. For thesevalues of the metri
 
oe�
ients we get
R00 = R11 = R22 = R33 = 0 , R44 = 2 sin2 η sin2 ζ = − 2

a2
E = − 2

a2
g44 ,

R55 = 2 sin2 ζ = − 2

a2
F = − 2

a2
g55 , R66 = 2 = − 2

a2
G = − 2

a2
g66 .The 
orresponding s
alar 
urvature reads

R = Rikg
ik = R44g

44 +R55g
55 +R66g

66 = − 6

a2
.Obviously, in the 
ase of the n-dimensional internal spa
e in the form of the

n-sphere
Rµµ = −n− 1

a2
gµµ, µ = 3 + 1, 3 + 2, ..., 3 + n ,



58and
R = −n(n− 1)

a2
.In our present parti
ular 
ase n = 3. In the previous parti
ular 
ase [8, 9℄

n = 2.The Einstein equation, written down in the form
Rik −

1

2
Rgik = κTik + κΛ7gik, κ = const > 0 ,where Λ7 is a bare 7-dimensional 
osmologi
al 
onstant, allows to �nd immediatelythe 
orresponding 
ovariant energy-momentum tensor 
omponents for matter re-quired for spheri
al 
ompa
ti�
ation:

T̃00 = g00

(
3

κa2
− Λ7

)
=

3

κa2
− Λ7 ,

T̃11 = T̃22 = T̃33 = gαα

(
3

κa2
− Λ7

)
= − 3

κa2
+ Λ7, α = 1, 2, 3 ,

T̃44 = g44

(
1

κa2
− Λ7

)
= −sin2 ζ sin2 η

κ
+ Λ7a

2 sin2 ζ sin2 η ,

T̃55 = g55

(
1

κa2
− Λ7

)
= −sin2 ζ

κ
+ Λ7a

2 sin2 ζ ,

T̃66 = g66

(
1

κa2
− Λ7

)
= −1

κ
+ Λ7a

2 .Obviously, in the general 
ase
T̃00 = g00

(
n(n− 1)

2κa2
− Λ4+n

)
=
n(n− 1)

2κa2
− Λ4+n , α = 1, 2, 3 ,

T̃11 = T̃22 = T̃33 = gαα

(
n(n− 1)

2κa2
− Λ4+n

)
= −n(n− 1)

2κa2
+ Λ4+n,

T̃µµ = gµµ

(
(n− 1)(n − 2)

2κa2
− Λ4+n

)
, µ = 3 + 1, 3 + 2, ..., 3 + n ,where Λ4+n is a bare (4 + n)-dimensional 
osmologi
al 
onstant.



59The transition T̃ik → T̃ ik allows to �nd ba
kground energy density andpressures as well as equations of state in external and internal spa
es:
T̃ 0
0 = T̃00g

00 =
3

κa2
− Λ7 = ε̄, T̃ 1

1 = T̃ 2
2 = T̃ 3

3 =
3

κa2
− Λ7 = −p̄0,

T̃ 4
4 = T̃ 5

5 = T̃ 6
6 =

1

κa2
− Λ7 = −p̄1 , p̄0 = ω0ε̄, ω0 = −1,

p̄1 = ω1ε̄ ⇒ ω1 =
p̄1
ε̄

=
Λ7κa

2 − 1

3− Λ7κa2
, Λ7 =

3ω1 + 1

ω1 + 1

1

κa2
.In the general 
ase

T̃ 0
0 =

n(n− 1)

2κa2
− Λ4+n = ε̄, T̃ 1

1 = T̃ 2
2 = T̃ 3

3 =
n(n− 1)

2κa2
− Λ4+n = −p̄0 ,

T̃ µµ =
(n− 1)(n− 2)

2κa2
− Λ4+n = −p̄1, µ = 3 + 1, 3 + 2, ..., 3 + n ,

Λ4+n =
n(n− 1)ω1 + (n− 1)(n − 2)

2(ω1 + 1)

1

κa2
, p̄0 = ω0ε̄, ω0 = −1,

p̄1 = ω1ε̄ ⇒ ω1 =
p̄1
ε̄

=
2Λ4+nκa

2 − (n− 1)(n − 2)

n(n− 1)− 2Λ4+nκa2
.Thus, the ba
kground matter has the va
uum equation of state in the externalspa
e and an arbitrary equation of state in the internal spa
e.3 Perturbation in the formof a non-dust-like matter sour
eNow let us turn to the �rst-order approximation (the weak �eld limit) and �ndthe 
orresponding approximate expressions for the metri
 
oe�
ients, when per-turbation represents a point-like mass at rest, uniformly smeared over the internalspa
e. For

g00 = A ≈ 1 +A1(r3), g11 = B ≈ −1 +B1(r3), g22 = C ≈ −1 + C1(r3),

g33 = D ≈ −1 +D1(r3) , g44 = E ≈ [−a2 +G1(r3)] sin
2 ζ sin2 η ,

g55 = F ≈ [−a2 +G1(r3)] sin
2 ζ, g66 = G ≈ −a2 +G1(r3)



60let us write down the 
orresponding approximate expressions for the diagonal
ovariant Ri

i tensor 
omponents:
R00 ≈

1

2
△A1 , R11 ≈

1

2
△B1 +

1

2

(
−A1 −B1 + C1 +D1 +

3G1

a2

)

xx

,

R22 ≈
1

2
△C1 +

1

2

(
−A1 +B1 − C1 +D1 +

3G1

a2

)

yy

,

R33 ≈
1

2
△D1 +

1

2

(
−A1 +B1 + C1 −D1 +

3G1

a2

)

zz

,

R44 ≈ 2 sin2 η sin2 ζ +
1

2
△E1 ≈ R66 sin

2 η sin2 ζ ,

R55 ≈ 2 sin2 ζ +
1

2
△F 1 ≈ R66 sin

2 ζ , R66 ≈ 2 +
1

2
△G1 .Now let us rewrite the previously used Einstein equation in the other form:

Rik = κ

(
Tik −

1

5
Tgik −

2

5
Λ7gik

)
.In the general 
ase (Λ7 → Λ4+n, gikgik = 4 + n)

Rik = κ

(
Tik −

1

2 + n
Tgik −

2

2 + n
Λ4+ngik

)
.In order to solve this equation, let us �nd the 
ovariant 
omponents of thetotal energy-momentum tensor Tik = T̃ik + T̂ik, where the 
omponents T̂ik 
orre-spond to the perturbation. The approximate expressions for the 
ovariant energy-momentum tensor 
omponents of the ba
kground matter in presen
e of the grav-itating mass read

T̃00 ≈
(
ε̄+ ε1

)
g00 ≈

(
ε̄+ ε1

) (
1 +A1

)
≈ ε̄+ ε1 + ε̄A1 ,

T̃11 ≈
(
ε̄+ ε1

)
g11 ≈

(
ε̄+ ε1

) (
−1 +B1

)
≈ −ε̄− ε1 + ε̄B1 ,

T̃22 ≈
(
ε̄+ ε1

)
g22 ≈

(
ε̄+ ε1

) (
−1 +C1

)
≈ −ε̄− ε1 + ε̄C1 ,

T̃33 ≈
(
ε̄+ ε1

)
g33 ≈

(
ε̄+ ε1

) (
−1 +D1

)
≈ −ε̄− ε1 + ε̄D1 ,

T̃44 = T̃66 sin
2 η sin2 ζ, T̃55 = T̃66 sin

2 ζ ,

T̃66 ≈ −ω1

(
ε̄+ ε1

)
g66 ≈ −ω1

(
ε̄+ ε1

) (
−a2 +G1

)
≈ ω1a

2ε̄+ ω1a
2ε1 − ω1ε̄G

1

⇒ T̃ ≈ ε̄+ ε1 + 3
(
ε̄+ ε1

)
− 3ω1

(
ε̄+ ε1

)
= 4ε̄− 3ω1ε̄+ 4ε1 − 3ω1ε

1 .



61In the general 
ase instead of the last two approximate expressions we haverespe
tively:
T̃DD ≈ −ω1

(
ε̄+ ε1

)
gDD ≈ −ω1

(
ε̄+ ε1

) (
−a2 +G1

)
≈ ω1a

2ε̄+ ω1a
2ε1 − ω1ε̄G

1 ,

T̃ ≈ ε̄+ ε1 + 3
(
ε̄+ ε1

)
− nω1

(
ε̄+ ε1

)
= 4ε̄− nω1ε̄+ 4ε1 − nω1ε

1 .Here and in what follows D = 3 + n is the total spa
e dimensionality and wekeep the 
onvenient designation gDD = G.Further, the approximate expressions for the 
ovariant energy-momentum ten-sor 
omponents of the gravitating mass read
T̂00 ≈ ρ̂c2, T̂αα = 0, T̂44 = T̂66 sin

2 η sin2 ζ, T̂55 = T̂66 sin
2 ζ, α = 1, 2, 3 ,

T̂66 ≈ Ωρ̂c2a2, Ω = const , ⇒ T̂ ≈ ρ̂c2 − 3Ωρ̂c2 = ρ̂c2 (1− 3Ω) ,where ρ̂ is the rest mass density of the perturbation.In the general 
ase T̂DD ≈ Ωρ̂c2a2 and T̂ ≈ ρ̂c2 − nΩρ̂c2 = ρ̂c2 (1− nΩ).The approximate expressions for the 
ovariant 
omponents of the total energy-momentum tensor read
T00 ≈ ρ̂c2 + ε̄+ ε1 + ε̄A1, T11 ≈ −ε̄− ε1 + ε̄B1 , T22 ≈ −ε̄− ε1 + ε̄C1,

T33 ≈ −ε̄− ε1 + ε̄D1 , T44 = T66 sin
2 η sin2 ζ, T55 = T66 sin

2 ζ ,

T66 ≈ Ωρ̂c2a2 + ω1a
2ε̄+ ω1a

2ε1 − ω1ε̄G
1

⇒ T ≈ ρ̂c2 (1− 3Ω) + 4ε̄− 3ω1ε̄+ 4ε1 − 3ω1ε
1 .Obviously, in the general 
ase TDD ≈ Ωρ̂c2a2 + ω1a

2ε̄ + ω1a
2ε1 − ω1ε̄G

1 and
T ≈ ρ̂c2 (1− nΩ) + 4ε̄− nω1ε̄+ 4ε1 − nω1ε

1.Taking into a

ount the relationships Λ7 = ε̄ (1 + 3ω1) /2 and ε̄ = 2/[κa2(1 +

ω1)] (or Λ4+n = ε̄ (n− 2 + nω1) /2 and ε̄ = (n−1)/[κa2(1+ω1)] respe
tively in thegeneral 
ase) as well as the relationships B1 = C1 = D1 and −A1+B1+3G1/a2 =

0 (or −A1 + B1 + nG1/a2 = 0), whi
h follow dire
tly from the non-diagonal
omponents of the Einstein equation, one 
an equate both sides of the Einsteinequation diagonal 
omponents and get
△A1 =

2

5
κ (4 + 3Ω) ρ̂c2 +

2

5
κ(1 + 3ω1)ε

1 ,

△B1 =
2

5
κ (1− 3Ω) ρ̂c2 − 2

5
κ(1 + 3ω1)ε

1 ,

△G1 =
2

5
κa2 (1 + 2Ω) ρ̂c2 +

4

5
κa2(2 + ω1)ε

1 − 4

a2
G1 .



62It 
an be easily seen that the relationship between G1 and ε1 reads
G1 =

κa4

3
ε1, ε1 =

3

κa4
G1 .The �nal expressions for A1, B1 and G1 in the 
ase 1 + 3ω1 > 0 and ρ̂ =

mδ(r3)/S3 (where m is the mass of the parti
le at rest and S3 is the total volumeof the internal spa
e) read
A1 =

2ϕN
c2

+
3

2a2
G1, B1 =

2ϕN
c2
− 3

2a2
G1 ,

G1 = a2
4ϕN
5c2

(1 + 2Ω) exp

(
− r3
λ3

)
.Here ϕN = −GNm/r3 is the standard Newtonian gravitational potential and

λ3 =
√
5a/

(
2
√
1 + 3ω1

).In general 
ase one 
an equate both sides of the Einstein equation diagonal
omponents and get
△A1 =

2(1 + n+ nΩ)

2 + n
κρ̂c2 +

2(n− 2 + nω1)

2 + n
κε1 ,

△B1 =
2(1 − nΩ)

2 + n
κρ̂c2 − 2(n − 2 + nω1)

2 + n
κε1 ,

△G1 =
2(1 + 2Ω)

2 + n
κa2ρ̂c2 +

4(2 + ω1)

2 + n
κa2ε1 − 2(n − 1)

a2
G1 .Again it 
an be easily seen that the relationship between G1 and ε1 reads

G1 =
2κa4

n(n− 1)
ε1, ε1 =

n(n− 1)

2κa4
G1 .The �nal expressions for A1, B1 and G1 in the 
ase n − 2 + nω1 > 0 and

ρ̂ = mδ(r3)/Sn (where Sn is the total volume of the internal spa
e) read
A1 =

2ϕN
c2

+
n

2a2
G1, B1 =

2ϕN
c2
− n

2a2
G1 ,

G1 = a2
4ϕN

(2 + n)c2
(1 + 2Ω) exp

(
− r3
λn

)
.Here λn = a

√
(2 + n)/ [2(n − 1)(n − 2 + nω1)].



63Obviously, if the range λ3 (or λn) of Yukawa intera
tion is small enough, we
an drop the 
orresponding terms in the astrophysi
al problems and obtain therelationship A1 = B1 in agreement with the de�e
tion of light and the time delayof radar e
hoes with the same a

ura
y as General Relativity.4 Con
lusionsIn order to 
al
ulate the de�e
tion of light by the Sun and the time delay of radare
hoes, we need the metri
 
oe�
ients in the weak �eld approximation. Performingthe 
orresponding 
al
ulations in General Relativity, we usually assume that theba
kground spa
etime metri
s is �at and perturbation has the form of a point-likemass (see, e.g., [7℄).In the present paper we 
onsidered the Kaluza-Klein model where the internalspa
e is not �at but has the form of a three- (or n-) sphere with the radius a. Sim-ilar to General Relativity, the external spa
etime ba
kground remains �at and theperturbation takes the form of a point-like mass. Additionally, we in
luded a baremultidimensional 
osmologi
al 
onstant. First, we found the ba
kground matterwhi
h 
orresponds to our unperturbed metri
s. It was shown that this matter 
anbe simulated by a perfe
t �uid with the va
uum equation of state in the externalspa
e and an arbitrary equation of state with the parameter ω1 in the internalspa
e. Then, in the weak �eld approximation we perturbed the ba
kground mat-ter and metri
s by a point-like mass. We assumed that su
h perturbation doesnot 
hange the equations of state. We have shown that in the 
ase 1+3ω1 > 0 (or
n− 2 + nω1 > 0) the perturbed metri
 
oe�
ients have the Yukawa type 
orre
-tions with respe
t to the standard Newtonian gravitational potential. The inversesquare law experiments restri
t su
h 
orre
tions and provide the following boundon the parameters of the model: λmax ∼ 10−3 
m. Obviously, in the Solar systemwe 
an drop the Yukawa 
orre
tion terms with very high a

ura
y, and the post-Newtonian parameter γ is equal to 1 similar to General Relativity. Therefore, ourmodel satis�es the gravitational experiments (the de�e
tion of light and the timedelay of radar e
hoes) at the same level of a

ura
y as General Relativity. This isthe main 
on
lusion of our paper. The usual drawba
k of su
h models 
onsists in�ne tuning of their parameters.
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66dynami
s point of view, generalizing the standard Gibbs distributionand its 
onsequen
es to the multidimensional 
ase. Using quantumme
hani
s, we �nd the dis
rete part of the energy spe
trum of a freebla
k string. Then we 
onsider an ideal gas of bla
k strings and obtain
orresponding non-relativisti
 equations of state.
1 Introdu
tionPresent-day observable phenomena, su
h as dark energy and dark matter, rep-resent the great 
hallenge for modern 
osmology, astrophysi
s and theoreti
alphysi
s generally. Nowadays within the s
ope of standard models these phenom-ena have no satisfa
tory explanation. This 
riti
al situation stimulates the sear
hof solutions of this very 
ompli
ated and overwhelmingly important problem be-yond all 
onventional models, for example, by introdu
ing extra spatial dimensions(ESDs). This breathtaking generalization follows dire
tly from modern theoriesof uni�
ation of all known fundamental intera
tions (su
h as superstring theory,supergravity and M-theory). Indeed, these theories have the most self-
onsistentformulation in multidimensional spa
e-times with ESDs [1℄. Obviously, it is ex-tremely ne
essary to subje
t these and other non-standard physi
al theories toa pro
edure of hard-edged s
reening 
on
erning their 
ompatibility with experi-mental data.In the well-known Kaluza-Klein models, based on two pioneering papers [2, 3℄by Theodor Kaluza and Oskar Klein respe
tively, all ESDs are assumed to be�nite/
ompa
t and mi
ros
opi
 (see, e.g., [4-6℄, where the authors involve su
hESDs in solving of the well-known topi
al hierar
hy problem). Let us note thatin brane world models (see, e.g., [7, 8℄) ESDs may be ma
ros
opi
 and evenin�nite/non-
ompa
t.In the re
ent paper [9℄ it was expli
itly shown that Kaluza-Klein models withtoroidal 
ompa
ti�
ation of ESDs and a standard dust-like matter sour
e of thegravitational �eld 
ontradi
t experimental data of astronomi
al observations. Inthese models formulas for the 
lassi
al gravitational tests of any theory of gravity(su
h as the perihelion shift, the de�e
tion of light, the time delay of radar e
hoes



67[10℄ and PPN parameters [11, 12℄) are in
ompatible with observations in the SolarSystem.Let us note that in the important 
ase of non-toroidal (namely, spheri
al) 
om-pa
ti�
ation of ESDs the state of a�airs improves noti
eably be
ause of the ba
k-ground with a non-dust-like equation of state in the internal spa
e. When appro-priately 
hoosing model parameters, this ba
kground leads to stabilization of theinternal spa
e, and at �rst glan
e the 
orresponding Kaluza-Klein model be
omes
onsistent with all known experimental data, in
luding astronomi
al observationsas well as laboratory tests of the Newton's inverse square law at small distan
es.One of the main 
hara
teristi
 features of spheri
al 
ompa
ti�
ation lies in the fa
tthat the internal spa
e is 
urved and the ba
kground with the non-zero energy-momentum tensor as well as 
ertain physi
al properties is ne
essary to providethis 
urvature. The natural topi
al question arises, whether Kaluza-Klein modelswith toroidal 
ompa
ti�
ation also survive, when introdu
ing non-dust-like mat-ter sour
es of the gravitational �eld with non-dust-like equations of state in theinternal spa
e.Su
h matter sour
es were 
onsidered in [13℄, where it was expli
itly shown thatamong the exa
t �soliton� solutions of the va
uum Einstein equation in the 5-dimensional spa
e-time with a single 
ompa
t ESD [14-16℄, des
ribing the stati
gravitational �eld of a �nite spheri
ally symmetri
 matter sour
e at rest, thereis only one solution, 
alled �the bla
k string�, satisfying all observational datawith the same a

ura
y as the S
hwarzs
hild solution in General Relativity. Thisfa
t represents the main advantage of this solution. A

ording to the 
onsideredKaluza-Klein model, all ordinary non-relativisti
 parti
les must be identi�ed ex-a
tly with the bla
k strings.A single bla
k string at rest is 
hara
terized by the dust-like equation of state
p0 = 0 in the 3-dimensional external spa
e and the very spe
i�
, strange andeven unlikely equation of state p1 = −ε/2 in the 1-dimensional internal spa
e,where p0 and p1 are the 
orresponding pressures and ε is the rest energy density.Thus, the pressure p1, sometimes 
alled �tension�, is negative and relativisti
.Unfortunately, both these 
ir
umstan
es have un
lear physi
al origin, and the
orresponding burning issue remains open. This fa
t represents the main disad-vantage of the bla
k string.In this work we produ
e 
onsistent multidimensional generalization of standard



68methods of quantum me
hani
s, statisti
al physi
s and thermodynami
s and ap-ply it in order to derive di�erent thermodynami
 quantities, 
hara
terizing anideal gas of bla
k strings. Firstly, we solve exa
tly the 4-dimensional S
hrodingerequation for the wave fun
tion of a free bla
k string and �nd its energy spe
-trum. Se
ondly, we generalize the standard Gibbs distribution to the 
ase of themultidimensional spa
e and obtain the partition fun
tion of the 
onsidered idealgas. Thirdly, with the help of this fun
tion and the �rst law of thermodynami
swe arrive at the expli
it expression for the pressure in the internal spa
e and in-vestigate its asymptoti
al behavior. This predi
tably positive and non-relativisti
expression represents the usual temperature dependent 
ontribution to the pres-sure.In order to explain the unusual (negative and relativisti
 as well as temperatureindependent) 
ontribution, we assume that ea
h non-relativisti
 parti
le perturbsthe hypotheti
al ba
kground matter in su
h a way that together with this non-trivial perturbation it looks like a bla
k string with the tension. This strong re-quirement imposes severe restri
tions on the parameters of the perturbation.In 
on
lusion we summarize our main results.2 Multidimensional Gibbs distributionand an ideal gasLet us start with the stationary 4-dimensional S
hrodinger equation
Ĥ4ψ4 = E4ψ4, Ĥ4 = Ĥ3 −

~2

2m

∂2

∂ξ2
,

Ĥ3 = −
~2

2m
△3 = −

~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (1)where Ĥ4 and Ĥ3 are 4- and 3-dimensional Hamilton operators respe
tively; ψ4is a wave fun
tion of a free bla
k string (it depends on all spatial 
oordinates

x, y, z, ξ, but does not depend on time t); the 
oordinate ξ 
orresponds to theESD and △3 is a 3-dimensional Lapla
e operator. Let us note that subs
ripts 4,3 and 1 indi
ate everywhere that the 
orresponding quantity relates to the total4-dimensional, the external 3-dimensional or the internal 1-dimensional spa
es



69respe
tively.Following the variable separation method, we seek for the solution of the equation(1) in the form ψ4(x, y, z, ξ) = ψ3(x, y, z)ψ1(ξ) and obtain
Ĥ3ψ3 = E3ψ3, − ~2

2m

d2ψ1

dξ2
= E1ψ1, E4 = E3 +E1, (2)where E3 and E1 represent the standard and the additional parts of the total en-ergyE4 respe
tively. Now our aim is to determine E1 . Imposing periodi
 boundary
onditions

ψ1(0) = ψ1(a),
dψ1

dξ
(0) =

dψ1

dξ
(a), (3)where a is the period of the torus (the size of the ESD), one 
an expli
itly showthat

E1(n) =
2π2~2

ma2
n2, n = 0, 1, 2, .... (4)Thus, we have arrived at the additional energy spe
trum, whi
h is ne
essary forthe subsequent determination of the 
orresponding partition fun
tion Z1. For

n = 0 the wave fun
tion ψ1(0) = 1/
√
a is 
onstant. Therefore, we 
an draw animportant side 
on
lusion that in the ground state (n = 0, E1(0) = 0) the bla
kstring is uniformly smeared over the ESD. Thus, the assumption of the uniformsmearing, a
tually made in [14-16℄, means that the matter sour
e is 
onsidered inits ground state.For n = 1, 2, 3, ... the wave fun
tion ψ1(n) 
an be expressed in the form of thelinear 
ombination of two orthogonal fun
tions

ψ1s(n) =

√
2

a
sin

(
2πn

a
ξ

)
, ψ1c(n) =

√
2

a
cos

(
2πn

a
ξ

)
. (5)Both these fun
tions (as well as ψ1(0)) are real and satisfy the normalization
ondition a∫

0

ψ2
1dξ = 1.Now let us turn to the multidimensional Gibbs distribution. Pro
eeding fromthe fundamental prin
iples of quantum statisti
al physi
s, one 
an show that itpreserves its standard form:

wν =
1

Z
exp

(
− εν
kT

)
,
∑

ν

wν = 1, Z =
∑

ν

exp
(
− εν
kT

)
, (6)



70where wν represents the probability of �nding a system, 
losed in the thermostat,in the ν-th quantum state with the energy εν ; ν denotes the full set of quan-tum numbers, unambiguously determining the 
onsidered quantum state; k is theBoltzmann 
onstant and T is the temperature. Finally, Z represents the partitionfun
tion.Now let us 
onsider an ideal gas of N identi
al bla
k strings. Obviously, in view of(2) the partition fun
tion Z4 of ea
h of them 
an be expressed in the form of theprodu
t of two partition fun
tions Z3 and Z1, 
orresponding to the external andthe internal spa
es respe
tively: Z4 = Z3Z1. Substituting the dis
rete spe
trum(4) into (6), we obtain
Z1 =

+∞∑

n=0

exp

(
−
E1(n)

kT

)
=

+∞∑

n=0

exp

(
− 2π2~2

ma2kT
n2
)

=

=
+∞∑

n=0

exp

(
−Tc
T
n2
)

=
+∞∑

n=0

qn
2
=

1

2
+

1

2
θ3(0, q), (7)where θ3(z, q) = 1+2

+∞∑
n=1

qn
2
cos 2nz denotes the third of the theta-fun
tions [17-19℄.In (7) we have also introdu
ed a 
onvenient quantity q and a 
hara
teristi
 tem-perature Tc:

q = exp

(
− 2π2~2

ma2kT

)
= exp

(
−Tc
T

)
, 0 < q < 1, Tc =

2π2~2

ma2k
. (8)A

ording to [20℄, the free energy F = U−TS = −kT lnZ, where U is the internalenergy and S is the entropy, preserves its standard form, while the �rst law ofthermodynami
s now reads

TdS = dU + p0adV3 + p1V3da, dF = −SdT − p0adV3 − p1V3da. (9)It follows from (9), in parti
ular, that
p0 = −

1

a

(
∂F

∂V3

)

T,a

, p1 = −
1

V3

(
∂F

∂a

)

T,V3

,

S = −
(
∂F

∂T

)

V3,a

, U = −T 2

(
∂

∂T

(
F

T

))

V3,a

. (10)



71For the 
onsidered ideal gas the existen
e of the ESD results in the additional(everywhere with respe
t to the standard 3-dimensional part) free energy
F1 = −NkT lnZ1 = −NkT ln

[
+∞∑

n=0

exp

(
−Tc
T
n2
)]

=

= −NkT
[
1

2
+

1

2
θ3

(
0, exp

(
−Tc
T

))]
. (11)From (10) and (11) we obtain the following additional pressures:

p0 = 0, p1 =
2NkTc
V3a

+∞∑
n=0

n2qn
2

+∞∑
n=0

qn
2

=
2NkT

V3a

θ′3(0, q)
1 + θ3(0, q)

exp

(
−Tc
T

)
, (12)where the prime denotes the derivative with respe
t to q. It is 
lear that p1 ispositive and non-relativisti
. It has the following asymptotes:

p1|T<<Tc ≈
2NkTc
V3a

exp

(
−Tc
T

)
, p1|T>>Tc ≈

NkT

V3a
= n4kT, n4 =

N

V3a
. (13)The latter asymptote is predi
table, sin
e when the temperature is high enough,we 
an apply the 
lassi
al approa
h instead of the quantum one.3 Ba
kground matter perturbationand tensionIn order to explain the tension of a single bla
k string, let us 
onsider the 5-dimensional Minkowski metri
s, slightly perturbed by the ordinary non-relativisti
parti
le of the mass m at rest, uniformly smeared over the ESD:

dS2 ≈ (1 +A1)c
2dt2 + (−1 +B1)

(
dx2 + dy2 + dz2

)
+ (−1 + C1)dξ

2, (14)where small 
orre
tion fun
tions A1, B1 and C1 depend only on r3 =√
x2 + y2 + z2 in view of spheri
al symmetry and satisfy the following gaugeand boundary 
onditions:
A1 = B1 + C1; lim

r3→+∞
A1 = 0, lim

r3→+∞
B1 = 0, lim

r3→+∞
C1 = 0. (15)



72The 
hoi
e of the perturbed metri
s exa
tly in the form (14) with su
h metri

oe�
ients gik is always possible in the 
onsidered 
ase (see, e.g., [21℄, where asimilar approa
h is evolved). Hen
eforth we adhere to the same a

ura
y every-where. The non-zero 
ovariant Ri

i tensor 
omponents read
R00 ≈

1

2
△3A1, R11 = R22 = R33 ≈

1

2
△3B1, R44 ≈

1

2
△3C1. (16)Let us assume that the parti
le itself has no tension, and, 
onsequently, its onlynon-zero 
ovariant energy-momentum tensor 
omponent reads T̂00 ≈ ρ4c2, wherethe 4-dimensional rest mass density reads ρ4 = mδ(r3)/a. However, it is notunlikely that the presen
e of the mass m 
an 
ause the ba
kground matter per-turbation with

T̃00 ≈ ε̃, T̃11 = T̃22 = T̃33 ≈ p̃0 = ω0ε̃, T̃44 ≈ p̃1 = ω1ε̃, (17)where the fun
tion ε̃ also depends only on r3; ω0 and ω1 are 
onstants. Thus,this perturbation looks like a perfe
t �uid with di�erent equations of state inthe external and the internal spa
es. The total energy-momentum tensor has thefollowing non-zero 
ovariant 
omponents and tra
e:
T00 = T̂00 + T̃00 ≈ ρ4c2 + ε̃, T11 = T22 = T33 ≈ ω0ε̃, T44 ≈ ω1ε̃,

T = Tikg
ik ≈ ρ4c2 + (1− 3ω0 − ω1)ε̃. (18)Substituting (16) and (18) into the 5-dimensional Einstein equation

Rik = κ

(
Tik −

1

3
Tgik

)
, κ =

2S4G5

c4
, S4 =

2π2

Γ(2)
= 2π2, (19)where G5 is the gravitational 
onstant in the 5-dimensional spa
e-time, we obtain

1

2
△3A1 = κ

{
ρ4c

2 + ε̃− 1

3

[
ρ4c

2 + (1− 3ω0 − ω1)ε̃
]}

=

2

3
κρ4c

2 + κε̃
2 + 3ω0 + ω1

3
, (20)

1

2
△3B1 = κ

{
ω0ε̃+

1

3

[
ρ4c

2 + (1− 3ω0 − ω1)ε̃
]}

=
1

3
κρ4c

2 + κε̃
1− ω1

3
, (21)
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1

2
△3C1 = κ

{
ω1ε̃+

1

3

[
ρ4c

2 + (1− 3ω0 − ω1)ε̃
]}

=

=
1

3
κρ4c

2 + κε̃
1− 3ω0 + 2ω1

3
. (22)It follows from (15) and (20), (21), (22) that ω0 = 0 and, 
onsequently,

△3A1 =
4

3
κρ4c

2 + 2κε̃
2 + ω1

3
, △3B1 =

2

3
κρ4c

2 + 2κε̃
1− ω1

3
,

△3C1 =
2

3
κρ4c

2 + 2κε̃
1 + 2ω1

3
. (23)Ex
luding ε̃, one 
an show that

△3

(
A1 −

2 + ω1

1 + 2ω1
C1

)
= 2κρ4c

2 ω1

1 + 2ω1
,

△3

(
B1 −

1− ω1

1 + 2ω1
C1

)
= 2κρ4c

2 ω1

1 + 2ω1
. (24)Obviously, the inequalities ω1 6= 0 and ω1 6= −1/2 must hold true. From (24) weget

A1 =
2 + ω1

1 + 2ω1
C1 +

2ϕN
c2

, B1 =
1− ω1

1 + 2ω1
C1 +

2ϕN
c2

, ϕN = −GNm
r3

, (25)where GN is the Newtonian gravitational 
onstant. The non-relativisti
 gravita-tional potential ϕN satis�es the Poisson equation
△3ϕN = κρ4c

4 ω1

1 + 2ω1
= 4πGNaρ4 = 4πGNmδ(r3), (26)where the following relationship between the multidimensional and the Newtoniangravitational 
onstants has been established:

κc4

a

ω1

1 + 2ω1
=

2S4G5

a

ω1

1 + 2ω1
= 4πGN ,

πG5

a

ω1

1 + 2ω1
= GN . (27)Now let us turn to the 
ase ε̃ = γC1, where γ is a 
onstant. Then

△3C1 =
2

3
κρ4c

2 + 2κγ
1 + 2ω1

3
C1,
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C1 =

2ϕN
c2

1 + 2ω1

3ω1
exp

[
−r3

√
2κγ

1 + 2ω1

3

]
, (28)where we assume that the important inequality γ(1 + 2ω1) > 0 holds true. Sub-stituting (28) into (25), we obtain

A1 =
2ϕN
c2

{
1 +

2 + ω1

3ω1
exp

[
−r3

√
2κγ

1 + 2ω1

3

]}
,

B1 =
2ϕN
c2

{
1 +

1− ω1

3ω1
exp

[
−r3

√
2κγ

1 + 2ω1

3

]}
. (29)Obviously, if the quantity 1/

√
2κγ(1 + 2ω1)/3 is less than a submillimeter s
ale,then the se
ond terms in bra
es 
an be negle
ted, and at both laboratory andastrophysi
al distan
es the important approximate equality A1 ≈ B1 ≈ 2ϕN/c

2holds true. It means that there is no any noti
eable deviation from the Newton'sinverse square law as well as from predi
tions of the 
lassi
al gravitational tests.Finally, taking into a

ount a sharp de
rease of the Yukawa potential, when r3in
reases, let us approximately repla
e it by the delta-fun
tion:
1

r3
exp

(
−r3
λ

)
→ δ(r3)

∫
1

r′3
exp

(
−r

′
3

λ

)
dV ′

3 =

= 4πδ(r3)

+∞∫

0

r′3 exp

(
−r

′
3

λ

)
dr′3 = 4πλ2δ(r3), (30)where λ is a parameter, then

ε̃ = −γ 2GNm
c2

1 + 2ω1

3ω1

1

r3
exp

[
−r3

√
2κγ

1 + 2ω1

3

]
→

−γ 2GNm
c2

1 + 2ω1

3ω1

4π

2κγ 1+2ω1
3

δ(r3) = −
1

1 + 2ω1
ρ4c

2, (31)where the relationship (27) has been used. This repla
ement means that we amassarti�
ially the total energy of the ba
kground matter perturbation in the originof 
oordinates. Substituting (31) into (18), we get
T00 → ρ4c

2 − 1

1 + 2ω1
ρ4c

2 =
2ω1

1 + 2ω1
ρ4c

2, T44 → −
ω1

1 + 2ω1
ρ4c

2. (32)



75Therefore, in this limit the total pressure p1 ≈ T44 of both a single parti
le andthe 
orresponding ba
kground matter perturbation in the internal spa
e and thetotal energy density ε ≈ T00 satisfy the equation of state p1 = −ε/2 of a singlebla
k string. Thus, we have arrived at the possible explanation of the tension ofbla
k strings.Con
lusionsLet us enumerate brie�y the main results of this work:1. An ideal gas of ordinary non-relativisti
 parti
les has been des
ribed by thestandard methods, generalized to the multidimensional 
ase. In parti
ular, theexpli
it expressions (11) and (12) for the additional free energy and pressuresrespe
tively have been derived. The pressure p1 in the internal spa
e is positiveand temperature dependent.2. The relativisti
, negative and temperature independent tension of ea
h bla
kstring 
an be explained by the 
orresponding ba
kground matter perturbationwith the energy-momentum tensor (17), where
ε̃ = γC1, ω0 = 0, ω1 6=;−1

2
, γ(1 + 2ω1) > 0.Both 
on
lusions are overwhelmingly important for further development of multi-dimensional theories of gravity. The �rst one prejudi
es Kaluza-Klein models withtoroidal ESDs and non-dust-like matter sour
es of the gravitational �eld, whilethe se
ond one gives them a 
han
e of reprieve.Our results 
an be generalized dire
tly to the 
ase of the multidimensional spa
e-time with an arbitrary number of toroidal ESDs.Referen
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78as a perfe
t �uid with two 
omponents between whi
h there is energyex
hange. The analyti
al solutions of the Einstein equations are found.The limiting 
ases of the the Hubble expansion rate and the totalenergy density, whi
h 
orrespond to matter produ
tion, pressure-freeand radiation-dominated phases are investigated. The transition tothe in�ationary phase and a unidire
tional evolution of matter in theuniverse at all phases are dis
ussed.1 Introdu
tionThe standard 
osmologi
al model is based on the hot Big Bang model and theassumption about the in�ationary expansion of the very early universe, when thes
ale fa
tor grows quasi-exponentially, while the Hubble expansion rate remainsalmost 
onstant (e.g., Refs. [1�4℄). During in�ation the universe is in the va
uum-like state whi
h is usually asso
iated with a s
alar �eld 
alled the in�aton. Afterin�ation the energy density of the primordial matter (ex
ept the in�aton) whi
h�lled the universe before this stage be
omes negligibly small. In order to explainthe presen
e of 
onventional matter in the universe after in�ation, the de
ay ofthe va
uum-like state into `normal' parti
les is postulated.The universe be
omes hot as a result of intera
tion between parti
les andtransits into the radiation-dominated phase. In the pro
ess of energy transfer fromthe in�aton to radiation (
alled reheating) the equation of state of matter 
hanges.A 
hange from a va
uum-like equation of state to the equation of relativisti
matter might be gradual and an intermediate stage between these two knownphases may be modeled.In the present arti
le, the evolution of the equation of state of the matter inthe universe during the time interval between the end of in�ation and the be-ginning of the radiation-dominated era is 
onsidered. Without rendering 
on
reteme
hanisms of de
ay of va
uum-like state into the 
onventional matter, we assumethat the global geometry and total amount of matter in the universe as a wholesatisfy a 
onstraint, whi
h is valid during some time interval, before radiationdomination. This 
onstraint is equivalent to the law of the 
onservation of totalenergy of the universe whi
h remains equal to zero due to the gravitational masse�e
t, whereas the energy attributed to the parti
les of 
onventional matter in-



79
reases with expansion of the universe [2,5℄. In this 
ase, at all stages of evolutionthe universe is des
ribed by the Einstein equations with addition of appropriateequations of state.The paper is organized as follows. In Se
tion 2 the basi
 equations whi
hdes
ribe the homogeneous, isotropi
 and spatially �at universe are given. Theequations of state of matter for the di�erent phases of reheating are justi�ed.In Se
tion 3 a two-
omponent perfe
t �uid model is introdu
ed. The analyti
alsolution of the non-linear equation for the Hubble expansion rate is obtained.The expressions for the de
eleration parameter and the total energy density asfun
tions of time are dedu
ed. The limiting 
ases of the solutions whi
h 
orrespondto pressure-free and relativisti
 matter are 
onsidered. The Whitrow-Randall'srelation [6℄ is rederived. In Se
tion 4 the transition to the in�ationary phase isdis
ussed. The me
hani
al analogy whi
h explains a unidire
tional evolution ofmatter in the universe at the phases under 
onsideration is given.2 Equation of state parameterLet us 
onsider the homogeneous, isotropi
 and spatially �at universe in the earlyepo
h, when its dynami
s 
an be des
ribed by the equations of the Friedmann-Robertson-Walker (FRW) 
osmology,
H2 ≡

(
Ṙ

R

)2

=
8πG

3
ρ, (1)

ρ̇+ 3H(ρ+ p) = 0, (2)
p = w(t) ρ, (3)where R(t) is the 
osmi
 s
ale fa
tor, ρ(t) is the energy density of the matterwhi
h has a form of the homogeneous perfe
t �uid, p(t) is its pressure, w(t) isthe equation of state parameter, G is the Newtonian gravitational 
onstant, anoverdot denotes d/dt, t is the proper time (units c = 1 are used).Let there exist an interval of time after in�ation ∆tci = tc−ti, where ti denotesthe time at whi
h in�ation ends and tc stands for the time at whi
h an intensivetransfer of energy to the matter degrees of freedom ends. We assume that during



80this interval the matter is produ
ed, so that the following 
ondition is ful�lled, atleast in good approximation,
M −GM

2

R
= 0, (4)where M = 4

3πR
3ρ is total mass-energy of matter (the sum of masses of parti
lesof 
onventional matter) in the equivalent �at-spa
e volume taken without a

ountof gravitational intera
tion between parti
les. The equation (4) 
an be interpretedas the law of the 
onservation of zero total mass-energy of the universe duringits expansion with matter produ
tion [5℄. A

ording to Eq. (4), during the timeinterval ∆tci the following relation R = GM is valid. It means that the energydensity

ρ =
3

G

1

4πR2
(5)de
reases linearly with in
reasing surfa
e area 4πR2.From Eqs. (2) and (5), one 
an �nd the equation of state

p = −1

3
ρ, w(t) = −1

3
. (6)After the end of this phase, the massM remains 
onstant on the time interval

∆trc = tr−tc, where tr denotes the beginning of the subsequent relativisti
 matterdominant era. The equation of state on the time interval ∆trc takes the form
p = 0, w(t) = 0. (7)In the relativisti
 matter dominant era, the mass attributed to relativisti
matter redu
es as the universe expands, M ∼ R−1, due to the 
osmi
 redshift.For times t > tr, the equations of state has a form
p =

1

3
ρ, w(t) =

1

3
. (8)We will study the model of evolution of matter in the early universe, wherethe equation of state parameter w(t) 
hanges with time from −1

3 , passing throughthe point w = 0, to 1
3 taking all intermediate values. Substituting a 
ontinuousfun
tion w(t) of time t,

w(t) =
1

3
tanh

(
t− t0
τ

)
, (9)



81for the equation of state parameter on the time interval [ti, tr[, and 
hoosingproperly a point t0 on this interval, one 
an reprodu
e the required values of w(6)-(8). Sin
e tr ≫ ti (in standard 
osmologi
al model, the value ti ∼ 10−35 s isa

eptable, whereas the time tr is often evaluated as tr ∼ 10−30 s 
orrespondingto temperatures not ex
eeding 1012 GeV [1℄), the good estimation for t0 may be
t0 . tr. The value 1/τ determines the mean rate of 
hange of the equation ofstate parameter w(t). Su
h a variation of the equation of state parameter 
an bea
hieved in a system, where the matter 
onsists of a few 
omponents betweenwhi
h o

urs the energy transfer for some typi
al time τ .3 Two-
omponent �uidLet us 
onsider a two-
omponent perfe
t �uid with the energy density and pressure

ρ = ρq + ρd, p = pq + pd. (10)These 
omponents satisfy the equations
ρ̇q + 3H(ρq + pq) = Q, ρ̇d + 3H(ρd + pd) = −Q, (11)whi
h represent the energy 
onservation law (2) rewritten for 
omponents, Q isthe intera
tion term.The 
omponents of the perfe
t �uid are imitated by s
alar �elds φq(t) and

φd(t) with potentials Vq(φq) and Vd(φd),
ρα =

1

2
φ̇α

2
+ Vα, pα =

1

2
φ̇α

2 − Vα, α = {q, d}. (12)The models of su
h a type whi
h in
lude a 
oupling between the matter 
om-ponents were 
onsidered in the literature, in parti
ular, within the 
ontext ofin�ation and reheating and the 
oin
iden
e problem of dark energy and matter inthe a

elerating universe (see, e.g., Refs. [7�9℄ and referen
es therein). The formof the intera
tion term Q may be derived from di�erent physi
al arguments orobtained as a solution of some dynami
al equation, whi
h des
ribes the requiredproperties of the matter �elds φα.Let us assume that the �eld φd forms the pressure-free matter 
omponent(dust),
1

2
φ̇d

2
= Vd, ρd = 2Vd, pd = 0. (13)



82Con
erning the �eld φq, we suppose that it is des
ribed by the va
uum-typeequation of state (as for the in�aton) at times t≪ t0,
pq ≃ −ρq. (14)From Eq. (12), it follows that at this stage the kineti
 energy of the �eld φq 
anbe negle
ted and the total energy is determined by its potential term,

φ̇q
2 ≃ 0, ρq ≃ Vq. (15)For times t ≃ t0, the equation of state takes the form

pq ≃ 0. (16)It means that
1

2
φ̇q

2 ≃ Vq, ρq ≃ 2Vq. (17)Then, for the times t≫ t0, the �eld φq des
ribes the matter 
omponent with theenergy density whi
h is almost equal to its kineti
 energy,
ρq ≃

1

2
φ̇q

2
, Vq ≃ 0. (18)This phase 
orresponds to the reheating of the pressure-free matter and providesthe passage to relativisti
 matter domination. The �eld φq here has a form of thesti� Zel'dovi
h matter,

pq ≃ ρq at t≫ t0. (19)The 
ontinuous transition from Eq. (14) to (16), and then from (16) to (19) 
anbe a
hieved if the following 
ondition is imposed on the �eld φq
1

2
φ̇q

2 e−2(t−t0)/τ = Vq, (20)where τ < 1
2t0.Taking into a

ount Eqs. (10), (12), (13), (15), (20), from Eq. (3) we �nd

w(t) =
e2(t−t0)/τ − 1e2(t−t0)/τ + 1 + 2Vd/Vq

. (21)



83This relation passes into Eq. (3.2), if one introdu
es the following additional 
on-dition on Vd,
Vd = ρq = Vq

[e2(t−t0)/τ + 1
]
. (22)Then from Eqs. (10) and (13), we get

ρ = 3ρq, p = pq, w =
pq
3ρq

. (23)In this 
ase, the intera
tion term Q = 2Hpq and the set of equations (11) redu
esto one equation
ρ̇q + 3H

(
ρq +

1

3
pq

)
= 0. (24)From Eqs. (1), (3.2), and (24), it follows the non-linear equation for the Hubbleexpansion rate,

Ḣ +
1

2

{
3 + tanh

(
t− t0
τ

)}
H2 = 0. (25)The general solution of this equation is

H(t) =
2

D(t)
, (26)where we denote

D(t) = Ct0 + 3t+ τ ln cosh

(
t− t0
τ

)
, (27)

C is a 
onstant of integration.The de
eleration parameter, q = −1− Ḣ/H2, is equal to
q(t) =

1

2

{
1 + tanh

(
t− t0
τ

)}
. (28)The de
eleration parameter 
hanges from the value q = 0 for the equation of state(6), through the point q = 1

2 for Eq. (7), to q = 1 for Eq. (8). Thus, in the modelunder 
onsideration, the expansion of the universe is de
elerating on the wholetime interval from the end of in�ation to the beginning of the radiation-dominatedera.The total energy density is
ρ(t) =

3

2πGD(t)2
. (29)



84The limiting 
ases of the solutions (26) and (29) reprodu
e the well-known ex-pressions for the Hubble expansion rate and the energy density. Setting C = 0,near the point t = t0 we �nd for pressure-free matter [10℄
H(t) ≃ 2

3t
, ρ(t) ≃ 1

6πGt2
. (30)Choosing the 
onstant C ≃ 1+ τ

t0
ln 2, for t≫ t0 > 2τ we obtain the relations forthe relativisti
 matter

H(t) ≃ 1

2t
, ρ(t) ≃ 3

32πGt2
. (31)For times t≪ t0 and t0 > 2τ , from Eq. (27) it follows

D(t) = 2t+ (C + 1)t0 − τ ln 2. (32)Setting C ≃ −1 + τ
t0
ln 2, these expressions redu
e to

H(t) ≃ 1

t
, ρ(t) ≃ 3

8πGt2
. (33)The equation for ρ(t) has a form of Whitrow-Randall's relation [6℄.4 Dis
ussionsThe equations (26), (27), and (29) demonstrate how the Hubble expansion rateand the energy density 
hange with time from the in�ationary phase of the uni-verse's expansion, through the subsequent eras of an intensive energy transfer andpressure-free matter, to the beginning of the radiation domination. By 
hoosingthe 
onstant of integration C, the solutions (26) and (29) are redu
ed to known`standard' expressions (30), (31), and (33). An interesting feature of the solution(29) is that at the point t = 0 it is �nite,

ρ(0) =
3

2πG[(C + 1)t0 − τ ln 2]2
. (34)Thus, the two-
omponent system does not have an initial 
osmologi
al singularity.The equations (26), (29), and (6) 
an be 
ontinued into the region of extremelysmall values of time, t≪ 1

2 |(C + 1)t0 − τ ln 2|, where the Hubble expansion rate



85slightly 
hanges with time, so that in the in�ationary phase H(ti) ∼ H(0) =√
8πG
3 ρ(0) and the expansion of the universe will be exponential in time, R(t) ∼

exp{H(ti)t}.The expression for the energy density ρ(ti) in the in�ationary phase 
an beredu
ed to the `standard' form. Setting G = M−2
P [3℄, where MP is the Plan
kmass, τ ≃ M−1

P , and 
hoosing C = −1, from Eq. (34) with a good a

ura
y weget H(ti) ≃
√

8π
3 MP , ρ(ti) ≃M−4

P (
f. [1℄).In the two-
omponent model (10) with the equation of state (3) with theparameter (3.2), the evolution of the universe goes in one dire
tion, from smalltimes t≪ t0 to large values t≫ t0.The following me
hani
al analogy allows to understand the reason of the originof this `arrow of time'. The fun
tion (3.2) 
an be 
onsidered as the kink solutionof the equation
1

2
ẇ2 + [−U(w)] = 0, U =

9

2τ2

(
w2 − 1

9

)2

, (35)whi
h des
ribes the motion of the analogue parti
le with zero energy in the po-tential [−U(w)] (
f., e.g., Ref. [11℄). This potential has two maxima at the points
w = ±1

3 and a lo
al minimum at w = 0. The analogue parti
le moves along the`traje
tory' (3.2) from the value w = −1
3 in the distant past (t = −∞) to thevalue w = 1

3 rea
hed at t =∞. At the moment t = t0, the parti
le passes throughthe minimum of the potential at w = 0. Leaving the point w = −1
3 , the analogueparti
le 
an only approa
h the point w = 1

3 at t → ∞, where its velo
ity anda

eleration vanish. It 
annot return ba
k to w = −1
3 .We note that Eq. (35) has another solution in the form of the antikink whi
his equal to the fun
tion (3.2) with an inverse sign. This 
ase 
orresponds to themodel in whi
h the relativisti
 matter at t = −∞ transforms into the pressure-freematter and then into a gas of low-velo
ity 
osmi
 strings at t =∞. It was studiedin Ref. [12℄, where it was shown that the equation of state of matter 
an 
hangewith the expansion of the universe due to energy transfer between the matter
omponents (s
alar �elds) allowing to reprodu
e the evolution of matter in theuniverse with non-zero 
osmologi
al 
onstant. The des
ription on equal footingof the universe over the total time interval from in�ation through reheating tosubsequent 
ooling and transition to the pressure-free matter using the kink and
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88proposed to avoid su
h e�e
ts: arti�
ial vis
osity, arti�
ial dispersion,anti-di�usion et
. But the problem is still open, espe
ially in designof spe
ial di�eren
e s
hemes. In this paper some theoreti
al 
onsid-erations for understanding the errors in numeri
al 
omputations areproposed. It is stri
tly 
onsidered for some 
ases as extra smoothing offronts as the origin of arti�
ial os
illations in the solutions. It is 
on-�rmed that the smoothing is originated by dissipation in s
hemes andos
illations by dispersion of s
hemes. Some new methods of improvingnumeri
al solutions of evolution equations are proposed on the baseof theoreti
al 
onsiderations. In the 
ase of linear equations proposedtools 
an in
rease the order of the a

ura
y. The arti�
ial vis
osityand arti�
ial dispersion for di�eren
e s
hemes of gas dynami
s areproposed as the �rst examples. A new 
lass of tools for improvingnumeri
al solutions is proposed - `Langoliers'. `Langoliers' are spe
ialdi�eren
e operators whi
h should be applied at ea
h time steps afterthe running of original di�eren
e s
hemes. The design of `Langoliers'allows to redu
e the dissipative and dispersive errors of s
hemes.The examples are anti-di�usion, anti-dispersion and spe
ially 
on-stru
ted di�eren
e s
hemes. Di�erent illustrative examples of su
htools are 
onsidered for gas dynami
s equations and for wave equation.Keywords: Numeri
al s
hemes; dispersion; dissipation; non-smoothsolutions, anti-dispersion; 'Langoliers'; 
ollapses.1 Introdu
tionIt is a well-known fa
t that the di�eren
e s
hemes for approximate solutions ofevolution equations have usually some errors within the interval of theoreti
ala

ura
y of the s
hemes [1℄- [4℄. The two most known errors are the arti�
ialsmoothing of the solution and os
illations in the solutions near the pla
es with highderivatives of the solutions (near the sharp fronts of the solution). A lot of spe
ialtools have been proposed to avoid su
h e�e
ts: arti�
ial vis
osity in s
hemes [1℄,arti�
ial dispersion in s
hemes [3, 5, 6℄, anti-di�usion [7℄,ENO (essentially non-os
illation) s
hemes [8℄ et
. But the problem is still open, espe
ially in design of



89spe
ial di�eren
e s
hemes. Remark the before we outline only some of known andworking approa
hes. Some of remembered tools essentially improve the numeri
alsolutions but the di�
ulties in their appli
ations still are large (as in the theory asin the pra
ti
e, espe
ially in the modelling of 2D and 3D �ows of 
omplex media).Be
ause of in
reasing 
omplexity of equations whi
h should be used for mod-elling of evolving media and systems in hydrodynami
s, gas dynami
s, plasma,reology the problem of design of more a

urate di�eren
e s
hemes is very impor-tant. For su
h goal it is ne
essary to know the pe
uliarities of numeri
al s
hemesbehavior, the souses of `artifa
ts' in the numeri
al solutions and better theoreti
alunderstanding of the di�eren
e s
hemes as the obje
ts. So in given paper sometheoreti
al 
onsiderations for understanding the errors in numeri
al 
omputationare proposed. It is stri
tly 
onsidered for some 
ases as the extra smoothing offronts as the origin of arti�
ial os
illations in the solutions. It is 
on�rmed that thesmoothing is originated by dissipation in s
hemes and os
illations by dispersionof s
hemes.On the base of theoreti
al 
onsiderations there are proposed some methods forimproving numeri
al solutions of evolution equations. In the 
ase of linear equa-tions proposed tools 
an in
rease the order of the a

ura
y. The arti�
ial vis
osityand arti�
ial dispersion for di�eren
e s
hemes of gas dynami
s are proposed asthe �rst examples.A new 
lass of tools for improving numeri
al solutions is proposed - `Lan-goliers'. `Langoliers' are spe
ial di�eren
e operators whi
h should be applied atea
h time steps after the running of original di�eren
e s
hemes. The design of`Langoliers' allows to redu
e the dissipative and dispersive errors of s
hemes. Theexamples are anti-di�usion, anti-dispersion and spe
ially 
onstru
ted di�eren
es
hemes. Di�erent illustrative examples of su
h tools are 
onsidered for gas dy-nami
s equations and for wave equation.2 Dissipation and dispersionof �nite-di�eren
e s
hemesThe terms `dissipation' and `dispersion' of di�eren
e s
hemes have a stri
t sense in
ase when the original partial di�erentia equations are linear and have a 
onstant
oe�
ients. In su
h 
ase di�eren
e harmoni
s of di�eren
e s
heme (or alternatively



90the harmoni
 of 
ontinual analogue of di�eren
e s
heme) is the adequate tool forinvestigation of the properties of numeri
al s
hemes. Su
h approa
h is well knownand is proposed in any textbook on numeri
al methods (for example see [1�3, 9℄.The results of analysis are spe
i�
 to a problem or a pro
ess. But the general
hart of resear
hes remains the same - that is the analysis of a

ordions and theirdispersion 
orrelation is 
ondu
ted for the initial 
ondition and for the methodof its approximation. Therefore further we will illustrate a 
hart of methods, andalso fa
ilities of improvement on a simplest example - equation of transfer oradve
tion. We will 
onsider a Cau
hy problem for adve
tion equation in a region
−∞ < x <∞

Lu =
∂u

∂t
+ a

∂u

∂x
= 0, a = const (1)with initial 
onditions

u(x, 0) = v(x). (2)We will 
onsider also the general 
lass of obvious numeri
al s
hemes for equation(1)
Λy =

yn+1
j − ynj

τ
+

m2∑

l=−m1

aiy
n
j+l, (3)where y denotes the numeri
al solution 
al
ulated on latti
e ωhτ = ωh × ωτ ,

ωh = {xj = jh, j = 0,±1, ..}, ωτ = {tn = nτ, n = 0, 1, ..., N}, aτ/h = γ = const.A s
heme (3) 
an be rewritten in a kind
yn+1 = Ryn, (4)where (Ryn)j = ynj − τ

∑m2
l=−m1

aiy
n
j+l =

∑m2
l=−m1

biy
n
j+l.To 
ondu
t the analysis of a

ordions for 
hart (3) we will 
onsider spe
ialkind s
hemes solutions (numeri
al harmoni
):

yn+1
j = qnk exp(ikxj), (5)where k = 2π/λ is a wave number, λ is a harmoni
 wave-length. A value qk =

ℜqk + iℑqk is named the 
oe�
ient of transition of s
heme. Putting (5) in (4) weget for qk
qk =

m2∑

l=−m1

bl exp(iklh).



91A transition 
oe�
ient 
an be also presented as
qk = ρk exp(iφk). (6)In formula (3) ρk = mod qk = [(ℜqk)2+(ℑqk)2]1/2 there is the module of 
oe�
ientof transition φk = − arg qk = arctan(−ℑqk/ℜqk). We will name νk = qk/kτ phasespeed of k-th harmoni
. We will enter the 
ontinual analogues of the module to thetransition 
oe�
ient ρ(ζ) = aφ(ζ)/γζ from an argument ζ su
h that ρ(ζk) = ρkand also phase velo
ity ν(ζk) = νk, where ζk = kh.We will 
onsider numeri
al s
hemes 
harts for whi
h

ρ(ζ) = 1− ω(ζ), 0 ≤ ω(ζ) ≤ 2, ζ ≤ 1,

ω(ζ) = cζs +O(ζs+2), c = const, s = 2p
(7)From Rihtmayer's papers [4℄ it is known, that su
h s
heme has s-th order ofdissipation. By [10℄ a s
heme has m-th order of dispersion if a dispersion fun
tion
an be written down as

υ(ζ) = a[1 + θζm +O(ζm+2)], θ = const. (8)We now will draw some result from (Brenner& Thomee, 1970). Their 
hara
terof s
heme (
oe�
ient of transition of s
heme) was presented in a way where su
hpresentations are a

epted
q(ζ) = exp[−iγζ +Ψ(ζ)], (9)where

ℜΨ(ζ) = gζs[1 + o(1)], ζ → 0, ζ > 0, (10)
Ψ(ζ) = Ψ0ζ

r+1[1 + o(1)], Ψ0 6= 0, r ≥ 0. (11)Then s is interpreted as an order of dissipation, and r 
hara
terizes the orderof approximation. For s
hemes with the orders of dissipation s and approximation
r and initial 
onditions v ∈ Bα,∞

p , where Bα,∞
p are spa
es of Besov's fun
tionssubje
t to the 
ondition 0 < α < r + 1, α 6= (r + 1)(1/2 − p−1) in (Brenner &Thomee, 1970) the estimation for 
onvergen
e of the s
heme had been proved

‖ ynj (x)− v(x, nτ) ‖Lp≤ Chβ(α) ‖ v ‖nα,∞
p

(12)



92and the order of 
onvergen
e of s
heme is set by formulas
β(α) = α[1− (1 + r)−1] +min(0, [α− (r+1)|1/2− p−1|][1/(r +1)− 1/s]). (13)If we set the order of dissipation, it is possible to �nd the order of 
onvergen
e.For this purpose we will rewrite the 
oe�
ient of transition of s
heme as following

qk = [1− ω(ζ)] exp(−υkkτ) = exp[−iγζ +Ψ1(ζ)], (14)where Ψ1(ζ) = [(−cζs+ o(ζs))]+ i[γθζm+1+ o(ζm+1)). From previous formulas itis possible to get very important 
orrelation between the order of approximation,dissipation and dispersion of s
heme:
r = min(s, m+ 1)− 1 (15)Very important 
on
lusion is that the order of approximation 
an be determinedby either the order of dissipation or order of dispersion.If the initial 
onditions of problem belong to Sobolev's spa
es Wα

2 ⊂ Bα,∞
2 ,

α is a whole number, m is order of s
heme dispersion, s is order of s
heme dissi-pation, v ∈ Wα
2 , subje
t to the 
ondition 0 ≤ α ≤ min(s, m + 1), then speed of
onvergen
e d in spa
e L2 has the form d = β(α) = α{1− [min(s, m+ 1)]−1}.So the order of approximation may be determine either by the order of dis-sipation or the order of dispersion. Note that the order of approximation alsodetermines the order of 
onvergen
e (in dependen
e on the smoothing of the solu-tions). It may be found from su
h analysis that for example for even s the s
hemeshave an even order of approximation and the rate of 
onvergen
e is determinedby dispersion e�e
ts. This implies that the large non-physi
al os
illations whi
hare usually observed in s
hemes of even order of approximation, when 
omput-ing non-smooth solutions, are pre
isely due to dispersion of di�eren
e harmoni
s.Note that in the papers [10, 13, 14℄ other equations and multidimensional 
asehad been 
onsidered. The appli
ation of results on the order of dissipation anddispersion allows to understand the `artifa
ts' in numeri
al solutions of evolutionequations and to propose new tools to suppress or diminish them.



933 Some existing tools of diminishing`artifa
ts' in 
al
ulationsHere we des
ribe the 
onstru
tion of some more or less known tools for improvingthe quality of numeri
al solutions and des
ribe their me
hanisms with the help ofthe 
on
epts from se
tion 2. The diagram below shows s
hemati
ally one step ofrunning the 
onditional di�eren
e s
heme.Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
heme
↓Numeri
al solution on time level t = τ(k + 1)3.1 Choosing new s
heme with in
reasing a

ura
yThe �rst approa
h to redu
e `artifa
ts' is to take other s
heme with in
reaseda

ura
y. But usually it is time expensive and di�
ult in theoreti
al aspe
ts espe-
ially for modelling by nonlinear equation in multidimensional 
ases. So below wedis
uss the methods for improving the `basi
' original s
hemes by spe
ial tools.3.2 Arti�
ial vis
osity approa
hA

ording to this approa
h spe
ial terms should be added into the di�eren
es
heme for suppressing arti�
ial os
illations by adding non-physi
al vis
osity ([1, 3, 9℄ and many other papers).Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
heme + Arti�
ial vis
osity
↓Numeri
al solution on time level t = τ(k + 1)



943.3 Arti�
ial dispersionSpe
ial terms should be added into the di�eren
e s
heme for suppressing arti�
ialos
illations by adding non-physi
al dispersion [3, 5, 6℄Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
heme + Arti�
ial dispersion
↓Numeri
al solution on time level t = τ(k + 1)3.4 Anti-di�usionThe idea of anti-di�usion has been developed sin
e the works by Boris J. and BookD. [1,7,15℄. In anti-di�usion the spe
ial �ltration operator is applied to numeri
alsolution after the running step of 
onditional s
heme with the goal to redu
e theos
illations by applying spe
ial rules to the solution. It had been shown that thea
tion of su
h �lter is equivalent to some portion of arti�
ial smoothing vis
osity.The anti-di�usion already has a lot of appli
ations espe
ially in gas dynami
s. Butthe di�
ulties of appli
ations lie in the nonlinear 
hara
ter of �lter and theoreti
alba
kground. Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
hemet = τk + τ/2

↓Anti-di�usion
↓Numeri
al solution on time level t = τ(k + 1)4 New tools for improving numeri
al s
hemesIn previous se
tion we had des
ribed some new but more or less known tools forredu
ing the os
illations. Here we brie�y des
ribe some other tools for improvingsolutions whi
h have as the ba
kground the 
on
epts from se
tion 2.



954.1 Composite s
hemes of higher orderThe investigations of phase velo
ity and transition modules show that su
h fun
-tions may have either positive or negative dispersion (that is the harmoni
 of dif-feren
e s
heme may be faster of slower than the harmoni
 of original di�erentialequation); also the transition modules measure the level of de
reasing (in
reasing)of harmoni
 amplitude and may be less or bigger then in the harmoni
 of originalequation. So the sequential appli
ation of two s
hemes with di�erent propertiesfor transition from one time level to the next level is equivalent to appli
ationsome 
omposite s
heme with di�erent properties. For example su
h 
ombinationof two di�erent s
hemes may in
rease the order of dispersion and thus follows tothe essential redu
tion of arti�
ial os
illations [16℄. The same tri
k may be usedfor redu
tion the arti�
ial smoothing in 
omputations.Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
heme I t = τk + τ/2

↓Basi
 di�eren
e s
heme II
↓Numeri
al solution on time level t = τ(k + 1)

4.2 Anti-dispersionThe goal of anti-dispersion is to redu
e the arti�
ial dispersion of numeri
als
hemes by appli
ation of spe
ial di�eren
e operator whi
h dispersion is oppositeto the dispersion of basi
 di�eren
e s
heme [17℄. It is useful to take as su
h opera-tor the approximation of simplest di�erential equations with ne
essary dispersion.Remark that usually it is enough to take the linear part of Kortewega-de-Vreezequation but with spe
ial 
hoi
e of 
oe�
ient whi
h allows to 
ompensate for



96some dispersive error of the s
heme:Numeri
al solution on time level t = τk

↓Basi
 di�eren
e s
heme I t = τk + τ/2

↓Anti-dispersion
↓Numeri
al solution on time level t = τ(k + 1)

4.3 `Langoliers'It is useful to introdu
e the spe
ial name for the 
lass of tools whi
h should beapplied after the appli
ation of basi
 s
heme at ea
h time step of 
al
ulation. Wenamed it as `Langoliers' be
ause su
h tools are applied at ea
h point of spa
egrid of di�eren
e s
heme at given time level and the a
tion of su
h `Langoliers'
onsist in `eating' `arti�
ial' defe
ts of numeri
al solution in ea
h point of greed.We illustrate su
h me
hanism on the diagram below. After the appli
ation ofbasi
 s
heme the solution has a lot of arti�
ial os
illations (the true solution isstep fun
tion). The appli
ation of `Langolier' redu
es the errors essentially.Figure 1 
orresponds to the 
ase when the `Langolier' has the `anti-dispersive'
hara
ter. The anti-di�usive �lter may be 
onsidered as the `Langolier' of `anti-vis
osity' 
hara
ter. Also other 
ases of `Langoliers' designing may exist. We 
anuse not a single `Langolier' between time levels but the sequen
e of di�erent `Lan-goliesr'. For example as it follows from the theory of dispersion and dissipationof s
hemes we 
an for linear equations theoreti
ally re
eive any order of approxi-mation of 
omposite `basi
 s
hemes' + series of spe
ially 
onstru
ted `Langoliers'.One of the 
onstru
tion 
onsist in 
onsequen
e `Langoliers' of `anti-dispersive' and`anti-di�usive' nature (but of 
ourse of in
reasing order of dispersion or dissipa-tion and thus of in
reasing stru
ture). Note also that the apparatus of 
ontinualanalogs of di�erent s
hemes may be useful for su
h design.
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Figure 1: Me
hanism of `Langolier' a
tion



985 Nonlinear 
ase
As we already remarked the approa
hes above already had been developed andtested in 
ase of some equations (the linear transport equation, the wave equation,the Kadomt
ev - Petviashvily equation). The 
on
lusion on the appli
ability ofthe above tools 
an be drawn from the numeri
al solutions of nonlinear equations.The key approa
h in appli
ation 
onsists of two ideas: 1) the linearization ofnonlinear equation around the `basi
' solution for original nonlinear equation and2) the idea of `frozen' 
oe�
ients of re
eived linearized equation [1�3,9℄. Then theanalysis of harmoni
 should be pro
eeding lo
ally. In su
h 
ase the 
oe�
ients ofsu
h tools should depend on the values of the solutions at given point in giventime moment. The results of su
h analysis for the 
ase of nonlinear Klein-Gordonequation had been published in [13℄. Other interesting example of appli
ationof proposed 
on
ept to nonlinear equations is des
ribed in [16℄. The obje
t ofinvestigation is the numeri
al s
hemes for some system of gas dynami
 equations.It was realized the s
heme 4a from the se
tion 4. We take as basi
 s
heme Ithe Wendro� s
heme and as the basi
 s
heme II Lax-Wendro� s
heme [4, 10, 16℄.Remark that su
h s
hemes have opposite dispersion (positive and negative). Thenumeri
al experiments display the essential redu
tion of arti�
ial os
illations. Infa
t su
h 
omposed s
hemes behave as the s
heme of 3d order of a

ura
y (theWendro� and Lax-Wendro� s
hemes has the se
ond order of a

ura
y).The proposed approa
h also is very prospe
tive for numeri
al 
al
ulations of
ollapses, blow-up solutions or solutions with singularities. Usually su
h solutionstend to in�nite values by the �nite time. Su
h in
reasing of solutions and theirderivatives follows to the redu
ing of a

ura
y of approximate methods and tothe ne
essity of adaptive mesh using. Su
h adaptation follows to de
reasing oftime and spa
e steps and thus to the non-limiting grows of 
omputational work.In des
ribed approa
h the a

ura
y of the s
hemes 
an be in
reased with time onthe �xed spa
e grid. Also the region of `Langoliers' appli
ation during 
omputation
an be 
on
entrated near the singularities points.



996 Con
lusionsThus, in this paper I des
ribed spe
ial methods and their appli
ations for redu
-tion of arti�
ial errors of type "spreading" and "os
illations" in the 
al
ulations ofthe evolutional equations solutions. It is very important that the o�ered fa
ilitiesalso be�t 
omputations of solutions of one-sided physi
al pro
esses with memory,be
ause the evolutional equations with memory help to raise proper mathemati
alproblems. In addition, proposed methods be
ome espe
ially perspe
tive in 
on-ne
tion with modern development of fa
ilities for the parallel 
al
ulations (GRID
omputation) of solutions. This relates to the fa
t that that "Langoliers" 
anbe used parallel in every knot of numeri
al latti
e, leading here to in
rease theexa
tness in all methods of approximation.Referen
es1. P.J.Roa
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al Physi
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hna Street, 14-b, Kyiv-143, Ukraine, UA-03143e-mail: mss�bitp.kiev.uaFollowing Manin, Leinster, Markl, Aguiar and Sottile we review de�-nitions, and basi
 properties of operads, and trees, and algebras overthese stru
tures in Se
tions 1�13. It is intended to 
onsider 
ategoriesof operads and trees as a whole, the 
ontent of ea
h Se
tion takinginto a

ount the 
ontents of other ones. But also the same problem of
ategories of operads and trees may be dis
ussed repeatedly, howeverfrom di�erent points of view.The next Se
tions we begin by introdu
ing the method of Vilenkin-Kuznetsov-Smorodinsky (VKS)-trees. The Cayley-Klein groups are
onstru
ted on parameters, ea
h of whi
h 
an be real, purely imagi-nary and Cli�ord dual one. Then representations of orthogonal Cayley-19On leave from Uzhgorod National University, Ukraine.20Based on invited talks given at the 5th Petrov International Symposium on High EnergyPhysi
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102Klein groups are 
onstru
ted with the method of VKS-tree. Finally,a Cayley-Klein 
ategory is de�ned and the fun
tor 
ategory of VKS-trees is 
onstru
ted.1 Operads as a Generalizationof Asso
iative Algebras1.1 Classi
al linear operadsIn Se
tions 1�2 and 12�13 we �x a ground �eld k of 
hara
teristi
 zero and denoteby V ECT the 
ategory of linear spa
es over k. All tensor produ
ts are taken over
k unless it is expli
itly stated otherwise. The symmetri
 group Sn is de�ned asthe group of the bije
tions n→ n where n = {1, . . . , n}.Classi
al linear algebra deals with a linear spa
e V endowed with a family Oof linear operators V → V . Usually it is 
onvenient to 
lose O by adding all oper-ator 
ompositions and their linear 
ombinations to O. In this way linear algebrabe
omes the study of asso
iative k-algebras and their linear representations.Classi
al linear operads arise in the same way when we start with a linear spa
e
V endowed with a family P of poly linear operators V ⊗m → V,m = 1, 2, 3, . . . (forexample, an asso
iative algebra is su
h a spa
e endowed with a multipli
ationmap V ⊗2 → V ). Closing P with respe
t to 
ompositions (of fun
tions with manyvariables) and linear 
ombinations we get a (
on
rete) 
lassi
al linear operadtogether with its linear representation in V . Axiomatizing the universal propertiesof su
h an obje
t, we get the following notion.Definition 1.1 A classical linear operad P 
onsists of the data a) � d)satisfying the axioms A) � C) below.a) A family of linear spa
es P(l), for all l ≥ 1.b) A left/right linear a
tion of Sl on P(l), for all l ≥ 1 : s ∈ Sl maps f ∈ P(l) to
fs = s−1f .
) A family of 
omposition maps γ(k1, . . . , kl), for all l ≥ 1, ka ≥ 1:

γ(k1, . . . , kl) : P(l) ⊗ P(k1)⊗ · · · ⊗ P(kl)→ P(k1 + · · · + kl) . (1)d) (Optional). An identity element I ∈ P(1).



103We will state the axioms for these data in two forms: dire
tly in terms of γand in fun
tional notation. For the latter, put P = ⊕∞
k=1P(k) and noti
e that (1)allows us to 
onsider ea
h f ∈ P(l) as a polylinear fun
tion P l → P :

f(g1, . . . , gl) := γ(f ⊗ g1 ⊗ · · · ⊗ gl) , (2)where γ = γ((k1, . . . , kl) if ga ∈ P(ka). We will often write simply γ for su
hmultigraded 
omponents of the operadi
 
omposition.A) The symmetri
 group Sl a
ts on the fun
tions (represented by) P(l) bypermutation of arguments:
(fs)(g1, . . . , gl) = f(s(g1, . . . , gl)) . (3)In γ-notation:

γ(fs⊗ g1 ⊗ · · · ⊗ gl) = γ(f ⊗ s(g1 ⊗ · · · ⊗ gl)) . (4)In addition, for s1 ∈ Sk1 , . . . , sl ∈ Skl, denote by s1 × · · · × sl ∈ Sk1+...+kl theimage of (s1, . . . , sl) a
ting blo
kwise upon
(1, . . . , k1|k1 + 1, . . . , k1 + k2| . . . |k1 + · · ·+ kl−1 + 1, . . . , k1 + · · ·+ kl) .Then

f(g1s1, . . . , glsl) = (f(g1, . . . , gl))(s1 × · · · × sl) . (5)In γ-notation:
γ(f ⊗ g1s1 ⊗ · · · ⊗ glsl) = (γ(f ⊗ g1 ⊗ · · · ⊗ gl))(s1 × · · · × sl) . (6)B) The 
omposition maps are asso
iative with respe
t to the substitution (infun
tional notation). That is, for any f ∈ P(l), ga ∈ P(ka), a = 1, . . . , l, and

ha,b ∈ P(la,b), b = 1, . . . , ka, we have
[f(g1, . . . , gl)](h1,1, . . . , h1,k1 ; . . . ;hl,1, . . . , hl,kl) = (7)
= f(g1(h1,1, . . . , h1,k1), . . . , gl(hl,1, . . . , hl,kl)) .In γ-notation:

γ(γ(f ⊗ g1 ⊗ · · · ⊗ gl)⊗ h1,1 ⊗ · · · ⊗ hl,kl) = (8)
= γ(f ⊗ γ(g1 ⊗ h1,1 ⊗ · · · ⊗ h1,k1)⊗ · · · ⊗ γ(gl ⊗ hl,2 ⊗ · · · ⊗ hl,kl)) .



104C) (Optional). If P is endowed with identity I ∈ P(1), then I (resp. I⊗n)be
ome left (resp. right) identi
al fun
tions:
I(g) = g; f(I, . . . , I) = f , (9)

γ(I ⊗ g) = g; γ(f ⊗ I ⊗ · · · ⊗ I) = f . (10)An operad endowed with identity whi
h is 
onsidered as a part of its stru
ture willbe 
alled a unital operad.We will often 
all the 
lassi
al linear operads simply operads until the intro-du
tion of other versions of this notion.Example 1.1 Let (E,µ) be an asso
iative algebra with multipli
ation µ : E⊗E →
E. De�ne an operad PE by PE(1) = E, PE(l) = {0} for l ≥ 2, γ(1) = µ, the restof the data being self-explanatory. Operadi
 asso
iativity of γ is 
learly equivalentto the asso
iativity of µ.Conversely, for any operad P,P(1) with multipli
ation γ(1) is an asso
iativealgebra. Operadi
 identity be
omes algebra identity and vi
e versa.Example 1.2 Let V be a linear spa
e. De�ne the operad OpEnd(V ) by the fol-lowing data:

OpEnd(V )(l) = HomV ECT (V
⊗l, V ) , (11)

Sl a
ts by permuting arguments as in (3), the 
omposition γ is de�ned by substi-tution as in the left-hand side of (2), and I = idV .Definition 1.2 A morphism of operads ϕ : P → Q is a family of linearmaps ϕ(l) : P(l) → Q(l), l ≥ 1, 
ompatible with the a
tion of symmetri
 groups,
omposition, and optionally, mapping IP to IQ.Thus we have de�ned a 
ategory of 
lassi
al linear operads OPER. In fa
t, weallow some ambiguity, be
ause the existen
e of the identity is optional, and, evenif it exists, we may de
ide not to 
onsider it as a part of the stru
ture when wede�ne morphisms. This extends the 
ommon ambiguity in the de�nition of the
ategory of asso
iative algebras.



105Remark 1.1 Denote by ASS one of the two 
ategories of asso
iative k-algebras(with or without identity). Constru
tions of Example 1.1 extend to the fun
tors
ASS → OPER and OPER → ASS whi
h are adjoint to ea
h other from bothsides so that we have 
anoni
al identi�
ations

HomOPER(P,PA) = HomASS(P(1), A),
HomOPER(PA,P) = HomASS(A,P(1)) .In parti
ular, ASS is a full sub
ategory of OPER.1.2 Operads as 
lassi�ers of algebras of di�erent spe
iesBy spe
ies we mean here a general notion whose spe
ializations in
lude, e.g., asso-
iative, Cayley-Klein and Lie, 
ommutative, and Poisson algebras; 
f. Subse
tion1.3 below.Definition 1.3 Let P be an operad and V a linear spa
e. A stru
ture of P-algebra on V , or equivalently, a linear representation of P in V , is a mor-phism of operads ρ : P → OpEnd(V ) sending I to idV if P is unital.As De�nition 1.1 shows, P =

⊕
l≥1 P(l) has a 
anoni
al stru
ture of P-algebra(regular representation).Generally, to de�ne a stru
ture of P-algebra on V is the same as to de�nefor every element f ∈ P(l) a l-ary multipli
ation map mf : V ⊗l → V linearlydepending on f , translating γ-
omposition to substitution and the a
tion of thesymmetri
 groups to the permutation of the arguments.Definition 1.4 Let V,W be two P-algebras. A morphism between them is a lin-ear map ϕ : V →W su
h that for every f ∈ P(l) we have

ϕ(mV
l (v1 ⊗ · · · ⊗ vl)) = mW

f (ϕ(v1)⊗ · · · ⊗ ϕ(vl)) . (12)We will show that for 
ertain spe
ies C of k-algebras whi
h we may 
all �operadi
�one 
an �nd a unital operad COp su
h that COp-algebras and morphisms betweenthem �are� algebras of the spe
ies C and their morphisms.



106Remark 1.2 Let us start with an example, taking again asso
iative algebras with-out unit, this time 
onsidered as a spe
ies. Besides the identity map V → V , anyasso
iative algebra is 
ommonly given by one generating bilinear multipli
ation
m : V ⊗ V → V , but the transposition of arguments transforms it into anothermultipli
ation mop. Therefore we must put AssOp(1) = 〈I〉 (bra
kets denoting thelinear span), AssOp(2) = 〈m,mop〉, the regular representation of S2. In AssOp(3)we have then twelve ternary operations that 
an be 
onstru
ted from I,m,mop: inthe fun
tional notation they are m(m, I), m(I,mop), et
. In plain words, ea
hsu
h operation applied to v1 ⊗ v2 ⊗ v3 ∈ V ⊗3 pi
ks two vi's, multiplies them insome order, and then multiplies the result by the remaining vl.These twelve ternary operations are related by identities expressing the asso-
iativity of m and its 
onsequen
e, that of mop : m(m, I) = m(I,m), et
. As aresult, AssOp(3) is isomorphi
 to the regular representation of S3 generated by,say, m(m, I).The general pattern is as follows. Pi
k an in�nite sequen
e of independent non-
ommuting but asso
iative variables x1, x2, x3, . . .. Instead of m,mop,m(I,mop),et
., write the value of the respe
tive operation applied to the initial segment of thissequen
e, getting respe
tively x1x2, x2x1, x1x3x2, et
. A 
ontemplation shows thatone 
an thus identify AssOp(n) with the linear spa
e generated by all asso
iativemonomials xs(1) . . . xs(n) where s ∈ Sn, with the evident a
tion of Sn.Namely, m(. . . (m(m, I), I) . . .) produ
es the monomial (. . . ((x1x2)x3) . . .)xn
= x1 . . . xn, and the appli
ation of Sn furnishes the rest. It remains to des
ribe the
γ-
omposition of a monomial xs(1) . . . xs(n) with g1⊗ · · · ⊗ gn ∈⊕n

a=1AssOp(la).We �rst repla
e arguments x1, . . . , xla in ga by adding l1+· · ·+la−1 to all subs
riptsthus getting g̃a, and then put
γ(xs(1) ⊗ · · · ⊗ xs(n) ⊗ g1 ⊗ · · · ⊗ gn) := g̃s(1) . . . g̃s(n) .Now let us try to 
onstru
t a fun
tor from AssOp-algebras to asso
iative algebras.A stru
ture of an AssOp-algebra on V , 
learly, is uniquely determined by therestri
tion of the operadi
 morphism

ρ(2) : AssOp(2)→ HomV ECT (V
⊗2, V ) .However, the image of ρ(2) is a two-dimensional spa
e of multipli
ations {am +

bmop} whereas 
lassi
ally we need just one asso
iative multipli
ation. Let us write



107the asso
iativity equation µ(µ, I) = µ(I, µ) for µ = am+ amop in the fun
tionalnotation with free arguments x, y, z:
µ(µ, I) = a[(axy + byx)z] + b[z(axy + byx)] ,

µ(I, µ) = a[x(ayz + bzy) + b[(ayz + bzy)x .Comparing 
oe�
ients, one sees that the universal asso
iativity (in any linear rep-resentation) is equivalent to ab = 0. Hen
e the best we 
an do is to pinpoint in any
AssOp-algebra V two lines of asso
iative multipli
ations: 〈ρ(m))〉 and 〈ρ(mop)〉.An additional 
hoi
e of unit would redu
e ea
h line to one (non-zero) element,however there is nothing in the stru
ture of AssOp that would help us to do this.In fa
t, we en
ounter here a general problem: how to a

ount for eventual stru
-tural spe
ial elements, i.e. 0-ary operations. In prin
iple, we 
ould have extendedthe de�nition of an operad P by in
luding P(0) and extending 
orrespondingly(1). In parti
ular, we 
an put AssOp(0) = ground �eld, OpEnd(V )(0) = V , andde�ne the identity in V as the image of 1. In other 
ases this might not work.We will now summarize the pre
eding dis
ussion in a deliberately vague �meta-theorem� (for more pre
ise statements, see below).1.3 Spe
ies of algebras and operadsLet C be a 
ategory of algebras whi
h is de�ned by a family of multilinear opera-tions {mi|i ∈ I} and a family of universal identities between them 
onstru
ted of
ompositions and linear 
ombinations. Morphisms in C are linear maps 
ompat-ible with mi's. Examples: asso
iative algebras without identity (multipli
ation;asso
iativity); Cayley-Klein and Lie algebras (bra
ket; skew-symmetry; Ja
obiidentity); Poisson algebras without identity (multipli
ation, bra
ket; asso
iativ-ity, 
ommutativity, Ja
obi, Leibniz); 
ommutative rings with an m-dimensionallinear spa
e of pairwise 
ommuting derivations, et
.Then one 
an 
onstru
t a 
lassi
al linear operad COp with the following prop-erties.a) COp(l) as a representation spa
e of Sl is isomorphi
 to a subspa
e of thefree algebra FC(x1, . . . , xl) of the spe
ies C freely generated by l independentvariables x1, . . . , xl. This subspa
e 
onsists of forms of total degree l linear inea
h xa, upon whi
h Sl a
ts by permuting arguments.b) Compositions γ are indu
ed by substitution.



108
) To give a stru
ture of a COp-algebra on a spa
e V is the same as givinga set of stru
tures of spe
ies C on V . Various elements of this set are obtainedby 
hoosing in COp various generating families of solutions {m′
i} of the universalidentities de�ning C. The group Aut(COp) a
ts transitively on this set.d) The 
ategory of COp-algebras is equivalent to the 
ategory of algebras ofthe spe
ies C. Every 
hoi
e of generators {mi}, as above �xes one equivalen
efun
tor. However, two di�erent 
hoi
es may lead to non-isomorphi
 fun
tors.This happens, e.g., with AssOp and fun
tors 
orresponding to m and mop.To give a pre
ise statement and proof of this theorem, we would have to explainin more detail the two di�erent notions of �freeness� and �de�ning an obje
t bygenerators and relations�: separately for operads and algebras over a given operad.Above we used them on an intuitive level.Before pro
eeding further, we want to list the limitations of the operadi
approa
h to spe
ies, some of whi
h 
an be over
ome by modifying the notion ofthe 
lassi
al operad.

• We 
annot a

ount for the stru
ture 
onstants, partly be
ause of the la
kof P(0).
• We 
annot a

ount for the use of dual spa
es in the de�nitions of somespe
ies, e.g., algebras with invariant s
alar produ
ts interpreted as V → V ∗.(In this 
ase, a remedy is the introdu
tion of the 
y
li
 operads).
• We 
annot a

ount for the stru
ture morphisms like 
omultipli
ation V →
V ⊗ V , and generally tensors of various 
o- and 
ontravariant degrees.

• We 
annot a

ount for non-linear and not everywhere de�ned operationslike inversion in the multipli
ative group of a �eld.1.4 Operads as analogs of asso
iative algebrasIn Example 1.1 and Subse
tion 1.1 we have shown that the asso
iative algebrasnaturally form a part of the 
lassi
al operads (with P(l) = 0 for l ≥ 2). We willnow demonstrate that the total 
lassi
al operad P is in a very de�nite sense ananalog of asso
iative algebra.To do this 
onvin
ingly, we must start with a de�nition of an asso
iativealgebra as a 
ouple (V,m) where V is an obje
t of the monoidal 
ategory V ECT ,



109and m is an asso
iative morphism V ⊗ V → V , eventually endowed with identitywhi
h is a morphism 1→ V where 1 is the ground �eld 
onsidered as an identityobje
t in V ECT . The two 
ategories (V ECT,⊗) and ASS obtained in this wayare 
onne
ted by the two adjoint fun
tors
forget m : ASS → V ECT ,

free tensor algebra : V ECT → ASS .In order to present the 
lassi
al linear operads in the same way we have to startwith spe
ifying an analog of the fun
tor �forget m�. This 
an be done in severalways be
ause we 
an 
hoose to forget any subset of the data given in De�nition1.1. Here we will de
ide that m 
orresponds to all γ's. What is left then is thefollowing 
ategory SMOD of S-modules:Definition 1.5 An obje
t of SMOD is a family of linear spa
es V (l), l ≥ 1,endowed with an a
tion of Sl.A morphism in SMOD is a family of linear maps V (l) → W (l) 
ompatiblewith the Sl-a
tion.We will sometimes say that V (l) is the part of V of degree l.Lemma 1.1 a) The 
ategory SMOD possesses a bifun
torial produ
t ∗ whi
h 
anbe de�ned on the obje
ts by the following formula:
V ∗W (n) =

n⊕

l=1

V (l)⊗Sl


⊕

π:n→l

l⊗

i=1

W (|π−1(i)|)


 . (13)Here n = {1, . . . , n} and π runs over all surje
tive maps. The a
tion of Sl mustbe self-explanatory, and the tensor produ
t is taken over the group ring of Sl.This produ
t is fun
torially asso
iative but not 
ommutative so that

(SMOD, ∗) is a monoidal 
ategory. It possesses a two-sided identity obje
t 1:the ground �eld pla
ed in degree 1, zero elsewhere.b) The map V 7→ (V, 0, 0, . . .) extends to a fun
tor identifying (V ECT,⊗,1)with a full monoidal sub
ategory of (SMOD, ∗,1).



110Now 
onsider an asso
iative algebra (V, µ), µ : V ∗ V → V in the monoidal
ategory of S-modules. From (13) we see that µ is a family of maps
µ(n) :

n⊕

l=1

V (l)⊗ Sl


⊕

π:n→l

l⊗

i=1

V (|π−1(i)|)


 → V (n), n ≥ 1 . (14)For given (l; k1, . . . , kl), k1 + · · · + kl = n, 
onsider the 
omponent of (14) 
orre-sponding to the Sl-orbit of the map sending {1, . . . , k} to 1, k1 +1, . . . , k1 + k2 to2, et
. We 
an identify this part of the sour
e with V (l)⊗ V (k1)⊗ · · · ⊗ V (kl) sothat µ generates a family of maps

γ(k1, . . . , kl) : V (l)⊗ V (k1)⊗ · · · ⊗ V (kl)→ V (k1 + . . .+ kl) . (15)Proposition 1.1 a) The asso
iativity of µ translates into the asso
iativity of γ'sin the sense of (7).b) The fa
t that µ is a morphism in SMOD translates into the 
ompatibilityaxioms (3�6)
) In this way we get a fun
tor
Associative algebras in (SMOD, ∗)→ OPERwhi
h is an equivalen
e of 
ategories.There exists a similar equivalen
e between asso
iative algebras with identity andunital operads.Proof. We will now sket
h a proof of the main statements in Lemma 1.1 andProposition 1.1. In order to understand the main formula (13), we will show thatit expresses the substitution law of �formal series in V ECT �.To be more pre
ise, denote by FSETS the 
ategory of �nite non-empty setsand bije
tions. Let F [·] : FSETS → V ECT be a fun
tor.

FSETS is equivalent to its full sub
ategory whose obje
ts are n. Restri
ting
F to this sub
ategory we get an S-module VF : VF (n) := F [n], the a
tion of Snbeing indu
ed by the bije
tions of n.Now 
onsider VF (n) as 
oe�
ients of the formal series de�ning the fun
tor
F (·) : V ECT → V ECT :

F (X) :=
⊕

n≥1

VF (n)⊗Sn X
⊗n .



111Su
h fun
tors will be 
alled analyti
 ones.We will show that these 
onstru
tions establish an equivalen
e of the three
ategories involved: fun
tors F [·] and their morphisms, SMOD, analyti
 fun
tors.Moreover, the 
omposition of analyti
 fun
tors is again analyti
, and it indu
eson the 
oe�
ients exa
tly the *-produ
t:
VF◦G(n) = (VF ∗ VG)(n) .The equivalen
e of the 
ategory of fun
tors F [·] and SMOD is a part of generalnonsense be
ause FSETS is equivalent to its sub
ategory of natural numbers.The only point deserving expli
ation is the possibility to lift every S-module toan F [·] 
anoni
ally without using the axiom of 
hoi
e. Namely, for a �nite set Mwith |M | = m put

F̃ [M ] := F [m]⊗Sm 〈Iso(m,M)〉 .Here 〈Iso(m,M)〉 is the linear spa
e freely generated by the bije
tions m → M .Stri
tly speaking, now F̃ [m] is not F [m], but these Sm-modules are 
anoni
allyisomorphi
, and we forget about this subtlety and say, for example, that the S-module F [m] = X⊗m extends to the fun
tor F [M ] = X⊗M on the 
ategory of�nite sets.The equivalen
e of SMOD and the 
ategory of analyti
 fun
tors F (·) alsobe
omes a formal fa
t on
e we learn how to re
onstru
t fun
torially the 
oe�
ients
VF (n). Let F (·) be given. Multipli
ation by any element λ of the ground �eld isan endomorphism of the identi
al fun
tor of V ECT . Hen
e it a
ts fun
torially onea
h F (X), and the λn-eigenspa
e of F (X) is exa
tly Fn(X) := VF (n)⊗Sn X

⊗n,at least when λ is not 0 or a root of unity. Now 
onsider the spa
e Xn = 〈n〉 freelygenerated by the ve
tors e1, . . . , en. Then e1 ⊗ · · · ⊗ en generates the regular Sn-submodule Rn whi
h is the image of the proje
tor pn : X⊗n
n → X⊗n

n . Sin
e Fn isa fun
tor, we 
an de�ne Im(Fn(pn)) = VF (n) ⊗Sn Rn = VF (n), both equalitiesdenoting 
anoni
al isomorphisms.We will apply this pres
ription to the 
al
ulation of the 
oe�
ients of the
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omposition of analyti
 fun
tors:
(F ◦G)(X) =

∞⊕

l=1

VF (X)⊗Sl

( ∞⊕

k=1

VG(k)⊗Sk
X⊗k

)⊗l

=

=

∞⊕

l=1

VF (X)⊗Sl




∞⊕

k1,...,kl=1

(VG(k1)⊗Sk1
X⊗k1)⊗ · · · ⊗ (VG(kl)⊗Skl

X⊗kl


 .It follows that

(F ◦G)n(X) =
∞⊕

l=1

VF (X)⊗Sl


 ⊕

k1+···+kl=n

l⊗

a=1

(VG(ka)⊗Ska
X⊗ka)


 .Now we must put X = Xn as above and look at the image of (F ◦ G)n(pn) or,more intuitively, at the tensor 
oe�
ients of the ve
tors es(1)⊗· · ·⊗es(n). Clearly,for a given l, su
h terms in square bra
kets 
orrespond to the partitions of n into

l blo
ks indexed by 1, . . . , l, i.e. to the surje
tions n→ l as in (13).To �nish the Proof, it remains to establish that the fun
tor F ◦G(·) is isomor-phi
 to the sum of Im(F ◦G)n(pn). We leave this to the reader. �Definition 1.6 Let V be an obje
t of SMOD. Put
F (V ) :=

∞∑

n=1

V ∗n .There is an obvious multipli
ation map V ∗m ∗ V ∗n → V ∗m+n whi
h makes F (V )an asso
iative algebra, or an operad. It is 
alled the free operad generated by
V (without identity).As in the 
lassi
al linear algebra, F is adjoint to the forgetful fun
tor OPER →
SMOD. This 
ompletes the analogy sket
hed at the beginning of Subse
tion 1.4.1.5 Operads and topology: homology of moduli spa
esWe will now introdu
e the basi
 operad of the quantum 
ohomology. Denote by
H∗(M0,n+1) the homology spa
e of the moduli spa
e of stable 
urves of genus



113zero (with 
oe�
ients in the ground �eld for V ECT ). We will de�ne the 
lassi
allinear operad H∗M 0 by the following data:a) H∗M0(n) = H∗(M0,n+1) for n ≥ 2, the �rst 
omponent being the ground�eld.In the following, it will be 
onvenient to assume that the stru
ture se
tions of
Cn+1 →M0,n+1 are labeled by {0, . . . , n}.b) Sn a
ts upon H∗M0(n) by renumbering the se
tions x1, . . . , xn.
) The stru
ture map

γ(k1, . . . , kl) :

H∗(M0,l+1)⊗H∗(M0,k1+1)⊗ · · · ⊗H∗(M0,kl+1)→ H∗(M0,k1+···+kl+1) (16)is indu
ed by the embedding of the boundary stratum
b(k1, . . . , kl) :M0,l+1 ×M0,k1+1 × · · · ×M0,kl+1 →M0,k1+···+kl+1 . (17)On the level of geometri
 points, given l + 1 stable labeled 
urves of genus zero,

(C;x0, x1, . . . , xl); (Da; y0,a, . . . , yka,a), a = 1, . . . , l .

b(k1, . . . , kl) produ
es from them the stable 
urve
(
C
∐(

l∐

a=1

Da

)
/(∼); z0, . . . , zk1 + · · ·+ kl

)
,where (∼) is the equivalen
e relation gluing xa and y0,a for all a = 1, . . . , l, andfurthermore

z0 = x0, (z1, . . . , zk1+...+kl) = (y1,1, . . . , yk1,1; . . . ; y1,a, . . . , yka,a).Operadi
 axioms for H∗M0 follow from their evident versions for the spa
es
M0n.Remark 1.3 What we are a
tually saying here is that we 
an de�ne the moregeneral notion of operad by repla
ing the basi
 
ategory V ECT by any symmetri
monoidal 
ategory, eventually with the identity obje
t, and that the moduli spa
esform su
h an operad. The homology fun
tor (with respe
t to the pushforward maps)



114from the monoidal 
ategory of manifolds to (V ECT,⊗) then produ
es from ageometri
 operad the 
lassi
al linear operad. This viewpoint will be dis
ussed inmore detail in the following Se
tion.Noti
e in 
on
lusion that H∗M0 is endowed with important additional stru
-tures. Namely, the 
omponents of this operad are in fa
t 
oalgebras (pushforwardwith respe
t to the diagonal map), and 
ompositions (16) as well as representa-tions of Sn are 
oalgebra morphisms. This is the intrinsi
 reason for the existen
eof the operation of the tensor produ
t on the 
ategory of H∗M0-algebras.2 Operads and TreesIn this Se
tion we sket
h in their natural generality several themes whi
h havealready emerged in the previous Se
tion. Brie�y speaking, there are many usefultypes of operads, and ea
h type is determined by the 
hoi
e of two 
ategories:1) Basi
 symmetri
 monoidal 
ategory (C,⊠) repla
ing (V ECT,⊗) whi
h sup-ports the 
lassi
al linear operads.2) A 
ategory of (labeled) graphs Γ re�e
ting the 
ombinatori
s of the operadi
data and axioms.A 
on
rete operad from this viewpoint is a fun
tor Γ→ C.To 
larify the role of C, we �rst explain how to extend De�nition 1.1.2.1 May's operads in a monoidal 
ategoryLet us re
all (see [5℄) that a symmetri
 monoidal 
ategory (C,⊠) is a 
ategory en-dowed with the bifun
tor ⊠ : C×C → C together with an involutive 
ommutativity
onstraint and an asso
iativity 
onstraint. Taken together, they de�ne a family of
ompatible and fun
torial isomorphisms s∗ : X1⊠· · ·⊠Xn→̃Xs−1(1)⊠· · ·⊠Xs−1(n),for any obje
ts X1, . . . ,Xn of C and all s ∈ Sn.Most of our monoidal 
ategories will have an identity obje
t 1C = 1. Thefun
tors 1⊠ and ⊠1 : C → C are 
anoni
ally isomorphi
 to the identity fun
tor.In order to be able to extend the 
onstru
tions of Subse
tion 1.4, we willassume that C has small 
olimits preserved by any fun
tor X⊠. In parti
ular, Cmust have an initial obje
t 0.We 
an now de�ne a 
lassi
al operad P in C by 
losely following De�nition



1151.1. Components P(n) will be obje
ts of C endowed with the a
tion of Sn,⊗ willbe repla
ed by ⊠, and operadi
 multipli
ations γ will be morphisms in C. Axioms
A)−C) must be written down as 
ommutative diagrams, involving in parti
ularpermutation isomorphisms of tensor produ
ts in C.A neater version of the de�nition is again obtained by passing to the 
ategory
SC every obje
t whi
h is a family of Sn-obje
ts P(n) in C given for n ≥ 1. Tobe able to write it as a sum of its 
omponents, we will require that C has smalllimits. The 
ategory SC admits a non-symmetri
 monoidal stru
ture *, furnishedby the formula (13). It has the unit obje
t 1SC with 1 as the �rst 
omponent,0 elsewhere. An asso
iative monoid in SC is a pair (P, µ) where µ : P ∗ P → Pis an asso
iative multipli
ation. Giving an additional morphism 1 → P with theusual properties de�nes unital monoids. An analog of Proposition 1.1 holds true,establishing the equivalen
e of the 
ategory of asso
iative monoids in (SC, ∗) andthe 
ategory of 
lassi
al operads in C. However, the proof of Proposition 1.1 mustbe 
hanged, be
ause we have used in it not only the monoidal stru
ture of V ECTbut the linear stru
ture and the language of elements as well. This 
an be avoidedin di�erent ways. Here we will take this fa
t for granted, and we leave to the readerthe transposition of other 
onstru
tions of Se
tion 1 to the present 
ontext.Remark 2.1 Let us 
onsider the main 
lasses of monoidal 
ategories. Sets withdire
t produ
t and linear spa
es with tensor produ
t form two ar
hetypal 
lassesof symmetri
 monoidal 
ategories.Variations in
lude imposing additional stru
ture on the obje
ts. Sets more of-ten appear endowed with a topology or manifold stru
ture (in smooth or ana-lyti
 
ategory). Linear spa
es 
ome equipped with grading and/or di�erential. Inthis way we get 
lassi
al topologi
al operads, 
lassi
al operads in the 
ategory of
omplexes, and so on. Monoidal fun
tors between symmetri
 monoidal 
ategoriesextend to the respe
tive 
ategories of operads.2.2 Oriented trees as substitution s
hemesLet T be a tree with at least two �ags at ea
h vertex. Orient T by 
hoosingone tail as root and de
laring that dire
tion to the root is positive. Then everyvertex has at least one in
oming �ag and exa
tly one outgoing �ag. Label ea
hvertex of T by a symbol of the fun
tion whose arguments are labeled by the



116in
oming �ags of this vertex, and whose value labels the outgoing �ag f and alsoits l-image, that is, the other half of the edge if f belongs to an edge. Then thewhole tree symbolizes a 
omputation, or substitution s
heme. The input valuesare assigned to the in
oming tails of T , and the output value is assigned to theroot. For example, one vertex tree with n in
oming tails symbolizes f(x1, . . . , xn)and the (m+ 1)-vertex tree with the appropriate distribution of �ags symbolizes
f(g1(x

(1)
1 , . . . , x

(1)
n1 ), . . . , gm(x

(m)
1 , . . . , x

(m)
nm )).If we label �ags by obje
ts of a symmetri
 monoidal 
ategory and label ea
hvertex v by a morphism mapping the ⊠-produ
t of the labels of in
oming �agsto the label of the outgoing �ag, the tree will des
ribe the respe
tive 
ompositemorphism from the ⊠-produ
t of input obje
ts to the output obje
t.If ⊠ is not supposed to be symmetri
, we must assume that all sets of in
oming�ags of ea
h vertex are totally ordered. For a symmetri
 ⊠-produ
t, the respe
tivea
tions of symmetri
 groups on arguments of various levels 
an be su

in
tlydes
ribed by saying that this 
onstru
tion is fun
torial on the 
ategory of orientedtrees with isomorphisms 
ompatible with orientation.2.3 Trees and and *-produ
tLet (C,⊠) be a symmetri
 monoidal 
ategory, V an obje
t of non-symmetri
monoidal 
ategory (SC, ∗), and F (V ) =
∐∞
n=1 V

∗n the free operad generated by
V , as in De�nition 1.6. We 
an de�ne ⊠-produ
ts indexed by arbitrary �nite setsand extend n 7→ V (n) to a fun
tor T 7→ V (T ) on the 
ategory of non-empty �nitesets and their bije
tions. For an oriented tree as above put

V (T ) := ⊠v∈VT V (F in
T (v)) . (18)Then we have fun
torial isomorphisms

F (V )(n) =
∐

{n−trees}T/(iso)
V (T ) . (19)Here n-trees are oriented trees with the set {1, . . . , n} of in
oming tails.This statement summarizes in a more 
on
eptual way the bookkeeping s
hemedes
ribed above. It 
an be dedu
ed with some pain from the formalism of analyti
fun
tors as in Subse
tion 1.4. We will also reprodu
e the relevant 
ombinatori
sin the 
ontext of formal series below, in Se
tion 12 dedi
ated to sums over trees.
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(b)Figure 2: (a) Input-output graph with 4 verti
es and 2 input edges i1, i2, (b) 
ombina-torial tree with 4 verti
es and 3 input edges i1, i2, i3. In both, the numbers indi
ate theorder on the edges arriving at ea
h vertex.2.4 Combinatorial treesIn Subse
tions 2.2�2.3 trees were de�ned in a purely abstra
t way: T is the freeplain operad on the terminal obje
t of SetNf , and an n-leafed tree is an element of
Tn. But we give here a graph-theoreti
 de�nition of (�nite, rooted, planar) tree.The main subtlety is that the trees we use are not quite �nite graphs in theusual sense: some of the edges have a vertex at only one of their ends. This suggeststhe following de�nitions.Definition 2.1A (planar) input− output graph (Fig. 2(a)) 
onsists of
• a �nite set V (the vertices)
• a �nite set E (the edges), a subset I ⊆E (the input edges), and an ele-ment o ∈ E (the output edge)
• a fun
tion s : E\I −→ V (source) and a fun
tion t : E\{o} −→ V(target)
• for ea
h v ∈ V , a total order ≤ on t−1{v}.



118We write v e−→ to mean that e is a non-input edge with s(e) = v, and similarly
e−→ v′ to mean that e is a non-output edge with t(e) = v′, and of 
ourse v e−→ v′to mean that e is a non-input, non-output edge with s(e) = v and t(e) = v′.A tree is roughly speaking a 
onne
ted, simply 
onne
ted graph, and thefollowing notion of path allows us to express this.Definition 2.2 A path from a vertex v to an edge e in an input-output graphis a diagram

v = v1
e1−→ v2

e2−→ · · · el−1−→ vl
el=e−→in the graph. That is, a path from v to e 
onsists of

• an integer l ≥ 1

• a sequen
e (v1, v2, . . . , vl) of verti
es with v1 = v

• a sequen
e (e1, . . . , el−1, el) of edges with el = esu
h that
v1 = s(e1), t(e1) = v2 = s(e2), . . . , t(el−1) = vl = s(el)and all of these sour
es and targets are de�ned.Definition 2.3 A combinatorial tree is an input-output graph su
h that forevery vertex v, there is pre
isely one path from v to the output edge.Fig. 2(b) shows a 
ombinatorial tree. The ordering of the edges arriving at ea
hvertex en
odes the planar embedding. `Tree' is an abbreviation for `�nite, rooted,planar tree'. If we were doing symmetri
 operads then we would use non-planartrees, if we were doing 
y
li
 operads then we would use non-rooted trees, and soon.2.5 Geometri
 interpretation of treesLet Tn be the set of rooted, planar binary trees with n interior nodes (and thus

n + 1 leaves). The Tamari order (see [2℄) on Tn is the partial order whose 
over



119relations are obtained by moving a 
hild node dire
tly above a given node fromthe left to the right bran
h above the given node. Thus
−→ −→ −→is an in
reasing 
hain in T3 (the moving verti
es are marked with dots). Only basi
properties of the Tamari order are needed in this Subse
tion; their proofs will beprovided. For more properties, see Chapters 3�7. Figure 3 shows the Tamari orderon T3 and T4.

Figure 3: The Tamari order on T3 and T4.Let 1n be the minimum tree in Tn. It is 
alled a right 
omb as all of its leavesare right pointing:
14 = , 17 = .Given trees s ∈ Tp and t ∈ Tq , the tree s ∨ t ∈ Tp+q+1 is obtained by grafting theroot of s onto the left leaf of the tree and the root of t onto its right leaf. Below



120we display trees s, t, and s ∨ t, indi
ating the position of the grafts with dots.
For n > 0, every tree t ∈ Tn has a unique de
omposition t = tl ∨ tr with

tl ∈ Tp, tr ∈ Tq, and n = p+ q+1. Thus Tn is in bije
tion with ⊔p+q=n−1 Tp×Tq,and sin
e T0 = { } and T1 = { }, we shall see in Se
tion 3.5 that Tn 
ontainsthe Catalan number (2n)!
n!(n+1)! of trees.The Hasse diagram of Tn is isomorphi
 to the 1-skeleton of the asso
iahe-dron An, an (n−1)-dimensional polytope. (See [6℄ and [7℄.) The fa
es of An arein one-to-one 
orresponden
e with 
olle
tions of non-interse
ting diagonals of apolygon with n+2 sides (an (n+2)-gon). Equivalently, the fa
es of An 
orrespondto polygonal subdivisions of an n+2-gon with fa
ets 
orresponding to diagonalsand verti
es to triangulations. The dual graph of a polygonal subdivision is aplanar tree and the dual graph of a triangulation is a planar binary tree. If wedistinguish one edge to be the root edge, the trees are rooted, and this furnishes abije
tion between the verti
es of An and Tn. Figure 4 shows two views of the asso-
iahedron A3, the �rst as polygonal subdivisions of the pentagon, and the se
ondas the 
orresponding dual graphs (planar trees). The root is at the bottom.

Figure 4: Two views of the asso
iahedron A3Let Sn be the group of permutations of [n] whi
h denotes the set {1, 2, . . . , n}.We des
ribe the map λ : Sn → Tn in terms of triangulations of the (n+2)-gonwhere we label the verti
es with 0, 1, . . . , n, n+1 beginning with the left vertex of



121the root edge and pro
eeding 
lo
kwise. Let σ ∈ Sn and set wi := σ−1(n+1− i),for i = 1, . . . , n. This re
ords the positions of the values of σ taken in de
reasingorder. We indu
tively 
onstru
t the triangulation, beginning with the empty tri-angulation 
onsisting of the root edge, and after i steps we have a triangulation
τi of the polygon

Pi := Conv{0, n+1, w1, . . . , wi} .Some edges of Pi will be edges of the original (n+2)-gon and others will be diag-onals. Ea
h diagonal 
uts the (n+2)-gon into two pie
es, one 
ontaining Pi andthe other a polygon whi
h is not yet triangulated and whose root edge we taketo be that diagonal. Subsequent steps add to the triangulation τi and its support
Pi. First set τ1 := Conv{0, n+1, w1}, the triangle with base the root edge andapex the vertex w1 = σ−1(n). Set P1 := τ1 and 
ontinue. After i steps we have
onstru
ted τi and Pi in su
h a way that the vertex wi+1 is not in Pi. Hen
e itmust lie in some untriangulated polygon 
onsisting of some 
onse
utive edges ofthe (n+2)-gon and a diagonal that is an edge of Pi. Add the join of the vertex
wi+1 and the diagonal to the triangulation to obtain a triangulation τi+1 of thepolygon Pi+1. The pro
ess terminates when i = n.For example, we display this pro
ess for the permutation σ = 316524, wherewe label the verti
es of the �rst o
tagon:3 42 51 6 7−→ 7−→ 7−→ 7−→The last two steps are supressed as they add no new diagonals. The dual graph tothe triangulation τn is the planar binary tree λ(σ). Here is the triangulation, itsdual graph, and a `straightened' version, whi
h we re
ognize as the tree λ(316524).

A subset S of [n] determines a fa
e ΦS of the asso
iahedron An as follows.Suppose that we label the verti
es of the (n+2)-gon as above. Then the verti
es



122labeled 0, n+1 and those labeled by S form a (#S + 2)-gon whose edges in
ludea set E of non-
rossing diagonals of the original (n+2)-gon. These diagonals de-termine the fa
e ΦS of An 
orresponding to S. We give two examples of thisasso
iation when n = 6 below.
{1, 2, 5, 6} ←→

3 42 51 6 {2, 4, 5} ←→

3 42 51 6We determine the image of fζ using the above des
ription of the map λ : Sn → Tn.We say that a fa
e of Ap+q of the form ΦS with #S = q has type (p, q). If a fa
ehas a type, this type is unique. A permutation ζ ∈ S(p,q) is uniquely determinedby the set ζ{p+1, . . . , p+q}. Therefore, a fa
e of type (p, q) is the image of fζ fora unique permutation ζ ∈ S(p,q). This allows us to speak of the vertex of the fa
e
orresponding to a pair (s, t) ∈ Tp × Tq (under fζ).2.6 Classi
al operads as fun
torsDenote by Treeclas as the 
ategory whose obje
ts are �nite rooted trees with thefollowing properties: a) the multipli
ity of ea
h vertex is at least two; b) at ea
hvertex either all in
oming �ags are halves of edges, or all in
oming �ags are tails.Morphisms are generated by the following two 
lasses of maps:a) Isomorphisms 
ompatible with orientation.b) Contra
tion of all edges having a 
ommon vertex with some outgoing �agand keeping orientation.More formally, a morphism ϕ : σ → τ 
onsists of two maps ϕV : Vσ → Vτand ϕF : Fτ → Fσ 
ompatible with boundaries and involutions and su
h that ϕFsends tails to tails. Composition of the morphisms 
orresponds to the 
ompositionof the indu
ed maps on verti
es and �ags. A morphism 
ontra
ts an edge e if ϕVglues its verti
es, and both �ags of this edge do not belong to the image of ϕF .Contra
tions of di�erent edges 
ommute in an evident sense.Let v be a vertex of a rooted tree T . Its star Tv is a one-vertex tree with vertex
v, tails FT (v), and the out
oming �ag as a root.



123Proposition 2.1 The 
ategory of 
lassi
al linear operads (without identity) ina symmetri
 monoidal 
ategory (C,⊠) is equivalent to the 
ategory of fun
tors
P : Treeclass → C isomorphi
 to a fun
tor satisfying the following 
ondition:

P(T ) = ⊠v∈VTP(Tv) . (20)Sket
h of Proof. a) From fun
tors to operads. Given su
h a fun
tor P, we
onstru
t the data of De�nition 1.1 in the following way: P(l) := P(Tl) where Tl isthe one-vertex tree with tails 0, 1, 2, . . . , l and root 0. The a
tion of Sl 
orrespondsto the automorphisms of Tl permuting the tails 1, . . . , l. The multipli
ation map
γ(k1, . . . , kl) 
orresponds to the morphism 
ontra
ting all edges σ → τk1+···+kl ,where σ has l + 1 verti
es and l edges and the tails are distributed in an obviousway. The relations A) and B) follow from the fun
toriality.b) From operads to fun
tors. Given an operad (P(n), γ), we �rst extend it tothe fun
tor from �nite sets to C, then de�ne P(T ) by (18), and �nally use γ inorder to de�ne P on morphisms 
ontra
ting all edges having a 
ommon vertexwith some outgoing �ag. �Definition 2.4 From the graph-theoreti
 viewpoint it would be more natural toallow all rooted trees with |v| ≥ 2 as obje
ts, and 
ontra
tions of any subset ofedges as morphisms. The fun
tors from this 
ategory TreeM to C satisfying (20)(up to fun
tor isomorphism) are 
alled Markl′s operads.Remark 2.2 Consider now the 
ategory Treecyc of �nite non-rooted trees with
|v| ≥ 2, with morphisms generated by 
ontra
tion of edges and isomorphisms.Neither root nor orientation is a part of the stru
ture. Fun
tors Treecyc → Csatisfying (20) are essentially 
y
li
 operads in the sense of [8℄. The most essentialnew feature of 
y
li
 operads is the a
tion of Sl+1 upon P(l).2.7 Classifying spa
e of the 
ategory of stable treesLet us 
onsider a graphi
al de�nition of a 
ategory of trees. By De�nition 2.3,
tr is the free plain operad on the terminal obje
t of SetNf , and an n-leafed treeis an element of trn. As we saw, the sets trn also admit the following re
ursivedes
ription:
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(b)

σ

(a)
τ (
) σ

τFigure 5: Three pi
tures of a map in Tree4

• | ∈ tr1

• if n, k1, . . . , kn ∈ N and τ1 ∈ trk1 , . . . , τn ∈ trkn then (τ1, . . . , τn) ∈
trk1+···+kn .A 
ategory of trees Tree is the disjoint union ∐n∈N Treen. An obje
t of Treen isan n-leafed tree. The set of maps in Treen is

(T 2
2 1)(n) = (T2(tr))(n),that is, a map is an n-leafed tree τ in whi
h ea
h k-ary vertex v has assigned to ita k-leafed tree σv; the domain of the map is the tree obtained by gluing the σv'stogether in the way di
tated by the shape of τ , and the 
odomain is τ itself. Putanother way, what a map does is to take a tree σ (the domain), partition it intoa �nite number of (possibly trivial) subtrees, and repla
e ea
h of these subtreesby the 
orolla

•QQ
· · ·
��with the same number of leaves, to give the 
odomain τ . Fig. 5 depi
ts a 
ertainmap σ −→ τ in Tree4 in three di�erent ways: in (a) as a 4-leafed tree τ witha k-leafed tree σv assigned to ea
h k-ary vertex v, in (b) as a 4-leafed tree σpartitioned into subtrees σv, and in (
) as something looking more like a fun
tion.We will return to the third point of view later; for now, just observe that thereis an indu
ed fun
tion from the verti
es of σ to the verti
es of τ , in whi
h the
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(b)
σ

(a)
σ (
) σ

τFigure 6: Three pi
tures of an epi
 in Tree6inverse image of a vertex v of τ is the set of verti
es of σv. In some texts a mapof trees is des
ribed as something that `
ontra
ts some internal edges'. (Here aninternal edge is an edge that is not the root or a leaf; maps of trees keep theroot and leaves �xed. To `
ontra
t' an internal edge means to shrink it down toa vertex.) With one important 
aveat, this is what our maps of trees do: for in amap σ −→ τ , the repla
ement of ea
h partitioning subtree σv by the 
orolla withthe same number of leaves amounts to the 
ontra
tion of all the internal edgesof σv. For example, Fig. 6(a) shows a tree σ with some of its edges marked for
ontra
tion, and Figs. 6(b) and 6(
) show the 
orresponding maps σ −→ τ in twodi�erent styles (as in Figs. 5(b) and (
)); so τ is the tree obtained by 
ontra
tingthe marked edges of σ.The 
aveat is that some of the σv's may be the trivial tree,and these are repla
ed by the 1-leafed 
orolla • . This does not amount to the
ontra
tion of internal edges: it is, rather, the addition of a vertex to the middleof a (possibly external) edge. Any map of trees 
an be viewed as a 
ombinationof 
ontra
tions of internal edges and additions of verti
es to existing edges. Forexample, the map illustrated in Fig. 5 
ontra
ts two internal edges and adds avertex to one edge.Some further understanding of the 
ategory of trees 
an be gained by 
onsid-ering just those trees in whi
h ea
h vertex has at least two bran
hes 
oming upout of it. We shall 
all these `stable trees', following Kontsevi
h and Manin [9℄.



126(a) (b)Figure 7: (a) The 
ategory of 3-leafed stable trees, and (b) its 
lassifying spa
eFormally, StTreen is the full sub
ategory of Treen with obje
ts de�ned by there
ursive 
lauses
• | ∈ StTree1

• if n ≥ 2, k1, . . . , kn ∈ N, and T1 ∈ StTreek1 , . . . , Tn ∈ StTreekn then
(T1, . . . , Tn) ∈ StTreek1+···+kn ,and an n-leafed stable tree is an obje
t of StTreen. Sin
e a stable tree 
an 
ontainno subtree of the form • , all maps between stable trees are `surje
tions', that is,
onsist of just 
ontra
tions of internal edges, without insertions of new verti
es.The �rst few 
ategories StTreen are trivial:

StTree0 = ∅,
StTree1 = { | },

StTree2 =

{
•QQAA����

}where in ea
h 
ase there are no arrows ex
ept for identities. The 
ases n = 3, 4,and 5 are illustrated in Figs. 7(a), 8(a), and 9(a). Identity arrows are not shown,and the 
ategories StTreen are ordered sets: all diagrams 
ommute. Verti
es arealso omitted; sin
e the trees are stable, this does not 
ause ambiguity. Parts (b)of the �gures show the 
lassifying spa
es of these 
ategories, solid polytopes ofdimensions 1, 2 and 3. In the 
ase of 5-leafed trees (Fig. 9) only about half of the
ategory is shown, 
orresponding to the front fa
es of the polytope; the ba
k fa
esand the terminal obje
t of the 
ategory (the 5-leafed 
orolla), whi
h sits at the
entre of the polytope, are hidden. The whole polytope has 6 pentagonal fa
es, 3square fa
es, and 3-fold rotational symmetry about the 
entral verti
al axis.For n ≤ 5, the 
lassifying spa
e B(StTreen) is homeomorphi
 to the asso-
iahedron An (see [10℄ and Figure 4 above), and it seems very likely that thispersists for all n ∈ N. Indeed, the family of 
ategories (StTreen)n∈N forms a
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(a) (b)Figure 8: (a) The 
ategory of 4-leafed stable trees, and (b) its 
lassifying spa
esub-Cat-operad STTR of Cat-operad TR, and the 
lassifying spa
e fun
tor

B : Cat −→ Top preserves �nite produ
ts, so there is a (non-symmetri
) topo-logi
al operad B(STTR) whose nth part is the 
lassifying spa
e of StTreen.(To make B preserve �nite produ
ts we must interpret Top as the 
ategory of
ompa
tly generated or Kelley spa
es: see [11℄ and [12℄.) This operad B(STTR)is presumably isomorphi
 to Stashe�'s operad K = (Kn)n∈N. A K-algebra is
alled an A∞-spa
e, and should be thought of as an up-to-homotopy version of atopologi
al semigroup; the basi
 example is a loop spa
e.The 
ategories StTreen also give rise to the notion of an A∞-algebra (see [10℄).For ea
h n ∈ N, there is a 
hain 
omplex P (n) whose degree k part is the freeabelian group on the set of n-leafed stable trees with (n− k − 1) verti
es.When the signs are 
hosen appropriately this de�nes an operad P of 
hain
omplexes. A P -algebra is 
alled an A∞-algebra, to be thought of as an up-to-homotopy di�erential graded non-unital algebra; the usual example is the singular
hain 
omplex of an A∞-spa
e. A P -
ategory is 
alled an A∞-
ategory (see [13℄),and 
onsists of a 
olle
tion of obje
ts, a 
hain 
omplex Hom(a, b) for ea
h pair
(a, b) of obje
ts, maps de�ning binary 
omposition, 
hain homotopies witnessingthat this 
omposition is asso
iative up to homotopy, further homotopies witnessingthat the previous homotopies obey the pentagon law up to homotopy, and so on.Finally, sin
e the polytopes Kn = B(StTreen) des
ribe higher asso
iativity
onditions, they also arise in de�nitions of higher-dimensional 
ategory. For exam-ple, the pentagon K4 o

urs in the 
lassi
al de�nition of bi
ategory [13℄, and thepolyhedron K5 o

urs as the `non-abelian 4-
o
y
le 
ondition' in Gordon, Power
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(a)

(b)Figure 9: (a) About half of the 
ategory of 5-leafed stable trees, and (b) the 
lassifyingspa
e of the whole 
ategory



129and Street's de�nition of tri
ategory [14℄.We have already des
ribed operad of trees as the set trn of n-leafed trees.Maps σ −→ τ between trees are des
ribed by indu
tion on the stru
ture of τ :
• if τ = | then there is only one map into τ ; it has domain | and we write itas 1 | : | −→ |

• if τ = (τ1, . . . , τn) for τ1 ∈ trk1 , . . . , τn ∈ trkn then a map σ −→ τ 
onsistsof trees ρ ∈ trn), ρ1 ∈ trk1 , . . . , ρn ∈ trkn su
h that σ = ρ◦(ρ1, . . . , ρn),together with maps
ρ1

θ1−→ τ1, . . . , ρn
θn−→ τn,and we write this map as

σ = ρ◦(ρ1, . . . , ρn)
!ρ∗(θ1,...,θn)−→ (τ1, . . . , τn) = τ. (21)It follows easily that the n-leafed 
orolla νn = ( | , . . . , | ) is the terminal obje
t of

Treen: the unique map from σ ∈ trn to νn is written as !σ ∗ (1 | , . . . , 1 | ). The restof the stru
ture of the Cat-operad TR 
an be des
ribed in a similarly expli
itre
ursive fashion.To make pre
ise the intuition that a map of trees is a fun
tion of some sort,fun
tors
V : Tree −→ Setf , E : Treeop −→ Setf
an be de�ned, en
oding what happens on verti
es and edges respe
tively. Bothfun
tors turn out to be faithful, whi
h means that a map of trees is 
ompletelydetermined by its e�e
t on either verti
es or edges. The following a

ount of Vand E is just a sket
h.The more obvious of the two is the vertex fun
tor V , de�ned on obje
ts by

• V ( | ) = ∅

• V ((τ1, . . . , τn)) = 1 + V (τ1) + · · · + V (τn).The edge fun
tor E 
an be de�ned by �rst de�ning a fun
tor En : Tree(n)op −→
(n+1)/Setf for ea
h n ∈ N, where (n+1)/Setf is the 
ategory of sets equippedwith (n + 1) ordered marked points. This de�nition is again by indu
tion, the
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(a) V (θ)

σ

?
τ

θ

(b)1
2

3 4
5

6

7

1
2

3 4

5,6 7

6
E(θ)

Figure 10: The e�e
t on (a) verti
es and (b) edges of a 
ertain map of 4-leafed treesidea being that En asso
iates to a tree its edge-set with the n input edges andthe one output edge (root) distinguished. Fig. 10 illustrates a map θ : σ −→ τ in
Tree(4); part (a) (= Fig. 5(
)) shows its e�e
t V (θ) on verti
es; part (b) shows
E(θ), taking E(τ) = {1, . . . , 7} and labelling the image of i ∈ {1, . . . , 7} under
E(θ) by an i on the edge (E(θ))(i) of σ.A map of trees will be 
alled surje
tive if it is built up from 
ontra
tions ofinternal edges. Formally, the surje
tive maps in Tree are de�ned by:
• 1 | : | −→ | is surje
tive
• with notation as in (21), !ρ ∗ (θ1, . . . , θn) is surje
tive if and only if ea
h θiis surje
tive and ρ 6= | .The 
ru
ial part is the last: the unique map !ρ from ρ ∈ trn to the 
orolla νn ismade up of edge-
ontra
tions just as long as ρ is not the unit tree | .Dually, a map of trees is inje
tive if, informally, it is built up from addingverti
es to the middle of edges. Formally,
• 1 | : | −→ | is inje
tive
• with notation as above, !ρ ∗ (θ1, . . . , θn) is inje
tive if and only if ea
h θi isinje
tive and ρ is either νn or | (the latter only being possible if n = 1).



1313 Unital OperadsAlthough operads and the most of related stru
tures were de�ned in Se
tions 1and 2 as an arbitrary symmetri
 monoidal 
ategory with 
ountable 
oprodu
ts,in Se
tions 3�11 we de
ided to follow the 
hoi
e of [15℄ and formulate pre
isede�nitions only for the 
ategory Modk = (Modk,⊗) of modules over a 
ommutativeunital ring k, with the monoidal stru
ture given by the tensor produ
t ⊗ = ⊗kover k. The reason for su
h a de
ision was to give, in Se
tion 6, a 
lean 
onstru
tionof free operads. In a general monoidal 
ategory, this 
onstru
tion involves theunordered ⊙-produ
t [16℄ so the free operad is then a double 
olimit, see [16℄.Our 
hoi
e also allows us to write formulas involving maps in terms of elements,whi
h is sometimes a wel
ome simpli�
ation. We believe that the reader 
an easilyreformulate next de�nitions and notations into other monoidal 
ategories used inSe
tions 1�2 and 12�13 (see, also [16, 17℄).Let k[Σn] denote the k-group ring of the symmetri
 group Σn.
Definition 3.1 (May's operad) An operad in the 
ategory of k-modules is a
olle
tion P = {P(n)}n≥0 of right k[Σn]-modules, together with k-linear maps(operadi
 
ompositions)

γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn), (22)for n ≥ 1 and k1, . . . , kn ≥ 0, and a unit map η : k→ P(1). These data ful�ll thefollowing axioms.Asso
iativity. Let n ≥ 1 and let m1, . . . ,mn and k1, . . . , km, where m := m1 +

· · · + mn, be non-negative integers. Then the following diagram, in whi
h gs :=

m1 + · · ·+ms−1 and hs = kgs+1 · · · + kgs+1 , for 1 ≤ s ≤ n, 
ommutes.
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(
P(n)⊗

n⊗

s=1

P(ms)

)
⊗

m⊗

r=1

P(kr) -
γ ⊗ id

P(m)⊗
m⊗

r=1

P(kr)

P(n)⊗
n⊗

s=1


P(ms)⊗

ms⊗

q=1

P(kgs+q)


 P(n)⊗

n⊗

s=1

P(hs)-
id ⊗ (

⊗n
s=1 γ)

?

shu�e P(k1 + · · ·+ km)

?

γ

6
γ

Equivarian
e. Let n ≥ 1, let k1, . . . , kn be non-negative integers and σ ∈ Σn,
τ1 ∈ Σk1 , . . . , τn ∈ Σkn permutations. Let σ(k1, . . . , kn) ∈ Σk1+···+kn denote thepermutation that permutes n blo
ks (1, . . . , k1), . . . , (kn−1 + 1, . . . , kn) as σ per-mutes (1, . . . , n) and let τ1⊕· · ·⊕τn ∈ Σk1+···+kn be the blo
k sum of permutations.Then the following diagrams 
ommute.

P(n)⊗ P(k1)⊗ · · · ⊗ P(kn) P(n)⊗ P(kσ(1))⊗ · · · ⊗ P(kσ(n))

P(k1 + · · · + kn) P(kσ(1) + · · ·+ kσ(n))

σ ⊗ σ−1

-

σ(kσ(1), . . . , kσ(n))
-

γ

?

γ

?

P(n)⊗ P(k1)⊗ · · · ⊗ P(kn) P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)

P(k1 + · · · + kn) P(k1 + · · ·+ kn)

id ⊗ τ1 ⊗ · · · ⊗ τn-

τ1 ⊕ · · · ⊕ τn -

γ

?

γ

?Unitality. For ea
h n ≥ 1, the following diagrams 
ommute.
P(n)⊗ k⊗n

id ⊗ η⊗n

?

∼= -

γ

�
�
�
�
��3

P(n)

P(n)⊗ P(1)⊗n

k⊗ P(n)

η ⊗ id

?

∼= -

γ

�
�
�
�
��3

P(n)

P(1) ⊗ P(n)



133A straightforward modi�
ation of the above de�nition makes sense in anysymmetri
 monoidal 
ategory (M,⊙,1) su
h as the 
ategory of di�erential gradedmodules, simpli
ial sets, topologi
al spa
es, et
, see [16℄ or [17℄. We then speakabout di�erential graded operads, simpli
ial operads, topologi
al operads, et
.Example 3.1 All properties axiomatized by De�nition 3.1 
an be read from the
endomorphism operad EndV = {EndV (n)}n≥0 of a k-module V . It is de�nedby setting EndV (n) to be the spa
e of k-linear maps V ⊗n → V . The operadi

omposition of f ∈ EndV (n) with g1 ∈ EndV (k1), . . . , gn ∈ EndV (kn) is given bythe usual 
omposition of multilinear maps as

γ(f, g1, . . . , gn) := f(g1 ⊗ · · · ⊗ gn),the symmetri
 group a
ts by
γσ(f, g1, . . . , gn) := f(gσ−1(1) ⊗ · · · ⊗ gσ−1(n)), σ ∈ Σn,and the unit map η : k → EndV (1) is given by η(1) := idV : V → V . Theendomorphism operad 
an be 
onstru
ted over an obje
t of an arbitrary symmetri
monoidal 
ategory with an internal hom-fun
tor, as it was done in [16℄.One often 
onsiders operads A su
h that A(0) = 0 (the trivial k-module). Wewill indi
ate that A is of this type by writing A = {A(n)}n≥1.Example 3.2 Let us denote by Ass = {Ass(n)}n≥1 the operad with Ass(n) :=

k[Σn], n ≥ 1, and the operadi
 
omposition de�ned as follows. Let idn ∈ Σn,
idk1 ∈ Σk1 , . . . , idkn ∈ Σkn be the identity permutations. Then

γ(idn, idk1 , . . . , idkn) := idk1+···+kn ∈ Σk1+···+kn .The above formula determines γ(σ, τ1, . . . τn) for general σ ∈ Σn, τ1 ∈
Σk1 , . . . , τn ∈ Σkn by the equivarian
e axiom. The unit map η : k → Ass(1)is given by η(1) := id1.Example 3.3 Let us give an example of a topologi
al operad. For k ≥ 1, the
little k−discs operad Dk = {Dk(n)}n≥0 is de�ned as follows [16℄. Let

D
k := {(x1, . . . , xk) ∈ R

k; x21 + · · ·+ x2k ≤ 1}



134be the standard 
losed dis
 in Rk. A little k-dis
 is then a linear embedding
d : Dk →֒ Dk whi
h is the restri
tion of a linear map Rk → Rk with parallelaxes. The n-th spa
e Dk(n) of the little k-dis
 operad is the spa
e of all n-tuples
(d1, . . . , dn) of little k-dis
s su
h that the images of d1,. . . ,dn have mutually dis-joint interiors. The operad stru
ture is obvious � the symmetri
 group Σn a
ts on
Dk(n) by permuting the labels of the little dis
s and the stru
ture map γ is givenby 
omposition of embeddings. The unit is the identity embedding id : Dk →֒ Dk.Example 3.4 The 
olle
tion of normalized singular 
hains C∗(T) =

{C∗(T(n))}n≥0 of a topologi
al operad T = {T(n)}n≥0 is an operad in the 
at-egory of di�erential graded Z-modules. For a ring R, the singular homology
H∗(T(n);R) = H∗(C∗(T(n)) ⊗Z R) forms an operad H∗(T;R) in the 
ategoryof graded R-modules, see [15℄ for details.Definition 3.2 Let P = {P(n)}n≥0 and Q = {Q(n)}n≥0 be two operads. A homo-morphism f : P → Q is a sequen
e f = {f(n) : P(n) → Q(n)}n≥0 of equivariantmaps whi
h 
ommute with the operadi
 
ompositions and preserve the units.An operad R = {R(n)}n≥0 is a suboperad of P if R(n) is, for ea
h n ≥ 0,a Σn-submodule of P(n) and if all stru
ture operations of R are the restri
tionsof those of P. Finally, an ideal in the operad P is the 
olle
tion I = {I(n)}n≥0 of
Σn-invariant subspa
es I(n) ⊂ P(n) su
h that

γP(f, g1, . . . , gn) ∈ I(k1 + · · ·+ kn)if either f ∈ I(n) or gi ∈ I(ki) for some 1 ≤ i ≤ n.Example 3.5 Given an operad P = {P(n)}n≥0, let P̂ = {P̂(n)}n≥0 be the 
olle
-tion de�ned by P̂(n) := P(n) for n ≥ 1 and P̂(0) := 0. Then P̂ is a suboperad of
P. The 
orresponden
e P 7→ P̂ is a full embedding of the 
ategory of operads Pwith P(0) ∼= k into the 
ategory of operads A with A(0) = 0. Operads satisfying
P(0) ∼= k have been 
alled unital while operads with A(0) = 0 non − unitaloperads. We will not use this terminology be
ause non-unital operads will meansomething di�erent in this book, see Se
tion 4.An example of an operad A whi
h is not of the form P̂ for some operad Pwith P(0) ∼= k 
an be 
onstru
ted as follows. Observe �rst that operads P with theproperty that

P(0) ∼= k and P(n) = 0 for n ≥ 2



135are the same as augmented asso
iative algebras. Indeed, the spa
e P(1) with theoperation ◦1 : P(1)⊗P(1) → P(1) is 
learly a unital asso
iative algebra, augmentedby the 
omposition
P(1)

∼=−→ P(1)⊗ k
∼=−→ P(1) ⊗ P(0)

◦1−→ P(0) ∼= k.Now take an arbitrary unital asso
iative algebra A and de�ne the operad A =

{A(n)}n≥1 by
A(n) :=

{
A, for n = 1 and

0, for n 6= 1,with ◦1 : A(1) ⊗ A(1) → A(1) the multipli
ation of A. It follows from the above
onsiderations that A = P̂ for some operad P with P(0) ∼= k if and only if Aadmits an augmentation. Therefore any unital asso
iative algebra that does notadmit an augmentation produ
es the desired example.Example 3.6 Kernels, images, et
., of homomorphisms between operads in the
ategory of k-modules are de�ned 
omponentwise. For example, if f : P → Q issu
h homomorphism, then Ker(f) = {Ker(f)(n)}n≥0 is the 
olle
tion with
Ker(f)(n) := Ker

(
f : P(n)→ Q(n)

)
, n ≥ 0.It is 
lear that Ker(f) is an ideal in P.Also quotients are de�ned 
omponentwise. If I is an ideal in P, then the 
ol-le
tion P/I = {(P/I)(n)}n≥0 with (P/I)(n) := P(n)/I(n) for n ≥ 0, has a naturaloperad stru
ture indu
ed by the stru
ture of P. The 
anoni
al proje
tion P→ P/Ihas the expe
ted universal property. The kernel of this proje
tion equals I.Sometimes it su�
es to 
onsider operads without the symmetri
 group a
tion.This notion is formalized by:Definition 3.3 (May's non-Σ operad) A non−Σ operad in the 
ategoryof k-modules is a 
olle
tion P = {P(n)}n≥0 of k-modules, together with operadi

ompositions

γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn),for n ≥ 1 and k1, . . . , kn ≥ 0, and a unit map η : k → P(1) that ful�ll theasso
iativity and unitality axioms of De�nition 3.1.



136Ea
h operad 
an be 
onsidered as a non-Σ operad by forgetting the Σn-a
tions.On the other hand, given a non-Σ operad P, there is an asso
iated operad Σ[P]with Σ[P](n) := P(n) ⊗ k[Σn], n ≥ 0, with the stru
ture operations indu
ed bythe stru
ture operations of P. Operads of this form are sometimes 
alled regularoperads.Example 3.7 Consider the operad Com = {Com(n)}n≥1 su
h that Com(n)

:= k with the trivial Σn-a
tion, n ≥ 1, and the operadi
 
ompositions (22) givenby the 
anoni
al identi�
ations
Com(n)⊗ Com(k1)⊗ · · · ⊗ Com(kn) ∼= k⊗(n+1) ∼=−→ k ∼= Com(k1 + · · ·+ kn).The operad Com is obviously not regular. Observe also that Com ∼= Êndk, where
Êndk is the endomorphism operad of the ground ring without the initial 
omponent,see Example 3.5 for the notation.Let Ass denote the operad Com 
onsidered as a non-Σ operad. Its symmetriza-tion Σ[Ass ] then equals the operad Ass introdu
ed in Example 3.2.As we already observed in Se
tions 1 and 2, there is an alternative approa
hto operads. For the purposes of 
omparison, in the rest of this Se
tion and in thefollowing Se
tion we will refer to operads viewed from this alternative perspe
tiveas to Markl's operads.Definition 3.4 A Markl′s operad in the 
ategory of k-modules is a 
olle
-tion S = {S(n)}n≥0 of right k[Σn]-modules, together with k-linear maps (◦i-
ompositions)

◦i : S(m)⊗ S(n)→ S(m+ n− 1),for 1 ≤ i ≤ m and n ≥ 0. These data ful�ll the following axioms.Asso
iativity. For ea
h 1 ≤ j ≤ a, b, c ≥ 0, f ∈ S(a), g ∈ S(b) and h ∈ S(c),
(f ◦j g) ◦i h =





(f ◦i h) ◦j+c−1 g, for 1 ≤ i < j,

f ◦j (g ◦i−j+1 h), for j ≤ i < b+ j, and
(f ◦i−b+1 h) ◦j g, for j + b ≤ i ≤ a+ b− 1,see Figure 11.
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harts explaining the asso
iativity in Markl's operads.Equivarian
e. For ea
h 1 ≤ i ≤ m, n ≥ 0, τ ∈ Σm and σ ∈ Σn, let τ◦iσ ∈ Σm+n−1be given by inserting the permutation σ at the ith pla
e in τ . Let f ∈ S(m) and
g ∈ S(n). Then

(fτ) ◦i (gσ) = (f ◦τ(i) g)(τ ◦i σ).Unitality. There exists e ∈ S(1) su
h that
f ◦i e = e and e ◦1 g = g (23)for ea
h 1 ≤ i ≤ m, n ≥ 0, f ∈ S(m) and g ∈ S(n).Example 3.8 All axioms in De�nition 3.4 
an be read from the endomorphismoperad EndV = {EndV (n)}n≥0 of a k-module V reviewed in Example 3.1, with

◦i-operations given by
f ◦i g := f(id⊗i−1

V ⊗ g ⊗ id⊗m−1
V ),for f ∈ EndV (m), g ∈ EndV (n), 1 ≤ i ≤ m and n ≥ 0.



138The following proposition shows that De�nition 3.1 des
ribes the same obje
tsas De�nition 3.4.Proposition 3.1 The 
ategory of May's operads is isomorphi
 to the 
ategoryof Markl's operads.Proof. Given a Markl's operad S = {S(n)}n≥0 as in De�nition 3.4, de�ne a May'soperad P = May(S) by P(n) := S(n) for n ≥ 0, with the γ-operations given by
γ(f, g1, . . . , gn) := (· · · ((f ◦n gn) ◦n−1 gn−1) · · · ) ◦1 g1 (24)where f ∈ P(n), gi ∈ P(ki), 1 ≤ i ≤ n, k1, . . . , kn ≥ 0. The unit morphism

η : k→ P(1) is de�ned by η(1) := e. It is easy to verify that May(−) extends toa fun
tor from the 
ategory of Markl's operads the 
ategory of May's operads.On the other hand, given a May's operad P, one 
an de�ne a Markl's operad
S = Mar(P) by S(n) := P(n) for n ≥ 0, with the ◦i-operations:

f ◦i g := γ(f, e, . . . , e︸ ︷︷ ︸
i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

), (25)for f ∈ S(m), g ∈ S(n), m ≥ 1, n ≥ 0, where e := η(1) ∈ P(1). It is againobvious that Mar(−) extends to a fun
tor that the fun
tors May(−) and Mar(−)are mutually inverse isomorphisms between the 
ategory of Markl's operads andthe 
ategory of May's operads. �The equivalen
e between May's and Markl's operads implies that an operad
an be de�ned by spe
ifying ◦i-operations and a unit. This is sometimes simplerthat to de�ne the γ-operations dire
tly, as illustrated by:Example 3.9 Let Σ be a Riemann sphere, that is, a nonsingular 
omplex pro-je
tive 
urve of genus 0. By a pun
ture or a parametrized hole we mean apoint p of Σ together with a holomorphi
 embedding of the standard 
losed dis

U = {z ∈ C ; |z| ≤ 1} to Σ 
entered at the point. Thus a pun
ture is a holo-morphi
 embedding u : Ũ → Σ, where Ũ ⊂ C is an open neighborhood of U and
u(0) = p. We say that two pun
tures u1 : Ũ1 → Σ and u2 : Ũ2 → Σ are disjoint,if

u1(
o
U) ∩ u2(

o
U) = ∅,



139where o
U := {z ∈ C ; |z| < 1} is the interior of U .Let M̂0(n) be the moduli spa
e of Riemann spheres Σ with n + 1 disjointpun
tures ui : Ũi → Σ, 0 ≤ i ≤ n, modulo the a
tion of 
omplex proje
tiveautomorphisms. The topology of M̂0(n) is a very subtle thing and we are notgoing to dis
uss this issue here; see [18℄. The 
onstru
tions below will be madeonly `up to topology.'Renumbering the holes u1, . . . , un de�nes on ea
h M̂0(n) a natural right Σn-a
tion and the Σ-module M̂0 = {M̂0(n)}n≥0 forms a topologi
al operad undersewing Riemannian spheres at pun
tures. Let us des
ribe this operadi
 stru
tureusing the ◦i-formalism. Thus, let Σ represent an element x ∈ M̂0(m) and ∆represent an element y ∈ M̂0(n). For 1 ≤ i ≤ m, let ui : Ũi → Σ be the ithpun
ture of Σ and let u0 : Ũ0 → ∆ be the 0th pun
ture of ∆.There 
ertainly exists some 0 < r < 1 su
h that both Ũ0 and Ũi 
ontain thedis
 U1/r := {z ∈ C ; |z| < 1/r}. Let now Σr := Σ \ui(Ur) and ∆r := ∆ \u0(Ur).De�ne �nally

Ξ := (Σr
⊔

∆r)/ ∼,where the relation ∼ is given by
Σr ∋ ui(ξ) ∼ u0(1/ξ) ∈ ∆r,for r < |ξ| < 1/r. It is immediate to see that Ξ is a well-de�ned pun
turedRiemannian sphere, with n+m−1 pun
tures indu
ed in the obvious manner fromthose of Σ and ∆, and that the 
lass of the pun
tured surfa
e Ξ in the modulispa
e M̂0(m+ n− 1) does not depend on the representatives Σ, ∆ and on r. Wede�ne x ◦i y to be the 
lass of Ξ.The unit e ∈ M̂0(1) 
an be de�ned as follows. Let CP1 be the 
omplex pro-je
tive line with homogeneous 
oordinates [z, w], z, w ∈ C, [19, Example I.1.6℄.Let 0 := [0, 1] ∈ CP

1 and ∞ := [1, 0] ∈ CP
1. Re
all that we have two 
anoni
alisomorphisms p∞ : CP1 \∞ → C and p0 : CP1 \ 0→ C given by

p∞([z, w]) := z/w and p0([z, w]) := w/z.Then p−1
∞ : C→ CP

1 (respe
tively p−1
0 : C→ CP

1) is a pun
ture at 0 (respe
tivelyat ∞). We de�ne e ∈ M̂0(1) to be the 
lass of (CP1, p−1
0 , p−1

∞ ).It is not hard to verify that the above 
onstru
tions make the 
olle
tion M̂0 =

{M̂0(n)}n≥0 a Markl's operad. By Proposition 3.1, M̂0 is a also May's operad.



140In the rest of this book, we will 
onsider May's and Markl's operads as twoversions of the same obje
t whi
h we will 
all simply a unital operad.4 Non-unital OperadsIt turns out that the 
ombinatorial stru
ture of the moduli spa
e of stable genuszero 
urves is 
aptured by a 
ertain non-unital version of operad. Let M0,n+1be the moduli spa
e of (n+ 1)-tuples (x0, . . . , xn) of distin
t numbered pointson the 
omplex proje
tive line CP1 modulo proje
tive automorphisms, that is,transformations of the form
CP

1 ∋ [ξ1, ξ2] 7→ [aξ1 + bξ2, cξ1 + dξ2] ∈ CP
1,where a, b, c, d ∈ C with ad− bc 6= 0.The moduli spa
eM0,n+1 has, for n ≥ 2, a 
anoni
al 
ompa
ti�
ation M0(n) ⊃

M0,n+1 introdu
ed by A. Grothendie
k and F.F. Knudsen [20, 21℄. The spa
e
M0(n) is the moduli spa
e of stable (n+ 1)-pointed 
urves of genus 0:Definition 4.1 A stable (n+ 1)-pointed curve of genus 0 is an obje
t

(C;x0, . . . , xn),where C is a (possibly redu
ible) algebrai
 
urve with at most nodal singularitiesand x0, . . . , xn ∈ C are distin
t smooth points su
h that(i) ea
h 
omponent of C is isomorphi
 to CP
1,(ii) the graph of interse
tions of 
omponents of C (i.e. the graph whose verti
es
orrespond to the 
omponents of C and edges to the interse
tion points ofthe 
omponents) is a tree, and(iii) ea
h 
omponent of C has at least three spe
ial points, where a spe
ial pointmeans either one of the xi, 0 ≤ i ≤ n, or a singular point of C (the stability).It 
an be seen that a stable 
urve (C;x0, . . . , xn) admits no in�nitesimal automor-phisms that �x marked points x0, . . . , xn, therefore (C;x0, . . . , xn) is `stable' inthe usual sense. Observe also that M0(0) = M0(1) = ∅ (there are no stable 
urves



141with less than three marked points) and that M0(2) = the point 
orrespondingto the three-pointed stable 
urve (CP1;∞, 1, 0). The spa
e M0,n+1 forms an opendense part of M0(n) 
onsisting of marked 
urves (C;x0, . . . , xn) su
h that C isisomorphi
 to CP1.Let us try to equip the 
olle
tion M0 = {M0(n)}n≥2 with an operad stru
tureas in De�nition 3.1. For C = (C, x1, . . . , xn) ∈M0(n) and Ci = (Ci, y
i
1, . . . , y

i
ki
) ∈

M0(ki), 1 ≤ i ≤ n, let
γ(C,C1, . . . , Cn) ∈M0(k1 + · · ·+ kn) (26)be the stable marked 
urve obtained from the disjoint union C ⊔ C1 ⊔ · · · ⊔

Cn by identifying, for ea
h 1 ≤ i ≤ n, the point xi ∈ C with the point yi0 ∈
Ci, introdu
ing a nodal singularity, and relabeling the remaining marked pointsa

ordingly. The symmetri
 group a
ts on M0(n) by

(C, x0, x1, . . . , xn) 7−→ (C, x0, xσ(1), . . . , xσ(n)), σ ∈ Σn.We have de�ned the γ-
ompositions and the symmetri
 group a
tion, butthere is no room for the identity, be
ause M0(1) is empty! The above stru
tureis, therefore, a non-unital operad in the sense of the following de�nition (whi
his formulated, as all de�nitions in Se
tions 1.3�1.11, for the monoidal 
ategory of
k-modules).Definition 4.2 A May′s non − unital operad in the 
ategory of k-modulesis a 
olle
tion P = {P(n)}n≥0 of k[Σn]-modules, together with operadi
 
omposi-tions

γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn),for n ≥ 1 and k1, . . . , kn ≥ 0, that ful�ll the asso
iativity and equivarian
e axiomsof De�nition 3.1.We may as well de�ne on the 
olle
tion M0 = {M0(n)}n≥2 operations
◦i : M0(m)×M0(n)→M0(m+ n− 1) (27)for m,n ≥ 2, 1 ≤ i ≤ m, by

(C1; y0, . . . , ym)× (C2;x0, . . . , xn) 7−→ (C; y0, . . . , yi−1, x0, . . . , xn, yi+1, . . . , ym)
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yi = x0
•

C2

C1

�
�

���

J
JJFigure 12: The ◦i-
ompositions in M0 = {M0(n)}n≥2.where C is the quotient of the disjoint union C1

⊔
C2 given by identifying x0 with

yi at a nodal singularity, see Figure 12. The 
olle
tion M0 = {M0(n)}n≥2 with
◦i-operations (27) is an example of another version of non-unital operads, re
alledin:Definition 4.3 A non − unital Markl′s operad in the 
ategory of k-modules is a 
olle
tion P = {P(n)}n≥0 of k[Σn]-modules, together with operadi

ompositions

◦i : S(m)⊗ S(n)→ S(m+ n− 1),for 1 ≤ i ≤ m and n ≥ 0, that ful�ll the asso
iativity and equivarian
e axioms ofDe�nition 3.4.As we saw in Proposition 3.1, in the presen
e of operadi
 units, May's operadsare the same as Markl's operads. Surprisingly, the non-unital versions of thesestru
tures are radi
ally di�erent � Markl's operads 
apture more information thanMay's operads! This is made pre
ise in the following:Proposition 4.1 The 
ategory of non-unital Markl's operads is a sub
ategory ofthe 
ategory of non-unital May's operads.Proof. It is easy to see that (24) de�nes, as in the proof of Proposition 3.1, afun
tor ψMay(−) whi
h is an embedding of the 
ategory of non-unital Markl'soperads into the 
ategory of non-unital May's operads. �



143Observe that formula (25), inverse to (24), does not make sense without units.The relation between various versions of operads dis
ussed so far is summarizedin the following diagram of 
ategories and their in
lusions:
Mar

May

ψMay

?
�

�
?? non-unital Markl's operadsnon-unital May's operads

Markl's operadsMay's operads
The following example shows that non-unital Markl's operads form a propersub-
ategory of the 
ategory of non-unital May's operads.Example 4.1 We des
ribe a non-unital May's operad V = {V(n)}n≥0 whi
h isnot of the form ψMay(S) for some non-unital Markl's operad S. Let

V(n) :=

{
k, for n = 2 or 4, and

0, otherwise.The only non-trivial γ-
omposition is γ : V(2)⊗V(2)⊗V(2) → V(4), given as the
anoni
al isomorphism
V(2) ⊗ V(2) ⊗ V(2) ∼= k⊗3 ∼=−→ k ∼= V(4).Suppose that V = May(S) for some non-unital Markl's operad S. Then, a
-
ording to (24), for f, g1, g2 ∈ V(2),

γ(f, g1, g2) = (f ◦2 g2) ◦1 g1.Sin
e (f ◦2 g) ∈ V(3) = 0, this would imply that γ is trivial, whi
h is not true.Proposition 4.2 below shows that Markl's rather than May's non-unital oper-ads are true non-unital versions of operads. We will need the following de�nition inwhi
h K = {K(n)}n≥1 is the trivial (unital) operad with K(1) := k and K(n) = 0,for n 6= 1.



144Definition 4.4 An augmentation of an operad P in the 
ategory of k-modules is a homomorphism ǫ : P → K. Operads with an augmentation are 
alled
augmented operads. The kernel

P := Ker (ǫ : P → K)is 
alled the augmentation ideal.The following proposition was proved in [22℄.Proposition 4.2 The 
orresponden
e P 7→ P is an isomorphism between the
ategory of augmented operads and the 
ategory of Markl's non-unital operads.Proof. The ◦i-operations of P obviously restri
t to P, making it a non-unitalMarkl's operad. It is simple to des
ribe a fun
torial inverse S 7→ S̃ of the 
orre-sponden
e P 7→ P. For a Markl's non-unital operad S, denote by S̃ the 
olle
tion
S̃(n) :=

{
S(n), for n 6= 1, and

S(1)⊕ k for n = 1.
(28)The ◦i-operations of S̃ are uniquely determined by requiring that they extend the

◦i-operations of S and satisfy (23), with the unit e := 0 ⊕ 1k ∈ S(1) ⊕ k = S̃(1).Informally, S̃ is obtained from the Markl's non-unital operad S by adjoining aunit. �Observe that if S were a May's, not Markl's, non-unital operad, the 
onstru
-tion of S̃ des
ribed in the above proof would not make sense, be
ause we wouldnot know how to de�ne
γ(f, e, . . . , e︸ ︷︷ ︸

i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

)for f ∈ S(m), g ∈ S(n), m ≥ 2, n ≥ 0, 1 ≤ i ≤ m. Proposition 4.2 should be 
om-pared to the obvious statement that the 
ategory of augmented unital asso
iativealgebras is isomorphi
 to the 
ategory of (non-unital) asso
iative algebras. In thefollowing proposition, Oper denotes the 
ategory of k-linear operads and ψOperthe 
ategory of k-linear Markl's non-unital operads.



145Proposition 4.3 Let P be an augmented operad and Q an arbitrary operad inthe 
ategory of k-modules. Then there exists a natural isomorphism
MorOper(P,Q) ∼= MorψOper(P, ψMay(Q)). (29)The proof is simple and we leave it the reader. Combining (29) with theisomorphism of Proposition 4.2 one obtains a natural isomorphism
MorOper(S̃,Q) ∼= MorψOper(S, ψMay(Q)) (30)whi
h holds for ea
h Markl's non-unital operad S and operad Q. Isomorphism (30)means that ˜: ψOper → Oper and ψMay : Oper → ψOper are adjoint fun
tors.This adjun
tion will be used in the 
onstru
tion of free operads in Se
tion 6.In the rest of this book, non-unital Markl's operads will be 
alled simplynon-unital operads. This will not lead to 
onfusion, sin
e all non-unital operadsreferred to in the rest of this book will be Markl's.5 Operad AlgebrasAs we already remarked, operads are important through their representations
alled operad algebras or simply algebras.Definition 5.1 Let V be a k-module and EndV the endomorphism operad of Vre
alled in Example 3.1. A P-algebra is a homomorphism of operads ρ : P→ EndV .The above de�nition admits an obvious generalization into an arbitrary sym-metri
 monoidal 
ategory with an internal hom-fun
tor. The last assumption isne
essary for the existen
e of the `internal' endomorphism operad, see [16℄. De�-nition 5.1 
an be however unwrapped into the form given in [15℄ that makes sensein an arbitrary symmetri
 monoidal 
ategory without the internal hom-fun
torassumption:Proposition 5.1 Let P be an operad. A P-algebra is the same as a k-module Vtogether with maps

α : P(n)⊗ V ⊗n → V, n ≥ 0, (31)that satisfy the following axioms.



146Asso
iativity. For ea
h n ≥ 1 and non-negative integers k1, . . . , kn, the followingdiagram 
ommutes.
(
P(n)⊗

n⊗

s=1

P(ks)

)
⊗

n⊗

s=1

V ⊗ks -
γ ⊗ id

P(k1 + · · · + kn)⊗ V ⊗(k1+···+kn)

P(n)⊗
n⊗

s=1

(
P(ks)⊗ V ⊗ks

)
P(n)⊗ V ⊗n-

id ⊗ (
⊗n

s=1 α)

?

shu�e V

?

α

6α

Equivarian
e. For ea
h n ≥ 1 and σ ∈ Σn, the following diagram 
ommutes.
P(n)⊗ V ⊗n P(n)⊗ V ⊗n-σ ⊗ σ−1

V

Q
Q
Q
Qs

�
�

�
�+α αUnitality. For ea
h n ≥ 1, the following diagram 
ommutes.

k⊗ V

η ⊗ id

?

∼= -

α

�
�
�
�
��3

V

P(1) ⊗ VWe leave as an exer
ise to formulate a version of Proposition 5.1 that woulduse ◦i-operations instead of γ-operations.Example 5.1 In this example we verify, using Proposition 5.1, that algebras overthe operad Com = {Com(n)}n≥1 re
alled in Example 3.7 are ordinary 
ommutativeasso
iative algebras. To simplify the exposition, let us agree that v's with varioussubs
ripts denote elements of V . Sin
e Com(n) = k for n ≥ 1, the stru
turemap (31) determines, for ea
h n ≥ 1, a linear map µn : V ⊗n → V by
µn(v1, . . . , vn) := α(1n, v1, . . . , vn),



147where 1n denotes in this example the unit 1n ∈ k = Com(n). The asso
iativity ofProposition 5.1 says that
µn
(
µk1(v1, . . . , vk1), . . . , µkn(vk1+···+kn−1+1, . . . , vk1+···+kn)

)
=

µk1+···+kn(v1, . . . , vk1+···+kn), (32)for ea
h n, k1, . . . , kn ≥ 1. The equivarian
e of Proposition 5.1 means that ea
h
µn is fully symmetri


µn(v1, . . . , vn) = µn(vσ(1), . . . , vσ(n)), σ ∈ Σn, (33)and the unitality implies that µ1 is the identity map,
µ1(v) = v. (34)The above stru
ture 
an be identi�ed with a 
ommutative asso
iative multipli-
ation on V . Indeed, the bilinear map · := µ2 : V ⊗ V → V is 
learly asso
iative:

(v1 · v2) · v3 = v1 · (v2 · v3) (35)and 
ommutative:
v1 · v2 = v2 · v1. (36)On the other hand, µ1(v) := v and

µn(v1, . . . , vn) := (···(v1 · v2) · · · vn−1) · vn for n ≥ 2de�nes multilinear maps {µn : V ⊗n → V } satisfying (32)�(34). It is equally easyto verify that algebras over the operad Ass introdu
ed in Example 3.2 are ordinaryasso
iative algebras.Following Leinster [13℄, one 
ould say that (32)�(34) is an unbiased de�nitionof asso
iative 
ommutative algebras, while (35)�(36) is a de�nition of the sameobje
t biased towards bilinear operations. Operads therefore provide unbiasedde�nitions of algebras.Example 5.2 Let us denote by UCom the endomorphism operad Endk of theground ring k. It is easy to verify that UCom-algebras are unital 
ommutativeasso
iative algebras. We leave it to the reader to des
ribe the operad UAss gov-erning unital asso
iative operads.



148Algebras over a non-Σ operad P are de�ned as algebras, in the sense of De�-nition 5.1, over the symmetrization Σ[P] of P . Algebras over non-unital operadsdis
ussed in Se
tion 4 are de�ned by appropriate obvious modi�
ations of De�ni-tion 5.1.Example 5.3 Let Y be a topologi
al spa
e with a base point ∗ and Sk the k-dimensional sphere, k ≥ 1. The k-fold loop spa
e ΩkY is the spa
e of all 
ontinuousmaps Sk → Y that send the south pole of Sk to the base point of Y . Equivalently,
ΩkY is the spa
e of all 
ontinuous maps λ : (Dk,Sk−1)→ (Y, ∗) from the standard
losed k-dimensional dis
 Dk to Y that map the boundary Sk−1 of Dk to the basepoint of Y . Let us show, following Boardman and Vogt [23℄, that ΩkY is a naturaltopologi
al algebra over the little k-dis
s operad Dk = {Dk(n)}n≥0 re
alled inExample 3.3.The a
tion α : Dk(n) × (ΩkY )×n → ΩkY is, for n ≥ 0, de�ned as fol-lows. Given λi : (Dk,Sk−1) → (Y, ∗) ∈ ΩkY , 1 ≤ i ≤ n, and little k-dis
s
d = (d1, . . . , dn) ∈ Dk(n) as in Example 3.3, then

α(d, λ1, . . . , λn) : (D
k,Sk−1)→ (Y, ∗) ∈ ΩkYis the map de�ned to be λi : Dk → Y (suitably res
aled) on the image of di, andto be ∗ on the 
omplement of the images of the maps di, 1 ≤ i ≤ n.Therefore ea
h k-fold loop spa
e is a Dk-spa
e. The following 
lassi
al theoremis a 
ertain form of the inverse statement.Theorem 5.1 (Boardman-Vogt [23℄, May [24℄) A path-
onne
ted Dk-algebra Xhas the weak homotopy type of a k-fold loop spa
e.The 
onne
tedness assumption in the above theorem 
an be weakened by as-suming that the Dk-a
tion makes the set π0(X) of path 
omponents of X a group.Example 5.4 The non-unital operad M0 of stable pointed 
urves of genus 0 (also
alled the configuration (non − unital) operad) re
alled on page 141 is anon-unital operad in the 
ategory of smooth 
omplex proje
tive varieties. It there-fore makes sense, as explained in Example 3.4, to 
onsider its homology operad

H∗(M0,k) = {H∗(M0(n),k)}n≥2.



149An algebra over this non-unital operad is 
alled a (tree level) cohomological

conformal field theory or a hyper − commutative algebra [9℄. It 
on-sist of a family of linear operations {(−, . . . ,−) : V ⊗n → V }n≥2 whi
h are totallysymmetri
, that is
(vσ(1), . . . , vσ(n)) = (v1, . . . , vn),for ea
h permutation σ ∈ Σn. Moreover, we require the following form of asso
ia-tivity:

∑

(S,T )

((u, v, xi; i ∈ S), w, xj ; j ∈ T ) =
∑

(S,T )

(u, (v,w, xi; i ∈ S), xj ; j ∈ T ), (37)where u, v, w, x1, . . . , xn ∈ V and (S, T ) runs over disjoint de
ompositions S⊔T =

{1, . . . , n}. For n = 0, (37) means the (usual) asso
iativity of the bilinear operation
(−,−), i.e. ((u, v), w) = (u, (v,w)). For n = 1 we get

((u, v), w, x) + ((u, v, x), w) = (u, (v,w, x)) + (u, (v,w), x).Example 5.5 In this example, k is a �eld of 
hara
teristi
 0. The non-unitaloperad M0(R) = {M0(R)(n)}n≥2 of real points in the 
on�guration operad M0is 
alled the mosaic non − unital operad [25℄. Algebras over the homology
H∗(M0(R),k) = {H∗(M0(R)(n),k)}n≥2 of this operad were re
ently identi�ed [26℄with 2-Gerstenhaber algebras, whi
h are stru
tures (V, µ, τ) 
onsisting of a
ommutative asso
iative produ
t µ : V ⊗ V → V and an anti-symmetri
 degree
+1 ternary operation τ : V ⊗ V ⊗ V → V whi
h satis�es the generalized Ja
obiidentity ∑

σ

sgn(σ) · τ(τ(xσ(1), xσ(2), xσ(3)), xσ(4), xσ(5)) = 0,where the summation runs over all (3, 2)-unshu�es σ(1) < σ(2) < σ(3), σ(4) <
σ(5). Moreover, the ternary operation τ is tied to the multipli
ation µ by thedistributive law
τ(µ(s, t), u, v) = µ(τ(s, u, v), t) + (−1)(1+|u|+|v|)|s| · µ(s, τ(t, u, v)), s, t, u, v ∈ V,saying that the assignment s 7→ τ(s, u, v) is a degree (1 + |u| + |v|)-derivation ofthe asso
iative 
ommutative algebra (V, µ), for ea
h u, v ∈ V .



1506 Free Operads and a Category of rooted TreesThe purpose of this Se
tion is three-fold. First, we want to study free operadsbe
ause ea
h operad is a quotient of a free one. The se
ond reason why we areinterested in free operads is that their 
onstru
tion involves trees. Indeed, it turnsout that rooted trees provide `pasting s
hemes' for operads and that, repla
ingtrees by other types of graphs, one 
an introdu
e several important generaliza-tions of operads, su
h as 
y
li
 operads, modular operads, and PROPs. The lastreason is that the free operad fun
tor de�nes a monad whi
h provides an unbiasedde�nition of operads as algebras over this monad. Everything in this Se
tion iswritten for k-linear operads, but the 
onstru
tions 
an be generalized into an ar-bitrary symmetri
 monoidal 
ategory with 
ountable 
oprodu
ts (M,⊙,1) whosemonoidal produ
t ⊙ is distributive over 
oprodu
ts, see [16℄.Re
all that a Σ-module is a 
olle
tion E = {E(n)}n≥0 in whi
h ea
h E(n) is aright k[Σn]-module. There is an obvious forgetful fun
tor : Oper→ Σ-mod fromthe 
ategory Oper of k-linear operads to the 
ategory Σ-mod of Σ-modules.Definition 6.1 The free operad fun
tor is a left adjoint [27℄ Γ : Σ-mod →
Oper to the forgetful fun
tor : Oper → Σ-mod. This means that there exists afun
torial isomorphism

MorOper(Γ(E),P) ∼= MorΣ-mod(E, (P))for an arbitrary Σ-module E and operad P. The operad Γ(E) is the free operadgenerated by the Σ-module E. Similarly, the free non-unital operad fun
tor isa left adjoint Ψ : Σ-mod → ψOper of the obvious forgetful fun
tor ψ : ψOper →
Σ-mod, that is

MorψOper(Ψ(E), S) ∼= MorΣ-mod(E, ψ(S)),where E is a Σ-module and S a non-unital operad. The non-unital operad Ψ(E)is the free non-unital operad generated by the Σ-module E.Let ˜: ψOper→ Oper be the fun
tor of `adjoining the unit' 
onsidered in theproof of Proposition 4.2 on page 144. Fun
torial isomorphism (30) implies thatone may take
Γ := Ψ̃, (38)



151whi
h means that the free operad Γ(E) 
an be obtained from the free non-unitaloperad Ψ(E) by formally adjoining the unit.Let us indi
ate how to 
onstru
t the free non-unital operad Ψ(E), a pre
isedes
ription will be given later in this Se
tion. The free non-unital operad Ψ(E)must be built up from all formal ◦i-
ompositions of elements of E modulo the ax-ioms listed in De�nition 3.4. For instan
e, given f ∈ E(2), g ∈ E(3), h ∈ E(2) and
l ∈ E(0), the 
omponent Ψ(E)(5) must 
ontain the following �ve 
ompositions

(f ◦1 (g ◦2 l)) ◦3 h, (f ◦2 h) ◦1 (g ◦2 l), ((f ◦2 h) ◦1 g) ◦2 l,
((f ◦1 g) ◦2 l) ◦3 h and ((f ◦1 g) ◦4 h) ◦2 l.

(39)The elements in (39) 
an be depi
ted by the `�ow diagrams' of Figure 13.Nodes of these diagrams are de
orated by elements f, g, h and l of E in su
h away that an element of E(n) de
orates a node with n input lines, n ≥ 0. Thin`amoebas' indi
ate the nesting whi
h spe
i�es the order in whi
h the ◦i-operationsare performed.The asso
iativity of De�nition 3.4 however says that the result of the 
ompo-sition does not depend on the order, therefore the amoebas 
an be erased and the
ommon value of the 
ompositions represented by
hg

l

f
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•

•

A
A
A
A

�
�

�
�

@
@
@@
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A

�
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�
�

�
�

��
(40)

Let us look more 
losely how diagram (40) determines an element of the (stillhypotheti
al) free non-unital operad Ψ(E). The 
ru
ial fa
t is that the underlyinggraph of (40) is a planar rooted tree. Re
all (see Se
tion 2) that a tree is a �nite
onne
ted simply 
onne
ted graph without loops and multiple edges. For a tree
T we denote, as usual, by Vert(T ) the set of verti
es and Edg(T ) the set of edgesof T . The number of edges adja
ent to a vertex v ∈ Vert(T ) is 
alled the valen
eof v and denoted val(v). We assume that one is given a subset

ext(T ) ⊂ {v ∈ Vert(T ); val(v) = 1}
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(f ◦1 (g ◦2 l)) ◦3 h =
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Figure 13: Flow diagrams in non-unital operads.



153of external verti
es, the remaining verti
es are internal . Let us denote
vert(T ) := Vert(T ) \ ext(T )the set of all internal verti
es. Hen
eforth, we will assume that our trees have atleast one internal vertex. This ex
ludes at this stage the ex
eptional tree 
onsistingof two external verti
es 
onne
ted by an edge.Edges adja
ent to external verti
es are the legs of T . A tree is rooted if one ofits legs, 
alled the root , is marked and all other edges are oriented, pointing to theroot. The legs di�erent from the root are the leaves of T . For example, the treein (40) has 4 internal verti
es de
orated f , g, h and l, and 4 leaves. Finally, theplanarity means that an embeddings of T into the plane is spe
i�ed. In Se
tions6�11 for all pi
tures, the root will always be pla
ed on the top. By a vertex wewill always mean an internal one.The planarity and a 
hoi
e of the root of the underlying tree of (40) spe
i�esa total order of the set in(v) of input edges of ea
h vertex v ∈ vert(T ) as well asa total order of the set Leaf (T ) of the leaves of T , by numbering from the left tothe right:

hg
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(41)
This tells us that l should be inserted into the se
ond input of g, g into the �rstinput of f and h into the se
ond input of f . Using `abstra
t variables' v1, v2, v3and v4, the element represented by (41) 
an also be written as the `
omposition'
f(g(v1, l, v2), h(v3, v4)).Now we need to take into a

ount also the symmetri
 group a
tion. If τ is thegenerator of Σ2, then the obvious equality

f(g(v1, l, v2), h(v3, v4)) = fτ(h(v3, v4), g(v1, l, v2))of `abstra
t 
ompositions' 
oming from the equivarian
e of De�nition 3.4 trans-



154lates into the following equality of �ow diagrams:
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Relation (42) shows that the equivarian
e of De�nition 3.4 violates the linearorders indu
ed by the planar embedding of T . This leads us to the 
on
lusion thatthe �ow diagrams des
ribing elements of free non-unital operads are (abstra
t,non-planar) rooted, leaf-labeled de
orated trees.Let us des
ribe, after these motivations, a pre
ise 
onstru
tion of Ψ(E). The�rst subtlety one needs to understand is how to de
orate verti
es of non-planartrees. In Se
tions 6�11, we need to explain how ea
h Σ-module E = {E(n)}n≥0naturally extends into a fun
tor (denoted again E) from the 
ategory Setf of�nite sets and their bije
tions to the 
ategory of k-modules. If X and Y are �nitesets, denote by

Bij (Y,X) := {ϑ : X
∼=−→ Y } (43)the set of all isomorphisms between X and Y (noti
e the unexpe
ted dire
tion ofthe arrow!). It is 
lear that Bij (Y,X) is a natural left AutY - right AutX -bimodule,where AutX := Bij (X,X) and AutY := Bij (Y, Y ) are the sets of automorphismswith group stru
ture given by 
omposition. For a �nite set S ∈ Setf of 
ardinality

n and a Σ-module E = {E(n)}n≥0 de�ne E(S) to be
E(S) := E(n)×Σn Bij ([n], S) (44)where, as usual, [n] := {1, . . . , n} and, of 
ourse, Σn = Aut [n].Let us re
all that a (leaf-) labeled rooted n-tree is a rooted tree T togetherwith a spe
i�ed bije
tion ℓ : Leaf (T ) ∼→ [n]. Let Treen be the 
ategory of labeledrooted n-trees and their bije
tions. For T ∈ Treen de�ne
E(T ) :=

⊗

v∈vert(T )
E(in(v)) (45)



155where in(v) is, as before, the set of all input edges of a vertex v ∈ vert(T ). It iseasy to verify that E 7→ E(T ) de�nes a fun
tor from the 
ategory Treen to the
ategory of k-modules.Re
all that the 
olimit of a 
ovariant fun
tor F : D→ Modk is the quotient
colim
x ∈ D

F (x) =
⊕

x∈D
F (x)/ ∼,where ∼ is the equivalen
e generated by

F (y) ∋ a ∼ F (f)(a) ∈ F (z),for ea
h a ∈ F (y), y, z ∈ D and f ∈ MorD(y, z). De�ne �nally
Ψ(E)(n) := colim

T ∈ Treen

E(T ), n ≥ 0. (46)The following theorem was proved in [16℄.Theorem 6.1 There exists a natural non-unital operad stru
ture on the Σ-module
Ψ(E) = {Ψ(E)(n)}n≥0,with the ◦i-operations given by the grafting of trees and the symmetri
 group re-labeling the leaves, su
h that Ψ(E) is the free non-unital operad generated by the

Σ-module E.One 
ould simplify (46) by introdu
ing Tree(n) as the set of isomorphism
lasses of n-trees from Treen and de�ning Ψ(E) by the formula
Ψ(E)(n) =

⊕

[T ]∈Tree(n)
E(T ), n ≥ 0, (47)whi
h does not involve the 
olimit. The drawba
k of (47) is that it assumes a
hoi
e of a representative [T ] of ea
h isomorphism 
lass in Tree(n), while (46) isfun
torial and admits simple generalizations to other types of operads and PROPs.See [16℄ for other representations of the free non-unital operad fun
tor.Having 
onstru
ted the free non-unital operad Ψ(E), we may use (38) to de�nethe free operad Γ(E). This is obviously equivalent to enlarging, in (46) for n = 1,



156the 
ategory Treen by the ex
eptional rooted tree with one leg and no internalvertex. If we denote this enlarged 
ategory of trees and their isomorphisms (whi
hhowever di�ers from Treen only at n = 1) by UTreen, we may represent the freeoperad as
Γ(E)(n) := colim

T ∈ UTreen

E(T ), n ≥ 0. (48)If E is a Σ-module su
h that E(0) = E(1) = 0, then (47) redu
es to a sum-mation over redu
ed trees, that is trees whose all verti
es have at least two inputedges. By simple 
ombinatori
s, the number of isomorphism 
lasses of redu
edtrees in Treen is �nite for ea
h n ≥ 0. This implies the following proposition thatsays that operads are relatively small obje
ts.Proposition 6.1 Let E = {E(n)}n≥0 be a Σ-module su
h that
E(0) = E(1) = 0and that E(n) are �nite-dimensional for n ≥ 2. Then the spa
es Ψ(E)(n) and

Γ(E)(n) are �nite-dimensional for ea
h n ≥ 0.We 
lose this Se
tion by showing how the free operad fun
tor 
an be used tode�ne operads. It follows from general prin
iples that any operad P is a quotient
P = Γ(E)/(R), where E and R are Σ-modules and (R) is the operadi
 ideal (seeDe�nition 3.2) generated by R in Γ(E).Example 6.1 The 
ommutative asso
iative operad Com re
alled in Example 3.7is generated by the Σ-module

ECom (n) :=

{
k · µ, if n = 2 and

0, if n 6= 2.where k · µ is the trivial representation of Σ2. The ideal of relations is generatedby
RCom := Spank{µ(µ ⊗ id)− µ(id ⊗ µ)} ⊂ Γ(ECom )(3),where µ(µ ⊗ id) − µ(id ⊗ µ) is the obvious shorthand for γ(µ, µ, e) − γ(µ, e, µ),with e the unit of Γ(ECom ).



157Similarly, the operad Ass for asso
iative algebras reviewed in Example 3.2 isgenerated by the Σ-module EAss su
h that
EAss(n) := {k[Σ2], if n = 2 and

0, if n 6= 2.The ideal of relations is generated by the k[Σ3]-
losure RAss of the asso
iativity
α(α ⊗ id)− α(id ⊗ α) ∈ Γ(EAss)(3), (49)where α is a generator of the regular representation EAss(2) = k[Σ2].Example 6.2 The operad Lie governing Lie algebras is the quotient Lie :=

Γ(ELie)/(RLie), where ELie is the Σ-module
ELie(n) := { k · β, if n = 2 and

0, if n 6= 2,with k · β is the signum representation of Σ2. The ideal of relations (RLie) isgenerated by the Ja
obi identity:
β(β ⊗ id) + β(β ⊗ id)c+ β(β ⊗ id)c2 = 0, (50)in whi
h c ∈ Σ3 is the 
y
li
 permutation (1, 2, 3) 7→ (2, 3, 1).Example 6.3 We show how to des
ribe the presentations of the operads Ass and

Lie given in Examples 6.1 and 6.2 in a simple graphi
al language. The generator
α of EAss is an operation with two inputs and one output, so we depi
t it as .The asso
iativity (49) then reads as

= ,therefore Ass = Γ( )/( = ). Also the operad for Lie algebras is generatedby one bilinear operation , but this time the operation is anti-symmetri

1 2

= −
2 1

.The Ja
obi identity (50) reads
1 2 3

+
2 3 1

+
3 1 2

= 0.



158The kind of des
ription used in the above examples is `tautologi
al' in thesense that it just says that the operad P governing a 
ertain type of algebras isgenerated by operations of these algebras, with an appropriate symmetry, modulothe axioms satis�ed by these operations. It does not say dire
tly anything aboutthe properties of the individual spa
es P(n), n ≥ 0. Des
ribing these individual
omponents may be a very nontrivial task, see for example the formula for the
Σn-modules Lie(n) given in [16℄. Operads in Examples 6.1 and 6.2 are quadrati
in the sense of the following:Definition 6.2 An operad P is quadratic if it has a presentation P =

Γ(E)/(R), where E = P(2) and R ⊂ Γ(E)(3).Quadrati
 operads form a very important 
lass of operads. Ea
h quadrati
operad P has a quadrati
 dual P! [28℄, [16℄ whi
h is a quadrati
 operad de�ned,roughly speaking, by dualizing the generators of P and repla
ing the relationsof P by their annihilator in the dual spa
e. For example, Ass ! = Ass, Com ! =

Lie and Lie ! = Com. A quadrati
 operad P is Koszul if it has the homotopytype of the bar 
onstru
tion of its quadrati
 dual [28℄, [16℄. For quadrati
 Koszuloperads, there is a deep understanding of the derived 
ategory of the 
orrespondingalgebras. Operads Ass, Com and Lie above, as well as most quadrati
 operadsone en
ounters in everyday life, are Koszul.7 Category of May's TreesIn this Se
tion, we review the de�nition of a triple (monad) and give, in Theo-rem 7.1, a des
ription of unital and non-unital operads in terms of algebras overa triple. The relevant triples 
ome from the endofun
tors Ψ and Γ re
alled inSe
tion 6. Let End(C) be the stri
t symmetri
 monoidal 
ategory of endofun
torson a 
ategory C where multipli
ation is the 
omposition of fun
tors.Definition 7.1 A triple (also 
alled a monad) T on a 
ategory C is an as-so
iative and unital monoid (T, µ, υ) in End(C). The multipli
ation µ : TT → Tand unit morphism υ : id → T satisfy the axioms given by 
ommutativity of thediagrams in Figure 14.
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TFigure 14: Asso
iativity and unit axioms for a triple.Triples arise naturally from pairs of adjoint fun
tors. Given an adjoint pair [27,II.7℄
F

G

BAY
j

,with asso
iated fun
torial isomorphism
MorA(F (X), Y ) ∼= MorB(X,G(Y )), X ∈ B, Y ∈ A,there is a triple in B de�ned by T := GF . The unit of the adjun
tion id → GFde�nes the unit υ of the triple and the 
ounit of the adjun
tion FG→ id indu
esa natural transformation GFGF → GF whi
h de�nes the multipli
ation µ. Infa
t, it is a theorem of Eilenberg and Moore [29℄ that all triples arise in this wayfrom adjoint pairs. This is exa
tly the situation with the free operad and freenon-unital operad fun
tors that were des
ribed in Se
tion 6. We will show howoperads and non-unital operads 
an a
tually be de�ned using the 
on
ept of analgebra over a triple:Definition 7.2 A T -algebra or algebra over the triple T is an obje
t A of

C together with a stru
ture morphism α : T (A)→ A satisfying
α(T (α)) = α(µA) and αυA = idA,see Figure 15.The 
ategory of T -algebras in C will be denoted AlgT (C). Sin
e the free non-unital operad fun
tor Ψ and the free operad fun
tor Γ des
ribed in Se
tion 6 areleft adjoints to ψ : ψOper → Σ-mod and : Oper → Σ-mod, respe
tively, thefun
tors ψΨ (denoted simply Ψ) and Γ (denoted Γ) de�ne triples on Σ-mod.
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AFigure 15: T -algebra stru
ture.Theorem 7.1 A Σ-module S is a Ψ-algebra if and only if it is a non-unital operadand it is a Γ-algebra if and only if it is an operad. In shorthand:
AlgΨ(Σ-mod) ∼= ψOper and AlgΓ(Σ-mod) ∼= Oper.Proof.We outline �rst the proof of the impli
ation in the dire
tion from algebra tonon-unital operad. Let S be aΨ-algebra. The restri
tion of the stru
ture morphism

α : Ψ(S) −→ S to the 
omponents of Ψ(S) supported on trees with one internaledge de�nes the non-unital operad 
omposition maps ◦i, as indi
ated by:
α7−→ f ◦i g.
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��In the opposite dire
tion, for a non-unital operad S, the Ψ-algebra stru
ture

α : Ψ(S) → S is the 
ontra
tion along the edges of underlying trees, using the
◦i-operations. The proof that Γ-algebras are operads is similar. �Let us 
hange our perspe
tive and 
onsider formula (46) as de�ning an endo-fun
tor Ψ : Σ-mod→ Σ-mod, ignoring that we already know that it represents freenon-unital operads. We are going to 
onstru
t maps

µ : ΨΨ→ Ψ and υ : id → ΨmakingΨ a triple on the 
ategory Σ-mod. Let us start with the triple multipli
ation
µ. It follows from (46) that, for ea
h Σ-module E,

ΨΨ(E)(n) := colim
T ∈ Treen

Ψ(E)(T ), n ≥ 0.
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•Figure 16: Bra
keted trees. The left pi
ture shows an element of ΨΨ(E)(5) while theright pi
ture shows the same element interpreted, after erasing the bra
es indi
ated bythin 
y
les, as an element of Ψ(E)(5). For simpli
ity, we did not show the de
oration ofverti
es by elements of E.The elements in the right hand side are represented by rooted trees T with ver-ti
es de
orated by elements of Ψ(E), while elements of Ψ(E) are represented byrooted trees with verti
es de
orated by E. We may therefore imagine elements of

ΨΨ(E) as `bra
keted' rooted trees, in the sense indi
ated in Figure 16. The triplemultipli
ation µE : ΨΨ(E)→ Ψ(E) then simply erases the bra
es. The triple unit
υE : E → Ψ(E) identi�es elements of E with de
orated 
orollas:

E(n) ∋ e ←→ •
. . .︸ ︷︷ ︸

n inputs

e ∈ Ψ(E)(n), n ≥ 0.It is not di�
ult to verify that the above 
onstru
tions indeed make Ψ a triple,
ompare [16℄. Now we 
an de�ne non-unital operads as algebras over the triple
(Ψ, µ, υ). The advantage of this approa
h is that, by repla
ing Treen in (46) byanother 
ategory of trees or graphs, one may obtain triples de�ning other typesof operads and their generalizations.We have already seen in (48) that enlarging Treen into UTreen by adding theex
eptional tree, one gets the triple Γ des
ribing (unital) operads. It is not di�
ultto see that non-unital May's operads are related to the 
ategory MTreen of May'strees whi
h are, by de�nition, rooted trees whose verti
es 
an be arranged into
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� Figure 17: A May's tree.levels as in Figure 17. Non-unital May's operads are then algebras over the triple

M : Σ-mod→ Σ-mod de�ned by
M(E)(n) := colim

T ∈ MTreen

E(T ), n ≥ 0.These observations are summarized in the �rst three lines of the table in Figure 24on page 188.8 Cy
li
 Operads and non-rooted TreesIn the following two Se
tions we use the approa
h developed in Se
tion 7 to in-trodu
e 
y
li
 and modular operads. We re
alled, in Example 3.9, the operad
M̂0 = {M̂0(n)}n≥0 of Riemann spheres with parametrized labeled holes. Ea
h
M̂0(n) was a right Σn-spa
e, with the operadi
 right Σn-a
tion permuting thelabels 1, . . . , n of the holes u1, . . . , un. But ea
h M̂0(n) obviously admits a highertype of symmetry whi
h inter
hanges labels 0, . . . , n of all holes, in
luding the la-bel of the `output' hole u0. Another example admitting a similar higher symmetryis the 
on�guration (non-unital) operad M0 = {M0(n)}n≥2.These examples indi
ate that, for some operads, there is no 
lear distin
tionbetween `inputs' and the `output.' Cy
li
 operads, introdu
ed by E. Getzler andM.M. Kapranov in [8℄, formalize this phenomenon. They are, roughly speaking,operads with an extra symmetry that inter
hanges the output with one of theinputs. Let us re
all some notions ne
essary to give a pre
ise de�nition.



163We remind the reader that in this Se
tion, as well as everywhere in Se
tions3�11, main de�nitions are formulated over the underlying 
ategory of k-modules,where k is a 
ommutative asso
iative unital ring. However as in Se
tions 1�2, forsome 
onstru
tions, we will require k to be a �eld ; we will indi
ate this as usualby speaking about ve
tor spa
es instead of k-modules.Let Σ+
n be the permutation group of the set {0, . . . , n}. The group Σ+

n is, of
ourse, non-
anoni
ally isomorphi
 to the symmetri
 group Σn+1. We identify Σnwith the subgroup of Σ+
n 
onsisting of permutations σ ∈ Σ+

n su
h that σ(0) = 0.If τn ∈ Σ+
n denotes the 
y
le (0, . . . , n), that is, the permutation with τn(0) =

1, τn(1) = 2, . . . , τn(n) = 0, then τn and Σn generate Σ+
n .Re
all that a 
y
li
 Σ-module or a Σ+-module is a sequen
e W = {W (n)}n≥0su
h that ea
h W (n) is a (right) k[Σ+

n ]-module. Let Σ+-mod denote the 
ategoryof 
y
li
 Σ-modules. As (ordinary) operads were Σ-modules with an additionalstru
ture, 
y
li
 operads are Σ+-modules with an additional stru
ture.We will also need the following `
y
li
' analog of (44): if X is a set with n+1elements and W ∈ Σ+-mod, then
W ((X)) :=W (n)×Σ+

n
Bij ([n]+,X), (51)where [n]+ := {0, . . . , n}, n ≥ 0. Double bra
kets in W ((X)) remind us that the

nth pie
e of the 
y
li
 Σ-module W = {W (n)}n≥0 is applied on a set with n+ 1elements, using the extended Σ+
n -symmetry. Therefore

W (({0, . . . , n})) ∼=W (n) while W ({0, . . . , n}) ∼=W (n+ 1), n ≥ 0.Pasting s
hemes for 
y
li
 operads are 
y
li
 (leg-) labeled n-trees, by whi
hwe mean non-rooted trees, with legs labeled by the set {0, . . . , n}. An example ofsu
h a tree is given in Figure 18. Sin
e we do not assume a 
hoi
e of the root,the edges of a 
y
li
 tree C are not dire
ted and it does not make sense to speakabout inputs and the output of a vertex v ∈ vert(C). Let Tree+n be the 
ategoryof 
y
li
 labeled n-trees and their bije
tions.For a 
y
li
 Σ-module W and a 
y
li
 labeled tree T we have the following
y
li
 version of the produ
t (45)
W ((T )) :=

⊗

v∈vert(T )
W ((edge(v))).
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Figure 18: A 
y
li
 labeled tree from Tree+9 .The 
on
eptual di�eren
e between (45) and the above formula is that instead ofthe set in(v) of in
oming edges of a vertex v of a rooted tree, here we use the set
edge(v) of all edges in
ident with v. Let, �nally, Ψ+ : Σ+-mod → Σ+-mod be thefun
tor

Ψ+(W )(n) := colim
T ∈ Tree

+
n

W ((T )), n ≥ 0, (52)equipped with the triple stru
ture of `forgetting the bra
es' similar to that re-viewed on page 161. We will use also the `extended' triple Γ+ : Σ+-mod→ Σ+-mod,
Γ+(W )(n) := colim

T ∈ UTree
+
n

W ((T )), n ≥ 0,where UTree+n is the obvious extension of the 
ategory Tree+n by the ex
eptionaltree .Definition 8.1 A cyclic (resp. non − unital cyclic) operad is an algebraover the triple Γ+ (resp. the triple Ψ+) introdu
ed above.In the following proposition, whi
h slightly improves [8℄, τn ∈ Σ+
n denotes the
y
le (0, . . . , n).Proposition 8.1 A non-unital 
y
li
 operad is the same as a non-unital operad

C = {C(n)}n≥0 (De�nition 3.4) su
h that the right Σn-a
tion on C(n) extends, forea
h n ≥ 0, to an a
tion of Σ+
n with the property that for p ∈ C(m) and q ∈ C(n),
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1 ≤ i ≤ m, n ≥ 0, the 
omposition maps satisfy

(p ◦i q)τm+n−1 =

{
(qτn) ◦n (pτm), ifi = 1, and

(pτm) ◦i−1 q, for2 ≤ i ≤ m.The above stru
ture is a (unital) 
y
li
 operad if moreover there exists a Σ+
1 -invariant operadi
 unit e ∈ C(1).Proposition 8.1 gives a biased de�nition of 
y
li
 operads whose obvious mod-i�
ation (see [16℄) makes sense in an arbitrary symmetri
 monoidal 
ategory. We
an therefore speak about topologi
al 
y
li
 operads, di�erential graded 
y
li
operads, simpli
ial 
y
li
 operads et
. Observe that there are no non-unital 
y
li
May's operads be
ause it does not make sense to speak about levels in trees with-out a 
hoi
e of the root.Example 8.1 Let V be a �nite dimensional ve
tor spa
e and B : V ⊗ V → k anondegenerate symmetri
 bilinear form. The form B indu
es the identi�
ation

Lin(V ⊗n, V ) ∋ f 7−→ B̂(f) := B(−, f(−)) ∈ Lin(V ⊗(n+1),k)of the spa
es of linear maps. The standard right Σ+
n -a
tion

B̂(f)σ(v0, . . . , vn) = B̂(f)(vσ−1(0), . . . , vσ−1(n)), σ ∈ Σ+
n , v0, . . . , vn ∈ V,de�nes, via this identi�
ation, a right Σ+

n -a
tion on Lin(V ⊗n, V ), that is, on the
nth pie
e of the endomorphism operad EndV = {EndV (n)}n≥0 re
alled in Exam-ple 3.1. It is easy to show that, with the above a
tion, EndV is a 
y
li
 operad in themonoidal 
ategory of ve
tor spa
es, 
alled the cyclic endomorphism operadof the pair V = (V,B). The biased de�nition of 
y
li
 operads given in Proposi-tion 8.1 
an be read o� from this example.Example 8.2 We saw in Example 3.5 that a unital operad A = {A(n)}n≥0 su
hthat A(n) = 0 for n 6= 1 is the same as a unital asso
iative algebra. Similarly,it 
an be easily shown that a 
y
li
 operad C = {C(n)}n≥0 satisfying C(n) = 0for n 6= 1 is the same as a unital asso
iative algebra A with a linear involutiveantiautomorphism, by whi
h we mean a k-linear map ∗ : A→ A su
h that

(ab)∗ = b∗a∗, (a∗)∗ = a and 1∗ = 1,for arbitrary a, b ∈ A.



166Let P = Γ(E)/(R) be a quadrati
 operad as in De�nition 6.2. The a
tion of Σ2on E extends to an a
tion of Σ+
2 , via the sign representation sgn : Σ+

2 → {±1} =
Σ2. It 
an be easily veri�ed that this a
tion indu
es a 
y
li
 operad stru
ture onthe free operad Γ(E). In parti
ular, Γ(E)(3) is a right Σ+

3 -module.Definition 8.2 We say that the operad P is a cyclic quadratic operad if, inthe above presentation, R is a Σ+
3 -invariant subspa
e of Γ(E)(3).If the 
ondition of the above de�nition is satis�ed, P has a natural indu
ed
y
li
 operad stru
ture.Example 8.3 By [8℄, all quadrati
 operads generated by a one-dimensional spa
eare 
y
li
 quadrati
, therefore the operads Lie and Com are 
y
li
 quadrati
.Also the operads Ass and the operad Poiss for Poisson algebras are 
y
li
quadrati
 [8℄. A surprisingly simple operad whi
h is 
y
li
 and quadrati
, but not
y
li
 quadrati
, is 
onstru
ted in [62℄.The operad M̂0 of Riemann spheres with labeled pun
tures reviewed in Ex-ample 3.9 is a topologi
al 
y
li
 operad. The 
on�guration operad M0 re
alled onpage 141 is a non-unital topologi
al 
y
li
 operad. Important examples of non-
y
li
 operads are the operad pre-Lie for pre-Lie algebras [62, Se
tion 3℄ and theoperad Leib for Leibniz algebras [8℄.Let C be an operad, α : C(n) ⊗ V ⊗n → V , n ≥ 0, a C-algebra with theunderlying ve
tor spa
e V as in Proposition 5.1 and B : V ⊗ V → U a bilinearform on V with values in a ve
tor spa
e U . We 
an form a map

B̃(α) : C(n)⊗ V ⊗(n+1) → U, n ≥ 0, (53)by the formula
B̃(α)(c ⊗ v0 ⊗ · · · vn) := B(v0, α(c ⊗ v1 ⊗ · · · vn)), c ∈ C(n), v0, . . . , vn ∈ V.Suppose now that the operad C is 
y
li
, in parti
ular, that ea
h C(n) is a right

Σ+
n -module. We say that the bilinear form B : V ⊗ V → U is invariant [8℄, ifthe maps B̃(α) in (53) are, for ea
h n ≥ 0, invariant under the diagonal a
tionof Σ+

n on C(n)⊗ V ⊗(n+1). We leave as an exer
ise to verify that the invarian
e of
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B̃(α) for n = 1 together with the existen
e of the operadi
 unit implies that B issymmetri
,

B(v0, v1) = B(v1, v0), v0, v1 ∈ V.Definition 8.3 A cyclic algebra over a 
y
li
 operad C is a C-algebra stru
-ture on a ve
tor spa
e V together with a nondegenerate invariant bilinear form
B : V ⊗ V → k.By [16℄, a 
y
li
 algebra is the same as a 
y
li
 operad homomorphism C →
EndV , where EndV is the 
y
li
 endomorphism operad of the pair (V,B) re
alledin Example 8.1.Example 8.4 A 
y
li
 algebra over the 
y
li
 operad Com is a Frobenius

algebra, that is, a stru
ture 
onsisting of a 
ommutative asso
iative multipli
a-tion · : V ⊗ V → V as in Example 5.1 together with a non-degenerate symmetri
bilinear form B : V ⊗ V → k, invariant in the sense that
B(a · b, c) = B(a, b · c), for all a, b, c ∈ V.Similarly, a 
y
li
 Lie algebra is given by a Lie bra
ket [−,−] : V ⊗ V → V anda non-degenerate symmetri
 bilinear form B : V ⊗ V → k satisfying
B([a, b], c) = B(a, [b, c]), for a, b, c ∈ V.For algebras over 
y
li
 operads, one may introdu
e 
y
li
 
ohomology thatgeneralizes the 
lassi
al 
y
li
 
ohomology of asso
iative algebras [63�65℄ as thenon-abelian derived fun
tor of the universal bilinear form [8℄, [16℄. Let us 
losethis Se
tion by mentioning two examples of operads with other types of highersymmetries. The symmetry required for anti
yli
 operads di�ers from the sym-metry of 
y
li
 operads by the sign [16℄. Dihedral operads exhibit a symmetrygoverned by the dihedral groups [62℄.9 Modular OperadsLet us 
onsider again the Σ+-module M̂0 = {M̂0(n)}n≥0 of Riemann sphereswith pun
tures. We saw that the operation M,N 7→ M ◦i N of sewing the 0th



168hole of the surfa
e N to the ith hole of the surfa
e M de�ned on M̂0 a 
y
li
operad stru
ture. One may generalize this operation by de�ning, forM ∈ M̂0(m),
N ∈ M̂0(n), 0 ≤ i ≤ m, 0 ≤ j ≤ n, the element M i◦jN ∈ M̂0(m + n − 1) bysewing the jth hole of M to the ith hole of N . Under this notation, ◦i = i◦0. Inthe same manner, one may 
onsider a single surfa
e M ∈ M̂0(n), 
hoose labels
i, j, 0 ≤ i 6= j ≤ n, and sew the ith hole of M along the jth hole of the samesurfa
e. The result is a new surfa
e ξ{i,j}(M), with n− 2 holes and genus 1.This leads us to the system M̂ = {M̂(g, n)}g≥0,n≥−1, where M̂(g, n) denotesnow the moduli spa
e of genus g Riemann surfa
es with n+1 holes. Observe thatwe in
lude M̂(g, n) also for n = −1; M̂(g,−1) is the moduli spa
e of Riemannsurfa
es of genus g. The operations i◦j and ξ{i,j} a
t on M̂. Clearly, for M ∈
M̂(g,m) and N ∈ M̂(h, n), 0 ≤ i ≤ m, 0 ≤ j ≤ n and g, h ≥ 0,

M i◦jN ∈ M̂(g + h,m+ n− 1) (54)and, for m ≥ 1 and g ≥ 0,
ξ{i,j}(M) ∈ M̂(g + 1,m− 2). (55)A parti
ular 
ase of (54) is the non-operadi
 
omposition

0◦0 : M̂(g, 0) × M̂(h, 0)→ M̂(g + h,−1), g, h ≥ 0. (56)Modular operads are abstra
tions of the above stru
ture satisfying a 
ertainadditional stability 
ondition. The following de�nitions, taken from [66℄, are madefor the 
ategory of k-modules, but they 
an be easily generalized to an arbitrarysymmetri
 monoidal 
ategory with �nite 
olimits, whose monoidal produ
t ⊙ isdistributive over 
olimits. Let us introdu
e the underlying 
ategory for modularoperads.A modular Σ-module is a sequen
e E = {E(g, n)}g≥0,n≥−1 of k-modules su
h thatea
h E(g, n) has a right k[Σ+
n ]-a
tion. We say that E is stable if

E(g, n) = 0 for 2g + n− 1 ≤ 0 (57)and denote MMod the 
ategory of stable modular Σ-modules.



169Stability (57) says that E(g, n) is trivial for (g, n) = (0,−1), (1,−1), (0, 0) and
(0, 1). We will sometimes express the stability of E by writing E = {E(g, n)}(g,n)∈S,where

S := {(g, n) | g ≥ 0, n ≥ −1 and 2g + n− 1 > 0}.Re
all that a genus g Riemann surfa
e with k marked points is stable if it does notadmit in�nitesimal automorphisms. This happens if and only if 2(g − 1) + k > 0,that is, ex
luded is the torus with no marked points and the sphere with lessthan three marked points. Thus the stability property of modular Σ-modules isanalogous to the stability of Riemann surfa
es.Now we introdu
e graphs that serve as pasting s
hemes for modular operads.The naive notion of a graph as we have used it up to this point is not subtleenough; we need to repla
e it by a more sophisti
ated:Definition 9.1 A graph Γ is a �nite set Flag(Γ) (whose elements are 
alled
flags or half− edges) together with an involution σ and a partition λ. The
vertices vert(Γ) of a graph Γ are the blo
ks of the partition λ, we assume alsothat the number of these blo
ks is �nite. The edges Edg(Γ) are pairs of �agsforming a two-
y
le of σ. The legs Leg(Γ) are the �xed points of σ.We also denote by edge(v) the �ags belonging to the blo
k v or, in 
ommonspee
h, half-edges adja
ent to the vertex v. We say that graphs Γ1 and Γ2 areisomorphi
 if there exists a set isomorphism ϕ : Flag(Γ1) → Flag(Γ2) that pre-serves the partitions and 
ommutes with the involutions. We may asso
iate to agraph Γ a �nite one-dimensional 
ell 
omplex |Γ|, obtained by taking one 
opyof [0, 12 ] for ea
h �ag, a point for ea
h blo
k of the partition, and imposing thefollowing equivalen
e relation: The points 0 ∈ [0, 12 ] are identi�ed for all �ags in ablo
k of the partition λ with the point 
orresponding to the blo
k, and the points
1
2 ∈ [0, 12 ] are identi�ed for pairs of �ags ex
hanged by the involution σ.We 
all |Γ| the geometri
 realization of Γ. Observe that empty blo
ks of thepartition generate isolated verti
es in the geometri
 realization. We will usuallymake no distin
tion between the graph and its geometri
 realization. As an exam-ple (taken from [66℄), 
onsider the graph with {a, b, . . . , i} as the set of �ags, theinvolution σ = (df)(eg) and the partition {a, b, c, d, e} ∪ {f, g, h, i}. The geomet-ri
 realization of this graph is the `sputnik' in Fig. 19. Let us introdu
e labeled
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• •Figure 19: The sputnik.versions of the above notions. A (vertex-) labeled graph is a 
onne
ted graph Γtogether with a map g (the genus map) from vert(Γ) to the set {0, 1, 2, . . .}. La-beled graphs Γ1 and Γ2 are isomorphi
 if there exists an isomorphism preservingthe labels of the verti
es. The genus g(Γ) of a labeled graph Γ is de�ned by
g(Γ) := b1(Γ) +

∑

v∈vert(Γ)
g(v), (58)where b1(Γ) := dimH1(|Γ|) is the �rst Betti number of the graph |Γ|, i.e. thenumber of independent 
ir
uits of Γ. A graph Γ is stable if

2(g(v) − 1) + |edge(v)| > 0,at ea
h vertex v ∈ vert(Γ).For g ≥ 0 and n ≥ −1, let MGr(g, n) be the groupoid whose obje
ts are pairs
(Γ, ℓ) 
onsisting of a stable (vertex-) labeled graph Γ of genus g and an isomor-phism ℓ : Leg(Γ) → {0, . . . , n} labeling the legs of Γ by elements of {0, . . . , n}.Morphisms of MGr(g, S) are isomorphisms of vertex-labeled graphs preserving thelabeling of the legs. The stability implies, via an elementary 
ombinatorial topol-ogy that, for ea
h �xed g ≥ 0 and n ≥ −1, there is only a �nite number ofisomorphism 
lasses of stable graphs Γ ∈ MGr(g, n), see [66℄.We will also need the following obvious generalization of (51): if E =

{E(g, n)}g≥0,n≥−1 is a modular Σ-module and X a set with n+ 1 elements, then
E((g,X)) := E(g, n) ×Σ+

n
Bij ([n]+,X), g ≥ 0, n ≥ −1. (59)For a modular Σ-module E = {E(g, n)}g≥0,n≥−1 and a labeled graph Γ, let E((Γ))be the produ
t

E((Γ)) :=
⊗

v∈vert(Γ)
E((g(v), edge(v))). (60)



171Evidently, the 
orresponden
e Γ 7→ E((Γ)) de�nes a fun
tor from the 
ategory
MGr(g, n) to the 
ategory of k-modules and their isomorphisms. We may thusde�ne an endofun
tor M on the 
ategory MMod of stable modular Σ-modules bythe formula

ME(g, n) := colim
Γ ∈ MGr(g, n)

E((Γ)), g ≥ 0, n ≥ −1.Choosing a representative for ea
h isomorphism 
lass in MGr(g, n), one obtainsthe identi�
ation
ME(g, n) ∼=

⊕

[Γ]∈{MGr(g, n)}
E((Γ))Aut(Γ), g ≥ 0, n ≥ −1, (61)where {MGr(g, n)} is the set of isomorphism 
lasses of obje
ts of the groupoid

MGr(g, n) and the subs
ript Aut(Γ) denotes the spa
e of 
oinvariants. Stability (57)implies that the summation in the right-hand side of (61) is �nite. Formula (61)generalizes (47) whi
h does not 
ontain 
oinvariants be
ause there are no non-trivial automorphisms of leaf-labeled trees. On the other hand, stable labeledgraphs with nontrivial automorphisms are abundant, an example 
an be easily
onstru
ted from the graph in Figure 19. The fun
tor M 
arries a triple stru
tureof `erasing the bra
es' similar to the one used on pages 161 and 164.Definition 9.2 A modular operad is an algebra over the triple M : MMod →
MMod.Therefore a modular operad is a stable modular Σ-module A = {A(g, n)}(g,n)∈Sequipped with operations that determine 
oherent 
ontra
tions along stable mod-ular graphs. Observe that the stability 
ondition is built �rmly into the veryde�nition. Very 
ru
ially, modular operads do not have units, be
ause su
h a unitought to be an element of the spa
e A(0, 1) whi
h is empty, by (57).One 
an easily introdu
e un-stable modular operads and their unital versions,but the main motivating example reviewed below is stable. We will 
onsider anextension of the Grothendie
k-Knudsen 
on�guration operad M0 = {M0(n)}n≥2
onsisting of moduli spa
es of stable 
urves of arbitrary genera in the sense of thefollowing generalization of De�nition 4.1:
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Figure 20: A stable 
urve and its dual graph. The 
urve C on the left has �ve 
omponents
Ai, 1 ≤ i ≤ 5, and three marked points x0, x1 and x2. The dual graph Γ(C) on the righthas �ve verti
es ai, 1 ≤ i ≤ 5, 
orresponding to the 
omponents of the 
urve and threelegs labeled by the marked points.Definition 9.3 A stable (n+1)-pointed curve, n ≥ 0, is a 
onne
ted 
omplexproje
tive 
urve C with at most nodal singularities, together with a `marking' givenby a 
hoi
e x0, . . . , xn ∈ C of smooth points. The stability means, as usual, thatthere are no in�nitesimal automorphisms of C �xing the marked points and doublepoints.The stability in De�nition 9.3 is equivalent to saying that ea
h smooth 
om-ponent of C isomorphi
 to the 
omplex proje
tive spa
e CP1 has at least threespe
ial points and that ea
h smooth 
omponent isomorphi
 to the torus has atleast one spe
ial point, where by a spe
ial point we mean either a double pointor a node.The dual graph Γ = Γ(C) of a stable (n+1)-pointed 
urve C = (C, x0, . . . , xn) isa labeled graph whose verti
es are the 
omponents of C, edges are the nodes andits legs are the points {xi}0≤i≤n. An edge ey 
orresponding to a nodal point yjoins the verti
es 
orresponding to the 
omponents interse
ting at y. The vertex
vK 
orresponding to a bran
h K is labeled by the genus of the normalization of
K. See [30℄ for the normalization and re
all that a 
urve is normal if and only if itis nonsingular. The 
onstru
tion of Γ(C) from a 
urve C is visualized in Figure 20.Let us denote by Mg,n+1 the 
oarse moduli spa
e [30℄ of stable (n+1)-pointed
urves C su
h that the dual graph Γ(C) has genus g, in the sense of (58). The



173genus of Γ(C) in fa
t equals the arithmeti
 genus of the 
urve C, thus Mg,n+1 isthe 
oarse moduli spa
e of stable 
urves of arithmeti
 genus g with n+1 markedpoints. By a result of P. Deligne, F.F. Knudsen and D. Mumford [21, 31, 32℄,
Mg,n+1 is a proje
tive variety.Observe that, for a 
urve C ∈ M0,n+1, the graph Γ(C) must ne
essarily bea tree and all 
omponents of C must be smooth of genus 0, therefore M0,n+1
oin
ides with the moduli spa
e M0(n) of genus 0 stable 
urves with n+1 markedpoints that we dis
ussed in Se
tion 4. Dual graphs of 
urves C ∈Mg,n+1 are stablelabeled graphs belonging to MGr(g, n + 1).The symmetri
 group Σ+

n a
ts on Mg,n+1 by renumbering the marked points,therefore
M := {M(g, n)}g≥0,n≥−1,with M(g, n) := Mg,n+1, is a modular Σ-module in the 
ategory of proje
tivevarieties. Sin
e there are no stable 
urves of genus g with n + 1 pun
tures if

2g + n − 1 ≤ 0, M is a stable modular Σ-module. Let us de�ne the 
ontra
tionalong a stable graph Γ ∈ MGr(g, n)

αΓ : M((Γ)) =
∏

v∈vert(Γ)
M((g(v), edge(v)))→M(g, n) (62)by gluing the marked points of 
urves from M((g(v), edge(v))), v ∈ vert(Γ), a
-
ording to the graph Γ. To be more pre
ise, let

∏

v∈vert(Γ)
Cv, where Cv ∈M((g(v), edge(v))),be an element of M((Γ)). Let e be an edge of the graph Γ 
onne
ting verti
es v1and v2, e = {yev1 , yev2}, where yevi is a marked point of the 
omponent Cvi , i = 1, 2,whi
h is also the name of the 
orresponding �ag of the graph Γ. The 
urve αΓ(C)is then obtained by the identi�
ations yev1 = yev2 , introdu
ing a nodal singularity,for all e ∈ Edg(Γ). The pro
edure is the same as that des
ribed for the treelevel in Se
tion 4. As proved in [66, � 6.2℄, the 
ontra
tion maps (62) de�ne onthe stable modular Σ-module of 
oarse moduli spa
es M = {M(g, n)}(g,n)∈S amodular operad stru
ture in the 
ategory of 
omplex proje
tive varieties.Let us look more 
losely at the stru
ture of the modular triple M . Given a(stable or unstable) modular Σ-module E , there is, for ea
h g ≥ 0 and n ≥ −1, a



174natural de
omposition
M(E)(g, n) = M0(E)(g, n) ⊕M1(E)(g, n) ⊕M2(E)(g, n) ⊕ · · · ,with Mk(E)(g, n) the subspa
e obtained by summing over graphs Γ with

dimH1(|Γ|) = k, k ≥ 0. In parti
ular, M0(E)(g, n) is a summation over sim-ply 
onne
ted graphs. It is not di�
ult to see that M0(E) is a subtriple of M(E).This shows that modular operads are M0-algebras with some additional opera-tions (the `
ontra
tions') that raise the genus and generate the higher 
omponents
Mk, k ≥ 1, of the modular triple M .There seems to be a belief expressed in the proof of Theorem in [66℄ that, inthe stable 
ase, the triple M0 is equivalent to the non-unital 
y
li
 operad triple
Ψ+, but it is not so. The triple M0 is mu
h bigger , for example, if a ∈ E(1, 0),then M0(E)(2,−1) 
ontains a non-operadi
 element

aa
••whi
h 
an be also written, using (56), as a0◦0a. The 
orresponding part

Ψ+(E)(−1) of the 
y
li
 triple is empty. In the Grothendie
k-Knudsen modu-lar operad M, an element of the above type is realized by two tori meeting at anodal point.On the other hand, the triple M0 restri
ted to the sub
ategory of stable mod-ular Σ-modules E su
h that E(g, n) = 0 for g > 0 indeed 
oin
ides with thenon-unital 
y
li
 operad triple Ψ+, as was in fa
t proved in [66℄. Therefore, givena modular operad A = {A(g, n)}(g,n)∈S, there is an indu
ed non-unital 
y
li
operad stru
ture on the 
y
li
 
olle
tion A♭ := {A(0, n)}n≥2. We will 
all A♭the asso
iated 
y
li
 operad . For example, the 
y
li
 operad asso
iated to theGrothendie
k-Knudsen modular operad M equals its genus zero part M0.A biased de�nition of modular operads 
an be found in [16℄. It is formulatedin terms of operations
{i◦j : A(g,m)⊗A(h, n)→ A(g + h,m+ n); 0 ≤ i ≤ m, 0 ≤ j ≤ n, g, h ≥ 0}together with 
ontra
tions

{
ξ{i,j} : A(g,m)→ A(g + 1,m− 2); m ≥ 1, g ≥ 0

}that generalize (54) and (55).



175Example 9.1 Let V = (V,B) be a ve
tor spa
e with a symmetri
 inner produ
t
B : V ⊗ V → k. Denote, for ea
h g ≥ 0 and n ≥ −1,

EndV (g, n) := V ⊗(n+1).It is 
lear from de�nition (60) that, for any labeled graph Γ ∈ MGr(g, n),
EndV ((Γ)) = V ⊗Flag(Γ).Let B⊗Edg(Γ) : V ⊗Flag(Γ) → V ⊗Leg(Γ) be the multilinear form whi
h 
ontra
tsthe fa
tors of V ⊗Flag(Γ) 
orresponding to the �ags whi
h are paired up as edges of
Γ. Then we de�ne αΓ : EndV ((Γ))→ EndV (g, n) to be the map

αΓ : EndV ((Γ)) = V ⊗Flag(Γ)
B⊗Edg(Γ)

−−−→ V ⊗Leg(Γ) V
⊗ℓ

−→ V ⊗(n+1) = EndV (g, n),where ℓ : Leg(Γ) → {0, . . . , n} is the labeling of the legs of Γ. It is easy to showthat the 
ompositions {αΓ; Γ ∈ MGr(g, n)} de�ne on EndV the stru
ture of anun-stable unital modular operad, see [66℄.An algebra over a modular operad A is a ve
tor spa
e V with an inner produ
t
B, together with a morphism ρ : A → EndV of modular operads. Several impor-tant stru
tures are algebras over modular operads. For example, an algebra overthe homology H∗(M) of the Grothendie
k-Knudsen modular operad is the sameas a 
ohomologi
al �eld theory in the sense of [9℄. Other physi
ally relevant alge-bras over modular operads 
an be found in [16,33,66℄. Relations between modularoperads, 
hord diagrams and Vassiliev invariants are studied in [61℄.10 PROPsOperads are devi
es invented to des
ribe stru
tures 
onsisting of operations withseveral inputs and one output. There are, however, important stru
tures with op-erations having several inputs and several outputs. Let us re
all the most promi-nent one:Example 10.1 A (asso
iative) bialgebra is a k-module V with a multi−

plication µ : V ⊗ V → V and a comultiplication (also 
alled a diagonal)
∆ : V → V ⊗ V . The multipli
ation is asso
iative:

µ(µ⊗ idV ) = µ(idV ⊗ µ),



176the 
omultipli
ation is 
oasso
iative:
(∆ ⊗ idV )∆ = (idV ⊗∆)∆and the usual 
ompatibility between µ and ∆ is assumed:

∆(u · v) = ∆(u) ·∆(v) for u, v ∈ V, (63)where u·v := µ(u, v) and the dot · in the right hand side denotes the multipli
ationindu
ed on V ⊗V by µ. Loosely speaking, bialgebras are Hopf algebras without unit,
ounit and antipode.PROPs (an abbreviation of produ
t and permutation 
ategory) des
ribe stru
-tures as in Example 10.1. Although PROPs are more general than operads, theyappeared mu
h sooner, in a 1965 Ma
 Lane's paper [34℄. This might be explainedby the fa
t that the de�nition of PROPs is more 
ompa
t than that of operads �
ompare De�nition 10.1 below with De�nition 1.1 in Se
tion 1 and De�nition 3.1in Se
tion 3. PROPs then entered the `renaissan
e of operads' in 1996 via [35℄.De�nition 10.1 uses the notion of a symmetri
 stri
t monoidal 
ategory, see [16,34,60℄. An example is the 
ategory Modk of k-modules, with the monoidal produ
t
⊙ given by the tensor produ
t ⊗ = ⊗k, the symmetry SU,V : U ⊗ V → V ⊗ Ude�ned as SU,V (u, v) := v ⊗ u for u ∈ U and v ∈ V , and the unit 1 the groundring k.Definition 10.1 A (k-linear) PROP (
alled a theory in [35℄) is a symmetri
stri
t monoidal 
ategory P = (P,⊙, S, 1) enri
hed over Modk su
h that(i) the obje
ts are indexed by (or identi�ed with) the set N = {0, 1, 2, . . .} ofnatural numbers, and(ii) the produ
t satis�es m⊙ n = m+ n, for any m,n ∈ N = Ob(P) (hen
e theunit 1 equals 0).Re
all that the Modk-enri
hment in the above de�nition means that ea
h hom-set MorP(m,n) is a k-module and the operations of the monoidal 
ategory P (the
omposition ◦, the produ
t ⊙ and the symmetry S) are 
ompatible with this
k-linear stru
ture.



177For a PROP P denote P(m,n) := MorP(m,n). The symmetry S indu
es, viathe 
anoni
al identi�
ations m ∼= 1⊙m and n ∼= 1⊙n, on ea
h P(m,n) a stru
ture of
(Σm,Σn)-bimodule (left Σm- right Σn-module su
h that the left a
tion 
ommuteswith the right one). Therefore a PROP is a 
olle
tion P = {P(m,n)}m,n≥0 of
(Σm,Σn)-bimodules, together with two types of 
ompositions, horizontal

⊗ : P(m1, n1)⊗ · · · ⊗ P(ms, ns)→ P(m1 + · · ·+ms, n1 + · · ·+ ns),indu
ed, for all m1, . . . ,ms, n1, . . . , ns ≥ 0, by the monoidal produ
t ⊙ of P, andverti
al
◦ : P(m,n)⊗ P(n, k)→ P(m,k),given, for all m,n, k ≥ 0, by the 
ategorial 
omposition. The monoidal unit is anelement e := 1 ∈ P(1, 1). In De�nition 10.1, Modk 
an be repla
ed by an arbitrarysymmetri
 stri
t monoidal 
ategory.Let P = {P(m,n)}m,n≥0 and Q = {Q(m,n)}m,n≥0 be two PROPs. A homo-morphism f : P → Q is a sequen
e f = {f(m,n) : P(m,n) → Q(m,n)}m,n≥0 ofbi-equivariant maps whi
h 
ommute with both the verti
al and horizontal 
om-positions. An ideal in a PROP P is a system I = {I(m,n)}m,n≥0 of left Σm- right

Σn-invariant subspa
es I(m,n) ⊂ P(m,n) whi
h is 
losed, in the obvious sense,under both the verti
al and horizontal 
ompositions. Kernels, images, et
., of ho-momorphisms between PROPs, as well as quotients of PROPs by PROPi
 ideals,are de�ned 
omponentwise, see [35�38℄ for details.Example 10.2 The endomorphism PROP of a k-module V is the system
EndV = {EndV (m,n)}m,n≥0with EndV (m,n) the spa
e of linear maps Lin(V ⊗n, V ⊗m) with n `inputs' and m`outputs,' e ∈ EndV (1, 1) the identity map, horizontal 
omposition given by thetensor produ
t of linear maps, and verti
al 
omposition by the ordinary 
omposi-tion of linear maps.Also algebras over PROPs 
an be introdu
ed in a very 
on
ise way:Definition 10.2 A P-algebra is a stri
t symmetri
 monoidal fun
tor λ : P →

Modk of enri
hed monoidal 
ategories. The value λ(1) is the underlying spa
e ofthe algebra ρ.



178It is easy to see that a P-algebra is the same as a PROP homomorphism
ρ : P→ EndV . As in Proposition 5.1, a P-algebra is determined by a system

α : P(m,n)⊗ V ⊗n → V ⊗m, m, n,≥ 0,of linear maps satisfying appropriate axioms.As before, the �rst step in formulating an unbiased de�nition of PROPs is tospe
ify their underlying 
ategory. A Σ-bimodule is a system E = {E(m,n)}m,n≥0su
h that ea
h E(m,n) is a left k[Σm]- right k[Σn]-bimodule. Let Σ-bimod denotethe 
ategory of Σ-bimodules. For E ∈ Σ-bimod and �nite sets Y,X with m resp. nelements put
E(Y,X) := Bij (Y, [m])×Σm E(m,n)×Σn Bij ([n],X), m, n ≥ 0,where Bij (−,−) is the same as in (43). Pasting s
hemes for PROPs are dire
ted

(m,n)-graphs, by whi
h we mean �nite, not ne
essary 
onne
ted, graphs in thesense of De�nition 9.1 su
h that(i) ea
h edge is equipped with a dire
tion(ii) there are no dire
ted 
y
les and(iii) the set of legs is divided into the set of inputs labeled by {1, . . . , n} and theset of outputs labeled by {1, . . . ,m}.An example of a dire
ted graph is given in Figure 21. We denote by Gr(m,n)the 
ategory of dire
ted (m,n)-graphs and their isomorphisms. The dire
tion ofedges determines at ea
h vertex v ∈ vert(G) of a dire
ted graph G a disjointde
omposition
edge(v) = in(v) ⊔ out(v)of the set of edges adja
ent to v into the set in(v) of in
oming edges and the set

out(v) of outgoing edges. The pair (#(out(v)),#(in(v))) ∈ N × N is 
alled thebiarity of v. To in
orporate the unit, we need to extend the 
ategory Gr(m,n),for m = n, into the 
ategory UGr(m,n) by allowing the ex
eptional graph
↑ ↑ ↑ · · · ↑ ∈ UGr(n, n), n ≥ 1,
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Figure 21: A dire
ted graph from Gr(4, 3).with n inputs, n outputs and no verti
es. For a graph G ∈ UGr(m,n) and a
Σ-bimodule E, let

E(G) :=
⊗

v∈vert(G)

E(out(v), in(v)).and
ΓP(E)(m,n) := colim

G ∈ UGr(m,n)

E(G), m, n ≥ 0. (64)The Σ-bimodule ΓP(E) is a PROP, with the verti
al 
omposition given by thedisjoint union of graphs, the horizontal 
omposition by grafting the legs, andthe unit the ex
eptional graph ↑ ∈ ΓP(E)(1, 1). The following proposition followsfrom [39℄ and [36�38℄:Proposition 10.1 The PROP ΓP(E) is the free PROP generated by the Σ-bimodule E.As in the previous Se
tions, (64) de�nes a triple ΓP : Σ-bimod→ Σ-bimod withthe triple multipli
ation of erasing the bra
es. A

ording to general prin
iples [29℄,Proposition 10.1 is almost equivalent toProposition 10.2 PROPs are algebras over the triple ΓP.One may obviously 
onsider non-unital PROPs de�ned as algebras over thetriple
ΨP(E)(m,n) := colim

G ∈ Gr(m, n)

E(G), m, n ≥ 0,



180and develop a theory parallel to the theory of non-unital operads reviewed inSe
tion 4.Example 10.3 We will use the graphi
al language explained in Example 6.3. Let
Γ( , ) be the free PROP generated by one operation of biarity (1, 2) andone operation of biarity (2, 1). As we noti
ed already in [35, 40℄, the PROP Bdes
ribing bialgebras equals

B = Γ( , )/IB,where IB is the PROPi
 ideal generated by
− , − and − @@ . (65)In the above display we denoted

:= ◦ ( ⊗ e), := ◦ (e⊗ ), := ( ⊗ e) ◦ , := (e⊗ ) ◦ ,

:= ◦ and @@ := ( ⊗ ) ◦ κ ◦ ( ⊗ ),where κ ∈ Σ4 is the permutation
κ :=

(
1 2 3 4

1 3 2 4

)
=

•

•

•

•

•

•

•

•

�@ . (66)The above des
ription of B is `tautologi
al,' but B. Enriquez and P. Etingoffound in [?℄ the following basis of the k-linear spa
e B(m,n) for arbitrary
m,n ≥ 1. Let ∈ B(1, 2) be the equivalen
e 
lass, in B = Γ( , )/IB, of thegenerator ∈ Γ( , )(1, 2) (we use the same symbol both for a generator andits equivalen
e 
lass). De�ne [1] := e ∈ B(1, 1) and, for a ≥ 2, let

[a] := ◦ ( ⊗ e) ◦ ( ⊗ e⊗2) ◦ · · · ◦ ( ⊗ e⊗(a−2)) ∈ B(1, a).Let [b] ∈ B(b, 1) has the obvious similar meaning. The elements
( [a1] ⊗ · · · ⊗ [am]) ◦ σ ◦ ( [b1] ⊗ · · · ⊗ [bn]), (67)where σ ∈ ΣN for some N ≥ 1, and a1 + · · · + am = b1 + · · · + bm = N , form a

k-linear basis of B(m,n). This result 
an also be found in [41℄. See also [42, 43℄for the bialgebra PROP viewed from a di�erent perspe
tive.



181Example 10.4 Ea
h operad P generates a unique PROP P su
h that P(1, n) =

P(n) for ea
h n ≥ 0. The 
omponents of su
h a PROP are given by
P(m,n) =

⊕

r1+···+rk=n
[P(1, r1)⊗ · · · ⊗ P(1, rk)]×Σr1×···×Σrk

Σn,for ea
h m,n ≥ 0. The (topologi
al) PROPs 
onsidered in [23℄ are all of thistype. On the other hand, Example 10.3 shows that not ea
h PROP is of this form.A PROP P is generated by an operad if and only if it has a presentation P =

ΓP(E)/(R), where E is a Σ-bimodule su
h that E(m,n) = 0 for m 6= 1 and R isgenerated by elements in ΓP(E)(1, n), n ≥ 0.11 Properads, Dioperads and 1
2PROPsAs we saw in Proposition 6.1, under some mild assumptions, the 
omponentsof free operads are �nite-dimensional. In 
ontrast, PROPs are huge obje
ts. Forexample, the 
omponent ΓP( , )(m,n) of the free PROP ΓP( , ) used in thede�nition of the bialgebra PROP B in Example 10.3 is in�nite-dimensional forea
h m,n ≥ 1, and also the 
omponents of the bialgebra PROP B itself arein�nite-dimensional, as follows from the fa
t that the Enriquez-Etingof basis (67)of B(m,n) has, for m,n ≥ 1, in�nitely many elements.To handle this 
ombinatorial explosion of PROPs 
ombined with la
k of suit-able �ltrations, smaller versions of PROPs were invented. Let us begin with thesimplest modi�
ation whi
h we use as an example whi
h explains the generals
heme of modifying PROPs. Denote UGrc(m,n) the full sub
ategory of UGr(m,n)
onsisting of 
onne
ted graphs and 
onsider the triple de�ned by

Γc(E)(m,n) := colim
G ∈ UGrc(m,n)

E(G), m, n ≥ 0, (68)for E ∈ Σ-bimod. The following notion was introdu
ed by B. Vallette [36�38℄.Definition 11.1 Properads are algebras over the triple Γc : Σ-bimod →
Σ-bimod.A properad is therefore a Σ-bimodule with operations that determine 
oher-ent 
ontra
tions along 
onne
ted graphs. A biased de�nition of properads is given



182in [36�38℄. Sin
e Γc is a subtriple of ΓP, ea
h PROP is automati
ally also a pr-operad. Therefore one may speak about the endomorphism properad EndV andde�ne algebras over a properad P as properad homomorphisms ρ : P → EndV .Algebras over other versions of PROPs re
alled below 
an be de�ned in a similarway.Example 11.1 Asso
iative bialgebras reviewed in Example 10.3 are algebrasover the properad B de�ned (tautologi
ally) as the quotient of the free properad
Γc( , ) by the properadi
 ideal generated by the elements listed in (65). We leaveas an exer
ise to des
ribe the sub-basis of (67) that span B(m,n), m,n ≥ 1.The following slightly arti�
al stru
ture exists over PROPs but not over prop-erads. It 
onsists of a `multipli
ation' µ = : V ⊗ V → V , a `
omultipli
ation'
∆ = : V → V ⊗ V and a linear map f = • : V → V satisfying ∆ ◦ µ = f ⊗ for, diagrammati
ally

= • •.This stru
ture 
annot be a properad algebra be
ause the graph on the right handside of the above display is not 
onne
ted.Properads are still huge obje
ts. The �rst really small version of PROPs weredioperads introdu
ed in 2003 by W.L. Gan [44℄. As a motivation for his de�nition,
onsider the following:Example 11.2 A Lie bialgebra is a ve
tor spa
e V with a Lie algebra stru
ture
[−,−] = : V ⊗ V → V and a Lie diagonal δ = : V → V ⊗ V . We assumethat [−,−] and δ are related by
δ[a, b] =

∑(
[a(1), b]⊗ a(2) + [a, b(1)]⊗ b(2) + a(1) ⊗ [a(2), b] + b(1) ⊗ [a, b(2)]

)(69)for any a, b ∈ V , with the Sweedler notation δa =
∑
a(1)⊗a(2) and δb =∑ b(1)⊗

b(2).Lie bialgebras are governed by the PROP LieB = Γ( , )/ILieB, where andare now antisymmetri
 and ILieB denotes the ideal generated by
1 2 3

+
2 3 1

+
3 1 2

,

1 2 3

+

2 3 1

+

3 1 2 and
1 2

1 2

−
21

21

−
1 2

1 2

+
21

12

+
1 2

2 1

, (70)with labels indi
ating the 
orresponding permutations of the inputs and outputs.



183We observe that all graphs in (70) are not only 
onne
ted as demanded forproperads, but also simply-
onne
ted. This suggests 
onsidering the full sub
at-egory UGrD(m,n) of UGr(m,n) 
onsisting of 
onne
ted simply-
onne
ted graphsand the related triple
ΓD(E)(m,n) := colim

G ∈ UGrD(m, n)

E(G), m, n ≥ 0. (71)Definition 11.2 Dioperads are algebras over the triple ΓD : Σ-bimod →
Σ-bimod.A biased de�nition of dioperads 
an be found in [44℄. As observed by T. Lein-ster, dioperads are more or less equivalent to poly
ategories, in the sense of [45℄,with one obje
t. Lie bialgebras reviewed in Example 11.2 are algebras over adioperad. Another important 
lass of dioperad algebras is re
alled in:Example 11.3 An infinitesimal bialgebra [46℄ (
alled in [47℄ a mock

bialgebra) is a ve
tor spa
e V with an asso
iative multipli
ation · : V ⊗ V → Vand a 
oasso
iative 
omultipli
ation ∆ : V → V ⊗ V su
h that
∆(a · b) =

∑(
a(1) ⊗ a(2) · b+ a · b(1) ⊗ b(2)

)for any a, b ∈ V . It is easy to see that the axioms of in�nitesimal bialgebras areen
oded by the following simply 
onne
ted graphs:
− , − and − − .Observe that asso
iative bialgebras re
alled in Example 10.1 
annot be de�nedover dioperads, be
ause the rightmost graph in (65) is not simply 
onne
ted. Thefollowing proposition, whi
h should be 
ompared to Proposition 6.1, shows thatdioperads are of the same size as operads.Proposition 11.1 Let E = {E(m,n)}m,n≥0 be a Σ-bimodule su
h that
E(m,n) = 0 for m+ n ≤ 2 (72)and that E(m,n) is �nite-dimensional for all remaining m,n. Then the 
om-ponents ΓD(E)(m,n) of the free dioperad ΓD(E) are �nite-dimensional, for all

m,n ≥ 0.



184The proof, similar to the proof of Proposition 6.1, is based on the observationthat the assumption (72) redu
es the 
olimit (71) to a summation over redu
edtrees (trees whose all verti
es have at least three adja
ent edges).An important problem arising in 
onne
tion with deformation quantization isto �nd a reasonably small, expli
it 
o�brant resolution of the bialgebra PROP B.Here by a resolution we mean a di�erential graded PROP R together with a ho-momorphism β : R → B indu
ing a homology isomorphism. Co�brant in this
ontext means that R is of the form (ΓP(E), ∂), where the generating Σ-bimodule
E de
omposes as E =

⊕
n≥0En and the di�erential de
reases the �ltration, thatis

∂(En) ⊂ ΓP(E)<n, for ea
h n ≥ 0,where ΓP(E)<n denotes the sub-PROP of Γ(E) generated by ⊕j<nEj . This no-tion is an PROPi
 analog of the Koszul-Sullivan algebra in rational homotopytheory [48℄. Several papers devoted to �nding R appeared re
ently [41, 49�54℄.The approa
h of [55℄ is based on the observation that B is a deformation, in thesense explained below, of the PROP des
ribing stru
tures re
alled in the following:Definition 11.3 A half − bialgebra or simply a 1
2bialgebra is a ve
torspa
e V with an asso
iative multipli
ation µ : V ⊗ V → V and a 
oasso
iative
omultipli
ation ∆ : V → V ⊗ V that satisfy

∆(u · v) = 0, for ea
h u, v ∈ V. (73)We 
hose this strange name be
ause (73) is indeed one half of the 
ompatibilityrelation (63) of asso
iative bialgebras. 1
2bialgebras are algebras over the PROP

1
2B := Γ( )/( = , = , = 0).Now de�ne, for a formal variable t, Bt to be the quotient of the free PROP Γ( , )by the ideal generated by

= , = , = t · @@ .Thus Bt is a one-parametri
 family of PROPs with the property that B0 =
1
2B.At a generi
 t, Bt is isomorphi
 to the bialgebra PROP B. In other words, the PROP
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Figure 22: Edges allowed in a 1
2graph.for bialgebras is a deformation of the PROP for 1

2bialgebras. A

ording to generalprin
iples of homologi
al perturbation theory [56℄, one may try to 
onstru
t theresolution R as a perturbation of a 
o�brant resolution 1
2R of the PROP 1

2B. Sin
e
1
2B is simpler that B, one may expe
t that resolving 1

2B would be a simpler taskthan resolving B.For instan
e, one may realize that 1
2bialgebras are algebras over a dioperad

1
2B, use [44℄ to 
onstru
t a resolution 1

2R of the dioperad 1
2B, and then take 1

2R tobe the PROP generated by 1
2R. More pre
isely, one denotes

F1 : diOp→ PROP (74)the left adjoint to the forgetful fun
tor PROP 21−→ diOp and de�nes 1
2R := F1(

1
2R).The problem is that we do not know whether the fun
tor F1 is exa
t, so itis not 
lear if 1

2R 
onstru
ted in this way is really a resolution of 1
2B. To getaround this subtlety, M. Kontsevi
h observed that 1

2bialgebras live over a versionof PROPs whi
h is smaller than dioperads. It 
an be de�ned as follows.Let an (m,n)-12graph be a 
onne
ted simply-
onne
ted dire
ted (m,n)-graphwhose ea
h edge e has the following property: either e is the unique outgoing edgeof its initial vertex or e is the unique in
oming edge of its terminal vertex, seeFigure 22. An example of an (m,n)-12graph is given in Figure 23. Let Gr 1
2
(m,n)be the 
ategory of (m,n)-12graphs and their isomorphisms. De�ne a triple Γ 1

2
:

Σ-bimod→ Σ-bimod by
Γ 1

2
(E)(m,n) := colim

G ∈ Gr 1

2

(m,n)

E(G), m, n ≥ 0. (75)
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12 3 4Figure 23: A graph from Gr 1

2

(4, 4).Definition 11.4 A 1
2PROP (
alled a meager PROP) is an algebra over thetriple Γ 1

2
: Σ-bimod→ Σ-bimod.A biased de�nition of 1

2PROPs 
an be found in [39, 55℄. We followed the
onvention that 1
2PROPs do not have units; the unital version of 1

2PROPs 
an bede�ned in an obvious way, 
ompare also the remarks in [55℄.Example 11.4 1
2bialgebras are algebras over a 1

2PROP whi
h we denote 1
2b. An-other example of stru
tures that 
an be de�ned over 1

2PROPs are Lie 1
2bialgebras
onsisting of a Lie algebra bra
ket [−,−] : V ⊗ V → V and a Lie diagonal

δ : V → V ⊗ V satisfying one-half of (69):
δ[a, b] = 0.Let us denote by

F : 1
2PROP→ PROPthe left adjoint to the forgetful fun
tor PROP

2−→ 1
2PROP from the 
ategory ofPROPs to the 
ategory of 1

2PROPs. M. Kontsevi
h observed that, in 
ontrast to
F1 : diOp→ PROP in (74), F is a polynomial fun
tor, whi
h immediately impliesthe following important theorem [39℄.



187Theorem 11.1 The fun
tor F : 1
2PROP→ PROP is exa
t.Now one may take a resolution 1

2 r of the 1
2PROP 1

2b and put 1
2R := F (12 r).Theorem 11.1 guarantees that 1

2R de�ned in this way is indeed a resolution of thePROP 1
2B. Let us mention that there are also other stru
tures invented to studyresolutions of the PROP B, as 2

3PROPs of Shoikhet [52℄, matrons of Saneblidzeand Umble [49℄, or spe
ial PROPs 
onsidered in [55℄.The 
onstru
tions reviewed in this Se
tion 
an be organized into the following
hain of in
lusions of full sub
ategories:
Oper ⊂ 1

2PROP ⊂ diOp ⊂ Proper ⊂ PROP.The general s
heme behind all these 
onstru
tions is the following. We start by
hoosing a subgroupoid SGr =
⊔
m,n≥0 SGr(m,n) of Gr :=

⊔
m,n≥0 Gr(m,n) (ora subgroupoid of UGr :=

⊔
m,n≥0 UGr(m, n) if we want units). Then we de�ne afun
tor ΓS : Σ-bimod→ Σ-bimod by

ΓS(E)(m,n) := colim
G ∈ SGr(m,n)

E(G), m, n ≥ 0.It is easy to see that ΓS is a subtriple of the PROP triple ΓP if and only if thefollowing two 
onditions are satis�ed:(i) the groupoid SGr is hereditary in the sense that, given a graph from SGrwith verti
es de
orated by graphs from SGr, then the graph obtained by`forgetting the bra
es' again belongs to SGr, and(ii) SGr 
ontains all dire
ted 
orollas.Hereditarity (i) is ne
essary for ΓS to be 
losed under the triple multipli
ationof ΓP while (ii) guarantees that ΓS has an unit. Plainly, all the three 
hoi
es usedabove � UGrc, UGrD and Gr 1
2
� satisfy the above assumptions. Let us mention thatone may modify the de�nition of PROPs also by enlarging the 
ategory Gr(m,n),as was done for wheeled PROPs in [57℄. Pasting s
hemes and the 
orrespondingstru
tures reviewed in this arti
le are listed in Figure 24.



188Pasting s
hemes 
orresponding stru
turesrooted trees non-unital operadsMay's trees non-unital May's operadsextended rooted trees operads
y
li
 trees non-unital 
y
li
 operadsextended 
y
li
 trees 
y
li
 operadsstable labeled graphs modular operadsextended dire
ted graphs PROPsextended 
onne
ted dire
ted graphs properadsextended 
onne
ted 1-
onne
ted dir. graphs dioperads
1
2graphs 1

2PROPsFigure 24: Pasting s
hemes and the stru
tures they de�ne.12 Sums over TreesIn this Se
tion we prove basi
 formal identities for 
ertain in�nite sums (partitionfun
tions) taken over graphs of various topologi
al types. The simplest �Eulerprodu
t� identity relates sums over not ne
essarily 
onne
ted graphs to thoseover 
onne
ted ones. Summation over trees is interpreted as a 
al
ulation of the
riti
al value of a formal potential. Finally, summation over graphs of arbitrarytopology is interpreted as the perturbation series for a formal Feynman integral.12.1 Appli
ation to sums over graphsDefinition 12.1 Let (E , ◦) be a symmetri
 monoidal 
ategory with the identityobje
t 1 satisfying the following 
onditions.a) E has a 
ountable set of isomorphism 
lasses of obje
ts. Every obje
t has a�nite automorphism group.b) Every obje
t of E is isomorphi
 to a produ
t ©iπ
ai
i where πi are inde
om-posable with respe
t to ◦ (�primes�), πaii is the ◦-produ
t of ai 
opies of πi, and
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πi 6= πj for i 6= j. This produ
t is de�ned uniquely up to permutation of fa
tors.
) We have

|Aut ©i π
ai
i | =

∏

i

ai!|Aut πi|ai , (76)in parti
ular, |Aut (1)| = 1.In addition let R be a 
ommutative topologi
al ring and let w : Ob E → Rbe a weight fun
tion depending only on the isomorphism 
lass of the obje
t andmultipli
ative: w(σ ◦ τ) = w(σ)w(τ).Theorem 12.1 If the sums and produ
ts involved absolutely 
onverge, we have
∏

{π}/(iso)
exp

w(π)

|Aut π| =
∑

σ∈ObE/(iso)

w(σ)

|Aut σ| = exp


 ∑

{π}/(iso)

w(π)

|Aut π|


 . (77)Proof. We have

∏

{π}/(iso)
exp

w(π)

|Autπ| =
∏

{π}/(iso)

∞∑

a=0

w(π)a

a!|Autπ|a ,and it remains to apply (76). �Throughout this Se
tion, we will take for E various 
ategories of �nite graphs,
◦ will denote the disjoint sum, and �primes� π will be 
onne
ted graphs. Property(76) will be evident from the de�nition of isomorphisms. The se
ond equality in(77) says that a weighted sum taken over all graphs 
an be obtained by exponen-tiation from the similar sum taken only over 
onne
ted graphs.We will now introdu
e a family of weights whi
h will be 
alled standard.Definition 12.2 A standard weight on a 
ategory of �nite graphs is de�nedby the following 
hoi
es:a) A set of �
olors� A, �nite or 
ountable.b) A family of symmetri
 tensors Ca1,...,ak , k = 1, 2, . . ., whose subs
ripts be-long to A and 
oordinates belong to a topologi
al 
ommutative ring R.
) A symmetri
 tensor gab with the same properties. The matrix (gab) must beinvertible, and we put (gab) = (gab)−1.



190In other words, we have a free R-module H with metri
 and a sequen
e ofsymmetri
 polynomials of all degrees on H expressed in terms of a basis indexedby A. (We 
an generalize this setting 
onsidering super
ommutative R and Z2-graded H.)With these 
hoi
es made, we put for a graph τ :
w(τ) =

∑

u:Fτ→A

∏

e∈Eτ

gu(∂e)
∏

v∈Vτ
Cu(Fτ (v)) . (78)Remark 12.1 a) The expression ∂e in (78) means the set of two �ags 
onstitutingthe edge e. When a marking u : Fτ → A is given, u(∂e) = {a, b} 
onsists of twoelements of A whi
h produ
e gab. We 
an similarly de�ne Cu(Fτ (v)) thanks to thesymmetry.b) If A is �nite, the whole sum (78) is �nite. Otherwise we have to postulate
onvergen
e already at this step. In our appli
ations R will be a formal series ring.The multipli
ativity of w with respe
t to disjoint union is evident.
) Consider now the sum of type (77) with a standard weight:

ZE(w) =
∑

τ/(iso)

1

|Aut τ |
∑

u:Fτ→A

∏

e∈Eτ

gu(∂e)
∏

v∈Vτ
Cu(Fτ (v)) . (79)Su
h sums o

ur in some models of statisti
al and quantum physi
s. Coloringof �ags 
orresponds to the pi
ture of A types of parti
les propagating along theedges with amplitudes gab and intera
ting at verti
es with amplitudes Ca1,...,ak .In this 
ontext, graphs are Feynman diagrams, and (79) 
an be 
alled the

partition function. The same formalism emerges in the general operadi
 
on-text and in the topology of moduli spa
es.12.2 Summation over treesIn this Subse
tion, we will 
al
ulate the partition fun
tion (78) in whi
h thesummation is taken over the set T of isomorphism 
lasses of all (
onne
ted) treeswithout tails and having at least one edge.We will treat here Ca1,...,ak independent formal variables over a subring R0 ⊂ R
ontaining gab, gab, and Q. Then all our sums make sense as formal series.



191We will express Z via a simpler formal fun
tion of auxiliary variables φ =

{φa|a ∈ A} independent over R:
Φ(φ) = −1

2

∑

a,b

gabφ
aφb +

∞∑

k=1

1

k!

∑

a1,...,ak∈A
Ca1,...,akφ

a1 · · ·φak . (80)Put Ca =
∑

b∈A g
abCb and denote by N ⊂ R the ideal generated by Ca1,...,ak forall k ≥ 2.Theorem 12.2 a) The equations

∂Φ(φ)

∂φa
= 0, ∀a ∈ A, (81)admit the unique solution φ0 = {φa0} ∈ RA satisfying the 
ondition

φa0 ≡ CamodN . (82)b) The partition fun
tion Z = ZT satis�es the di�erential equations
∂Z

∂Ca
= φa0, a ∈ A , (83)and is the 
riti
al value of Φ(φ):
Z = Φ(φ0) . (84)Remark 12.2 The assumption that Ca1,...,ak are independent formal variables isused several times in the statements and proofs: to lo
ate the 
riti
al point φ0,to make sense of the left-hand side of (83), et
. However, when the identities(80) and (81) are proved in the formal 
ontext, they 
an be spe
ialized to othertopologi
al rings R.Proof. a) Rewrite (81) as

∑

b∈A
gabφ

b = Ca +
∑

k≥2

1

k!

∑

a1,...,ak∈A

∂

∂φa
(Ca1,...,akφ

a1 · · ·φak) , ∀a ∈ A, (85)



192that is,
φa = Ca +

∑

k≥2

1

k!

∑

a1,...,ak,b∈A
gab

∂

∂φa
(Ca1,...,akφ

a1 · · ·φak) , ∀a ∈ A . (86)Comparing (82) and (86) one sees that the 
riti
al point in question 
an be 
al
u-lated by iterating (86). More pre
isely, 
onsider the formal operator T mapping
ψ = (ψa|a ∈ A) to (T a(ψ)|a ∈ A) where

T a(ψ) =
∑

k≥2

1

k!

k∑

i=1

∑

a1,...,ak,b∈A
gabCa1,...,akψ

a1 · · · ψ̂ai · · ·ψakδai,b . (87)The equation (86) 
an be rewritten as φ0 = C + T (φ0) and solved by means of aversion of the geometri
 progression formula
φ0 = C + T (C + T (C + T (C + . . .))) . (88)The solution is 
learly unique.b) In order to make more transparent the formal stru
ture of (88) as a sumover trees, we will 
onsider the 
ase when A = {∗} is a one-element set.Put g∗∗ = g, g∗∗ = g−1, C∗...∗ (k subs
ripts) = Ck, φ

∗ = φ, and C1 = gC1.Then (87) be
omes
T (ψ) =

∞∑

k=1

gCk+1

k!
ψkand (88) takes the form

φ0 =
∞∑

k=0

gCk+1

k!




∞∑

l=0

gCl+1

l!

( ∞∑

m=0

gCm+1

m!
(gC1 + . . .)m

)l

k

. (89)Opening the bra
kets we will represent φ0 sum of monomials in gCi+1

i! . Wewill say that su
h a monomial has height ≤ N if it is a produ
t of terms situatedbefore the N -th opening bra
ket in (89) or dire
tly after it (the terms of the lattertype are gC1).E.g. the only monomial of height 0 is gC1. Monomials of height 1 are
gCk=1

k!
(gC1)

k, k ≥ 1 .



193Monomials of height 2 are indexed by the families of integers {ki; l1, . . . , lk}, k ≥
1, li ≥ 0, ea
h su
h family 
ontributing

Ck+1

k!

Cl1+1

l1!
· · · Clk+!

lk!
(gC1)

l1+···+lk . (90)To establish the general pattern, we need a de�nition. Consider a tree withouttails τ . The pinning of τ is given by the 
hoi
e of the following data:a) The 
hoi
e of a vertex v0 ∈ Vτ with |Fτ (v0)| = 1 
alled the root.Su
h 
hoi
e determines a unique orientation of all �ags (or edges) of τ su
hthat the unique �ag of v0 is in
oming and every vertex v 6= v0 has exa
tly oneoutgoing �ag.Su
h 
hoi
e determines a unique orientation of all �ags (or edges) of τ su
hthat the unique �ag of v0 is in
oming and very vertex v 6= v0 has exa
tly oneoutgoing �ag.b) A total ordering of all sets Vτ (k) ⊂ Vτ where Vτ (k) denotes the set of allverti
es of τ separated by k edges from v0. This total ordering must satisfy thefollowing 
ondition. Let fk : Vτ (k + 1) → Vτ (k) be the map �going along theoutgoing edge to the next vertex�. Then fk must be monotone with respe
t to the
hosen orderings.A pinned tree is a tree with pinning. An isomorphism of pinned trees is anisomorphism of trees 
ompatible with orientation and pinning. The height of apinned tree is max {k|Vτ (k + 1) 6= ∅.A 
ontemplation shows that there is a natural bije
tion between the isomor-phism 
lasses of pinned trees (τ, p) with |Eτ | ≥ 1 of height ≤ N and monomials ofheight ≤ N whi
h 
an be dire
tly obtained from (89). Moreover, various pinningsof the same τ generate the di�erently ordered but equal monomials whi
h 
an bewritten in the form dependent only on τ :
1

C1
g|Eτ |

∏

v∈Vτ
C|v|/(|v| − 1)! . (91)Now, the number of di�erent pinnings of τ is |Tτ |∏v∈Vτ (|v| − 1)! where Tτ is theset of potential roots and fa
torials 
ount orderings of in
oming edges. The auto-morphism group of τ e�e
tively a
ts on the set of pinnings. Hen
e (91) appearswith the 
oe�
ient

|Tτ |
∏

v∈Vτ
(|v| − 1)!/|Aut τ | .



194We now turn to the proof of (83) whi
h for the one-element A be
omes
φ0 =

∂

∂C1

(∑

τ

1

|Aut τ g
|Eτ |

∏

v∈Vτ
C|v|

)
. (92)In fa
t, the dis
ussion above shows that the tree τ with all its pinnings 
ontributesto φ0 the term

|Tτ |
C1

∏
v∈Vτ (|v| − 1)!

|Aut τ | g|Eτ |
∏

v∈Vτ

C|v|
(|v| − 1)!

.In view of (79), this is the same as the 
ontribution of τ to ∂Z
∂C1

. This gives (83).We leave to the reader the dis
ussion of the 
ase |A| ≥ 1.To derive (84) from (83), 
onsider both sides of (84) as formal series in Ca, a ≥
1. Their 
onstants terms (value at (Ca) = 0) vanish. For Z, this follows from thefa
t that any tree in (79) has at least two verti
les with |v| = 1. For φ0, this followsfrom (92). Hen
e it su�
ient to 
he
k that ∂

∂Ca
Z = ∂

∂Ca
Φ(φ0) for all a ∈ A. Butwe have

∂

∂Ca
Φ(φ0) =

∑

b∈A

∂Φ

∂φb
(φ0)

∂φb0
∂Ca

+
∂Φ

∂Ca
(φ0) .The �rst sum vanishes be
ause (dS)(φ0) = 0, and the se
ond term equals φa0be
ause of (80). It remains to apply (83). �12.3 Summation over graphs of arbitrary topologyWe will now study the partition fun
tion (79) for more general graphs, keeping thesame assumptions about the 
oe�
ient ring R and tensors C, g as in Subse
tions12.1 and 12.2. In order to keep tra
k of the Euler 
hara
teristi
 of the graphs, weextend R to the Laurent formal series ring Rλ = R((λ−1)).Definition 12.3 An Rλ-linear fun
tional

〈·〉 : Rλ[[φ]]→ Rλis 
alled λ−1g-Gaussian (mean value) if it is (λ−1, φ)-adi
ally 
ontinuous, and
〈exp(λ−1

∑

a

Caφ
a)〉 = exp((2λ−1)

∑

a

Cag
abCb) . (93)



195Lemma 12.1 (Wi
k) If (Ca) are independent variables over Rλ, then we have:a) 〈φa1 . . . φan〉 = 0 for n ≡ 1 mod 2.b) 〈φaφb〉 = λgab.
) 〈φa1 . . . φa2m〉 = λm
∑
gai1aj1 . . . gaimajm where the summation is takenover all unordered partitions of {1, . . . , 2m} into m unordered pairs

{i1, j1}, . . . , {im, jm} (pairings).Conversely, if a (λ−1, φ)-adi
ally 
ontinuous fun
tional 〈·〉 satis�es a), b), 
),then it is λ−1g-Gaussian.Proof. We have
〈exp(λ−1

∑

a

Caφ
a)〉 =

∞∑

n=0

1

λnn!

∑

a1,...,an∈A
Ca1 . . . Can〈φa1 · · ·φan〉 ,

exp((2λ)−1
∑

a

Cag
abCb) =

∞∑

m=0

1

2mλmm!

∑

ai,bi∈A
Ca1Cb1 . . . CamCbmg

a1b1 · · · gambm .Comparing the 
oe�
ients, we get the lemma. �Now put
Φ0(φ) = −

1

2

∑

a,b∈A
gabφ

aφb, Φ1(φ) =

∞∑

k=1

1

k!

∑

a1,...,ak∈A
Ca1,...,akφ

a1 . . . φak ,and denote by w(τ) the weight fun
tion (78).Let Γ be the set of (isomorphism 
lasses of) all �nite graphs without tails, notne
essarily 
onne
ted, in
luding the empty graph, and Γ0 the subset of 
onne
tednon-empty graphs. Let {·} be the λ−1g-Gaussian mean value. Denote by χ(τ) theEuler 
hara
teristi
 of ||τ ||.Theorem 12.3 We have
∑

τ∈Γ

λχ(τ)

|Aut τ |w(τ) = 〈exp(λ
−1Ψ1(φ))〉 , (94)

∑

τ∈Γ0

λχ(τ)

|Aut τ |w(τ) = log〈exp(λ−1Ψ1(φ))〉 . (95)



196Proof. The se
ond equality follows from the �rst one in view of (77) and theadditivity of the Euler 
hara
teristi
 with relation to the disjoint union.Let us now 
al
ulate the right-hand side of (94). By de�nition, it is
〈 ∞∑

n=0

λ−n
1

n!




∞∑

k=1

1

k!

∑

a1,...,ak∈A
Ca1,...,akφ

a1 . . . φak



n〉

. (96)Choose some (n; k1, . . . , kn). A typi
al monomial in the de
omposition of (96) willbe
λ−1 1

n!

n∏

i=1

1

ki!
C
a
(i)
1 ,...,a

(i)
ki

〈
n∏

i=1

φa
(i)
1 . . . φ

a
(i)
ki 〉 . (97)It vanishes if k1 + · · · + kn is odd. Otherwise, in view of Wi
k's Lemma (97) 
anbe rewritten as

λ−n+
1
2

∑
ki

1

n!

n∏

i=1

1

ki!
C
a
(i)
1 ,...,a

(i)
ki

(∑
g
a
(i1)
l1

a
(j1)
m1 · · · ga

(ir)
lr

a
(jr)
mr

)
, (98)where r = 1

2

∑
ki and the inner sum is taken over all pairings of the set ofordered pairs F =
⋃n
i=1{(i, 1), . . . , (i, ki)}.Constru
t the family of graphs τ whose set of �ags is Fτ := F, Vτ = {1, . . . , n},

∂τ (i, l) = i, and involutions bije
tively 
orrespond to various pairings in (98). Ifwe 
olor the �ags of one su
h graph by the map Fτ → A : (i, l) 7→ a
(i)
l , then thesum over all pairings will produ
e the same monomials as in (79). It remains todo the a

urate bookkeeping in order to identify the 
oe�
ients.The graphs 
onstru
ted above bije
tively 
orrespond to all elements of Γ. Infa
t, a 
hoi
e of (n; k1, . . . , kn) determines the number of verti
es of any valen
e,and the 
hoi
e of a pairing determines whi
h pairs of �ags be
ome edges (n = 0produ
es the empty graph). Moreover, a non-empty graph 
omes thus equippedwith a total ordering of its verti
es and all sets of �ags belonging to one vertex. Thesum over graphs does not take 
are of these orderings. The group Aut τ e�e
tivelya
ts on the whole set of them 
onsisting of n!∏n

i=1 ki! elements. Summing overisomorphism 
lasses, we may repla
e the numeri
al 
oe�
ient in (98) by |Aut τ |−1.Finally,
−n+

1

2

n∑

i=1

ki = −|Vτ |+ |Eτ | = χ(τ) .

�



19713 Generating Fun
tionsIn this Se
tion we 
al
ulate several generating fun
tions related to moduli spa
esand quantum 
ohomology, �rst representing them as sums over trees of the typetreated in Se
tion 12.13.1 Virtual Poin
are polynomialLet Y be an algebrai
 variety over C, possibly non-smooth and non-
ompa
t.Following [58℄ we denote by PY (q) the virtual Poin
aré polynomial of Y whi
h isuniquely de�ned by the following properties.a) If Y is smooth and 
ompa
t, then
PY (q) =

∑

j

dimHj(Y )qj . (99)In parti
ular
χ(Y ) = PY (−1) . (100)b) If Y =

∐
i Yi is a �nite union of pairwise disjoint lo
ally 
losed strata, then

PY (q) =
∑

i

PYi(q) . (101)
) PY×Z(q) = PY (q)PZ(q). It follows that if Y is a �bration over base B with�ber F lo
ally trivial in the Zariski topology, then PY (q) = PB(q)PF (q).A de�nition of PY (q) 
an be given using the weight �ltration on the 
ohomol-ogy with 
ompa
t support:
PY (q) =

∑

i,j

(−1)i+jdim (grjWH
i
c(Y,Q))qj . (102)13.2 Generating fun
tion for moduli spa
es of genus zeroWe put

ϕ(q, t) := t+

∞∑

n=2

PM0,n+1
(q)

tn

n!
∈ Q[q][[t]] , (103)

χ(t) := ϕ(−1, t) = t+
∞∑

n=2

χ(M0,n+1)
tn

n!
∈ Q[[t]] . (104)



198Theorem 13.1 a) ϕ(q, t) is the unique root in t + t2Q[q][[t]] of any one of thefollowing fun
tional/di�erential equations in t with parameter q:
(1 + ϕ)q

2
= q4ϕ− q2(q2 − 1)t+ 1 , (105)

(1 + q2t− q2ϕ)ϕt = 1 + ϕ . (106)b) χ is the unique root in t+ t2Q[[t]] of any one of the similar equations
(1 + χ) log(1 + χ) = 2χ− t , (107)

(1 + t− χ)χt = 1 + χ . (108)Equation (106) is equivalent to the following re
ursive formulas for the Poin
arépolynomials. Put pn = pn(q) = PM0,n+1
/n!.Corollary 13.1 We have for n ≥ 1:

(n+ 1)pn+1 = pn + q2
∑

i+j=n+1
i≥2

jpipj , (109)
PM0,n+2

(q) = PM0,n+1
(q) + q2

∑

i+j=n+1
i≥2

(n
i

)
PM0,i+1

(q)PM0,j+1
(q) . (110)From (108) one sees that the fun
tion inverse to χ has a 
riti
al point at

t = e− 2. From this one 
an derive the following asymptoti
al formula:
χ(M0,n+1) ∼=

1√
n

(
n

e2 − 2e

)n− 1
2

.In order to prove Theorem 13.1, we will �rst apply the additivity formula(101) to the open boundary strata of M0,n and then use Theorem 12.2. However,the 
lasses of trees involved in the labeling of stable 
urves, on the one hand, andthe summation formula (84), on the other, are slightly di�erent: we need tailsin the �rst problem and do not allow them in the se
ond. In order to unify the
ombinatorial pi
tures, and only in this Se
tion, we will eliminate tails by puttingend-point verti
es on them. This will lead to the following temporary modi�
ationof our 
onventions:



199A tree without tails is 
alled stable if |v| 6= 2 for all verti
es v. If |v| = 1 we
all v an end vertex. Let V 1
τ be the set of end verti
es. An n-marking of τ is abije
tion µ : V 1

τ → {1, . . . , n}. We also put V 0
τ = V \V 1

τ and refer to it as the setof interior verti
es.Now let (C;x1, . . . , xn) be a stable 
ompa
t 
onne
ted 
urve of arithmeti
algenus zero with n ≥ 3 labeled non-singular points. The 
ombinatorial stru
tureof this 
urve is des
ribed by the following stable tree with n-marking (τ, µ) :

V 0
τ = {irredu
ible 
omponents of C}, V 1

τ = {x1, . . . , xn}; µ : xi 7→ i; an edge
onne
ts two interior verti
es if the respe
tive 
omponents of C have non-emptyinterse
tion; an edge 
onne
ts an interior vertex to an end vertex if the respe
tivepoint belongs to the respe
tive 
omponent.Denote now by M(τ, µ) ⊂M0,n the set of points parametrizing stable 
urvesof the type (τ, µ). If τ has only one interior vertex, M(τ, µ) := M0,n is the big
ell. The following statement summarizes the main properties of these sets; for aproof, see [59℄,Proposition 13.1 a) M(τ, µ) is a lo
ally 
losed subset of M0,n depending onlyon (the isomorphism 
lass of) (τ, µ).b) M0,n is the union of pairwise disjoint strata M(τ, µ) for all marked stable
n-trees (τ, µ).
) For any (τ, µ),

M(τ, µ) ∼=
∏

v∈V 0
τ

M0,|v| . (111)Noti
e that there exists exa
tly one stable tree •−−−−• whi
h does not 
orrespondto any stable 
urve.We 
an now 
al
ulate Poin
aré polynomials.Proposition 13.2 We have
PM(τ,µ)(q) =

∏

v∈V 0
τ

PM0,|v|
(q) , (112)

PM0,k
(q) =

(
q2 − 2

k − 3

)
(k − 3)! . (113)



200Proof. (112) follows from (111) and the multipli
ativity of Poin
aré polynomi-als.To prove (113), one 
an use the following geometri
 fa
ts. First, the morphism
π : M0,n+1 → M0,n forgetting the last marked point is (
anoni
ally isomorphi
to) the universal 
urve. Se
ond, the boundary of the sour
e 
onsists of stru
turese
tions and �bers at in�nity of the target. Therefore, over the big 
ell M0,nthis morphism is a Zariski lo
ally trivial �bration with �ber P1, and M0,n+1 =

π−1(M0,n)\{union of stru
ture se
tions}.From the additivity of Poin
aré polynomials it follows that
PM0,n+1(q) = PM0,n(q)PP1(q)− nPM0,n(q) = (q2 + 1− n)PM0,n(q) .Sin
e PM0,3(q) = 1. we get (113). �Summarizing, we have for n ≥ 3:

PM0,n
(q)tn =

∑

(τ,µ)/(iso)

|V 1
τ |=n

∏

v∈V 0
τ

(
q2 − 2

|v| − 3

)
(|v| − 3)!

∏

v∈V 1
τ

t , (114)where t is a new formal variable, and the sum is taken over n-marked stable trees.We want to present (103) as a partition fun
tion. Comparing (114) to (78)and (80), we are more or less 
ompelled to 
hoose A = {∗} (one element set),
g∗∗ = 1, C∗ = t, C∗∗ = 0 (this gives weight zero to non-stable trees), and �nally,denoting by Ck the 
omponent with k ≥ 3 subs
ripts, we get

Ck =

(
q2 − 2

k − 3

)
(k − 3)! . (115)In parti
ular, we 
an forget about u : Fτ → {∗}.If |V 1

τ | = n, the set of all n-markings of τ 
onsists of n! elements and ise�e
tively a
ted upon by the group Aut τ . We see �nally that ψ(q, t) = Z where
ψ(q, t) :=

t2

2!
+
∑

n≥3

tn

n!
PM0,n

(q) , (116)
Z :=

∑

τ/(iso)

1

|Aut τ |
∏

v∈Vτ
C|v| . (117)



201The summation in (117) is now taken over all trees, and the term t2/2 in (116)
omes from the two-vertex tree.We will now use (83) in order to 
al
ulate
∂Z

∂t
=
∂ψ(q, t)

∂t
=: ϕ(q, t) .From (80) and (115) one sees that

Φ(ϕ) = −ϕ
2

2
+ tϕ+

∑

k≥3

Ck
ϕk

k!
= −ϕ

2

2
+ tϕ+

∑

k≥3

(
q2 − 2

k − 3

)
ϕk

k(k − 1)(k − 2)
.This 
an easily be summed. We need only the derivative.For generi
 q we have

∂

∂ϕ
Φ(ϕ) =

(1 + ϕ)q
2 − 1− q4ϕ

q2(q2 − 1)
+ t , (118)and for q = −1,

∂

∂ϕ
Φ(ϕ) = (1 + ϕ) log(1 + ϕ)− 2ϕ+ t . (119)(4.21)We see now that (105), resp. (107), are equations for the 
riti
al point dϕΦ = 0.Di�erentiating them in t and eliminating (1+ϕ)q

2 , resp. log(1+ϕ), we get (106),resp. (108).13.3 Generating fun
tion for 
on�guration spa
esLet X be a smooth 
ompa
t algebrai
 variety. The 
on�guration spa
e X[n],
n ≥ 2, is de�ned in [58℄ as the 
losure of its big 
ell Xn\(⋃i<j∆ij) (∆ij is thediagonal xi = xj) in Xn ×∏S X̃

S , where S runs over subsets S ⊂ {1, . . . , n},
|S| ≥ 2; XS denotes the respe
tive partial produ
t of X's, and X̃S is the blow upof the small diagonal ∆S in XS .Every S determines a divisor at in�nity D(S) ⊂ X[n]. Namely, let πS : X[n]→
XS be the 
anoni
al proje
tion. Then π−1

S (∆S) =
⋃
T⊃SD(T ).The natural strati�
ation of X[n] des
ribed in [58℄ 
onsists of (open subsetsof) interse
tions X(S) =

⋂r
i=1D(Si) 
orresponding to sets S = {S1, . . . , Sr} ofsubsets in {1, . . . , n} 
alled nests.



202We put
ψX(q, t) = 1 +

∑

n≥1

PX[n](q)
tn

n!
∈ Q[q][[t]] ,

χX(t) = ψX(−1, t) = 1 +
∑

n≥1

χ(X[n])
tn

n!
∈ Q[[t]] .Put also

κm =
q2m − 1

q2 − 1
= PPm−1(q) .Theorem 13.2 Denote by y0 = y0(g, t) the unique root in t+ t2Q[q2][[t]] of anyone of the following equations:

κm(1 + y0)q
2m

= q2m(q2m + κm − 1)y0 − q2m(q2m − 1)t+ κm , (120)
[q2mt+ 1− (q2m − 1 + κm)y

0]y0t = 1 + y0 . (121)Then we have in Q[q][[t]]:
ψX(q, t) = (1 + y0)PX(q) . (122)Theorem 13.3 Denote by η = η(t) the unique root in t+ t2Q[[t]] of any one ofthe following equations:

m(1 + η) log(1 + η) = (m+ 1)η − t , (123)
(t+ 1−mη)ηt = 1 + η . (124)Then we have in Q[[t]]:
χX(t) = (1 + η)χ(X) . (125)We start with 
ombinatori
s of the strata.Definition 13.1 a) S = {S1, . . . , Sr} is a nest (or n-nest) if |Si| ≥ 2 for all i,and either Si ⊂ Sj or Sj ⊂ Si for all i, j su
h that Si⋂Sj 6= 0.In parti
ular, S = ∅ is a nest, and S = {S} is a nest, if |S| ≥ 2.b) A nest S is 
alled whole (resp. broken) if {1, . . . , n} ∈ S (resp.

{1, . . . , n} /∈ S).



203Denote by X(S) ⊂ X(S) =
⋂
S∈S D(S) the subset of points not belonging tosmaller 
losed strata. The following fa
ts are proved in [58℄.Proposition 13.3 a) For any n ≥ 2 and n-nest S, X(S) is a lo
ally 
losedsubset of X[n].b) X[n] is the union of pairwise disjoint strata X(S) for all n-nests S.Now we will show how to pass from nests to marked trees. As above, we 
onsider abije
tion µ : V 1

τ → [1, . . . , n] as a part of the appropriate marking for our problem.The remaining data is supplied by 
hoosing orientations of all edges.Definition 13.2 A tree τ marked in this way is 
alled admissible i�:a) Every vertex of τ ex
ept one has exa
tly one in
oming edge.b) The ex
eptional vertex has only outgoing edges, and their number is ≥ 2. Thisvertex is 
alled the source.
) All interior verti
es with possible ex
eption of the sour
e have valen
y ≥ 3.Proposition 13.4 The following maps are (1,1):
{broken n-nests} → {whole n-nests} → {admissible marked n-trees}/(iso),

S 7→ S ∪ {{1, . . . , n}} 7→ τ(S) = τ(S ∪ {{1, . . . , n}}) .Here τ is de�ned by its sets of verti
es and edges: if S = {S1, . . . , Sr}, then
Vτ = {S̃1, . . . , S̃n+r} := {S1, . . . , Sr, {1}, . . . , {n}} ,and an edge oriented from S̃i to S̃j 
onne
ts these two verti
es i� S̃j ⊂ S̃i and no

S̃k lies stri
tly in between these two subsets.This is proved by dire
t observation. The following fa
ts are worth mentioning.a) {1, . . . , n} is the sour
e of τ(S) for any S.b) {1}, . . . , {n} are all end verti
es.
) i ∈ Sj i� one 
an pass from Sj ∈ Vτ to {i} ∈ Vτ in τ by always going in thepositive dire
tion.The reader is advised to 
onvin
e him- or herself that the sour
e has valen
y ≥ 2and all other interior verti
es have valen
y ≥ 3.Denote the sour
e by s and the set of the remaining interior verti
es by V 0
τ .



204Proposition 13.5 ( [58℄) The virtual Poin
aré polynomials of the strata X(S)are given by the following formulas (we add a formal variable t):If S is a broken n-nest, s ∈ Vτ(S):
tnPX(S)(q) =

(
PX(q)

|s|

)
|s|!×

∏

v∈V 0
τ(S)

κm

(
q2m − 2

|v| − 3

)
(|v| − 3)!×

∏

v∈V 1
τ(S)

t .(126)If S is a whole n-nest:
tnPX(S)(q) = PX(q)κm

(
q2m − 2

|s| − 2

)
(|s| − 2)! (127)

×
∏

v∈V 0
τ(S)

κm

(
q2m − 2

|v| − 3

)
(|v| − 3)!×

∏

v∈V 1
τ(S)

t .

Comparing (126) and (127) one sees that one 
an express the joint 
ontributionof two nests 
orresponding to an admissible marked tree τ as a produ
t of lo
alweights 
orresponding to all verti
es of τ . The lo
al weight of the sour
e will be
(
PX(q)

|s|

)
|s|! + PX(q)κm

(
q2m − 2

|s| − 2

)
(|s| − 2)!and the remaining lo
al weights 
oin
ide and depend only on the valen
y.In order to �nd the appropriate standard weights of marked trees (summandsin (78)), we make the following 
hoi
es.Put A = {+,−}. Interpret a mark + (resp. −) on a �ag as in
oming (resp.outgoing) orientation of this �ag. Thus, f : Fτ → A is a 
hoi
e of orientation ofall �ags.Put g+− = g−+ = 1, g++ = g−− = 0. This makes the standard weight of

(τ, f) vanish unless all edges are unambiguously oriented by f .Put C+ = t (see (120) and (121)) and C− = 0. The last 
hoi
e makes thestandard weight vanish unless all end edges are oriented outwards.Put C+− = C−+ = 0. This ex
ludes verti
es of the type → • →.



205Put also Ca1,...,ak = 0 if {+,+} ⊂ {a1, . . . , ak}. This eliminates verti
es with ≥ 2in
oming edges.For tensors with k ≥ 2 minuses among the indi
es we put
C−...− =

(
PX(q)

k

)
k! + κmPX(q)

(
q2m − 2

k − 2

)
(k − 2)! (128)(be
ause only the sour
e has all outgoing edges), and

C+−...− = κm

(
q2m − 2

k − 2

)
(k − 2)! (129)(
f. (126) and (127)).The standard weight of a marked tree de�ned by this data again is independenton the part µ : V 1

τ → {1, . . . , n} of the initial marking, whi
h a

ounts for thefa
tor n!
|Aut τ | below.Summarizing, we put

ψX(q, t) :=
∑

n≥2

tn

n!
PX|n|(q) , (130)

Z :=
∑

τ/(iso)

1

|Aut τ |
∑

f :Fτ→{+,−}

∏

α∈Eτ

gf(∂α)
∏

v∈Vτ
Cf(σv) , (131)and get from the previous dis
ussion

Z = ψX(q, t),
∂

∂t
Z := φx(q, t) . (132)The arguments in the potential will be denoted ϕ+ = x, ϕ− = y. We see that thepotential is

Φ(x, y) = −xy + tx+ κm

∞∑

k=2

(
q2m − 2

k − 2

)
xyk

k(k − 1)
+

+

∞∑

k=2

(
PX(q)

k

)
yk + κmPx(q)

∞∑

k=2

(
q2m − 2

k − 2

)
yk

k(k − 1)
(133)(we have two arguments x, y but only one t = t+ be
ause C− = 0).



206We must solve the system
∂Φ

∂x
|x0,y0 =

∂Φ

∂y
|x0,y0 = 0 , (134)and (83) then tells us that

∂

∂t
Z = ϕX(q, t) = x0 . (135)Again, Φ(x, y) 
an be easily summed. To write down the fun
tional equation,we need only the x-derivative whi
h for general q is

∂Φ

∂x
= −y + t+ κm

(1 + y)q
2m − 1− q2my

q2m(q2m − 1)
. (136)For q = −1:

∂Φ

∂x
= −y + t+m[(1 + y)log(1 + y)− y] . (137)We now see that (120), resp. (123), are the equations de�ning y0. Takingthe derivative in t we get (121) and (124). And sin
e Φ(x, y) is linear in x, thevanishing of the y-derivative provides an expli
it expression of x0 via y0 :

ϕX(q, t) = PX(q)
(1 + y0)PX(q) + (q2m + κm − 1)y0 − q2mt− 1

1 + (1− q2m − κm)y0 + q2mt
.To see that this is equivalent to (122) one 
an derivate (122) in t and use (121).14 Method of VKS-TreesLet us brie�y review the method of VKS-trees [3,4℄. Irredu
ible 
lass 1 represen-tations of the orthogonal group O (n) are realized in the spa
e of s
alar fun
tionson a unit sphere Sn−1 in Eu
lidean spa
e RRn, whi
h are eigenfun
tions of theLapla
e operator on sphere [3℄:

∆ΩYk(Ω) + k(k + n− 2)Yk(Ω) = 0. (138)The method of VKS-trees is based on 
onsequent fa
torization of Lapla
ian ∆Ω,for whi
h it is required to introdu
e polyspheri
al 
oordinates.



207Definition 14.1 Let x0, x1, . . . , xn−1 be the Cartesian 
oordinates of a point ona sphere Sn. We depi
t them as lines (see Figure 25a). We join the lines in su
hway that, at �rst stage, no more than two lines (edges) meet in a vertex and, atthe se
ond stage, no more that two previous joined lines meet in a vertex and soon. As a result we obtain a V KS − tree (see Figure 25b).As 
an be seen from the �gure, there are two kinds of lines: lines with nodes atboth ends and lines with one node. The former lines are 
alled internal and thelatter free (or dangling) ends. The number of dangling ends is equal to dimensionof spa
e. The number of verti
es is equal to number of parameters, determiningthe lo
ation of a point on sphere. To ea
h vertex we assign an angle θk. The linesoutgoing from the vertex θk to the left 
orrespond to cos θk and those outgoing tothe right 
orrespond to sin θk. The vertex θ is a vertex of a graph. Then the path,say, from vertex θ to vertex ϕ2 (see Figure 25b) 
an be represented as a produ
tof internal lines, i.e. a produ
t of 
osines and sines, whi
h o

ur along this path
hϕ2 =

ϕ2∏

θk=θ

= = cos θ cos β sinα . (139)Cartesian 
oordinates 
an be determined in terms of angles by multiplying the
oe�
ients hϕk
by the dangling end asso
iated with the angle ϕk.In three-dimensional spa
e, the following VKS-tree 
orresponds to the spher-i
al 
oordinate system

x
0

x
1

x
2

φ

θ m

0

1

2

cos ,

sin cos ,

sin sin .

x

x

x

= θ

= θ ϕ

= θ ϕl

(140)A relation of equivalen
e 
an be introdu
ed on the set of VKS-trees: two VKS-trees belong to the same 
lass if one of them 
an be transformed into the otherby rotation around verti
al (perpendi
ular to the plane of the diagram) axis (oraxes), passing through vertex (or verti
es). This relation of equivalen
e enablesto split the set of VKS-trees into 
lasses.VKS-trees belonging to di�erent 
lasses, are truly di�erent stru
tures, i.e.truly topologi
ally inequivalent 
onstru
tions. There is one 
lass of VKS-trees(systems of polyspheri
al 
oordinates) in three-dimensional spa
e, two 
lasses infour-dimensional spa
e, and three 
lasses in �ve-dimensional spa
e.
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209In his studies of topologi
ally di�erent VKS-trees, G.I. Kuznetsov [67℄ hasgiven the following indu
tive algorithm for writing down Lapla
e operator ∆Ω:Equation (138) for Figure 25b in polyspheri
al 
oordinates 
an be written asfollows
{

1

cosc θ sins θ

∂

∂θ
cosc θ sins θ

∂

∂θ
+

∆Ωc(β)

cos2 θ
+ (141)

+
∆Ωs(θ1)

sin2 θ
+ k(k + n− 1)

}
Yk(Ω) = 0 ,where, c is number of subsequent verti
es to the left of vertex θ; s is number ofsubsequent verti
es to the right of vertex θ, and c+ s = n− 2.Lapla
ians ∆Ωc (β) and ∆Ωs (θ1) are given, respe
tively, on c- and s-dimensional spheres. For ∆Ωc (β) and ∆Ωs (θ1), the VKS-trees have left and rightparts, 
ounting from the vertex θ of initial VKS-tree, and the roots are β and θ1.The algorithm for writing these Lapla
ians in polyspheri
al 
oordinates remainsthe same as for ∆Ω. Consru
ting the Lapla
ian ∆Ω in this way, gives its form inpolyspheri
al 
oordinates.The equation (141) 
an be solved by the method of variable separation. Thisyields a 
onstant at ea
h vertex. The 
onstant the asso
iated angle endow thevertex with additional 
hara
teristi
s. To solve equation (141), �rst solve thepartial di�erential equation for ea
h vertex. The 
omplete solution given by theprodu
t of the partial solutions. The three kinds of verti
es (
ells) whi
h o

urwith this approa
h are shown in Figure 26. The requirement of one-fold 
overingof the sphere imposes the following restri
tions on the range of angles [3℄:

0 ≤ ϕa ≤ 2π, 0 ≤ ϕσ ≤ π, −π
2
≤ ϕσ′ ≤

π

2
, 0 ≤ ϕl ≤

π

2
. (142)Let us 
onsider an elementary 
ell of the graph shown at Figure 26b. Here m,

τ , lc, ls, σ are 
onstants of separation of variables. The equation for the variable
θ = ϕl is as follows:

[
1

cosc θ sins θ

∂

∂θ
cosc θ sins θ

∂

∂θ
− lc(lc + c− 1)

cos2 θ
−

− ls(ls + s− 1)

sin2 θ
+ σ(σ + c+ s)

]
Ψ(θ) = 0, (143)



210and its solution 
an be written as
Ψα,β
n,c,s(θ) = N coslc θ sinls θ P

α,β
n (cos 2θ),

2n = σ − lc − ls, α = ls +
s− 1

2
≡ ls +

1

2
Sls , (144)

β = lc +
c− 1

2
≡ lc +

1

2
Slc , n = 0, 1, 2, . . . ,if and only if n ≥ 0 i.e. σ ≥ lc + ls. Here, c (s) is number of left (right) verti
es
orresponding to the vertex σ; Sls , Slc are the numbers of verti
es above 
or-responding to verti
es ls and lc, Pα,βn are Jakobi polynomials or hyperspheri
alfun
tions, N is normalizing fa
tor.Let us 
onsider the 
ell shown in Figure 26σ. It is worth of noti
ing that the
ell in Figure 26σ′ is the same as that of Figure 26σ ex
ept for one detail: cosϕσis substituted for sinϕσ .The equation for the variable θ = ϕσ is

[
1

sins θ

∂

∂θ
sin2 θ

∂

∂θ
− ls(ls + s− 1)

sin2 θ
+ τ(τ + s)

]
Ψ(θ) = 0, (145)and its solution 
an be written as follows:

Ψα,α
n,0,s(θ) = N1 sin

ls θPα,αn (cos θ), (146)
0 ≤ θ ≤ π, n = τ − ls, α = ls +

s− 1

2
, n ≥ 0, 1, 2, . . . ,where P

α,α
n are Gegenbauer polynomials, N1 is normalizing 
oe�
ient.For the 
ell shown in Figure 26a, there is the 
orresponding the obvious solu-tion

Ψm(ϕa) =
1√
2πa

eimϕa , 0 ≤ ϕa ≤ 2π, m ∈ Z. (147)As an example, let us 
onsider a 
lass 1 representation of the group O (3). Inspheri
al 
oordinates, the fa
torized solution of equation (138) 
an be written asfollows (see Figure 140):
Ylm(θ, ϕ) = P lm(θ)

eimϕ√
2π
, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, (148)where Ylm (θ, ϕ) is the spheri
al fun
tion whi
h is an eigenfun
tion of Lapla
eoperator on sphere S2.



21115 Polyspheri
al Coordinates in Cayley-Klein Spa
esCayley-Klein geometries of dimension n are realized on spheres
Sn(j) =

{
x ∈ RRn+1(j) | x20 +

n∑

k=1

x2k

k∏

m=1

j2m = 1

} (149)in spa
es RRn+1(j) resulting from the Eu
lidean spa
e RRn+1 under the mapping[5℄
ψ : RRn+1 → RRn+1(j) ≡ RVn+1(j), ψx∗0 = x0, ψx∗k = xk

k∏

m=1

jm,

j = (j1, . . . , jn); jk = 1, ιk, i, k = 1, 2, . . . , n. (150)The 
ombination of all possible values of the parameters j produ
es 3n dif-ferent real Cayley-Klein spa
es RRn+1(j) ≡ RVn+1(j) [5℄. A uni�ed des
rip-tion of all 3n Cayley-Klein geometries (geometries of 
onstant 
urvature spa
e)
an be given as a domain of an n-dimensional spheri
al spa
e parametrized by�
on
rete� 
oordinates21. Here the total number of nonisomorphi
 geometriesis N + n = [(3 +
√
5)n+1 − (3 −

√
5)n+1]/2n+1

√
5 [5℄. The operation of sometransition between their groups is based on introdu
ing a set of the parameters

(j := j1. . . . , jn). Ea
h of the parameters 
an take on three values: real, purelyimaginary and dual units ι [5℄.Under the mapping (150) transforming Eu
lidean spa
e RRn into Cayley-Klein spa
e RRn (j), Cartesian 
oordinates in RRn are multiplied by produ
tsof parameters j. In [5, § 5.2�5.5℄ it is shown that angles are multiplied by someprodu
ts of parameters j as well. Under the mapping ψ, the symmetry (�equal-ity�) of Cartesian 
oordinates disappears. In method of VKS-trees, this reveals isrevealed by the fa
t that the operation of rotation around verti
al axis passingthrough vertex does not transform a VKS-tree into an equivalent VKS-tree; thepartition of the set of VKS-trees into 
lasses is not possible. The other pe
uliarityis that, for imaginary values of the parameters j, the sphere Sn−1 (j) 
an not21By �
on
rete� 
oordinates, we mean real, purely imaginary or dual numbers. The latter wereintrodu
ed by Cli�ord [68℄ in su
h a way that a dual number itself di�ers from zero but vanisheswhen squared.



212be 
overed by one (polyspheri
al) map. For example, the Minkowski plane 
anbe 
overed by four system of polar 
oordinates [69℄. To simplify the exposition,we shall 
onsider in this paragraph only 
ontra
tions of groups, i.e. parameters
jk = 1, ιk, k = 1, 2, . . . , n− 1.In the spa
e RR3 (j), the sphere S2 (j) = {x |x20 + j21x

2
1 + j21j

2
2x

2
2 = 1} admitstwo systems of spheri
al 
oordinates:

j
1 
j
2
θ

j
1 
j
2 
x

2
j
1 
x

1

j
1
φ

x
0

m

τ

x0 = cos j1j2θ cos j1ϕ,

x1 =
1

j1
cos j1j2θ sin j1ϕ,

x2 =
1

j1j2
sin j1j2θ,

(151)
ϕ ∈ Φ(j1) =

{
[0, 2π], j1 = 1,

R, j1 = ι1,
(152)

θ ∈ Θ(j1j2) =





[
−π
2
,
π

2

]
, j = 1,

R, j 6= 1;

(153)
j
1 
ξ

j
1 
j
2 
x

2
j
1 
x

1

j
2
α

x
0

x0 = cos j1ξ,

x1 =
1

j1
sin j1ξ cos j2α,

x2 =
1

j1j2
sin j1ξ sin j2α,

(154)
α ∈ Φ(j2), ξ ∈ Z(j1, j2) =

{
Z0(j1), j2 = 1,

Φ(j1), j2 = ι2,
(155)

Z0(j1) =

{
[0, π], j1 = 1,

R+, j1 = ι1.
(156)For j1 = ι1 both systems of 
oordinates des
ribe the 
onne
ted 
omponent ofsphere.



213The sphere S3 (j) = {x |x20 + j21x
2
1 + j21j

2
2x

2
2 + j21j

2
2j

2
3x

2
3 = 1} in the spa
e

RR4 (j) admits three systems of polyspheri
al 
oordinates:
j
1 
j
2 
j
3
θ

j
1 
j
2
ξ

j
1 
j
2 
x

2
j
1 
j
2 
j
3 
x

3
j
1 
x

1

j
1
φ

x
0

m

σ

l

x0 = cos j1ϕ cos j1j2ξ cos j1j2j3θ,

x1 =
1

j1
sin j1ϕ cos j1j2ξ cos j1j2j3θ,

x2 =
1

j1j2
sin j1j2ξ cos j1j2j3θ,

x3 =
1

j1j2j3
sin j1j2j3θ,

(157)
ϕ ∈ Φ(j1), ξ ∈ Θ(j1j2), θ ∈ Θ(j1j2j3) =





[
−π
2
,
π

2

]
, j = 1,

R, j 6= 1;

j
1 
j
2 
ß

j
1 
j
2 
x

2
j
1 
j
2 
j
3 
x

3
j
1 
x

1

j
1
φ

1
j
3
φ

2

x
0

m
1

m
2

l
1

x0 = cos j1ϕ1 cos j1j2β,

x1 =
1

j1
sin j1ϕ1 cos j1j2β,

x2 =
1

j1j2
cos j3ϕ2 sin j1j2β,

x3 =
1

j1j2j3
sin j3ϕ2 sin j1j2β,

(158)
ϕ1 ∈ Φ(j1),

ϕ2 ∈ Φ(j3),
β ∈ B(j1, j2, j3) =

{
Z+(j1j2), j3 = 1,

Θ(j1j2), j3 = ι3,

Z+(j1j2) =

{
[0, π], j = 1,

R+, j 6= 1;

j
1 
j
2 
x

2
j
1 
j
2 
j
3 
x

3
j
1 
x

1
x

0

j
3
φ̃

j
1 
θ̃

 
j
2
ξ̃

σ̃

m%

l%

x0 = cos j1θ̃,

x1 =
1

j1
sin j1θ̃ cos j2ξ̃,

x2 =
1

j1j2
sin j1θ̃ sin j2ξ̃ cos j3ϕ̃,

x3 =
1

j1j2j3
sin j1θ̃ sin j2ξ̃ sin j3ϕ̃,

(159)
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ϕ̃ ∈ Φ(j3), ξ̃ ∈ Z(j2, j3), θ̃ ∈ Z(j1, j2).For j1 = ι1, three systems of polyspheri
al 
oordinates des
ribe the 
onne
ted
omponent x0 = 1 of the sphere S3 (ι1, j2, j3).16 Equations for Elementary CellsLet us begin with the 
ell shown in Figure 26a. We obtain

j
k
φ

j
k 
x

k
x

k–1

m

Ψm(ϕ, jk) = Neimϕ. (160)Dependen
e on the parameter jk is in
luded in the range of values Φ (jk) of thevariable ϕ. The 
onstant of separation is m ∈ Z for jk = 1 and m ∈ R for jk = ιk.The normalizing fa
tor is N = 1/
√
2π for jk = 1 and N = 1 for jk = ιk. In thelatter 
ase, the solution Ψm (ϕ, ιk) is normalized to a delta-fun
tion.The 
ell shown in Figure 26σ is transformed into the 
ell

j
k+1

θ l
s

qk–1

τ

θ ∈ Z(jk, jk+1), (161)where k−1 is the order number of 
oordinate xk−1 
onne
ted with the left bran
houtgoing from vertex τ , q is the order number of the of the last 
oordinate,
onne
ted with node ls, and s is the number of nodes to the right from vertex τ .To the 
ell (161), there 
orresponds the sphere
Sq−k+1(jk, . . . , jq) =

{
x |x2k−1 + j2kx

2
k + · · · +

( q∏

r=k

j2r

)
x2q = 1

}and to the vertex ls � sphere Sq−k (jk+1, . . . , jq) =

{
x |x2k + j2k+1x

2
k+1 + · · · +

(
q∏

r=k+1

j2r

)
x2q = 1

}. Under mapping ψ, the Lapla
ian (or, otherwise, Casi-mir operator of se
ond order) is transformed a

ording to the rule ∆θ (j) =
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(

q∏
r=k

j2r

)
∆∗
θ∗ (→), where the asterisk indi
ates the quantities entering equations(145) whi
h are transformed as follows: ψθ∗ = jk+1θ, τ = τ∗jkA, ls = l∗sA, and

A =
q∏

r=k+1

jr. Transforming (145), we obtain the equation
{

A2

sin2 jkθ

∂

∂θ
sins jkθ

∂

∂θ
− j2k

ls[ls + (s− 1)A]

sin2 jkθ
+ τ(τ + sA)

}
Ψ(θ) = 0 (162)whi
h 
orresponds to 
ell (161). Its formal solution is the fun
tion

Ψα,α
n,0,s(θ) = N(sin jkθ)

lsP
α,α
τ−jkls(cos jkθ), (163)

α = Aα∗(→) = ls +
s− 1

2
A, n = jkAn

∗(→) = τ − jkls,where N is a normalizing fa
tor.Let jk = ιk and A 6= ι, i.e. A = 1. Then sin ιkθ = ιkθ, and equation (162)turns into
Ψ′′ +

As
θ
Ψ′ +

[
τ2 − ls(ls + (s− 1)A)

θ2

]
Ψ = 0. (164)This is the Lommel equation [70℄, whi
h 
an be expressed in terms of Besselfun
tions:

Ψτ,ls,s(θ) = θ
1−s
2 Jls+ s−1

2
(τθ). (165)Let A = ι, i.e. some of the parameters jr, k + 1 ≤ r ≤ q, take on dual values.Then (162) 
an be rewritten as the algebrai
 equation

(
τ2 − j2k

l2s
sin2 jkθ

)
Ψ(θ) = 0, (166)whi
h 
onne
ts the 
onstants of separation in neighbouring verti
es

ls = τ
1

jk
sin jkθ. (167)The 
ase jk = ιk, A = ι is obtained from (167) with jk = ιk; the result is ls = τθ.Comparing the formal solution (163) with the solution (165), we obtain the �nalrelation for Gegenbauer polynomials

(ιkθ)
lsP

α,α
τ−ιkls(cos ιkθ) = θ

1−s
2 Jα(τθ) (168)



216written up to normalizing fa
tors.The 
ell shown in Figure 26σ′ is transformed into
l
c

Aθ
k p

τ

θ ∈ Θ(A) =





[
−π
2
,
π

2

]
, A = 1,

R, A 6= 1,

A =

p∏

ι=k+1

jr,

(169)where k is the order number of the �rst 
oordinate xk 
onne
ted with vertex lc, pis the order number of 
oordinate, 
onne
ted with the right bran
h outgoing fromvertex τ and c is number of nodes to the left of vertex τ .To 
ell (169) there 
orresponds the sphere
Sp−k (jk+1, . . . , jp) =

{
x |x2k + j2k+1x

2
k+1 + · · ·+

( p∏

r=k+1

j2r

)
x2p = 1

}and to the vertex lc, the sphere Sp−k−1(jk+1, . . . , jp−1). Under mapping ψ, theLapla
ian is transformed a

ording to the rule ∆θ (j) = A2∆∗
θ∗ (→), where theasterisk indi
ates the quantities in the equation of the 
ell shown in Figure 26σ.These quantities 
an be written as follows: ψθ∗ = Aθ, τ = τ∗A, lc = l∗cB, where

B =
p−1∏
r=k+1

jr, i.e. A = jpB. To 
ell (169), there 
orresponds the equation
{

1

coscAθ

∂

∂θ
coscAθ

∂

∂θ
− j2p

lc[lc + (c− 1)B]

cos2Aθ
+ τ(τ + cA)

}
Ψ(θ) = 0. (170)Its formal solution 
an be written as follows

Ψα,α
n,0 (θ) = N(cosAθ)lcPα,ατ−jpls(sinAθ), (171)

α = Bα∗(→) = lc +
c− 1

2
B, n = An∗(→) = τ − jplc.Let B = ι, some of the parameters jr, k+ 1 ≤ r ≤ p− 1, are equal to dual units,and jp 6= ιp. Then the equation (170) takes following form:

Ψ′′(θ) + (τ2 − j2p l2c)Ψ(θ) = 0, (172)



217and its solution 
an be written as
Ψτ,lc(θ) = eiθ

√
τ2−j2pl2c . (173)The 
ase jp = ιp is obtained from (172) and (173). Comparing (171) and (173),we obtain limit relations for Gegenbauer polynomials

P
α,α
τ−jplc(sin ιjpθ) = eiθ

√
τ2−j2pl2c , α = lc + ι

c− 1

2
,

P
α,α
τ−ιplc(sin ιpθ) = eiθτ , α = lc +

c− 1

2
(174)written up to normalizing fa
tors.The 
ell, shown at Figure 26b, is transformed into the 
ell

l
c

l
s

Aθ

k
p

q

σ

θ ∈
{
Z+(A), jp+2 6= lp+2,

Θ(A), jp+2 = lp+2,
A =

p+1∏

r=k+1

jr,

Z+(A) =





[
0,
π

2

]
, A = 1,

R+, A 6= 1,

Θ(A) =





[
−π
2
,
π

2

]
, A = 1,

R, A 6= 1,(175)where k is order number of the �rst 
oordinate xk, 
onne
ted with the left vertex
lc; p is order number of the last 
oordinate 
onne
ted with vertex lc; q is ordernumber of the last 
oordinate 
onne
ted with the right vertex ls.To 
ell (175) there 
orresponds sphere

Sq−k (jk+1, . . . , jq) =

{
x |x2k + j2k+1x

2
k+1 + · · ·+

( p∏

r=k+1

j2r

)
x2p +

+A

(
x2p+1 + j2p+2x

2
p+2 + · · ·+

( q∏

r=p+2

j2r

)
x2q

)
= 1

}
.Equating the expression in round bra
kets to unit, we 
an obtain sphere

Sq−p−1 (jp+2, . . . , jq), whi
h 
orresponds to vertex ls, and equating to unitthe expression in front of round bra
kets, we are able to write the sphere
Sp−k (jk+1, . . . , jp), 
orresponding to vertex lc. Under mapping ψ Lapla
ian (143)is transformed a

ording to the rule ∆θ (j) =

(
q∏

r=k+1

j2r

)
∆∗
θ∗(→), and quantities,



218entering (143), are transformed as follows:
ψθ∗ = Aθ, σ = σ∗

q∏
r=k+1

jr, lc = l∗cA/jp+1, ls = l∗sB, where B =
q∏

r=p+2
jr.Transforming (143), we obtain equation, 
orresponding to 
ell (175):

{
B2

coscAθ sinsAθ

∂

∂θ
coscAθ sinsAθ

∂

∂θ
− j2p+1B

2 lc[lc + (c− 1)A/jp+1]

cos2Aθ
−

− A2 ls[ls + (s− 1)B]

sin2Aθ
+ σ[σ + (c+ s)AB]

}
Ψ(θ) = 0. (176)Its formal solution 
an be written as follows:

Ψα,β
n,lc,ls

(θ) = N(sinAθ)ls(cosAθ)lcPα,βn (cos 2Aθ), (177)
2n = σ − lcBjp+1 − lsA, α = ls +

s− 1

2
B, β = lc +

c− 1

2jp+1
A.For A = 1, B = ι, i.e. when one or more parameters jr, p + 2 ≤ r ≤ q, takedual values, equation (176) is transformed into algebrai
 equation, 
onne
ting
onstants of separation of variables in neighbouring verti
es by relation

l2s = σ2
1

A2
sin2Aθ. (178)For B = 1, A = ι, jp+1 6= ιp+1, equation (176) takes form

Ψ′′ +
s

θ
Ψ′ +

[
σ2 − j2p+1l

2
c −

ls(ls + s− 1)

θ2

]
Ψ = 0. (179)This is Lommel equation [70℄, whi
h solution 
an be expressed in terms of Besselfun
tion

Ψσ,ls,lc,s(θ) = Nθ
l−s
2 Jls+ s−1

2

(
θ
√
σ2 − j2p+1l

2
c

)
. (180)For jp+1 = ιp+1 equation and its solution 
ome out of (179) and (180).



21917 Representations of Groups SO (3; j), SO (4; j)Let us 
onsider representations of 
lass 1 of groups SO (3; j), j1 = 1, ι1; j2 = 1, ι2in spheri
al system of 
oordinates, 
orresponding to the VKS-tree (151). Metri
son sphere S2(j) in these 
oordinates is as follows
dl2(j) = dϕ2 cos2 j1j2θ + j22dθ

2. (181)Lapla
ian on sphere, 
orresponding to this metri
s, is
∆3(j) =

1

cos j1j2θ

∂

∂θ
cos j1j2θ

∂

∂θ
+

j22
cos2 j1j2θ

∂2

∂ϕ2
. (182)Fa
torized eigenfun
tions of Lapla
ian (182), whi
h are solutions of equation

∆3 (j)Ψ (θ, ϕ) = −τ (τ + 1)Ψ (θ, ϕ), 
an be found, multiplying solution (161)by solution (171) for c = 1, lc ≡ m:
Ψτ,m(θ, ϕ) = Neimϕ(cos j1j2θ)

m
P
m,m
τ−j2m(sin j1j2θ). (183)In 
oordinate system, 
orresponding to the VKS-tree (154), metri
s on sphere

S2 (j) 
an be written
dl2(j) = dζ2 + j22

1

j21
sin2 j1ζdα

2, (184)and Lapla
ian takes the following form
∆3(j) =

j22
sin j1ζ

∂

∂ζ
sin j1ζ

∂

∂ζ
+

j21
sin2 j1ζ

∂2

∂α2
. (185)Its eigenfun
tions 
an be found, multiplying solution (160) and (163) for s = 1,

ls ≡ l, k = 1, q = 2, whi
h gives
Ψτ,l(ζ, α) = Neimα(sin j1ζ)

l
P
l,l
τ−j1l(cos j1ζ). (186)On sphere S3 (j) metri
s in polyspheri
al 
oordinates, 
orresponding to theVKS-tree (157), is given by expression

dl2(j) = cos2 j1j2j3θ(cos
2 j1j2ξ dϕ

2 + j22 dξ
2) + j22j

2
3 dθ

2. (187)



220It 
orresponds to Lapla
ian
∆4(j) =

1

cos2 j1j2j3θ

(
∂

∂θ
cos2 j1j2j3θ

∂

∂θ
+

+
j23

cos j1j2ξ

∂

∂ξ
cos j1j2ξ

∂

∂ξ
+

j22j
2
3

cos j1j2ξ

∂2

∂ϕ2

)
, (188)whi
h eigenfun
tions, realizing the representation of 
lass 1 of group SO (4; j),
an be found by multiplying fun
tions (171) and have the form

Ψσ,l,m(θ, ξ, ϕ) = Neimϕ(cos j1j2ξ)
m(cos j1j2j3θ)

l ×

×Pm,ml−j2m(sin j1j2ξ)P
l+ 1

2
j1j2,l+

1
2
j1j2

σ−j3l (sin j1j2j3θ). (189)In polyspheri
al 
oordinates (158) metri
s on sphere S3 (j) is as follows:
dl2 (j) = j22dβ

2 + cos2 j1j2βdϕ
2
1 + j23

1

j21
sin2 j1j2βdϕ

2
2. (190)To this metri
s there 
orresponds Lapla
ian

∆4(j) =
j23

sin j1j2β cos j1j2β

∂

∂β
sin j1j2β cos j1j2β

∂

∂β
+

+
j22j

2
3

cos2 j1j2β

∂2

∂ϕ2
+

j21j
2
2

sin2 j1j2β

∂2

∂ϕ2
2

, (191)and its eigenfun
tions, realizing representation of 
lass 1 of group SO (4; j) in
oordinate system (158), 
an be found by using (160) and (177).These fun
tions are
Ψl1,m1,m2(β, ϕ1, ϕ2) = (192)
= Neim1ϕ1+im1ϕ2(cos j1j2β)

m1(sin j1j2β)
m2P

m2,m1

l1−j2j3m1−j1j2m2
(cos 2j1j2β).Finally, in 
oordinates (159) metri
s on sphere S3 (j) 
an be written as

dl2(j) = dθ̃2 +
1

j21
sin2 j1θ̃(j

2
2 dξ̃

2 + j23 sin
2 j2ξ̃ dϕ̃

2). (193)



221To this metri
s there 
orresponds Lapla
e operator
∆4(j) =

1

sin2 j1θ̃

(
j22j

2
3

∂

∂θ̃
sin2 j1θ̃

∂

∂θ̃
+

+
j21j

2
3

sin j2ξ̃

∂

∂ξ̃
sin j2ξ̃

∂

∂ξ̃
+

j21j
2
2

sin2 j1ξ̃

∂2

∂ϕ̃2

)
, (194)its eigenfun
tions

Ψ
σ̃,l̃,m̃

(θ̃, ξ̃, ϕ̃) = Neim̃ϕ̃(sin j2ξ̃)
m̃(sin j1θ̃)

l̃ ×

×Pm̃,m̃
l̃−j2m̃

(cos j2ξ̃)P
l̃+ 1

2
j2j3,l̃+

1
2
j2j3

σ̃−j1 l̃
(cos j1θ̃) (195)
an be found, using the des
ribed algorithm. They realize representation of 
lass1 of group SO (4; j) in polyspheri
al 
oordinate system (159). Using relationsfrom § 16, it is easy to �nd eigenfun
tions of Lapla
e operators of 
ontra
tedgroups [71�75℄.18 Fun
tor 
ategory of VKS-treesLet us brie�y review a 
ategory Eu
lid and 
lassi
al Cayley-Klein 
ategories [5,� 7.1.5℄.A Eu
lidean ve
tor spa
e RRn+1 is a ve
tor spa
e over the �eld R of realnumbers-equipped with an inner produ
t fun
tion (, ) : RRn+1 × RRn+1 → Rwhi
h is bilinear, symmetri
, and positive de�nite. These spa
es are the obje
tsof a 
ategory Eu
lid, with morphisms those linear maps whi
h preserve innerprodu
t. There are two fun
tors

U : Eu
lid→ V
tR, ∗ : (Eu
lid)op → V
tRto the 
ategory of real ve
tor spa
es: The (
ovariant) forgetful fun
tor U �forgetthe inner produ
t� and the 
ontravariant fun
tor �take the dual spa
e�.On the other hand, in the previous Se
tion we have found representations oforthogonal groups in Cayley-Klein spa
es and we have shown that their Lapla
e(Casimir) operators on sphere and other algebrai
 
onstru
tions 
an be obtainedby transfering the 
orresponding 
onstru
tions for 
lassi
al Lie groups in a

ordwith (150). Su
h an approa
h is natural and justi�ed by the fa
t that 
lassi
al



222Lie groups and their 
hara
teristi
 algebrai
 
onstru
tions are well studied. Butis su
h an approa
h the only one? Is it possible to take as the initial spa
e notonly the Eu
lidean spa
e but also a Cayley-Klein spa
e? The positive answerto this question was given by Theorem on the stru
ture of transitions betweenCayley-Klein spa
es [76�79℄.The transitions from the (n + 1)-dimensional real Cayley-Klein spa
e RV n+1(j)to the real Cayley-Klein spa
e RV n+1(j ′), and from the groups SO(n + 1,R; j),
Sp (n,R; j) to the groups SO(n+1,R; j ′), Sp (n,R; j ′) as well, 
an be, respe
tively,obtained from (150) and the transitions

ψ : RV n+1(j)→ RV n+1(j ′), ψ′x0 = x′0, ψ′xk = x′k

k∏

m=1

j′mj
−1
m , (196)by the same substitution of parameters jk for j′kj−1

k , where j = (j1, . . . , jn) andea
h of parameters jk assuming three values: jk = 1, ιk, i.Similarly the permissibility of these transitions 
an be justi�ed for 
omplexCayley-Klein spa
e CV n+1(j) whi
h emerge from the (n+1)-dimensional 
omplexEu
lidean spa
e CRn+1 by the mapping
ψ : CRn+1 → CV n+1(j), ψz∗0 = z0,

ψz∗k = zk

k∏

m=1

jm, k = 1, 2, . . . , n, (197)where z∗0 , z∗k ∈ CRn+1, z0, zk ∈ CV n+1(j) are 
omplex Cartesian 
oordinates. Thetotality of all possible values of the parameter j gives 3n di�erent real RV n+1(j)and, 
orrespondingly, 
omplex CV n+1(j) Cayley-Klein spa
es.The quadrati
 form (z∗,z∗) =
n∑

m=0
|z∗m|2 of the spa
e CRn+1 turns into thequadrati
 form

(z,z) = |z0|2 =
n∑

k=1

|zk|2
k∏

m=1

j2m. (198)of the spa
e CRn+1(j) under the mapping (197). Here |zk| = (x2k + y2k)
1/2 is theabsolute value (modulus) of the 
omplex number zk = xk + iyk, and z is the
omplex ve
tor: z = (z0, z1, . . . , zn).



223Let us de�ne (formally) the transition from the spa
e CV n+1(j) and genera-tors to the spa
e CV n+1(j′) by transformations, whi
h 
an be obtained from thetransformations (197), substituting in the latter the parameters jk for j′kj−1
k , i.e.

ψ′ : CV n+1(j)→ CV n+1(j′), ψ′z0 = z′0,

ψ′zk = z′k

k∑

m=1

j′mj
−1
m , k = 1, 2, . . . , n. (199)A Cayley-Klein spa
e K(j) := RV n+1(j), CV n+1(j), RV n(j) ⊗ RV n(j) is
alled non-�ber spa
e, if none of the parameters j1, . . . , jn assumes a dual value.A spa
e K(j) : is 
alled (k1, k2 . . . , kp)��ber spa
e, if 1 ≤ k1 < k2 < · · · < kp ≤ nand jk1 = ιk1 , . . . , jkp = ιkp , and the other jk = 1, i.However, transitions (196) and (199) do not make sense for all Cayley-Kleingroups and spa
es, be
ause for the dual values of parameters j the expressions

ι−1
k , ιmι−1

k for k 6= m are not de�ned. We have de�ned (see [5℄) only expressions
ιkι

−1
k , k = 1, 2, . . . , n. So if for some k we put jk = ιk, then the transformations(196) and (199) will be de�ned only in the 
ase when the dashed parameter withthe same number is equal to the same purely dual number, i.e. j′k = ιk.These Cayley-Klein spa
es are the obje
ts of a Cayley-Klein 
ategory CK,with morphisms (196) or (199) whi
h preserve quadrati
 form.Let us introdu
e the notations: TV n+1(j) for VKS-trees in Cayley-Kleinspa
es K(j).Given Cayley-Klein 
ategories CKC and CKB, we 
onsider all VKS-treefun
tors RV n+1(j), SV n+1(j), TV n+1(j), . . . : CKC → CKB. If σ : R֌ S and

τ : S ֌ T , are two natural transformations, their 
omponents for ea
h c ∈ Cde�ne 
omposite morphisms (τ · σ)c → τc ◦ σc whi
h are the 
omponents of atransformation τ · σ ֌ T . To show τ · σ natural, take any f : c → c′ in C and
onsider the diagram
-

-

-

Sf

Tf

Rf
Rc′Rc

Sc′Sc
?

??

?

Tc Tc′

σc′σc

τc τc′

�-

(τ · σ)c′(τ · σ)c



224Sin
e σ and τ are natural, both small squares are 
ommutative. Hen
e the re
t-angle 
ommutes, so the 
omposite τ · σ is natural.This 
omposition of transformations is asso
iative; moreover it has for ea
hfun
tor T an identity, the natural transformation 1T : T → T with 
omponents
1T c = 1Tc . Hen
e, given the Cayley-Klein 
ategories CKB and CKC, we may
onstru
t formally a fun
tor 
ategory of VKS-trees VKS|Tree with obje
ts thefun
tors R,S, T : CKC → CKB and morphisms the natural transformationsbetween two su
h fun
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232First, we re
all some basi
 notions of the knot theory. Applying to an initiallink (knot) L+ so 
alled �surgery� operation - elimination of a 
rossing - weobtain a simpler link/knot LO. Applying to the same initial link (knot) L+ another�surgery� operation - swit
hing of a 
rossing - we obtain another simpler link/knot
L−.It is postulated:1) every knot and link is des
ribed by the de�nite polynomial;2) three 
on
rete polynomials, namely PL+(t), PLO

(t), PL−(t) are 
onne
ted withthe help of the following (geometro-algebrai
) re
urren
e relation, whi
h is 
alledthe skein relationship:
PL+(t) = l1PLO

(t) + l2PL−(t) (1)where l1, l2 are 
oe�
ients;3) the normalization 
ondition for the unknot:
Punknot = 1 . (2)Applying the operation of elimination for torus knots and links Ln,2 turns itinto Ln−1,2, and the swit
hing operation turns it into Ln−2,2, where n is a positiveinteger number. From these 
onsiderations and from (1) it follows the followingre
urren
e relation :

PLn+1,2(t) = l1PLn,2(t) + l2PLn−1,2(t) ,or in the simpler notations:
Pn+1,2(t) = l1Pn,2(t) + l2Pn−1,2(t) . (3)Thus, the form of the re
urren
e relation (3) for torus knots and links Ln,2 
oin-
ides with the form of the skein relationship (1).Re
urren
e relation only for torus knots T (2m+ 1, 2) (or only for torus links

L(2m, 2)), where m = 0, 1, 2, . . . . looks as follows:
Pn+2,2(t) = k1Pn,2(t) + k2Pn−2,2(t) , (4)where

k1 = l21 + 2l2, k2 = −l22. (5)



233We also have
P1,2 = 1, P3,2 = k1 + k2. (6)2 Alexander polynomialsThe Alexander polynomials ∆(t) of knots and links [1℄ 
an be de�ned by the skeinrelationship

∆+(t)−∆−(t) = (t
1
2 − t− 1

2 )∆O(t), ∆unknot = 1. (7)From (7) (in analogy to (3)) it follows the following re
urren
e relation for torusknots and links Ln,2(t):
∆n+1,2(t) = (t

1
2 − t− 1

2 )∆n,2(t) + ∆n−1,2(t) . (8)From (8) (in analogy to (4)) one obtains the re
urren
e relation only for torusknots T (2m+ 1, 2) (or for torus links L(2m, 2))
∆n+2,2(t) = (t+ t−1)∆n,2(t)−∆n−2,2(t) . (9)The Alexander polynomials of torus knots T (n, 2) 
an be expressed through

q-numbers 
hara
teristi
 to Biedenharn-Ma
farlane quantum bosoni
 os
illator.The bosoni
 q-number 
orresponding to an integer n is de�ned as [2, 3℄
[n]q =

qn − q−n
q − q−1 , (10)where q is a parameter. Some of the q-numbers are:

[1]q = 1 , [2]q = q+ q−1 , [3]q = q2 +1+ q−2 , [4]q = q3 + q+ q−1 + q−3, . . . .The re
urren
e relation for (10) looks as
[n+ 1]q = (q + q−1)[n]q − [n− 1]q . (11)It was found that [4, 5℄:

∆2m+1,2(t) = [m+ 1]t − [m]t , t ≡ q , (12)



234or, sin
e n = 2m+ 1, as
∆n,2(t) =

[n+ 1

2

]
t
−
[n− 1

2

]
t
. (13)In the following se
tion we generalize these results with the help of q−numbers.3 Algorithm of obtaining of Alexanderpolynomials from bosoni
 q−numbersAnalyzing the results of previous se
tions we 
an formulate an algorithm of ob-taining of the Alexander skein relationship (7). Afterwards this pro
edure will beused for obtaining another skein relations.First step: we introdu
e polynomials An,2(q), whi
h refer to torus knots

T (2m+ 1, 2), satisfying following re
urren
e relation (repeating (11)):
An+2,2(q) = (q + q−1)An,2(q)−An−2,2(q) . (14)A

ording to (6):
A1,2(q) = 1, A3,2(q) = q − 1 + q−1. (15)Se
ond step: we formulate full re
urren
e relation for all polynomials An,2(q)and, thus, �nd 
orresponding skein relationship. From (14) we have k1 = q +

q−1, k2 = −1. Be
ause of (5), we �nd
l1 = q

1
2 + q−

1
2 , l2 = 1 . (16)Therefore

An+1,2(q) = (q
1
2 − q− 1

2 )An,2(q) +An−1,2(q) . (17)From (17) (in anology with (1) and (3)) we obtain the following skein relationship:
A+(q)−A−(q) = (q

1
2 − q− 1

2 )AO(q). (18)Third step: we �nd an expression for torus knots A2m+1,2(q). In analogywith (19), we put
A2m+1,2(q) = a1(q)[m+ 1]q − a2(q)[m]t , t ≡ q , (19)



235Using (10), (15) and (19), we �nd a1(q) = 1, a2(q) = 1. Therefore,
A2m+1,2(q) = [m+ 1]q − [m]q . (20)In general, we des
ribed three-step pro
edure of obtaining of: 1) skein rela-tionship of knots and links, and 2) expression for polynomial invariants of torusknots T (2m+ 1, 2), from stru
tural fun
tions of bosoni
 deformed os
illators. Inparti
ular, we obtained the formulas (18), (28), whi
h 
oin
ides with those for theAlexander polynomial invariants (7), (12) (if q ≡ t).4 Generalized Alexander polynomials A(q, p)from q, p-numbersIn this se
tion we use the proposed three-step algorithm to obtain the generalizedAlexander polynomials A(q, p) from q, p-numbers, whi
h redu
e to the Alexanderpolynomials if p = q−1.The q, p-number 
orresponding to integer number n is introdu
ed as [6℄

[n]q,p =
qn − pn
q − p , (21)where q , p are some 
omplex parameters. If p = q−1 , then [n]q,p = [n]q . Here aresome of the q, p-numbers:

[1]q,p=1 , [2]q,p=q + p , [3]q,p=q
2 + qp+ p2 , [4]q,p=q

3 + q2p+ qp2 + p3, . . . .The re
urren
e relation for q, p-numbers is
[n+ 1]q,p = (q + p)[n]q,p − qp[n− 1]q,p . (22)First, in anology with previous se
tion, on the base of (22) we introdu
e poly-nomials An,2(q, p), whi
h generalize the Alexander polynomials:

An+2,2(q, p) = (q + p)An,2(q, p)− qpAn−2,2(q, p) . (23)Thus from normalization 
ondition and (6)
A1,2(q, p) = 1, A3,2(q, p) = q − qp+ p. (24)



236Se
ond, from (23) it also follows
k1 = l21 + 2l2 = q + p, k2 = −l22 = −qp .From here one �nds

l2 = q
1
2 p

1
2 , l1 = q

1
2 − p 1

2 ,whi
h leads to the generalized Alexander skein relationship [7℄:
A+(q, p) = (q

1
2 − p 1

2 )AO(q, p) + q
1
2 p

1
2A−(q, p). (25)Formula (25) 
an be written in the form

q−
1
4 p−

1
4A+(q, p)− q

1
4p

1
4A−(q, p) = (q

1
4 p−

1
4 − q− 1

4p
1
4 )AO(q, p) (26)By putting p = q−1, the generalized Alexander skein relationship turns into theAlexander skein relationship (7).Third, we take

A2m+1,2(q, p) = a1(q, p)[m+ 1]q,p − a2(q, p)[m]q,p . (27)From (24) we have a1(q, p) = 1, a2(q, p) = qp. Therefore,
A2m+1,2(q, p) = [m+ 1]q,p − qp[m]q,p . (28)5 Generalized Alexander polynomialsand HOMFLY polynomialsThe HOMFLY polynomial invariants [8℄ are des
ribed by the skein relationship:
a−1H+(a, z) − aH−(a, z) = zHO(a, z). (29)Comparing (26) with the HOMFLY skein relationship (29) we obtain
a = q

1
4p

1
4 , z = q

1
4p−

1
4 − q− 1

4 p
1
4 . (30)Substituting this result into (29), one obtains the generalized Alexander skeinrelationship (26).



2376 Generalized Alexander polynomialsand Jones polynomialsThe Jones polynomial invariants [9℄ 
an be de�ned as
t−1V+(t)− tV−(t) = (t

1
2 − t− 1

2 )VO(t). (31)Comparing (26) with the Jones skein relationship (31), we �nd that substitution
q = t3, p = t (32)redu
es the generalized Alexander polynomials to Jones ones.A

ording to results of Se
tion 3, the Jones skein relationship (31) 
an beobtained with the help of the proposed three-step algorithm from q−numbersde�ned as

[n]q3,q =
q3n − qn
q3 − q . (33)A
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.rsParabose symmetry (alternative names: Generalized 
onformal su-persymmetry with tensorial 
entral 
harges, 
onformal M-algebra,
osp(1|2n) supersymmetry) has been 
onsidered as an alternative to
d-dimensional 
onformal superalgebra. Potential relevan
e of the 
or-responding superalgebra spreads to various sub�elds of High EnergyPhysi
s and Astrophysi
s (e.g. parti
le 
lassi�
ation, gauging gravity,dark matter/energy 
andidates, et
.). Yet, due to mathemati
al di�-
ulties, even 
lassi�
ation and analysis of its unitary irredu
ible repre-sentations (UIR's) have not been entirely a

omplished. We 
ompletethis 
lassi�
ation for n = 4 
ase (
orresponding to four dimensionalspa
e-time) and then show how the dis
rete subset of these UIR's 
anbe 
onstru
ted in a less abstra
t manner, that allows natural phys-i
al interpretation as spa
es of parti
ular 
omposite parti
le states.23This work was based on invited talks given at the 5th Petrov International Symposium onHigh Energy Physi
s, Cosmology and Gravity, Kyiv (Ukraine), April 29�June 15, 2012, and sup-ported in parts by the Proje
t-ON171031 of Ministry of Edu
ation, S
ien
e and Te
hnologi
alDevelopment, Serbia and the Proje
t-1202.094-12 of the Central European Initiative Coopera-tion Fund. 239



240We also 
onje
ture generalization of the obtained results to the 
asesrelevant in the string/brane 
ontext (n > 4).1 Introdu
tionIn the standard Poin
aré supersymmetry, anti
ommutator of two lefthanded(righthanded) supersymmetry generators either vanishes or, in the extended su-persymmetry 
ase, equals to a 
entral 
harge. If this requirement is relaxed, infour spa
e-time dimensions the following relations are obtained (in four 
ompo-nent spinor notation):
{Qα, Qβ} = (Cγµ)αβPµ + (Cγµν)αβZµν , {QQcovariantly} (1)with C being the 
harge 
onjugation matrix, γµν = [γµ, γν ], spa
e-time indi
estake values µ, ν = 0, 1, 2, 3 and spinorial indi
es α, β = 1, 2, 3, 4. The nonstandardse
ond term on the righthand side 
ontains six entities Zµν known as "tensorial
entral 
harges".This sort of supersymmetry generalization 
onveys also to the super
onformal
ase, introdu
ing, as we will see, a number of additional bosoni
 generators intothe algebra. The super
onformal generalization turns out to form osp(1|8) super-algebra, whose enveloping algebra 
oin
ides with the, so 
alled, n = 4 parabosealgebra [1, 2℄.Histori
ally, �rst to noti
e interesting properties of su
h a 
onstru
t seems to havebeen C. Fronsdal [3℄, as early as in 1985, while investigating Penrose twistorsand 
onformal �eld theory. He noti
ed that redu
tion from osp(1|8) symmetryto 
onformal symmetry of Minkowski spa
e (osp(1|8) ⊃ su(2, 2)) 
an be seen asa spe
i�
 type of Kaluza-Klein redu
tion from 10 to 4 dimensions that leads tomodel with in�nite tower of massless �elds with in
reasing spins. Sin
e then the
onstru
t of generalized supersymmetry reappeared, sometimes independently, inmany physi
al 
ontexts. In parti
ular, it gained lot of interest when it was realizedthat tensorial 
entral 
harges in higher dimensions appear naturally in relation toextended obje
ts, su
h as branes and that it seems to be the underlying symmetryof M-theory [4�9℄. Besides, exoti
 BPS parti
les were found and studied [10�13℄in this framework, and �eld equations 
orresponding to higher spin �elds wereobtained [14�19℄. Independently, generalized 
onformal supersymmetry showed



241up as the result of a sear
h for mathemati
ally simple stru
tures that 
ould 
on-tain Poin
aré symmetry and thus 
ould be interesting as 
andidates for a largerspa
e-time symmetry. The approa
h was based on Heisenberg [20, 21℄, bose andparabose [22�24℄ algebras.In the �rst pla
e we will be interested in the orthosymple
ti
 generalization ofsupersymmetry as a 
andidate for a realisti
 symmetry of the spa
e-time. Thismeans that we will 
onsider 
ase osp(1|8) that is related to four spa
e-time di-mension, but we also 
onje
ture generalization of the results to higher dimensional
ases (where osp(1|2n) algebra appears in the 
ontext of branes and M-theory).When 
onsidering a (super)group in the 
ontext of a spa
e-time symmetry, one ofthe �rst and most natural steps to undertake is to �nd unitary irredu
ible repre-sentations (UIR's) of the group, as these give us basi
 information on the parti
le
ontent of the free theory. In prin
iple, only then one 
an know what types of�elds 
an exist in the model, and is entitled to 
onsider �eld theory, write a
tionfor the �elds, attempt quantisation and/or introdu
e intera
tions. Yet, in spite ofsubstantial interest in this type of generalized supersymmetry, no 
omplete anal-ysis of unitary irredu
ible representations, espe
ially in this physi
al 
ontext, hasbeen 
arried out. The probable reason is that this task is related with substantialmathemati
al di�
ulties.The problems have been solved for low n 
ases: apart from the well understood
ase n = 1, even UIR's of n = 2 were su

essfully 
lassi�ed [25℄ and some fam-ilies expli
itly 
onstru
ted [26℄. We are familiar with only a few partial resultspertaining to the representations of the osp(1|2n) for n > 2 (for a brief reviewof the progress in the representation theory of the orthosymple
ti
 superalgebras
osp(m|2n) in general, see [27℄). Günayadin applied his os
illator 
onstru
tion toobtain some positive energy UIR's of osp(1|2n) from dis
rete spe
trum [28℄. How-ever, his approa
h was 
onstru
tional and thus la
king in a few ways: no 
las-si�
ation of UIR's was given, the question if there are more dis
rete UIR's wasleft open and there was no insight where is the limit of the 
ontinuous spe
tre.Taking parabosoni
 approa
h Lievens, Stoilova, and Van der Jeugt [29℄ obtaineda narrow sub
lass of positive energy UIR's, 
alled representations with uniqueva
uum (parastatisti
s terminology). To the best of our knowledge, the only sys-temati
 and general approa
h to the 
lassi�
ation of (positive energy) osp(1|2n)UIR's was attempted by Dobrev and Zhang [30℄, who analyzed redu
ibility of



242lowest weight Verma modules. Yet, it turned out that a 
omplete 
lassi�
ationof positive energy UIR's of osp(1|8), at the present level of our mathemati
alunderstanding of Verma module stru
ture, required some extremely lengthy andinvolved 
al
ulations that 
ould be only performed by using 
omputers. We thusfollowed the approa
h of Dobrev and Zhang, but developed 
omputer algorithmsto analyze Verma module stru
ture: to sear
h for singular and subsingular ve
-tors and 
he
k their dependen
ies in ea
h parti
ular 
ase. In this way we managedto make a 
omplete list of positive energy osp(1|8) UIR's, together with expli
itforms of the 
orresponding Verma module singular and subsingular ve
tors. Wedemonstrate that there is a 
on
rete number of dis
rete UIR families (pre
iselynine, or ten if the trivial representation is 
ounted as a separate 
lass), that phys-i
ally should be related to elementary parti
les of osp(1|8) models.In addition, we also propose a method to expli
itly 
onstru
t dis
rete representa-tions, allowing one to easily perform 
on
rete 
al
ulations in these spa
es and, inthat way, give physi
al interpretation to the states within. The method is basedon a spe
i�
 generalization of the, so 
alled, Green's ansatz (used in the 
ontextof parastatisti
s), but in su
h a way that no anti
ommuting operators appearwhen representing superalgebra elements. Curiously, it turns out that to realiseall dis
rete families of UIR's, elementary Green's ansatz representations have tobe grouped in pairs, and it takes exa
tly up to three su
h pairs to 
onstru
t ar-bitrary dis
rete UIR. It is quite probably that our method for 
onstru
tion ofrepresentations 
an be 
onne
ted with the one in [28℄, but, to our opinion, isadvantageous due to la
k of anti
ommuting operators that drasti
ally simpli�es
al
ulations (and allows us to dire
tly use mathemati
al ma
hinery developed fornon relativisti
 quantum me
hani
s).2 Parabose algebra n = 4 as generalized super
onfor-mal symmetryParabose algebra is a generalization of the algebra of standard bose 
reation andannihilation operators, �rst suggested by H.S.Green [1℄. In literature [1, 31℄, it isusually de�ned as algebra of n pairs of mutually hermitian 
onjugate operators
aα, a

†
α, satisfying trilinear relations:

[{aα, a†β}, aγ ] = −2δβγaα, (2)
[{aα, aβ}, aγ ] = 0, (3)



243together with relations (additional four) that follow from these by hermitian 
on-jugation and by use of Ja
obi identities.24Parabose operators, de�ned as above, together with all possible anti
ommuta-tors {aα, aβ}, {aα, a†β} and {a†α, a†β} of the parabose operators, form a realizationof orthosymple
ti
 superalgebra osp(1|2n). With the usual assumptions of pos-itivity of Hilbert spa
e metri
s in the spa
e where parabose operators a
t, listof unitary irredu
ible representation of parabose algebra redu
es to, so 
alled,"positive energy" 
lass of osp(1|2n) UIR's.As announ
ed in the introdu
tion, we are primarily interested in the 
ase of4 physi
al dimensions, 
orresponding to n = 4.Conformal (c(1, 3) ∼ so(2, 4)) algebra is 
ontained in the algebra 
losed by allanti
ommutators of parabose operators. We will demonstrate the 
onne
tion bymaking a two-step 
hange of basis. We �rst swit
h from operators aα and a†α totheir hermitian 
ombinations Sα ≡ (aα+a
†
α) and Qα ≡ −i(aα−a†α). In the spa
eof all anti
ommutators of Sα and Qα we then introdu
e the following basis:

Ji ≡ 1
8(σi)

α
β {Qα, Sβ}, Yi ≡ 1

8

(
τi
)α
β
{Qα, Sβ}, Nij ≡ 1

8

(
αij
)α
β
{Qα, Sβ},

Kij ≡ −1
8

(
αij
)
αβ
{Sα, Sβ}, K0 ≡ 1

8(α0)αβ {Sα, Sβ}.

D ≡ 1
8(α0)

α
β {Qα, Sβ}, Pij ≡ 1

8

(
αij
)αβ {Qα, Qβ}, P0 ≡ 1

8(α0)
αβ {Qα, Qβ},

(4)Matri
es σi, τi, αij and α0, appearing here, represent a basis of four by four realmatri
es, de�ned as follows. Basis for antisymmetri
 matri
es is given by six ma-tri
es σi and τi, i, i = 1, 2, 3 that satisfy:
[σi, σj ] = 2εijkσk, [τi, τj ] = 2εijkτk, [σi, τj] = 0. (5)Matri
es αij ≡ τiσj , together with the unit matrix denoted as α0, form a basis ofsymmetri
 matri
es.Algebra 
losed by parabose anti
ommutators, whose one parti
ular basis isgiven by (4), has 36 generators and is isomorphi
 to sp(8). Centralizer of element Yi(i arbitrary) is a subalgebra isomorphi
 to Conformal algebra of Minkowski spa
e-time (so(2, 4) ⊂ sp(8)) plus the element Yi alone. Without loss of generality, we24We note that, in a Hilbert spa
e equipped with positive de�nite metri
s (with respe
t towhi
h one de�nes the adjoint a†

α), all algebra relations a
tually follow from a single relation (2).



244will 
onsider 
entralizer of Y3, spanned by the operator Y3 itself and the operators:
Jk, Ni ≡ N3i,D, Pi ≡ P3i, P0,Ki ≡ K3i,K0, (6)that generate so(2, 4) algebra. Operators (6) play the roles of rotation generators,boost generators, dilatation generator, momenta and pure 
onformal generators,respe
tively.We have thus demonstrated that the group generated by anti
ommutators of

n = 4 parabose algebra 
an be seen as a parti
ular generalization, that is, ex-tension of the 
onformal symmetry group in four dimensions. If we additionallyin
lude the parabose operators Q and S themselves in the even algebra, the overallstru
ture be
omes an extension of 
onformal superalgebra (hen
e the name gener-alized 
onformal supersymmetry). Mathemati
ally, algebra extends from sp(8) to
osp(1|8). Operators Q and S play roles of spa
e-time supersymmetry generators.To see this we 
an "invert" relations (4):
{Qα, Qβ} = (α0)αβ P0 + (αij)αβ Pij, {Sα, Sβ} = (α0)

αβ K0 − (αij)
αβ Kij,

{Sα, Qβ} = (α0)
α
β D + (αij)

α
β Nij + (σi)

α
β Ji + (τi)

α
β Yi.

(7)Comparison of these relations with the standard 
onformal superalgebra relationsshows appearan
e of extra terms on righthand sides of (7) � these are exa
tly thetensorial 
entral 
harges from relation (1), written in a di�erent, Lorentz non-
ovariant notation. In the �rst of the relations, apart from the expe
ted operators
P3i and P0 that we have identi�ed with spatial momentum and energy (6), thereare additional operators P1i and P2i. These operators transform as 
omponentsof a se
ond rank antisymmetri
 Lorentz tensor and are linear 
ombinations of an-ti
ommutators {Qη , Qξ} and {Qη̇, Qξ̇} (that vanish by de�nition in the standardsupersymmetry 
ase).3 Unitary irredu
ible representationsIn this se
tion we 
lassify unitary irredu
ible representations of n = 4 parabosealgebra. We will begin with some basi
 observations.As the metri
s is positive de�nitive, an operator de�ned as E ≡ 1

2

∑
α{aα, a

†
α}must be positive. Annihilation operators aα redu
e the eigenvalue of E, thusthe Hilbert spa
e must 
ontain a subspa
e that these operators annihilate. This



245subspa
e is 
alled va
uum subspa
e: V0 = {|v〉, aα|v〉 = 0}. From the parabosealgebra relations follows:
|v〉 ∈ V0 ⇒ {aα, a†β}|v〉 ∈ V0, (8)with α, β arbitrary. Therefore va
uum subspa
e 
arries a representation of an

U(1)×SU(N) group generated by operators {aα, a†β} (with U(1) part generated by
E). Let V (µ)

0 be a subspa
e of V0 
arrying irredu
ible representation µ of SU(N).For the reasons of unitarity we are interested in 
ases when this subspa
e is �nitedimensional. Sin
e generators {aα, a†β} 
ommute with E, E a
ts as a multiple ofunity in this subspa
e and its eigenvalue will be denoted as e0. Therefore, we 
anuniquely label V (µ)
0 as V (µ,e0)

0 , and the parameters µ and e0 in this way also labelUIR's of parabose algebra. In the 
ontext of osp(1|2n) algebra su
h representationsare 
alled positive energy UIR's. In analysis of this type of osp(1|2n), or more
on
retely, of osp(1|8) unitary irredu
ible representations we 
losely followed theapproa
h from [30℄: not only in method (analysis of redu
ibility and unitarity
onditions for lowest weight Verma modules), but also in 
onventions, 
hoi
e ofroot system, UIR labels, et 
etera (only di�erent letters will be sometimes usedto denote quantities, in order to ensure 
ompatibility with the rest of this paper).Thus we will run through preliminaries very brie�y, referring to [30℄ for details.We 
onsider lowest weight Verma modules V Λ ∼= U(G+) ⊗ |v0〉. Here, G+denotes subalgebra of positive roots in standard algebra de
omposition GC =

G+ ⊕H⊕G− (G denotes superalgebra osp(1|8) and GC its 
omplexi�
ation; H isCartan subalgebra) and |v0〉 is a lowest weight ve
tor of weight Λ:
X ∈ G− ⇒ X|v0〉 = 0, H ∈ H ⇒ H|v0〉 = Λ(H)|v0〉. (9)Roots, expressed using elementary fun
tionals, are:
∆ = {±δα, 1 ≤ α ≤ 4;±δα ± δβ, 1 ≤ α < β ≤ 4;

±2δα, 1 ≤ α ≤ 4} (10)(the two signs in ±δα±δβ not being 
orrelated) and the 
orresponding root ve
torswe will denote as (in the same order):
G+ ⊕ G− = {a†±α, 1 ≤ α ≤ 4; a†±α,±β , 1 ≤ α < β ≤ 4;

a†±α,±α, 1 ≤ α ≤ 4}. (11)



246Here we introdu
ed a 
ompa
t notation for superalgebra elements, that empha-sises the parabose 
onne
tion:
a†−α ≡ aα, a†α,β ≡ {a†α, a

†
β}. (12)Simple root ve
tors are:

{a†−2,1, a
†
−3,2, a

†
−4,3, a

†
4} (13)and the 
orresponding positive root ve
tors are:

∆+ =
{
a†4, a

†
1,4, a

†
2,4, a

†
3,4, a

†
3, a

†
1,3, a

†
2,3, a

†
2, a

†
1,2, a

†
1,

a†−4,3, a
†
−4,2, a

†
−3,2, a

†
−4,1, a

†
−3,1, a

†
−2,1

}
,

(14)written in, so 
alled, normal ordering [30℄ that we will use for ordering of thePoin
aré-Birkho�-Witt (PBW) basis of U(G+).We will label representations by the signature
χ = {s1, s2, s3, d}, (15)where parameters s1, s2, s3 a
tually label the su(4) representation µ and parame-ter d is related to e0 by e0 = 4d+ s1 − s3. The 
onne
tion between the signatureand the lowest weight Λ is given by:

Λ = (d− s1
2
− s2

2
− s3

2
)δ1 + (d+

s1
2
− s2

2
− s3

2
)δ2

+ (d+
s1
2

+
s2
2
− s3

2
)δ3 + (d+

s1
2

+
s2
2

+
s3
2
)δ4.

(16)A 
orresponding shortened notation will be also used for weights: Λ =

(2d−s1−s2−s32 , 2d+s1−s2−s32 , 2d+s1+s2−s3
2 , 2d+s1+s2+s3

2 ).We introdu
e a (Shapovalov) norm on the Verma module via natural involutiveantiautomorphism: ω : ω(aα) = a†α (
ompatible with the assumed Hilbert spa
emetri
). Right away we note that simple unitarity 
onsiderations � 
al
ulatingnorms of ve
tors a†−(α+1),α|v0〉 and a†1|v0〉 � result in 
onstraints: s1 ≥ 0, s2 ≥
0, s3 ≥ 0, d ≥ (s1 + s2 + s3)/2. Parameters s1, s2, s3 must be integer, labelling an
SU(4) Young tableau with s1+ s2+ s3 boxes in the �rst row, s1+ s2 boxes in these
ond and s1 boxes in the third row.



247For 
ertain values of Λ submodules appear in the stru
ture of the Vermamodule V Λ, and the module be
omes redu
ible. Basi
 
ase is when this happensdue to existen
e of a singular ve
tor |vs〉 ∈ V Λ:
X|vs〉 = 0, ∀X ∈ G−. (17)This singular ve
tor, in turn, generates a submodule V Λ′ ∼= U(G+)|vs〉 within V Λ.To ensure irredu
ibility, all submodules 
orresponding to singular ve
tors mustbe fa
tored out. However, after fa
toring out these submodules, new singularve
tors may appear in the remaining spa
e � 
alled subsingular ve
tors. Namely,if the union of all submodules of singular ve
tors is denoted by ĨΛ then a ve
tor

|vss〉 ∈ V Λ is 
alled a subsingular ve
tor [32℄ if |vss〉 /∈ ĨΛ and:
X|vss〉 ∈ ĨΛ, ∀X ∈ G−. (18)Just as singular ve
tors, subsingular ve
tors also generate submodules that haveto be fa
tored out when looking for irredu
ible representations.In the parti
ular 
ase of osp(1|2n) there are always, irrespe
tively of d value,singular ve
tors of the form:

|vαs 〉 ≡ (a†−(α+1),α)
sα+1|v0〉, α = 1, 2, . . . n− 1, (19)(when 
onsidering 
ases of unitary and therefore �nite dimensional SU(n) rep-resentations µ, related to integer values of sα). The union of the submodules
orresponding to these singular ve
tors we will denote as IΛSU . We will always
onsider fa
tor modules V Λ/IΛSU , and due to this fa
t subsingular ve
tors willplay a signi�
ant role in the the analysis.Our analysis of the Verma module stru
ture heavily relied on the 
omputeranalysis and was 
arried out in the following general manner (that we just brie�ydes
ribe). First, Ka
 determinant of a su�
iently high level was 
onsidered as afun
tion of parameter d (for ea
h given 
lass of SU(4) representation µ). In thisway it was possible to lo
ate the highest value of d for whi
h the determinantvanishes and the Verma module be
omes redu
ible. The singular or subsingularve
tor responsible for the singularity of the Ka
 matrix was then 
al
ulated, ef-fe
tively by solving an (optimized) system of linear equations. Next we would�nd the norm of this ve
tor and look for possible additional dis
rete redu
tion



248points at (lower) values of d for whi
h the norm also vanishes. If new redu
tionpoints with new (sub)singular ve
tors were found it was also ne
essary to 
he
kthat, upon removal of the 
orresponding submodules, no ve
tors with zero ornegative norm remained. For this, it was enough to 
he
k that previously found(sub)singular ve
tors (i.e. those o

urring for higher d values) belonged to thefa
tored-out submodules. Optimized Wolfram Mathemati
a 
ode was written toperform all these 
al
ulations.We will illustrate the pro
edure on a few 
ases, and then give the �nal 
lassi�-
ation. More detailed a

ount of the (sub)singular ve
tors and their interrelationswill be given elsewhere.First we 
onsider unitary irredu
ible representations that appear when µ isthe trivial representation (s1 = s2 = s3 = 0), i.e. 
ases when the lowest weightve
tor of Verma module is invariant w.r.t. SU(4) subgroup a
tion (spa
e V0 is onedimensional). The stru
ture of the Verma module in this 
ase is as follows.For values d > 3
2 the Verma module is irredu
ible, all norms are positive andthe 
orresponding representations are unitary and irredu
ible.At value d = 3

2 a subsingular ve
tor appears. In PBW basis this ve
tor hasform:
|v(1,1,1,1)ss 〉 = (−2a†3,4a†2a†1 + 2a†2,4a

†
3a

†
1 − 2a†4a

†
2,3a

†
1 − 2a†1,4a

†
3a

†
2 + 2a†4a

†
1,3a

†
2

− 2a†4a
†
3a

†
1,2 + a†3,4a

†
1,2 − a†2,4a†1,3 + a†1,4a

†
2,3 + 4a†4a

†
3a

†
2a

†
1)|v0〉.The notation for labeling these (sub)singular ve
tors is the following: ss in thelower index stands for "subsingular" whereas s means "singular" ve
tor; in theupper index we give "relative weight" of the ve
tor � if the (sub)singular ve
-tor generates Verma submodule of weight Λ′ the the relative weight is Λ′ − Λ(the relative weight alone will turn out to uniquely label these ve
tors, in a verysystemati
 way).Upon removing, i.e. fa
toring out the submodule generated by this ve
tor, anUIR is obtained.The norm of the ve
tor |v(1,1,1,1)ss 〉 as a fun
tion of d at s1 = s2 = s3 = 0 is

64(2d − 3)(d− 1)(2d − 1)d, having zeros at d = 3
2 , 1,

1
2 and 0.Between d = 3

2 and d = 1 the norm above is negative and there are no UIR's.However, at the value d = 1 a new subsingular ve
tor appears:
|v(0,1,1,1)ss 〉 =

(
a†3,4a

†
2 − a†2,4a†3 + a†4a

†
2,3 − 2a†4a

†
3a

†
2

)
|v0〉 . (20)



249It 
an be expli
itly shown that the subsingular ve
tor |v(1,1,1,1)ss 〉 belongs tothe union of submodule generated by |v(0,1,1,1)ss 〉 and the submodule IΛSU . Afterfa
toring out submodule of the ve
tor |v(0,1,1,1)ss 〉 no negative or zero norm ve
torsremain in the fa
tor spa
e and an UIR is obtained for d = 1, s1 = s2 = s3 = 0.Norm of the subsingular ve
tor (20) is 16(d− 1) (2d− 1)d. In parti
ular, it isnegative for 1 > d > 1
2 , pre
luding existen
e of UIR's in this range.At d = 1

2 a singular ve
tor appears:
|v(0,0,1,1)s 〉 = (a†4a

†
4a

†
−4,3 − a†3,4 + 2a†4a

†
3)|v0〉, (21)with norm 8(2d − 1)d.The previous subsingular ve
tor |v(0,1,1,1)ss 〉 belongs to the union of submodulegenerated by |v(0,0,1,1)s 〉 and submodule IΛSU . Thus, there is UIR also at d = 1/2,

s1 = s2 = s3 = 0 obtained upon removing the submodule of ve
tor |v(0,0,1,1)s 〉.Norm of |v(0,0,1,1)s 〉 is negative when 1
2 > d > 0 and, therefore, there are noUIR's in this range.At d = 0 another subsingular ve
tor, of the norm 2d, appears:

|v(0,0,0,1)s 〉 = a†4|v0〉. (22)This redu
tion point 
orresponds to the trivial representation of osp(1|8) withrepresentation spa
e being spanned only by ve
tor |v0〉.Pro
eeding in the same manner, we �nally obtain the following simple s
hemefor n = 4 parabose UIR 
lassi�
ation:
• s1 = s2 = s3 = 0:

d > 3/2;

d = 3/2, |v(1,1,1,1)ss 〉;
d = 2/2, |v(0,1,1,1)ss 〉;
d = 1/2, |v(0,0,1,1)s 〉;
d = 0/2, |v(0,0,0,1)s 〉;

(23)
• s1 = s2 = 0, s3 > 0:

d > s3/2 + 4/2;

d = s3/2 + 4/2, |v(1,1,1,0)ss 〉;
d = s3/2 + 3/2, |v(0,1,1,0)s 〉;
d = s3/2 + 2/2, |v(0,0,1,0)s 〉;

(24)
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• s1 = 0, s2 > 0:

d > (s2 + s3)/2 + 5/2;

d = (s2 + s3)/2 + 5/2, |v(1,1,0,0)s 〉;
d = (s2 + s3)/2 + 4/2, |v(0,1,0,0)s 〉;

(25)
• s1 > 0:

d > (s1 + s2 + s3)/2 + 6/2;

d = (s1 + s2 + s3)/2 + 6/2, |v(1,0,0,0)s 〉. (26)The pattern of "relative weights" of (sub)singular ve
tors in the above s
hemeis obvious, and it allows us to immediately 
onje
ture UIR 
lassi�
ation for n > 4:
• s1 = s2 = · · · = sn−1 = 0:

d > (n− 1)/2;

d = (n− 1)/2, |v(1,1,1,...,1,1,1,1)ss 〉;
d = (n− 2)/2, |v(0,1,1,...,1,1,1,1)ss 〉;

. . .

d = 2/2, |v(0,0,0,...,0,1,1,1)ss 〉;
d = 1/2, |v(0,0,0,...,0,0,1,1)s 〉;
d = 0/2, |v(0,0,0,...,0,0,0,1)s 〉;

(27)
• s1 = s2 = · · · = sn−2 = 0, sn−1 > 0:

d > sn−1/2 + (n− 1 + 1)/2;

d = sn−1/2 + (n− 1)/2, |v(1,1,1,...,1,1,0)ss 〉;
d = sn−1/2 + (n− 1− 1)/2, |v(0,1,1,...,1,1,0)ss 〉;

. . .

d = sn−1/2 + 4/2, |v(0,0,...,1,1,1,0)ss 〉;
d = sn−1/2 + 3/2, |v(0,0,...,0,1,1,0)s 〉;
d = sn−1/2 + 2/2, |v(0,0,...,0,0,1,0)s 〉;

(28)
• . . .
• s1 = 0, s2 > 0:

d > (s2 + · · ·+ sn−1)/2 + n− 3/2;

d = (s2 + · · ·+ sn−1)/2 + n− 3/2, |v(1,1,0,...,0,0,0)s 〉;
d = (s2 + · · ·+ sn−1)/2 + n− 4/2, |v(0,1,0,...,0,0,0)s 〉;

(29)
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• s1 > 0:

d > (s1 + · · ·+ sn−1)/2 + n− 1;

d = (s1 + · · ·+ sn−1)/2 + n− 1, |v(1,0,0,...,0,0,0)s 〉. (30)4 An expli
it 
onstru
tion of parabose UIR'sWe propose a method to expli
itly 
onstru
t the above 
lassi�ed unitary irre-du
ible representations of parabose algebra. The method 
annot be applied toUIR's from the 
ontinuous spe
tre, i.e. those UIR's that o

ur for non (half)integervalues of parameter d. However, from the physi
al viewpoint, representations fromthe dis
rete spe
tre (d taking dis
rete (half)integer values less or equal to the �rstredu
tion point) are of far greater signi�
an
e sin
e only in these 
ases singu-lar or subsingular ve
tors appear. And it is well known that these ve
tors turninto important equations of motion (e.g. see [32℄). In the parti
ular 
ase of theparabose generalization of supersymmetry, these ve
tors, for example, turn intoKlein-Gordon, Dira
 and Maxwell equations.In the same paper where he �rst introdu
ed parabose (and parafermi) alge-bra [1℄, H.S.Green has also o�ered a way to 
onstru
t some of the unitary repre-sentations using what is nowadays known as the Green's ansatz. We demonstratethat the ansatz, originally appli
able only to "unique va
uum" representations,
an also a

ommodate other representations of the dis
rete type. We also 
om-bine the ansatz with, so 
alled, Klein transformation, so that Green operators nolonger satisfy strange "mixed" 
ommutation and anti
ommutation relations, butinstead obey usual 
ommutation relations of bosoni
 algebra.We de�ne a Klein transformed analogue of Green's de
omposition of order
p (p is known as the order of the parastatisti
s) as the following expression forparabose operators:

aα =
∑p

a=1 I(1)I(2) · · · I(a−1)a
a
α. (31)In this expression operator aaα and its adjoint aa†α satisfy ordinary bosoni
 algebrarelations. There are total of n·pmutually 
ommuting pairs of annihilation-
reationoperators (aaα, aa†α ):

[aaα, a
b†
β ] = δβαδ

ab; [aaα, a
b
β ] = 0, (32)where a, b = 1, 2, . . . p and α, β = 1, 2, . . . n.



252In (31) we have also introdu
ed selfadjoint unipotent Klein "inversion" oper-ators that a
t on the Green's operators in the following way:
I(a)a

b
αI(a) = (−)δababα. (33)By their introdu
tion we avoided appearan
e of anti
ommuting relations oforiginal Green's operators and, by this, operators aaα and aa†α be
ome familiarmathemati
al obje
ts whi
h are easier to manipulate and interpret. The easi-est way to show that su
h inversion operators exist is by expli
it 
onstru
tion:

I(a) = exp(iπ
∑

α
1
2{aaα, a

a†
α }).The overall Green's ansatz representation spa
e of order p 
an be seen astensor produ
t of p multiples of Hilbert spa
es H(a) of ordinary linear harmoni
os
illator in n-dimensions: H = H(1) ⊗ H(2) ⊗ · · · ⊗ H(p). A single fa
tor Hilbertspa
e H(a) is the spa
e of unitary representation of n dimensional bose algebraof operators (aaα, a

a†
α ), α = 1, 2, . . . n, whi
h is, at the same time, the simplestnontrivial unitary representation of parabose algebra (i.e. the simplest positiveenergy UIR of osp(1|2n)): H(a)

∼= U(aa†α )|0〉a, where |0〉a is the usual bose va
uumof fa
tor spa
e H(a). This pi
ture is apropriate due to the fa
t that the a
tion ofeven operators of osp(1|2n) (and, in parti
ular, of spa
etime symmetry generators(4) in the n = 4 
ase) redu
es simply to sum of a
tions in ea
h of these fa
torspa
es, by virtue of:
{aα, aβ} =

p∑

a=1

{aaα, aaβ}, {aα, a†β} =
p∑

a=1

{aaα, aa†β }. (34)As, from the mathemati
al point of view, the whole representation spa
e exa
tly
orresponds to Hilbert spa
e of p parti
les in a n-dimensional non relativisti
quantum me
hani
s, it is very 
lear that no negative or zero norm states appear.Therefore, if we 
an �nd, in this framework, a lowest weight ve
tor |v0〉 of a properweight (
orresponding to some UIR signature found in previous se
tion) then theve
tors of the form P(X)|v0〉,P(X) ∈ U(G+) will span that representation spa
e.In addition, one 
an expli
itly 
he
k that the 
orresponding (sub)singular ve
torvanishes, as it must.The simplest nontrivial representation, with signature s1 = s2 = s3 = 0,
d = 1/2 
orresponds to p = 1 spa
e. The lowest weight ve
tor is simply theva
uum of the H(1): |v(0,0,1,1)0 〉 = |0〉1. Spa
e in p = 1 
ase is irredu
ible. Physi
al



253interpretation of the ve
tors in this spa
e is that they 
orrespond to tower ofmassless states with raising heli
ities. Other "unique va
uum states (i.e. s1 =

s2 = s3 = 0) are obtained for p = 2 and p = 3 with lowest weight ve
tors being
|0〉1 ⊗ |0〉2 and |0〉1 ⊗ |0〉2 ⊗ |0〉3.The simplest UIR 
lass of non "unique va
uum" type has signature s1 = s2 =

0, s3 > 0, d = s3/2 + 1 and in these representations µ 
orresponds to single rowYoung tableaux. This 
lass 
an be realized in p = 2 spa
e, with
|v(0,0,1,0)0 〉 = 1√

s3!
(A

(1)
4 )s3 |0〉1 ⊗ |0〉2, (35)where A(k)

α ≡ I(2k)(a2k−1†
α + I(2k−1)a

2k†
α ). We note that entire p = 2 spa
e redu
esw.r.t. parabose algebra a
tion to UIR's with signatures: s3 = 0, 1, 2, 3, . . . ,d =

s3/2 + 1, s1 = s2 = 0, without any additional degenera
y. From the viewpoint ofphysi
s, this is the simplest 
lass that 
ontains both massless and massive stateswith an additional 
harge (related to the label s3).There are two more 
lasses of "single row" dis
rete UIR-s: those with signa-tures {0, 0, s3, s32 + 3
2} and {0, 0, s3, s32 + 2}. These are 
onstru
ted in a similarmanner as the previously 
onsidered 
lass with signature {0, 0, s3, s32 + 1}, onlyin spa
es p = 3 and p = 4, respe
tively, with the lowest weight states given byexpressions:
|v(0,1,1,0)0 〉 = 1√

s3!
(A

(1)
4 )s3 |0〉1 ⊗ |0〉2 ⊗ |0〉3, (36)

|v(1,1,1,0)0 〉 = 1√
s3!

(A
(1)
4 )s3 |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4. (37)There are two "two-rows" (s1 = 0, s2 > 0) UIR 
lasses. The 
lass with d =

(s2 + s3)/2 + 2 
an be realized in p = 4 spa
e, with the lowest weight state givenas (up to normalization 
onstant):
|v(0,1,0,0)s 〉 = (A

(1)
4 A

(2)
3 −A

(1)
3 A

(2)
4 )s2(A

(1)
4 )s3 |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4. (38)The remaining 
lass with d = (s2 + s3)/2 + 5/2 
an be realized in p = 5 spa
e,with

|v(1,1,0,0)s 〉 = (A
(1)
4 A

(2)
3 −A

(1)
3 A

(2)
4 )s2(A

(1)
4 )s3 |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4 ⊗ |0〉5. (39)The only dis
rete 
lass of representations that 
orresponds to three-rowsYoung tableaux (s1 > 0, d = (s1 + s2 + s3)/2 + 3) 
an be realized in p = 6 spa
e,



254with the lowest weight state 
onstru
ted as (up to normalization 
onstant):
|v(1,0,0,0)0 〉 =

( 3∑

k,l,m=1

εklmA
(k)
2 A

(l)
3 A

(m)
4

)s1

·
( 2∑

k,l=1

εklA
(k)
3 A

(l)
4

)s2
(A

(1)
4 )s3 (40)

|0〉1 ⊗ · · · ⊗ |0〉6,where ε denotes the Levi-Civita symbol.Thus we demonstrated a method for realization of all dis
rete 
lasses of UIR's.The presented 
onstru
tion method 
an be straightforwardly generalized both to
n > 4 and to other (half)integer values of d that belong to 
ontinuous spe
trum.5 Con
lusionsWe analyzed n = 4 parabose supersymmetry (
orresponding to D = 4 general-ized 
onformal supersymmetry) using a group-theoreti
al approa
h. We gave a
omplete 
lassi�
ation of unitary irredu
ible representations of parabose algebra.These results, although obtained in the n = 4 
ase, have proved to be readilygeneralizable to higher values of n, that made the analysis important also in thehigher dimensional 
ontext of the string theory. Apart from 
lassifying UIR's ofthe symmetry, we also proposed a method for their expli
it 
onstru
tion.We bring a spe
ial attention to the "pairing" of fa
tor spa
es that was observ-able in this setup: to obtain the simplest single box UIR (s1 = s2 = 0, s3 = 1, d =

3/2) it takes two fa
tor spa
es p = 2. To form the simplest UIR with two boxes ina 
olumn (s1 = s3 = 0, s2 = 1, d = 5/2), it turns out that p = 4 must be taken andthe va
uum is essentially obtained by antisymmetrizing two "single-box" va
uumstates. Similarly, "three-box in a 
olumn" UIR (s2 = s3 = 0, s1 = 1, d = 7/2)is obtained by antisymmetrizing tensor produ
t of three "single box" va
ua. Alldis
rete IR 
lasses 
an be realized using tensor produ
t of up to three "single-box"
p = 2 spa
es, in a way reminis
ent of forming 
omposite parti
les from simpler
onstituent ones.
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258(UV/IR) mixing term and from the �nite terms as well. For a
ertain 
hoi
e of the non
ommutative parameter θ whi
h preservesunitarity, problemati
 UV divergent and UV/IR mixing terms vanish.Non-perturbative modi�
ations of the neutrino dispersion relationsare assymptoti
ally independent of the s
ale of non
ommutativityin both the low and high energy limits and may allow superluminalpropagation.Keywords: Non
ommutative geometry, Quantum �eld theory, Neu-trino physi
s, Cosmi
 ray experiments1 Introdu
tionString theory indi
ated that non
ommutative gauge �eld theory (NCGFT) 
ouldbe one of its low-energy e�e
tive theories [1℄. Studies on non
ommutative parti-
le phenomenology [2, 3℄ was motivated to �nd possible experimental signaturesand/or predi
t/estimate bounds on spa
e-time non
ommutativity from 
olliderphysi
s experimental data: for example from the Standard Model (SM) invisiblepart of Z → ν̄ν de
ays, and more important from the ultra high energy (UHE)pro
esses o

urring in the framework of the 
osmi
-ray neutrino physi
s. Con-straint on the s
ale of the NCGFT, ΛNC, is possible due to a dire
t 
oupling ofneutrinos to photons.Signi�
ant progress has been obtained in the so-
alled Seiberg-Witten (SW)maps [1℄ and enveloping algebra based models where one 
ould deform 
ommu-tative gauge theories with arbitrary gauge group and representation [4�10℄. Inour 
onstru
tion the non
ommutative �elds are obtained via SW maps from theoriginal 
ommutative �elds. It is 
ommutative instead of the non
ommutativegauge symmetry that is preserved as the fundamental symmetry of the theory.The 
onstraints on the U⋆(1) 
harges, stated as �no-go theorem� [11℄, are alsores
inded in our approa
h [12℄, and the non
ommutative extensions of parti
lephysi
s 
ovariant SM (NCSM) and the non
ommutative grand uni�ed theories(NCGUT) models [10, 12�18℄ were 
onstru
ted. These allow a minimal deforma-tion with no new parti
le 
ontent and with the sa
ri�
e that intera
tions in
ludein�nitely many terms de�ned through re
ursion over the NC parameter θµν ; in



259pra
ti
e 
ut-o� at 
ertain θ-order.In a simple model of NC spa
etime lo
al 
oordinates xµ are promoted to her-mitian operators x̂µ satisfying spa
etime NC and implying un
ertainty relations
[x̂µ, x̂ν ] = iθµν −→ |∆xµ∆xν| ≥ 1

2
|θµν |, (1)where θµν is real, antisymmetri
 matrix. The Moyal-Weyl ⋆-produ
t, relevant forthe 
ase of a 
onstant θµν , is de�ned as follows:

(f ⋆ g)(x) = e
i
2
h ∂

∂xµ
θµν ∂

∂yν f(x)g(y)

∣∣∣∣
y→x

. (2)The operator 
ommutation relation (1) is then realized by the so-
alled ⋆-
ommutator
[x̂µ, x̂ν ] = [xµ ⋆, xν ] = iθµν . (3)The perturbative quantization of non
ommutative �eld theories was �rst pro-posed in a pioneering paper by Filk [19℄. Other famous examples are the runningof the 
oupling 
onstant of NC QED [20℄ and the UV/IR mixing [21, 22℄. Laterwell behaving one-loop quantum 
orre
tions to non
ommutative s
alar φ4 theo-ries [23�25℄ and the NC QED [26℄ have been found. Also the SW expanded NCSM[10, 13, 15, 17℄ at �rst order in θ, albeit breaking Lorentz symmetry is anomalyfree [27, 28℄, and has well-behaved one-loop quantum 
orre
tions [20�22, 29�37℄.However, despite of some signi�
ant progress in the models [23�37℄, a better un-derstanding of various models quantum loop 
orre
tions still remains in generala 
hallenging open question. This fa
t is parti
ularly true for the models 
on-stru
ted by using SW map expansion in the NC parameter θ, [5, 10, 16, 38, 39℄.Resulting models are very useful as e�e
tive �eld theories in
luding their one-loopquantum properties [27�37℄ and relevant phenomenology [40�47℄.Dis
ussions on the C,P,T, and CP properties of the non
ommutative inter-a
tions are given in [44℄, and in parti
ular in [46℄. For example, �xing θ sponta-neously breaks C, P, and/or CP dis
rete symmetries [16℄. A breaking of C sym-metry o

urs in Z → γγ pro
ess. One 
ommon approximation in those existingworks is that only the verti
es linear in terms of the NC parameter θ were used.Quite re
ently, θ-exa
t SW map and enveloping algebra based theoreti
almodels were 
onstru
ted in the framework of 
ovariant non
ommutative quan-



260tum gauge �eld theory [4℄, and applied in loop 
omputation [48�51℄ and to thephenomenology, as well [52, 53℄.At θ-order there are two important intera
tions that are suppressed and/orforbidden in the SM, the triple neutral gauge boson [13, 15, 17℄, and the treelevel 
oupling of neutrinos with photons [38, 39℄, respe
tively. Here an expansionand 
ut-o� in powers of the NC parameters θµν 
orresponds to an expansionin momenta and restri
t the range of validity to energies well below the NCs
ale ΛNC. Usually, this is no problem for experimental predi
tions be
ause thelower bound on the NC parameters θµν = cµν/Λ2
NC (the 
oe�
ients cµν runningbetween zero and one) runs higher than typi
al momenta involved in a parti
ularpro
ess. However, there are exoti
 pro
esses in the early universe as well as thoseinvolving ultra high energy 
osmi
 rays [47, 52�54℄ in whi
h the typi
al energyinvolved is higher than the 
urrent experimental bound on the NC s
ale ΛNC.Thus, the previous θ-
ut-o� approximate results are inappli
able. To 
ure the 
ut-o� approximation, we are using θ-exa
t expressions, inspired by exa
t formulasfor the SW map [8, 55, 56℄, and expand in powers of gauge �elds, as we did in[53℄. In θ-exa
t models we have studied the UV/IR mixing [48, 49℄, the neutrinopropagation [50℄ and also some NC photon-neutrino phenomenology [47, 52�54℄,respe
tively. Due to the presen
e of the UV/IR mixing the θ-exa
t model is notperturbatively renormalizable, thus the relations of quantum 
orre
tions to theobservations [57℄ are not entirely 
lear.In this work we present NCSM extended neutrino gauge bosons a
tions toall orders of θ. Finally we dis
uss the de
ay width Γ(Z → νν) as fun
tions ofthe NC s
ale ΛNC for light-like non
ommutativity whi
h are allowed by unitarity
ondition [58, 59℄.2 UHE 
osmi
 ray motivationDire
t 
oupling of gauge bosons to neutral and �
hiral� fermion parti
les [38,52,53℄,via ⋆-
ommutator in the NC ba
kground, whi
h plays the role of an external �eldin the theory, allow us to estimate a 
onstraint on the s
ale of the non
ommu-tative guge �eld theory, ΛNC, arising from ultra-high energy 
osmi
 ray experi-ments involving ν-nu
leon inelasti
 
ross se
tion, see i.e. Fig. 27. The observation
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Figure 27: Diagrams 
ontributing to νN → ν +X pro
esses.of ultra-high energy (UHE) ν's from extraterrestrial sour
es would open a newwindow to look to the 
osmos, as su
h ν's may easily es
ape very dense materialba
kgrounds around lo
al astrophysi
al obje
ts, giving thereby information onregions that are otherwise hidden to any other means of exploration. In addition,
ν's are not de�e
ted on their way to the earth by various magneti
 �elds, point-ing thus ba
k to the dire
tion of distant UHE 
osmi
-ray sour
e 
andidates. This
ould also help resolving the underlying a

eleration in astrophysi
al sour
es.In the energy spe
trum of UHE 
osmi
 rays at ∼ 4 × 1019 eV the GZK-stru
ture has been observed re
ently with high statisti
al a

ura
y [60℄. Thus the�ux of the so-
alled 
osmogeni
 ν's, arising from photo-pion produ
tion on the
osmi
 mi
rowave ba
kground pγCMB → ∆∗ → Nπ and subsequent pion de
ay,is now guaranteed to exist. Possible ranges for the size of the �ux of 
osmogeni

ν's 
an be obtained from separate analysis of the data from various large-s
aleobservatories [61, 62℄.Note that there is the un
ertainty in the �ux of 
osmogeni
 ν's regardingthe 
hemi
al 
omposition of UHE 
osmi
 rays (for details see [52℄). Usinging theupper bound on the νN 
ross se
tion derived from the RICE Collaboration sear
hresults [63℄ at Eν = 1011 GeV (4 × 10−3 mb for the FKRT ν-�ux [61℄)), one 
aninfer from θ-trun
ated model on the NC s
ale ΛNC to be greater than 455 TeV, a



262really strong bound. Here we have θµν ≡ cµν/Λ2
NC su
h that the matrix elementsof c are of order one. One should however be 
areful and suspe
t this result as ithas been obtained from the 
onje
ture that the θ-expansion stays well-de�ned inthe kinemati
al region of interest. Although a heuristi
 
riterion for the validityof the perturbative θ-expansion, √s/ΛNC . 1, with s = 2EνMN , would underpinour result on ΛNC, a more thorough inspe
tion on the kinemati
s of the pro
essdoes reveal a more stronger energy dependen
e E1/2
ν s1/4/ΛNC . 1. In spite of anadditional phase-spa
e suppression for small x's in the θ2-
ontribution [40℄ of the
ross se
tion relative to the θ-
ontribution, we �nd an una

eptably large ratio

σ(θ2)/σ(θ) ≃ 104, at ΛNC = 455 TeV. Hen
e, the bound on ΛNC obtained thisway is in
orre
t, and our last resort is to modify the model adequately to in
ludethe full-θ resummation, thereby allowing us to 
ompute nonperturbatively in θ.Total 
ross se
tion, as a fun
tion of the NC s
ale at �xed Eν = 1010 GeV and
Eν = 1011 GeV, together with the upper bounds depending on the a
tual sizeof the 
osmogeni
 ν-�ux (FKRT [61℄ and PJ [62℄) as well as the total SM 
rossse
tions at these energies, are depi
ted in our Figure 28. In order to maximize theNC θ-exa
t e�e
t we 
hoose c01 − c13 = c02 − c23 = c03 = 1. Even if the futuredata 
on�rm that UHE 
osmi
 rays are 
omposed mainly of Fe nu
lei, as indi
atedby the PAO data, then still valuable information on ΛNC 
an be obtained withour method, as seen in Fig.29. Here we see the interse
tions of our 
urves withthe RICE results (
f. Fig.28) as a fun
tion of the fra
tion α of Fe nu
lei in theUHE 
osmi
 rays. On top of results, presented in Figs.28 and 29, we also havethe NC s
ale given as a fun
tion of the plasmon frequen
y, from the plasmonde
ay into neutrino pairs γpl → ν̄ν (Fig.30), and as a fun
tion of the Tdec fromBBN (Fig.31), respe
tively. All results depi
ted in Figs.28-31, shows 
onvergentbehavior. In our opinion those were the strong signs to 
ontinue resear
h towardsquantum properties and phenomenology of su
h θ-exa
t non
ommutative gauge�eld theory model.3 Consisten
y of the SW map and enveloping algebraapproa
h to NCGFTThe 
hoi
e of gauge group appears to be severely restri
ted in a non
ommutativesetting [1℄: The star 
ommutator of two Lie algebra valued gauge �elds will involve
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tions vs. ΛNC for Eν = 1010 GeV(thi
k lines) and Eν = 1011 GeV (thin lines). FKRT and PJ lines are the upperbounds on the ν-nu
leon inelasti
 
ross se
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Figure 31: The plot of the s
ale ΛNC versus Tdec for perturbative/exa
t solution(dashed/full 
urve).the anti-
ommutator as well as the 
ommutator of the Lie algebra generators. Thealgebra still 
loses for Hermitian matri
es, but it is for instan
e not possible toimpose the tra
e to be zero. This observation 
an be interpreted in two ways:(a) The 
hoi
e of gauge group is restri
ted to U(N) in the fundamental, anti-fundamental or adjoint representation; or(b) the gauge �elds are valued in the enveloping algebra of a Lie algebra and thenany (unitary) representation is possible.The 
ase (a) applies also to the U(1) 
ase and imposes severe restri
tions onthe allowed 
harges; it has been studied 
arefully and has led to �theorems� [64,65℄. The se
ond 
ase avoids the restri
tions on the gauge group and 
hoi
e ofrepresentation, but needs to address the potential problem of too many degrees offreedom, sin
e all 
oe�
ient fun
tions of the monomials in the generators 
oulda priori be physi
al �elds. The solution to this problem is that the 
oe�
ient�elds are not all independent. They are rather fun
tions of the 
orre
t numberof ordinary gauge �elds via Seiberg-Witten maps and their generalizations. Thesituation is reminis
ent of the 
onstru
tion of super�elds and supersymmetri
a
tions in terms of ordinary �elds in supersymmetry. This method, referred asSeiberg-Witten map or enveloping algebra approa
h avoids both the gauge group



266and the U(1) 
harge issues. It was shown mathemati
ally rigorously that any U(1)gauge theory on an arbitrary Poisson manifold 
an be deformation-quantized toa non
ommutative gauge theory via the the enveloping algebra approa
h [66℄ andlater extended to the non-Abelian gauge groups [67,68℄. The important step thathas been missed in a paper [11℄ opposing above 
on
lusions, is the use of redu
iblerepresentations [12℄.Following [12℄ we introdu
e a 
onsistent non
ommutative, Seiberg-Witten mapand enveloping algebra based theory: Let Φ̂[Φ, Aµ], Âµ[Aµ], Λ̂[Λ, Aµ] be the SWmap expanded �elds (
onsider for example the well-known non-abelian maps forthe Moyal-Weyl 
ase [1℄). Under an ordinary gauge transformation δ of the un-derlying �elds φi(x), i = 1, 2, 3 and aµ the SW expanded �elds transform like itis expe
ted for non
ommutative �elds.Sin
e in the non
ommutative 
ase the order of �elds matters, there are infa
t more 
hoi
es than the one given in (4). In general all �elds 
arry left andright 
harges that 
ombines into the total 
ommutative 
harge. Gauge invarian
erequires that the respe
tive 
harges of neighboring �elds must mat
h with oppositesigns. In the notation of (2) and (4), we have:
δΦ̂ = iΛ̂L ⋆ Φ̂− iΦ̂ ⋆ Λ̂R . (4)Using the asso
iativity of the star produ
t one 
an easily verify the formal 
on-sisten
y relation

[δΛ̂, δΣ̂]Φ̂ = [iΛ̂L ⋆, iΣ̂L] ⋆ Φ̂− Φ̂ ⋆ [iΛ̂R ⋆, iΣ̂R]. (5)Therefore the non
ommutative gauge transformations Λ̂L/R 
an be 
onstru
tedfrom the 
lassi
al �elds and parameters A
L/R
µ = aµ(x)Q

L/R and ΛL/R =

λ(x)QL/R with QL/R = diag(qL/R1 , q
L/R
2 , q

L/R
3 ) and qi = qLi − qRi by so-
alledhybrid Seiberg-Witten maps [10, 69℄. The hybrid 
ovariant derivative is given by

D̂µΦ̂ = ∂µΦ̂− iÂLµ ⋆ Φ̂+ iΦ̂ ⋆ ÂRµ . Thanks to (5) the left and right NC gauge �elds
Â
L/R
µ are 
onstru
ted from A

L/R
µ only, respe
tively. The gauge �eld a
tion 
ouldbe written as

Lgauge = −
1

4g2
tr
(
F̂Lµν ⋆ F̂

µνL + F̂Rµν ⋆ F̂
µνR
)
, (6)with g := e

√
tr(QL)2 + tr(QR)2. In [12℄ we have employed this 
onstru
ton ondeformed Yukawa 
ouplings. Namely, in the Yukawa terms, a star produ
t de-



267formation would prevent the 
harge summation. The hybrid SW map [10, 69℄ isintrodu
ed to re
over gauge invarian
e. Thus the 
lassi
al 
harge q is split intoleft and right 
harges q = qL − qR, as we have seen above.4 Covariant θ-exa
t U⋆(1) modelWe start with the following SW type of NC U⋆(1) gauge model:
S =

∫
−1

4
Fµν ⋆ Fµν + iΨ̄ ⋆ /DΨ , (7)with the NC de�nitions of the nonabelian �eld strength and the 
ovariant deriva-tive, respe
tively:

Fµν = ∂µAν − ∂νAµ − i[Aµ ⋆, Aν ],

DµΨ = ∂µΨ− i[Aµ ⋆, Ψ]. (8)All non
ommutative �elds in this a
tion (Aµ,Ψ) are images under (hybrid)Seiberg-Witten maps of the 
orresponding 
ommutative �elds (aµ, ψ). Here weshall interpret the NC �elds as valued in the enveloping algebra of the underlyinggauge group. This naturally 
orresponds to an expansion in powers of the gauge�eld aµ and hen
e in powers of the 
oupling 
onstant e. At ea
h order in aµ weshall determine θ-exa
t expressions.In the next step we expand the a
tion in terms of the 
ommutative gaugeparameter λ and �elds aµ and ψ using the SW map solution [48℄ up to the O(a3)order:
Λ = λ− 1

2
θijai ⋆2 ∂jλ ,

Aµ = aµ −
1

2
θνρaν ⋆2 (∂ρaµ + fρµ),

Ψ = ψ − θµνaµ ⋆2 ∂νψ

+
1

2
θµνθρσ

[
(aρ ⋆2 (∂σaµ + fσµ)) ⋆2 ∂νψ

+ 2aµ⋆2(∂ν(aρ⋆2∂σψ))− aµ⋆2(∂ρaν⋆2∂σψ)

−
(
aρ∂µψ(∂νaσ + fνσ)− ∂ρ∂µψaνaσ

)
⋆3

]
, (9)



268with Λ being the NC gauge parameter and fµν is the abelian 
ommutative �eldstrength fµν = ∂µaν − ∂νaµ.The generalized Mojal-Weyl star produ
ts ⋆2 and ⋆3, appearing in (9), arede�ned, respe
tively, as
f(x) ⋆2 g(x) = [f(x) ⋆, g(x)]

=
sin ∂1θ∂2

2
∂1θ∂2

2

f(x1)g(x2)

∣∣∣∣
x1=x2=x

, (10)
(f(x)g(x)h(x))⋆3 =

(
sin(∂2θ∂32 ) sin(∂1θ(∂2+∂3)2 )

(∂1+∂2)θ∂3
2

∂1θ(∂2+∂3)
2

+ {1↔ 2}
)
f(x1)g(x2)h(x3)

∣∣∣∣
xi=x

, (11)where ⋆ is asso
iative but non
ommutative, while ⋆2 and ⋆3 are both 
ommutativebut nonasso
iative.The resulting expansion de�nes θ-exa
t neutrino-photon U⋆(1) a
tions, for agauge and a matter se
tors respe
tively. Pure gauge �eld (3-photon) a
tion reads:
Sg =

∫
i∂µaν ⋆ [a

µ ⋆, aν ]

+
1

2
∂µ

(
θρσaρ ⋆2 (∂σaν + fσν)

)
⋆ fµν . (12)The photon-fermion a
tion up to 2-photon 2-neutrino �elds 
an be derived by



269using the �rst order gauge �eld and the se
ond order neutrino �eld expansions,
Sf =

∫ (
ψ̄ + (θij∂iψ̄ ⋆2 aj)

)
γµ[aµ ⋆, ψ]

+ i(θij∂iψ̄ ⋆2 aj)/∂ψ − iψ̄ ⋆ /∂(θijai ⋆2 ∂jψ)
− ψ̄γµ[aµ ⋆, θ

ijai⋆2∂jψ]

− ψ̄γµ
[
1

2
θijai⋆2(∂jaµ+fjµ)⋆, ψ

]

− i(θij∂iψ̄⋆2aj)/∂(θ
klak⋆2∂lψ)

+
i

2
θijθkl

[
(ak ⋆2 (∂lai + fli)) ⋆2 ∂jψ̄

+ 2ai ⋆2 (∂j(ak ⋆2 ∂lψ̄))− ai ⋆2 (∂kaj ⋆2 ∂lψ̄)

+
(
ai∂kψ̄(∂jal + fjl)− ∂k∂iψ̄ajal

)
⋆3

]
/∂ψ

+
i

2
θijθklψ̄/∂

[
(ak ⋆2 (∂lai + fli)) ⋆2 ∂jψ

+ 2ai⋆2(∂j(ak⋆2∂lψ))−ai⋆2(∂kaj⋆2∂lψ)

+
(
ai∂kψ(∂jal+fjl)−∂k∂iψajal

)
⋆3

]
. (13)Note that a
tions for gauge and matter �elds obtained above, (12) and (13)respe
tively, are nonlo
al obje
ts due to the presen
e of the star produ
ts: ⋆,

⋆2 and ⋆3. Feynman rules from above a
tions, represented in Fig.32, are givenexpli
itly in [50℄.5 Quantum properties: neutrino two-point fun
tionAs depi
ted in Fig. 33, there are four Feynman diagrams 
ontributing to the ν-self-energy at one-loop. With the aid of (13), we have veri�ed by expli
it 
al
ulationthat the 4-�eld tadpole (Σ2) does vanish. The 3-�elds tadpoles (Σ3 and Σ4) 
anbe ruled out by invoking the NC 
harge 
onjugation symmetry [16℄. Thus onlythe Σ1 diagram needs to be evaluated. In spa
etime of the dimensionality D we
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271obtain
Σ1 = µ4−D

∫
dDq

(2π)D

(
sin qθp

2
qθp
2

)2 1

q2
1

(p + q)2

·
[
(qθp)2(4−D)(/p + /q) (14)

+ (qθp)

(
/̃q(2p2 + 2p · q)− /̃p(2q2 + 2p · q)

)

+

(
/p(q̃2(p2 + 2p · q)− q2(p̃2 + 2p̃ · q̃))

+ /q(p̃2(q2 + 2p · q)− p2(q̃2 + 2p̃ · q̃))
)]

,

where p̃µ = (θp)µ = θµνpν, and in addition ˜̃p
µ
= (θθp)µ = θµνθνρp

ρ. To perform
omputations of those integrals using the dimensional regularization method, we�rst use the Feynman parametrization on the quadrati
 denominators, then theHeavy Quark E�e
tive theory (HQET) parametrization [70℄ is used to 
ombinethe quadrati
 and linear denominators. In the next stage we use the S
hwingerparametrization to turn the denominators into Gaussian integrals. Evaluating therelevant integrals for D = 4 − ǫ in the limit ǫ → 0, we obtain the 
losed formexpression for the self-energy
Σ1 = γµ

[
pµ A+ (θθp)µ

p2

(θp)2
B

]
, (15)

A =
−1

(4π)2

[
p2
(

trθθ

(θp)2
+ 2

(θθp)2

(θp)4

)
A1

+

(
1 + p2

(
trθθ

(θp)2
+

(θθp)2

(θp)4

))
A2

]
, (16)
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A1 =

2

ǫ
+ ln(µ2(θp)2) + ln(πeγE) (17)

+
∞∑

k=1

(
p2(θp)2/4

)k

Γ(2k + 2)

(
ln
p2(θp)2

4
+ 2ψ0(2k + 2)

)
,

A2 = −(4π)2

2
B = −2

+

∞∑

k=0

(
p2(θp)2/4

)k+1

(2k + 1)(2k + 3)Γ(2k + 2)

(
ln
p2(θp)2

4

− 2ψ0(2k + 2)− 8(k + 1)

(2k + 1)(2k + 3)

)
, (18)with γE ≃ 0.577216 being Euler's 
onstant.The 1/ǫ UV divergen
e 
ould in prin
iple be removed by a properly 
ho-sen 
ounterterm. However due to the spe
i�
 momentum-dependent 
oe�
ient infront of it, a nonlo
al form for it is required.5.1 UV/IR mixingTurning to the UV/IR mixing problem, we re
ognize a soft UV/IR mixing termrepresented by a logarithm,

ΣUV/IR = /p
p2

(4π)2

(
ln

1

|µ(θp)|2
)(

trθθ

(θp)2
+ 2

(θθp)2

(θp)4

)
. (19)Instead of dealing with nonlo
al 
ounterterms, we take a di�erent route here to
ope with various divergen
es besetting (15). Sin
e θ0i 6= 0 makes a NC theorynonunitary [58℄, we 
an, without loss of generality, 
hose θ to lie in the (1, 2)plane

θµν =
1

Λ2
NC




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0


 . (20)Automati
ally, this produ
es

trθθ

(θp)2
+ 2

(θθp)2

(θp)4
= 0, ∀p. (21)



273With (21), Σ1, in terms of Eu
lidean momenta, re
eives the following form:
Σ1 =

−1
(4π)2

γµ

[
pµ
(
1 +

trθθ

2

p2

(θp)2

)
− 2(θθp)µ

p2

(θp)2

]
A2. (22)By inspe
ting (18) one 
an be easily 
onvin
ed that A2 is free from the 1/ǫdivergen
e and the UV/IR mixing term, being also well-behaved in the infrared,in the θ → 0 as well as θp→ 0 limit. We see, however, that the two terms in (22),one being proportional to /p and the other proportional to /̃̃p, are still ill-behavedin the θp → 0 limit. If, for the 
hoi
e (20), P denotes the momentum in the (1,2) plane, then θp = θP . For instan
e, a parti
le moving inside the NC plane withmomentum P along the one axis, has a spatial extension of size |θP | along theother. For the 
hoi
e (20), θp → 0 
orresponds to a zero momentum proje
tiononto the (1, 2) plane. Thus, albeit in our approa
h the 
ommutative limit (θ → 0)is smooth at the quantum level, the limit when an extended obje
t (arising due tothe fuzziness of spa
e) shrinks to zero, is not. We 
ould surely 
laim that in ourapproa
h the UV/IR mixing problem is 
onsiderably softened; on the other hand,we have witnessed how the problem strikes ba
k in an unexpe
ted way. This is,at the same time, the �rst example where this two limits are not degenerate.5.2 Neutrino dispersion relationsIn order to probe physi
al 
onsequen
e of the 1-loop quantum 
orre
tion, with

Σ1−loopM from Eq. (3.25) in [50℄, we 
onsider the modi�ed propagator
1

/Σ
=

1

/p− Σ1−loopM
=

/Σ

Σ2
. (23)We further 
hoose the NC parameter to be (20) so that the denominator is �niteand 
an be expressed expli
itly:

Σ2 = p2
[
Â2

2

(
p4

p4r
+ 2

p2

p2r
+ 5

)
− Â2

(
6 + 2

p2

p2r

)
+ 1

]
, (23)where pr represents r-
omponent of the momentum p in a 
ylindri
al spatial
oordinate system and Â2 = e2A2/(4π)

2 = −B/2.From above one see that p2 = 0 de�nes one set of the dispersion rela-tion, 
orresponding to the dispersion for the massless neutrino mode, however



274the denominator Σ2 has one more 
oe�
ient Σ′ whi
h 
ould also indu
e 
er-tain zero-points. Sin
e the Â2 is a fun
tion of a single variable p2p2r, with
p2 = p20 − p21 − p22 − p23 and p2r = p21 + p22, the 
ondition Σ′ = 0 
an be expressedas a simple algebrai
 equation

Â2
2z

2 − 2
(
A2 − Â2

2

)
z +

(
1− 6Â2 + 5Â2

2

)
= 0 , (24)of new variables z := p2/p2r , in whi
h the 
oe�
ients are all fun
tions of y :=

p2p2r/Λ
4
NC.The two formal solutions of the equation (24)

z =
1

Â2

[(
1− Â2

)
± 2

(
Â2 − Â2

2

) 1
2

]
, (25)are birefringent. The behavior of solutions (25), is next analyzed at two limits

y → 0, and y → ∞.5.2.1 The low-energy regime: p2p2r ≪ Λ4
NCFor y ≪ 1 we set Â2 to its zeroth order value e2/8π2,

p2 ∼
((

8π2

e2
− 1

)
± 2

(
8π2

e2
− 1

) 1
2

)
· p2r

≃ (859 ± 59) · p2r , (26)obtaining two (approximate) zero points. From the de�nition of p2 and p2r we seethat both solutions are real and positive. Taking into a

ount the higher order (iny) 
orre
tion these poles will lo
ate nearby the real axis of the 
omplex p0 planethus 
orrespond to some metastable modes with the above de�ned dispersionrelations. As we 
an see, the modi�ed dispersion relation (26) does not depend onthe non
ommutative s
ale, therefore it introdu
es a dis
ontinuity in the ΛNC →∞limit, whi
h is not unfamiliar in non
ommutative theories.5.2.2 The high-energy regime: p2p2r ≫ Λ4
NCAt y ≫ 1 we analyze the asymptoti
 behavior of

A2 ∼
iπ2

8

√
y

(
1− 16i

πy
e−

i
2

√
y

)
+O

(
y−1
)
, (27)



275from [50℄, therefore (25) 
an be redu
ed to
z ∼ −1± 2i → p20 ∼ p23 ± 2ip2r . (28)We thus rea
h two unstable deformed modes besides the usual mode p2 = 0 inthe high energy regime. Here again the leading order deformed dispersion relationdoes not depend on the non
ommutative s
ale ΛNC.5.3 The alternative a
tion self-energyUsing the Feynman rule of the alternative a
tion (2.15) from Ref [50℄, whi
h is a
onsequen
e of the SW freedom, we �nd the following 
ontribution to the neutrinoself-energy from diagram Σ1

Σ1alt = /p
8

3

1

(4π)2
1

|θp|2
(

trθθ

(θp)2
+ 4

(θθp)2

(θp)4

)
. (29)The detailed 
omputation is presented in Appendix B of Ref. [50℄. We noti
e thatthere are no hard 1/ǫ UV divergent and no logarithmi
 UV/IR mixing terms,and the �nite terms like in A1 and A2 are also absent. Thus the subgraph Σ1 forthe alternative a
tion (2.15) in [50℄ does not require any 
ounter-term. However,the result (29), does express powerful UV/IR mixing e�e
t, that is in terms ofs
ales terms, the Σ1alt experien
e the forth-power of the NC-s
ale/momentum-s
ale ratios ∼ |p|−2|θp|−2 in (29), i.e. we are dealing with the Σ1alt ∼ /p (ΛNC/p)

4within the ultraviolet and infrared limits for ΛNC and p, respe
tively.6 Phenomenology: Z → νν̄ de
ay rateTo illustrate another phenomenologi
all e�e
ts of our θ-exa
t 
onstru
tion, wepresent a 
omputation the Z → νν̄ de
ay rate in the Z�boson rest frame, whi
h isthen readily to be 
ompared with the pre
ision Z resonan
e measurements, whereZ is almost at rest. Sin
e the 
omplete Zνν intera
tion on non
ommutative spa
eswas dis
ussed in details in [12,49,50,53℄, we shall not repeat it here. We only give



276the almost 
omplete Zνν̄ vertex from [12℄
Γµ(p′, p) = i

g

2 cos θW

(
γµ +

i

2
F•(p

′, p)

·
[
(p′θp)γµ + (θp′)µ/p− (θp)µ/p ′

])
1− γ5

2

+
κe

2
tan θWF⋆2(p

′, p)

[
(p′θp)γµ + (θp′)µ/p− (θp)µ/p ′

]
,

(30)
where κ is an arbitrary 
onstant27, and

(p′θp)F•(p
′, p) = −2i

(
1− exp

(
i
MZ p

2Λ2NC cos ϑ

))
,

(p′θp)F⋆2(p
′, p) = −2 sin

(
MZ p

2Λ2NC cos ϑ

)
. (31)Note here that due to the equations of motions, for massless on-shell neutrinosthe terms [(θp′)µ/p − (θp)µ/p′] (1 − γ5) in the vertex (30) do not 
ontribute to the

Z → νν̄ amplitude. Thus the vertex (30) has the same form as the SM vertex
ig

2 cos θW
γµ (gV − gAγ5) [71, 72℄ with

gV = 1− 1

2
exp

(
iMZ p cosϑ

2Λ2
NC

)

+ 2iκ sin2 θW sin

(
MZ p cosϑ

2Λ2
NC

)
, (32)

gA = 1− 1

2
exp

(
iMZ p cosϑ

2Λ2
NC

)
. (33)The temporary 
omponent ~Eθ of θ is redu
ed from equations above sin
e for theZ�boson at rest we have

p′θ p = −MZ ~p · ~Eθ = −
MZ p cos ϑ

Λ2
NC

. (34)27The 
onstant κ measures a 
orre
tion from the ⋆-
ommutator 
oupling of the right handedneutrino νR to the non
ommutative hyper
harge U⋆(1)Y gauge �eld B
0
µ[κ]. Coupling is 
hiralblind and it vanishes in the 
ommutative limit. The non-κ-proportional term, on the other hand,is the non
ommutative deformation of standard model Z-neutrino 
oupling, whi
h involves theleft handed neutrinos only. Details 
an be found in se
tion four of [12℄.
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Figure 34: ∆Γ(Z → νν̄) de
ay width vs. ΛNC.with | ~Eθ| = 1/Λ2
NC and ϑ the angle between ~p and ~Eθ respe
tively.Using Zνν̄ vertex (30), we obtain the following Z → νν̄ partial width [73℄

Γ(Z → νν̄) = ΓSM(Z → νν̄)

+
α

3MZ | ~Eθ|

[
κ (1− κ+ κ cos 2θW ) sec2 θW cos

(
M2
Z | ~Eθ|
4

)

− 8 csc2 2θW

]
· sin

(
M2
Z | ~Eθ|
4

)

+
αMZ

12

[
− 2κ2 + (κ(2κ − 1) + 2) sec2 θW + 2csc2 θW

]
,

(35)
whose NC part vanishes when ~Eθ → 0, i.e. for vanishing θ or spa
e-like non
om-mutativity, but not light-like [58, 59℄.A 
omparison of the experimental Z de
ay width Γinvisible = (499.0±1.5) MeV[74℄ with its SM theoreti
al 
ounterpart, allows us to set a 
onstraint Γ(Z → νν̄)−
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ΓSM(Z → νν̄) . 1 MeV, from where a bound on the s
ale of non
ommutativity
ΛNC = | ~Eθ|−1/2 >∼ 140 GeV is obtained (see Fig. 34), for the 
hoi
e κ = 1.7 Dis
ussion and 
on
lusionsWe have presented the tree level 
osmogeni
 neutrinos (ν's) s
atterings: νN →
ν + anything and parti
le de
ays: ((γpl, Z)→ νν̄) in the 
ovariant θ-exa
t non-
ommutative quantum gauge theory based on Seiberg-Witten maps and envelop-ing algebra formalism.In the energy range of interest, 1010 to 1011 GeV, where there is always en-ergy of the system (E) larger than the NC s
ale (E/ΛNC > 1), the perturbativeexpansion in terms of ΛNC retains no longer its meaningful 
hara
ter, thus itis for
ing us to resort to those NC �eld-theoreti
al frameworks involving the full
θ-resummation. Our numeri
al estimates of the 
ontribution to the pro
esses 
om-ing from the photon ex
hange, pins impe

ably down a lower bound on ΛNC tobe as high as around up to O(106) GeV, depending on the 
osmogeni
 ν-�ux.For above analysis it was ne
essary to use results of [12℄ whi
h shows expli
itlythat the �no-go theorem� [11℄ is 
ertainly not appli
able to our SW-map based
θ-exa
t models of the NCGFT. Namely, it is known to be impossible in non
om-mutative geometry to dire
tly form tensor produ
ts from the NC �elds as long asthere is no additional underlaying mathemati
al stru
ture. The SW-map basedmodels do however have an additional underlying mathemati
al stru
ture: They
an be understood as the deformation quantization of ordinary �ber bundles overa Poisson manifold. With this additional stru
ture, tensor produ
ts are possibleand survive the quantization pro
edure [66℄. However, the authors in [11℄ failed todire
tly form tensor produ
ts of non
ommutative �elds. The proof of this failureis given in [12℄.Now we �rst dis
uss θ-exa
t 
omputation of the one-loop quantum 
orre
-tion to the ν-propagator. We in parti
ular evaluate the neutrino two-point fun
-tion, and demonstrate how quantum e�e
ts in the θ-exa
t SW map approa
hto NCGFT's, together with a 
ombination of S
hwinger, Feynman, and HQETparameterization, reveal a mu
h ri
her stru
ture yielding the one-loop quantum
orre
tion in a 
losed form.General expression for the neutrino self-energy (15) 
ontains in (17) both



279a hard 1/ǫ UV term and the UV/IR mixing term with a logarithmi
 infraredsingularity ln |θp|. Results shows 
omplete de
oupling of the UV divergent termfrom softened UV/IR mixing term and from the �nite terms as well. Our deformeddispersion relations at both the low and high energies and at the leading order donot depend on the non
ommutative s
ale ΛNC. The low energy dispersion relation(26) is, in prin
iple, 
apable of generating a dire
tion dependent superluminalvelo
ity, this 
an be seen 
learly from the maximal attainable velo
ity of theneutrinos
vmax
c

=
dE

d|~p| ∼
√

1 + (859± 59) sin2 ϑ , (36)where ϑ is the angle with respe
t to the dire
tion perpendi
ular to the NC plane.This gives one more example how su
h spontaneous θ-ba
kground breaking ofLorentz symmetry 
ould a�e
t the parti
le kinemati
s through quantum 
orre
-tions, even without divergent behavior like UV/IR mixing. On the other hand one
an also see that the magnitude of superluminosity is in general very large in ourmodel as a quantum e�e
t, thus seems 
ontradi
ting various observations whi
hsuggests mu
h smaller values [75�77℄. On the other hand, note that the large su-perluminal velo
ity issue may also be redu
ed/removed by taking into a

ountseveral 
onsiderations and/or properties:(1.) Sele
tion of a 
onstant nonzero θ ba
kground in this paper is due to the 
om-putational simpli
ity. The results will, however, still hold for a NC ba
kgroundthat is varying su�
iently slowly with respe
t to the s
ale of non
ommutativ-ity. There is no physi
s reason to expe
t θ to be a globally 
onstant ba
kgroundether. In fa
t, if the θ ba
kground is only nonzero in tiny regions (NC bubbles)the e�e
ts of the modi�ed dispersion relation will be suppressed ma
ros
opi
ally.Certainly a better understanding of possible sour
es of NC is needed.(2.) We have 
onsidered only the purely non
ommutative neutrino-photon 
ou-pling. However, it has been pointed out that modi�ed neutrino dispersion rela-tion 
ould open de
ay 
hannels within the 
ommutative standard model frame-work [78℄. In our 
ase this would further provide de
ay 
hannel(s) whi
h 
an bringsuperluminal neutrinos to normal ones.(3.) Note that the model 1 is not the only allowed deformed model with non-
ommutative neutrino-photon 
oupling. And as we have shown for our model 2,there 
ould be no modi�ed dispersion relation(s) for deformation(s) other than



2801, therefore it is reasonable to 
onje
ture that Seiberg-Witten map freedom mayalso serve as one possible remedy to this issue.(4.) Our results di�ers with respe
t to [64℄ sin
e in our 
ase both terms areproportional to the spa
etime non
ommutativity dependent θ-ratio (the s
ale-independent stru
ture!) fa
tor in (21), whi
h arise from the natural non-lo
alityof our a
tions. Besides the divergent terms, a new spinor stru
ture (θθp) with�nite 
oe�
ients emerges in our 
omputation, see (15)-(18). All these stru
turesare proportional to p2, therefore if appropriate renormalization 
onditions are im-posed, the 
ommutative dispersion relation p2 = 0 
an still hold, as a part of thefull set of solutions obtained in (23).(5.) Finally, we mention that our approa
h to UV/IR mixing should not be 
on-fused with the one based on a theory with UV 
ompletion (ΛUV < ∞), where atheory be
omes an e�e
tive QFT, and the UV/IR mixing manifests itself via aspe
i�
 relationship between the UV and the IR 
uto�s [79, 80℄.From the same a
tions (12, 13), but for three di�erent 
osmologi
al labora-tories, that is from UHE 
osmi
 ray neutrino s
atterings on nu
lei [52℄, from theBBN and from the RPAI [47℄, we obtain very similar, a quite strong bounds onthe NC s
ale, of the order of 106 GeV. Note in parti
ular that all results depi
tedin Figs.28-31, and 34 show 
losed-
onvergent forms.All above summarized properties are previously unknown features of θ-exa
tNC gauge �eld theory. They appear in the model with the a
tion presented inse
tion 4. The alternative a
tion, and the 
orresponding ν-self-energy (29), hasless striking features, but it does have it's own advantages due to the absen
e of ahard UV divergen
es, and the absen
e of 
ompli
ated �nite terms. The stru
turein (29) is di�erent (it is NC-s
ale/energy dependent) with respe
t to the NC s
ale-independent stru
ture from (21), as well as to the stru
ture arising from fermionself-energy 
omputation in the 
ase of ⋆-produ
t only unexpanded theories [64,81℄.However, (29) does posses powerful UV/IR mixing e�e
t. This is fortunate withregard to the use of low-energy NCQFT as an important window to holography[57℄ and quantum gravity [82℄.A
knowledgementI would like to thank Jiangyang You for many valuable 
omments/remarks.
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2881 Introdu
tionIt is well known that Einstein's theory of General Relativity is not straightforward toquantize. This is easily seen from the fa
t that GR is not perturbatively renormaliz-able. Simply put, one 
an attempt to qunatize GR as an ordinary spin-two �eld in �atMinkowski spa
etime, in the following way (for a ni
e review see [1℄). Starting from theusual Einstein-Hilbert a
tion
SEH =

∫
d4x
√−gR,one rewrites the metri
 tensor gµν as the �at Minkowski metri
 ηµν and the spin-two�eld hµν as

gµν = ηµν + hµν ,and substitutes it into the a
tion, rewriting it in terms of the new variable hµν . Therebyone obtains
SEH =

∫
d4xhµν�h

µν + (gauge fixing terms)+

+(self − interaction terms).The D'Alambertian operator is de�ned in �at Minkowski spa
e, � ≡ ηµν∂µ∂ν . Fromhere one 
an pro
eed to perform the standard �eld theory quantization in the naiveway � �rst formulate the free quantum �eld theory, and then introdu
e intera
tionsperturbatively.However, very soon one is bound to fa
e the di�
ulty of nonrenormalizability ofthis theory. The tree-level Feynman diagrams are �nite, the one-loop divergen
es 
anbe removed by wavefun
tion renormalization, but at the two-loop level a Lagrangian
ounterterm of the form
L2 =

const

ε2
Rαβ

µνR
µν

ρσR
ρσ

αβ (ε→ 0)appears [2℄, whi
h is nonzero on-shell. Here ε = 4 − D is the 
uto� parameter fromdimensional regularization s
heme. At higher loop levels similar terms involving R4, R5,et
. terms are also expe
ted to appear, rendering the theory perturbatively nonrenor-malizable. This means that in order to remove all divergen
es one needs to introdu
e atleast one additional 
oupling 
onstant for ea
h loop level. The in�nite number of these
oupling 
onstants implies the loss of predi
tive power of the theory, sin
e all experimentsdoable in prin
iple 
an only ever �x a �nite number of 
oupling 
onstants. This propertyof General Relativity has been known for quite some time, and there are various resear
hdire
tions whi
h attempt to address this issue. They 
an be broadly separated into two
lasses, by the methodology.The �rst 
lass of approa
hes 
onsiders modifying or substituting GR by anothertheory, whi
h should preferably be renormalizable. Su
h attempts have evolved into vastresear
h dire
tions su
h as supergravity, string �eld theory, non
ommutative geometry,



289and so on. The goal of ea
h proposed model is to have a renormalizable theory that lookslike GR at least on the length s
ales whi
h 
an be tested experimentally, while at thesame time have only a �nite number of 
oupling 
onstants. These 
oupling 
onstants 
ouldthen in prin
iple be used to predi
t the values of the in�nite set of 
oupling 
onstantsappearing in the perturbative quantum gravity approa
h.The se
ond 
lass of approa
hes is based on the point of view that abandons the renor-malization paradigm, and essentially gives physi
al meaning to the 
uto� parameters ofsome parti
ular regularization s
heme. In other words, the assumption is that at somes
ale (typi
ally expe
ted to be near the Plan
k s
ale) expe
tation values of the physi
alobservables will start to depend expli
itly on 
uto� parameters. This dependen
e is as-sumed to be measurable (in prin
iple), rather than being removed by renormalization.These attempts have also evolved into vast resear
h dire
tions su
h as loop quantumgravity, 
ausal dynami
al triangulations, 
ausal set theory, et
. The goal of all proposedmodels is exa
tly the same as before � predi
t some de�nite values for the in�nite num-ber of 
oupling 
onstants present in the perturbative quantum gravity. All these resear
hdire
tions have had limited su

ess, and in the absen
e of any experimental data relevantat the Plan
k s
ale, none of these dire
tions 
an be preferred over the others.In what follows, we shall be mainly 
on
erned with the approa
h of loop quantum gravity(for a review see [3℄), more spe
i�
ally spin foam models, and we shall propose one novelparti
ular model that addresses some serious issues present in all other spin foam modelsso far.In se
tion 2 we shall give a short overview of the status of LQG in general and spinfoam models in parti
ular. We will argue that the main drawba
ks of all 4D spin foammodels stem from the fa
t that tetrad �elds are not basi
 variables of the theory. Se
tion3 deals with the 
ategori
al generalization of the Poin
aré group, 
alled the Poin
aré
2-group. This will give us the ne
essary mathemati
al tools to reformulate the GR a
tionin a 
onvenient way whi
h in
ludes tetrad �elds as basi
 variables. The analysis of thisnew a
tion is then given in se
tion 4, with a sket
h of a quantization pro
edure givingrise to the so-
alled spin
ube model. Se
tion 5 
ontains 
on
lusions and dis
ussion of theresults.2 Loop Quantum Gravityand Spin Foam ModelsA detailed review of the Loop Quantum Gravity approa
h 
an be found in [3℄. Here wejust give some basi
 properties at an informal level.The basi
 idea of LQG is to 
hoose di�eomorphism-invariant quantities as basi
 de-grees of freedom for the gravitational �eld, and then perform a 
anoni
al nonperturbativequantization of gravity in terms of these quantities. The natural 
andidates for basi
 vari-ables turned out to be Wilson loops, and subsequently their generalizations 
alled spinnetworks. This 
hoi
e of variables introdu
es a natural di�eomorphism-invariant 
uto�



290at the Plan
k length s
ale lP , thereby rendering the theory UV-�nite. The quantizationis performed in the S
hrödinger pi
ture, and provides one with a mathemati
ally well-de�ned 
onstru
tions of the kinemati
al Hilbert spa
e for the theory and some basi
operators for geometri
 observables su
h as lengths, areas and volumes of spa
e. Evolu-tion in time is embodied in the Hamiltonian 
onstraint, 
orresponding to the Wheeler-deWitt equation in the LQG setting.The main features of su
h 
anoni
al approa
h to quantization are as follows. The the-ory represents a nonperturbative quantization of GR, and 
an in prin
iple be applied tothe study of physi
al systems where gravity is the dominant fa
tor at short distan
es �su
h systems in
lude the bla
k hole and 
osmologi
al singularities. It gives one a mathe-mati
al handle on a well-de�ned Hilbert spa
e of states for the gravitational �eld, therebygiving some insight into the quantum me
hani
al features of gravity. The natural basisfor the Hilbert spa
e is the set of the spin network states, 
ombinatorial graphs 
oloredby the irredu
ible representations of the SU(2) group, and 
orresponding intertwiners.Finally, the study of the geometri
 observables � the length, area and volume opera-tors � reveals that ea
h of them has a dis
rete spe
trum, giving rise to the geometri
interpretation of the gravitational �eld wavefun
tional, as well as the dis
rete 
hara
terof spa
e.The theory also has some drawba
ks. First, the Hamiltonian 
onstraint is not uniquelyde�ned, due to the usual ordering problems present in quantum me
hani
s. Se
ond,even if one 
hooses some parti
ular ordering, the Hamiltonian 
onstraint is extremely
ompli
ated and impossible to solve in pra
ti
e. This severely limits the possibility forany pra
ti
al 
al
ulations and the study of the dynami
s of the theory. As the mainobsta
le, the proof of the 
orre
t semi
lassi
al limit of the theory is still missing, as wellas any attempt to predi
t the 
oupling 
onstants from the perturbative gravity approa
h.A way to resolve these drawba
ks has been found in the spin foam approa
h [4℄. Theidea is to give up 
anoni
al quantization, but instead attempt a 
ovariant, path-integralquantization of the theory. Building on the results of the 
anoni
al approa
h, one wantsto de�ne the gravitational path-integral
Z =

∫
Dgµν exp (iSEH [gµν ])in some way, in order to be able to 
al
ulate expe
tation values of observables, both indeep quantum regime and the semi
lassi
al regime. This approa
h tends to give one agood handle on the dynami
s of the theory, in addition to all features of the 
anoni
alapproa
h.The basi
 pro
edure of de�ning Z goes as follows. One starts from the Plebanskia
tion for General Relativity,

S =

∫
Bab ∧Rab + φabcdBab ∧Bcd.The �rst part of this a
tion represents the topologi
al BF theory for the SO(3, 1) group.The Rab is the 
urvature 2-form, a �eld strength �F � for the SO(3, 1) 
onne
tion 1-



291form ωab. The Bab is the Lagrange multiplier 2-form. The se
ond part of the a
tion isthe Plebanski 
onstraint, featuring Bab and the 0-form Lagrange multiplier φabcd. Thepurpose of the 
onstraint is to enfor
e the Bab to be a simple 2-form (i.e. an exteriorprodu
t of two 1-forms). This 
onstraint is therefore 
alled �simpli
ity 
onstraint�, andit 
an be shown that the simpli
ity requirement of the Bab �eld is enough to 
onvert thetopologi
al BF theory into General Relativity. The fa
t that Bab is simple gives rise tonontrivial degrees of freedom in the theory, redu
ing the equation of motion for ωab fromRiemann-�at to Ri

i-�at.The se
ond step is the quantization of the topologi
al BF theory. This 
an be donein a rigorous way by employing the methods of topologi
al quantum �eld theory. One�rst dis
retizes spa
etime into 4-simpli
es, motivated by the stru
ture of spa
e in the
anoni
al LQG, and rewrites the BF a
tion in the form
∫
Bab ∧Rab discr.−→

∑

△

B△R△,where the sum goes over all triangles in the triangulation. Then one de�nes a topologi
alinvariant
Z ≡

∫
Dω

∫
DB exp

(
i
∑

△

B△R△

)
=

=
∑

Λ

∏

f

A2(Λf )
∏

v

A4(Λv).Here Λ are the irredu
ible representations of SO(3, 1), labelling the fa
es f , edges e andverti
es v of the Poin
aré dual latti
e 
orresponding to the triangulation. The 
olored
2-
omplex dual to the spa
etime triangulation is 
alled a spin foam. The amplitudes
A2(Λ) and A4(Λ) are determined su
h that Z is in fa
t a topologi
al invariant � thetotal expression must not depend on the parti
ular 
hoi
e of the spa
etime triangulation.In that way one arrives at the TQFT 
orresponding to the BF theory for the SO(3, 1)group, 
ommonly 
alled the Ooguri spin foam model. Of 
ourse, the invariant Z may be(and a
tually is) badly divergent, but that is not important at this stage, sin
e we areonly interested in the stru
ture of the path integral.The last step in the quantization pro
edure is to enfor
e the simpli
ity 
onstraint onthe BF path integral at the quantum level. The exa
t te
hnique for this is quite involved[5, 6℄, but the bottomline is that one proje
ts the SO(3, 1) irredu
ible representations
Λ to the SU(2) representations present in the 
anoni
al LQG formalism, in order toobtain the same stru
ture of the Hilbert spa
e on the spin foam boundary. The resultingtheory is not topologi
ally invariant, but represents one possible rigorous de�nition forthe theory of quantum gravity. The most advan
ed spin foam model in this respe
t isthe EPRL/FK model, developed independently by two resear
h groups [5, 6℄.The main feature of spin foam models is that they 
orre
t some drawba
ks of the
anoni
al theory, primarily the dynami
al se
tor is more under 
ontrol. In addition,there remains a 
ertain ambiguity in the 
hoi
e of the amplitudes A2 and A4. This 
an



292be 
onveniently utilised to rede�ne the model su
h that it be
omes IR-�nite and tohave a 
orre
t semi
lassi
al limit [7, 8℄. One 
an also employ standard QFT methodsto 
al
ulate the e�e
tive a
tion for the model in the semi
lassi
al limit, whi
h opensa possibility to expli
itly determine the 
oupling 
onstants from perturbative quantumgravity. Unfortunately, the spin foam models introdu
e their own set of problems. Asidefrom the �unusual� properties like fuziness of geometry at the Plan
k s
ale, all spinfoam models su�er from two major handi
aps. The �rst is related to the fa
t that, inaddition to the good semi
lassi
al limit, all models have additional semi
lassi
al limits,whi
h do not give rise to the standard GR, but to the so-
alled area-Regge geometry.Sin
e these di�erent 
lassi
al limits are not observed in experiments, one needs someadditional me
hanism to supress su
h solutions. However, so far no me
hanism 
ould be
onstru
ted to deal with this problem.The se
ond handi
ap is related to the inability of the spin foam models to 
ouplematter �elds to gravity. Namely, the basi
 geometri
 variables whi
h are employed indes
ription of spa
etime geometry are areas and volumes of spa
e, but not lengths. Thissituation makes it extremely 
ompli
ated (and in the 
ase of massive fermioni
 mattereven impossible) to in
orporate matter �elds into the spin foam model. Even if doable(see [9℄ for the massless fermion 
oupling), the resulting theory would be too 
ompli
atedto be useful for any 
al
ulation.As it turns out, both of these handi
aps have a 
ommon origin � the edge lengths inthe triangulation are not well-de�ned at the quantum level. This is itself a 
onsequen
eof the 
hoi
e of spin network states as basi
 degrees of freedom in the 
anoni
al LQG �the 
hoi
e whi
h emphasizes the spin 
onne
tion ωab, while entirely ignoring the tetrad�elds ea. At the level of spin foam models, it is easy to see that the Plebanski 
onstraintwas purposefully designed to require the simpli
ity of Bab, while avoiding to expli
itlystate that (the dual of) Bab is the produ
t of two tetrad 1-forms. The reason for thisis that the tetrad �elds do not appear as variables in the topologi
al BF se
tor of thetheory, whi
h is being used for the de�nition of the path integral.In the remainder of this paper we will present a novel way to address this maindi�
ulty, and to introdu
e tetrad �elds expli
itly in the topologi
al se
tor of the theory.However, in order to do this, it is important to introdu
e some mathemati
al 
on
eptswhi
h provide the ba
kground formalism for the new model.3 Poin
aré 2-groupWe begin by giving a very brief review of the so-
alled 
ategori�
ation ladder, an im-portant and a
tive resear
h topi
 in 
ategory theory. We shall not attempt at any rigor,leaving out most of the details, whi
h 
an be found for example in [10℄ and referen
estherein.In the bran
h of mathemati
s 
alled 
ategory theory, one de�nes a stru
ture 
alleda 
ategory as a set of obje
ts and a set of morphisms between those obje
ts, satisfyingsome basi
 axioms. Su
h a stru
ture is fairly general and does not have many interesting



293properties itself. However, this generality allows one to use it for all sorts of purposes.For example, one 
an de�ne the usual stru
ture of a group as a 
ategory whi
h hasonly one obje
t, while all morphisms (mapping the obje
t onto itself) are invertible.The 
omposition rules for the morphisms 
an be 
hosen to be the group multipli
ation,thereby providing an isomorphism between a given group and the 
orresponding
ategory with one element.The �rst step in the 
ategori�
ation ladder is to introdu
e the 
on
ept of a 2-
ategory.A 2-
ategory 
onsists of a set of obje
ts, a set of morphisms and a set of 2-morphisms,maps between morphisms. Intuitively, if a 
ategory 
an be represented by a linear graph ofdots (obje
ts) and arrows 
onne
ting them (morphisms), a 2-
ategory 
an be representedby a planar graph, 
onsisting of dots (objee
ts), arrows 
onne
ting them (morphisms)and �surfa
e arrows� mapping one arrow into another (see [10℄ for details and pi
tures).The main point is that the dimensionality of the graph has been raised by one. The 
ate-gori�
ation ladder 
an 
ontinue by introdu
ing a 3-
ategory (or in general an n-
ategory)by a similar pro
ess, leading to 3-dimensional (in general n-dimensional) graphs.In analogy with a group, one 
an then de�ne a 2-group, as a 2-
ategory whi
h hasonly one element, while all morphisms and 2-morphisms are invertible. A 2-group is a
ategori
al generalization of a group, and is not a group itself. One 
an prove that any 2-group is equivalent to a 
rossed module, a stru
ture that has been studied independentlyby mathemati
ians before the idea of the 
ategori�
ation ladder has even been introdu
ed.A 
rossed module is a quadruple (G,H, ∂, ⊲). This is a pair of groups G and H , su
h that
∂ : H → G is a homomorphism and ⊲ : G ×H → H is an a
tion of G on H su
h that
ertain axioms are satis�ed, whi
h turn out to be dire
tly related to the stru
ture of a
2-
ategory, see [10℄. The elements of G represent the 1-morphisms, while the elements ofthe semidire
t produ
t G ⋉ H represent the 2-morphisms. The 
anoni
al example of a
2-group relevant for physi
s is the Poin
aré 2-group, where G = SO(3, 1), H = r4, ∂ isa trivial homomorphism and ⊲ is the usual a
tion of the Lorentz transformations on the
r4 spa
e. The Lorentz group is the group of morphisms, while the usual Poin
aré groupis the group of 2-morphisms.The main feature of the whole 2-group formalism is that one 
an generalize the
on
ept of a holonomy along a line to its two-dimensional analog � a surfa
e holonomy.The initial interest in this 
ame from string theory. A point-parti
le travels along a worldline in spa
etime, and one is naturally led to the 
on
ept of a parallel transport along agiven line. String theory promotes the point parti
le into a one-dimensional obje
t � astring � whi
h then travels along a world surfa
e in spa
etime. Thus one would like tohave a 
on
ept of a parallel transport along a given surfa
e.One of the main aims of the 2-
ategory and 2-group formalism is to introdu
e andformalize this 
on
ept.Given the strong 
ategori
al relationship between groups and 2-groups, one 
an 
on-stru
t a gauge theory on a 4-manifoldM based on a 
rossed module (G,H, ∂, ⊲) of Liegroups by using 1-forms A, whi
h take values in the Lie algebra g of G, and 2-forms β,



294whi
h take values in the Lie algebra h of H [11,12℄. The forms A and β transform underthe usual gauge transformations g :M→ G as
A→ g−1Ag + g−1dg , β → g−1 ⊲ β ,while the gauge transformations generated by H are given by

A→ A + ∂η , β → β + dη +A ∧⊲ η + η ∧ η ,where η is a one-form taking values in h, see [12℄. When the group H is Abelian, whi
hhappens in the Poin
aré 2-group 
ase, then the η ∧ η term vanishes, and one obtains thegauge transformations given in [11℄.The pair (A, β) represents a 2-
onne
tion on a 2-�ber bundle asso
iated to the 2-Liegroup (G,H) and the manifoldM. The 
orresponding 
urvature forms are given by
F = dA+A ∧A− ∂β , G = dβ +A ∧⊲ β ,and they transform as

F → g−1Fg , G → g−1 ⊲ G ,under the usual gauge transformations, while
F → F , G → G + F ∧⊲ η ,under the H-gauge transformations.One 
an introdu
e a natural topologi
al gauge theory determined by the vanishingof the 2-
urvature

F = 0 , G = 0 .These equations 
an be obtained from the a
tion
S =

∫
〈B ∧ F〉g + 〈C ∧ G〉h ,where B is a Lagrange multiplier 2-form taking values in g, C is a Lagrange multiplier

1-form taking values in h, 〈 , 〉g is a G-invariant nondegenerate bilinear form in g and
〈 , 〉h is a G-invariant nondegenerate bilinear form in h. This a
tion is 
alled BFCGa
tion, in analogy with the BF theory a
tion. The gauge transformations of the Lagrangemultiplier �elds are given by

B → g−1Bg , C 7→ g−1 ⊲ C ,for the usual gauge transformations, while
B → B − [C, η] , C 7→ C ,for the H-gauge transformations.



295Let us now examine the 
ase of the Poin
aré 2-group. In this 
ase A = ωabJab,
β = βaPa, where a, b ∈ {0, 1, 2, 3}, Jab are the generators of the Lorentz group while Paare the generators of the translation group r4. Consequently

F = (dωab + ωa
c ∧ ωcb)Jab = RabJab,

G =
(
dβa + ωa

b ∧ βb
)
Pa = (∇βa)Pa.The G-gauge transformations are the lo
al Lorentz rotations

ω → g−1ωg + g−1dg , β → g−1 ⊲ β ,while the H-gauge transformations are the lo
al translations
δεω

ab = 0 , δεβ
a = dεa + ωa

b ∧ εb ,where η = εaPa.The BFCG a
tion then be
omes
S =

∫

M

(
Bab ∧Rab + Ca ∧ ∇βa

)
,where

δεB = 0 , δεC = 0 .At this point a very important observation is in order. The transformation properties ofthe 1-form Ca are the same as the transformation properties of the tetrad 1-form ea underthe lo
al Lorentz and the di�eomorphism transformations. In addition, the equation ofmotion for Ca is ∇Ca = 0, just like the no-torsion equation for the tetrad, ∇ea = 0.Based on this, we identify the Lagrange multiplier Ca with the tetrad �eld ea, and writethe a
tion in the form
S =

∫

M

(
Bab ∧Rab + ea ∧ ∇βa

)
.In this way one 
an 
onstru
t a 
ategori
al generalization of the topologi
al BFa
tion. The new a
tion is again topologi
al, but more ri
h in stru
ture, sin
e the tetrad�elds are expli
itly present. In addition, the 2-group formalism provides a framework to
onstru
t a topologi
al quantum �eld theory from this a
tion, in analogy with the BF
ase. This provides us with the ne
essary tools to 
onstru
t a 
ategori
al generalizationof a spin foam model, based on the BFCG a
tion instead of the BF a
tion. The expli
itpresen
e of the tetrads should help us resolve the two handi
aps of spin foam modelsdis
ussed in se
tion 2.4 The Spin
ube ModelThe �rst step in the 
onstru
tion of the new model is to write the a
tion for General Rel-ativity, starting from the BFCG a
tion. In order to do this, all we need is the simpli
ity
onstraint,

Bab = εabcd e
c ∧ ed ,



296whi
h 
an now be added into the a
tion as it stands, as opposed to the BF 
ase wherethe Plebanski 
onstraint had to be introdu
ed due to the absen
e of the tetrads ea in the
BF a
tion. Therefore, one 
an write the 
onstrained BFCG a
tion in the form

S =

∫

M

[
Bab ∧Rab + ea ∧ ∇βa−

− φab ∧
(
Bab − εabcdec ∧ ed

) ]
,

(1)where φab is an additional Lagrange multiplier 2-form �eld, introdu
ed in order to enfor
ethe simpli
ity 
onstraint.The equations of motion are obtained by varying S with respe
t to B, e, ω, β and φ,respe
tively, to give:
Rab − φab = 0 ,
∇βa + 2εabcdφ

bc ∧ ed = 0 ,
∇Bab − e[a ∧ βb] = 0 ,
∇ea = 0 ,
Bab − εabcdec ∧ ed = 0 .With the usual assumption that the tetrad �elds are nondegenerate, these equations 
anbe reworked into an equivalent form:

φab = Rab, Bab = εabcde
c ∧ ed, βa = 0,

∇ea = 0 , εabcdR
bc ∧ ed = 0 .The �rst three equations determine βa and the multipliers Bab and φab in terms of eaand ωab. The fourth equation is the no-torsion equation, whi
h determines the 
onne
tion

ωab to be the Levi-Civita 
onne
tion (a fun
tion of the tetrads ea). The last equationis nothing but the Einstein �eld equation for the only remaining �eld ea. Thus we seethat the a
tion (1) is 
lassi
ally equivalent to General Relativity. More pre
isely, it isequivalent to the Einstein-Cartan theory,
SEC =

∫

M

εabcde
a ∧ eb ∧Rcd ,sin
e the torsion is equal to zero as an equation of motion rather than by de�nition.Given the new a
tion for General Relativity, we 
an pro
eed with the 
ovariantquantization in analogy with the spin foam models. The a
tion has the topologi
al termand the 
onstraint term, so as a �rst step we 
onstru
t a topologi
al quantum �eld theoryby de�ning the path integral for the BFCG part of the a
tion. In the se
ond step, weenfor
e the 
onstraint term by requiring a suitable restri
tion in the path integral of thetopologi
al theory.One begins by triangulating spa
etime into 4-simpli
es, and rewriting the topologi
alpart of the a
tion in the form

∑

△

B△R△ +
∑

l

el(∇β)l,



297where the �rst sum goes over all triangles and the se
ond goes over all edges in thetriangulation of the spa
etime manifold. Then one 
onstru
ts a topologi
ally invariantpath integral in the form (see [13℄ for the details of the 
onstru
tion)
Z ≡

∫
Dω

∫
DB

∫
De
∫
Dβ

exp
(
i
∑

△

B△R△ + i
∑

l

el(∇β)l
)
=

=
∑

Λ

∏

p

A1(Λp)
∏

f

A2(Λf)
∏

v

A4(Λv).

(2)
The labels Λ = (Lp,mf), where Lp ∈ r+

0 andmf ∈ Z, are now irredu
ible representationsof the Poin
aré 2-group, and in addition to verti
es v and fa
es f of the Poin
aré duallatti
e, we also take the produ
t over all the polyhedra p, sin
e they are dual to the edgesof the triangulation and naturally appear in the 
onstru
tion due to the presen
e of the
e ∧ ∇β term in the BFCG a
tion. The amplitudes A1(Λ), A2(Λ) and A4(Λ) are 
hosenso that Z does not 
hange under the a
tion of the Pa
hner moves, whi
h guarantees itsindependen
e of the triangulation. The polyhedra are 
olored with Lp, whi
h have theinterpretation as lengths of triangulation edges, while fa
es are 
olored with mf , whi
hhave the interpretation as areas of the triangles in the triangulation. In the topologi
altheory, edge lengths and triangle areas are independent of ea
h other.Note that the path integral is not de�ned over a 
olored 2-
omplex (the spinfoam),but rather over a 
olored 3-
omplex (
alled spin
ube).Finally, we 
an impose the simpli
ity 
onstraint, in order to turn the topologi
al pathintegral into a realisti
 model for quantum gravity. Based on the geometri
 interpretationof the variables, the 
onstraint a
tually says that a very natural requirement should beenfor
ed � the triangle areas must be 
ompatible with the 
orresponding edge lengths.This 
an be formalized in the requirement

|mf |l2P = Af (L), ∀fwhere Af (L) is the Heron formula for the triangle area in terms of its edges. The Plan
klength appears naturally in order to balan
e the dimensions of the two sides of theequation. As a last step, one rede�nes the amplitudes A1, A2 and A4 in order to renderthe theory IR-�nite, as well as to enfor
e the 
orre
t semi
lassi
al limit, in a way similarto the spinfoam models.Note that imposing this 
onstraint leaves only edge lengths as independent variablesin the theory, so that the �area-Regge� problem present in spinfoam models is resolvedautomati
ally. In addition, the edge length variables allow for a 
ompletely straightfor-ward 
oupling of matter �elds to the spin
ube model. Namely, at the level of the 
lassi
al



298theory, one 
an introdu
e fermions via the a
tion
S =

∫ [
Bab ∧Rab + ea ∧ ∇βa − φab ∧

(
Bab − εabcdec ∧ ed

) ]
+

+ iκ1

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
[
γd

↔

d + {ω, γd}+ im

2
ed
]
ψ+

+ iκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ ,

(3)where ω = ωab[γ
a, γb]/8, κ1 = 8πl2P/3 and κ2 = −2πl2P . The �rst term is the 
onstrained

BFCG a
tion, while the se
ond and third terms introdu
e fermion 
oupling whi
h resultsin the same equations of motion as in the ordinary Einstein-Cartan theory with fermions.The quantization pro
edure of the a
tion (3) is essentially the same as the one withoutfermions. The only di�eren
e is in the fa
t that the vertex amplitude A4 will 
hange tore�e
t the presen
e of the fermioni
 matter, as
A4 → A4 exp

[
iS

(ferm)
R (L,ψ)

]
,where S(ferm)

R is the Regge dis
retized a
tion of a fermion �eld ψ 
oupled to gravity. Theexpressions whi
h appear in S(ferm)
R 
an be easily obtained, in 
ontrast to the EPRL/FKmodel 
ase, where the expression for the 4-simplex volume is impossible to de�ne uniquelyin terms of the spin foam variables [9℄.Similarly to (3), one 
an also 
ouple other matter �elds to (1) in a 
ompletely straight-forward way, in
luding gauge and s
alar �elds, the 
osmologi
al 
onstant, the Holst term,and so on.5 Con
lusionsThe proposed 2-group reformulation of GR 
an be used to obtain a 
ategori
al laddergeneralization of Loop Quantum Gravity. The advantage of this generalization is that theedge lengths of a triangulation be
ome the basi
 dynami
al variables. This will fa
ilitatethe 
onstru
tion of the path integral su
h that the 
lassi
al limit of the 
orrespondingquantum theory is GR and the 
oupling of matter will be mu
h easier to a

omplish.The 
ategori
al nature of the theory implies that the edge labels of a spa
etimetriangulation should be the 2-group irredu
ible representations on a 2-Hilbert spa
e.Note that this is not unique, sin
e one 
an also use the 
ategory of 
hain 
omplexesof ve
tor spa
es in order to de�ne the representations, see [12, 14℄. The stru
ture of the
hain-
omplex representations is di�erent from the 2-Hilbert spa
e representations, whi
hmeans that 
hain-
omplex representation theory de�nes an alternative quantization ofGR. Hen
e it would be interesting to develop the 
hain-
omplex representation theory ofthe Poin
aré 2-group.The physi
al signi�
an
e of 2-Hilbert spa
e representations 
ould be better under-stood by performing a 
anoni
al quantization of the a
tion (1).



299As far as the 
onstru
tion of 4-manifold invariants based on the BFCG state sum is
on
erned, one would have to regularize the topologi
al state sum/integral based on theamplitude (2) su
h that the triangulation independen
e is preserved. One way to do it isto try to implement a gauge-�xing pro
edure, see [15℄. Another way is to �nd a quantumgroup regularization, sin
e there are strong indi
ations that 
ategori�ed quantum groupsand their representations will be important for the 
onstru
tion of 4-manifold invariants[16℄. Hen
e one 
an try to �nd a 
rossed module of Hopf algebras whi
h is a deformationof the Poin
aré 2-group, and then try to �nd an appropriate 2-
ategory of representationswhi
h will give a �nite topologi
al state sum.Referen
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