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Abstract

We define an effective action for spin-foam models of quantum gravity by
adapting the background field method from quantum field theory. We show
that the Regge action is the leading term in the semi-classical expansion
of the spin-foam effective action if the vertex amplitude has the large-spin
asymptotics which is proportional to an exponential function of the vertex
Regge action. In the case of the known three-dimensional and four-dimensional
spin-foam models, this amounts to modifying the vertex amplitude such that the
exponential asymptotics is obtained. In particular, we show that the ELPR/FK
model vertex amplitude can be modified such that the new model is finite and
has the Einstein—Hilbert action as its classical limit. We also calculate the first-
order and some of the second-order quantum corrections in the semi-classical
expansion of the effective action.

PACS number: 04.06.Pp

1. Introduction

The problem of determining the classical limit of a spin-foam model and the corresponding
quantum corrections is one of the least understood and it represents the greatest obstacle for
formulating a realistic spin-foam model of quantum gravity. Certain clues have been obtained
over the years, and the first one was the result obtained in [1] about the speed of convergence
of the Euclidean Barret—Crane (BC) spin-foam model state sum as a function of the edge
amplitude. It was observed that a typical convergent BC state sum has the dominance of
the small spin configurations. However, one cannot obtain sufficient information about the
classical limit of a spin-foam model from the partition function, and in [2] a study of the
large-distance asymptotic behavior of the graviton propagator for the BC model was started.
It was discovered that the graviton propagator will have the correct large-distance asymptotics
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if the boundary spin-network wavefunction has a certain Gaussian form. However, in [3]
it was pointed out that the tensorial structure of the BC model graviton propagator is not
correct. This problem was caused by the absence of the intertwiners in the BC model. Without
intertwiners, one cannot construct the complete Hilbert space of loop quantum gravity (LQG)
on a three-dimensional boundary.

Furthermore, it was pointed out in [4] that it is difficult to construct a physical spin-
network wavefunction which has the Gaussian form used in [2] and it is not clear whether
such a wavefunction exists. However, it was noted in [4] that if a physical wavefunction has
the Rovelli Gaussian form in the limit of large spins, then such an asymptotics is sufficient to
ensure the correct large-distance asymptotics for the graviton propagator. Further studies on
the large-spin asymptotics of a class of physical wavefunctions which can be constructed as
three-dimensional spin-foam state sums have revealed that their large-spin asymptotic form
can be a Gaussian function, but it cannot be of the Rovelli type, see [5, 6]. The source of
this problem was identified in the large-spin asymptotics of the ELPR/FK spin-foam vertex
amplitude [6]. Namely, this asymptotics is of the form

1S (,7) —iarS,r (i)
Wy~ T e , ()
| 40))
where j are the spins of the faces meeting in a given vertex, 77 are the corresponding coherent
state vectors and S,g(j, 7) is the corresponding 4-simplex Regge action, see [8, 9]. V (j) is a
homogeneous function of order 12, N are homogeneous functions of j of order zero and « is
a constant. On the other hand, it was shown in [6] that a vertex amplitude whose asymptotics
would be given by (1) such that N_ = 0 or N;. = 0 would give the correct graviton propagator

asymptotics.

This result can be easily understood from the path-integral point of view, since the vertex
asymptotics with N_ = 0 gives the state sum which for large spins looks like the usual path
integral

Z= / D¢ eSP), )

where S(¢) is the Einstein—Hilbert (EH) action. On the other hand, the asymptotics (1) with
N.N_ # 0 gives the state sum which for large spins looks like

Z=/DM&@+6WM, (3)

and this is an unusual form of the path integral.

The authors of [10] argued that the path integral (3) could still give the correct classical
limit, if an appropriate boundary state is used. However, as argued in [6], it is difficult to prove
that such a state exists. In this paper, we will demonstrate that the usual path integral (2) gives
the correct classical limit, and this will be done by using the effective action. At the heuristic
level, this can be seen from the background field method definition of the effective action

ST@)/h _ / D SG+In @)

see [11] for details. Definition (4) implies that S(¢) is the classical limit of I'(¢) in the case
of the usual path integral, while in the case of the path integral (3) we obtain

TG/ _ / DGBSG+DII 4 o—SG+)/h).

It is clear that this expression will not give S(¢) as the classical limit of I'(¢). However, in
order to have the state sum which for large spins looks like (2), we need to change the vertex

amplitude such that the large-spin asymptotics is given by
ISk ()

W(j, i)~ .
G~

(&)
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In this paper, we will show that this can be done in the case of the EPRL/FK class of
spin-foam models, and that the length-Regge action can be obtained in the large-spin limit.
In section 2, we discuss the known approaches to the problem of the classical limit of spin-
foam models and conclude that the effective action approach based on the background field
method (BFM) is the most feasible. We give the definition of the effective action for spin-foam
models and in section 3 we study the case of the Ponzano—Regge (PR) model. We show that
the corresponding effective action has the desired classical limit if the vertex amplitude is
redefined such that the large-spin asymptotics is proportional to the exponential function of
the vertex Regge action times the imaginary unit. We calculate the corresponding effective
action in the large-spin limit and show that the Regge action is the dominant term in the semi-
classical expansion. We also formulate a finite Lorentzian PR model such that its classical
limit is the EH action. In section 4, we study the case of the Lorentzian ELPR/FK spin-foam
model and show that the vertex amplitude can be redefined such that its large-spin asymptotics
is proportional to the exponential function of a constant times the vertex Regge action. The
corresponding effective action can be calculated in the large-spin limit by using the same
techniques as in the three-dimensional case, and the result is the length-Regge action plus the
quantum corrections. In section 5, we present our conclusions.

2. Classical limit of spin-foam models

Spin foam models of quantum gravity in D = 3 and D = 4 spacetime dimensions are described
by a partition function of the form

Z= ZI:IWZ(jf)UWI (Ll)l—[m)(jf(v)all(v)), (6)
Jot v

where j = (ji, ..., jf ..., jr)and v = (11, ..., 4, ..., 1) are labels of a spin foam whose
two-complex o is dual to the simplicial complex obtained by triangulating the spacetime
manifold. The faces f and the links / of o carry the labels j; and ;, respectively, and these
labels are irreducible representations and the corresponding intertwiners of the group Spin(D).
Since Z is a complex number, it is not possible to extract the classical limit from it and one
needs to analyze the boundary wavefunctions or to analyze the effective action.

A boundary wavefunction W(s) is associated with a boundary spin network s = (y, jp, tp),
where y is the boundary one-complex of ¢ and (j, ) are the corresponding labels. W(s) is
constructed from (6) such that the summation is restricted to spin foams whose boundary spin
network is s. Therefore,

W) =Y [[WUn [TWi@) [ [Wolirm» v, (7)
o f ! v

where the amplitudes W are the same as the amplitudes W for the faces and the links not
belonging to the boundary, while for the boundary faces and links there is a choice which
ensures good gluing properties, see [12].

Note that construction (7) gives just one boundary state

W) =) W(s)ls), ®)

while we know from the canonical LQG that there are many different physical states. In
particular, important physical states are those which describe flat or constant curvature spatial
manifolds. Therefore, definition (7) has to be changed such that the information about the
background triads Ey(x) is included, where x is a spatial coordinate. In the case of Euclidean
canonical LQG, one can show that such a wavefunction has a form similar to (7), but the spin
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network s is replaced by a spin network § where s is s with edge insertions w;(Ey(/)), where
Ey(l) = f, Ey(x) dx, see [13]. The insertion functions can be chosen freely, and an appropriate
choice are the Gaussians centered around E (/). In the case of a flat geometry, all £, (/) can be
taken to be approximately the same, and the corresponding area of a triangle is proportional
to jo. This parameter will set the length scale, so that one introduces the insertions into the
boundary spin network of (7) which will be functions of jj.

Given such a W(s, jo), there is the corresponding connection wavefunction W, (A), which
can be obtained by the loop transform. By writing

Wo(A) = R(A) eS@/",
one would have to show that
S(A) = So(A) + hS; (A) + O(h?),

where Sy (A) satisfies the Hamilton—Jacobi equation for canonical general relativity (GR). It is
obvious that this is an extremely difficult way to obtain the classical limit.

An easier approach would be to calculate the graviton correlation functions for the
boundary state (8) with insertions, so that

Gu(xt, o X) = Y W3 () Wo(s ) (slhxr) - hx)]s),

s,8

where £ is the graviton operator. This was the approach started by Rovelli [2], and it can be
shown that G, has the correct large-distance asymptotics if

Wo(s) ~ N exp —.i Z o (i = Jjo)Gr — Jjo) | » )
LI'cy
for large spins, where « is a constant matrix [4].

However, the correct asymptotics of G, does not guarantee that the classical limit of a
spin-foam model is GR. Namely, one has to show that all correlation functions G, correspond
to the ones for the EH action in the classical limit. This is equivalent to demonstrating that the
effective action

It = Yeo [ dnndne [ an Gyt )hG.n) -G 0) (10)
n>=2

has the classical limit which is given by the EH action, where (x,¢) is a spacetime point

coordinate and én is the extension of G, when #; # ;. The correlation function approach is

less difficult then the wavefunction approach, but it still requires a lot of work.

A simpler method to compute the effective action would be a method where I' is given
as a functional of the spacetime metric g rather then the functional of 4 = g — 7, where 7 is
the flat metric. The BFM approach for computing the effective action in quantum field theory
(QFT) [11] is an approach convenient for this purpose. In the case of quantum gravity, the
BFM approach suggests the following relation:

eir(g)/h — /,DheiS(g+h)/h’ (11)

where S(g) is the EH action. Expression (11) is formal and has to be defined, and in
the perturbative QFT approach it amounts to gauge fixing of the diffeomorphism gauge
symmetry and implementing a regularization/renormalization procedure. This has to be done
because the theory allows arbitrary short distances and hence the infinities appear. Since
GR is a non-renormalizible theory, the corresponding effective action cannot be determined
uniquely.
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In the case of spin-foam models, the problems with QFT infinities are avoided because
the theory has a natural short distance cutoff. Namely, the basic degrees of freedom are the
SU (2) spins jr € N/2, and these are essentially the areas of the corresponding triangles, since
Ar o I3./j;(j; + 1/2). Hence, there is a short-distance cutoff of order of the Planck length
[p. There is no need for a gauge-fixing procedure, since j; are triangle areas, and these are
diffeomorphism invariant. The only infinities which can appear are in the large j; region, and
these correspond to large-distance infinities (also known as the infrared infinities in QFT).
However, these infinities can be easily dealt with, by introducing the appropriate negative
powers of j in the spin-foam amplitude, see [7].

The path integral (11) takes the following form in the case of spin-foam models:

T =N T Walir + i [ [Wiw + D [TAGrw + Fry i) + b)) a2)
Jvf ! v

where the spin-foam two-complex is closed, (j,t) is a configuration representing the

background or the classical values of the spin-foam labels, while the summation is over the

fluctuations (/, (') around the classical background (j, ¢). The calculation of T" will simplify

if we take that the background spins are large and that (j, ¢) is a stationary point of S(j, t),

where

SUY =TIWalUn [ [Wi@) [TAGrw), uewy) (13)
f ! v

is the partition function spin-foam amplitude. The latter condition is also used in the QFT
version of the BFM approach, where it takes the form of background metric being a solution
of the Einstein equations.

As discussed in the introduction, the vertex amplitude A should be a function of the W
amplitude such that A has the asymptotics

iSur ()
A1) ~ . (14)
Vp(])
for j — oo, where
Sk =Y sy (15)
fov

is the vertex Regge action and 6y are the dihedral angles, while V,,(j) should be a homogeneous
function of order p > 0. The role of the function V() is to ensure that the state sum (12) is
convergent, see [7].

The requirement (14) is essential, since it will give the Regge action

Se=Y_irds (16)
-

as the classical limit of the effective action. Namely, if we take the background spins to be
large, then we can use the asymptotic formula (14) in the state sum (12), which then produces
the Regge action in the exponent due to the identity

Se=Y Sw+2r Yy kejp, (17)
v f

where &y are integers.
It will be important to note that the deficit angle 6 is given by

3f=2n—29;v, (18)

vCf
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for a space-like face f, where 9}'1) = m — 0y, is the interior dihedral angle for the 4-simplex o,
dual to v. A space-like f means that the dual triangle A is time-like and belongs to o,,. When
f is time-like, which means that Ay is space-like, then

5= O, (19)

vCf

where 67, = O, and Oy, is the boost parameter between the normal vectors of the two
tetrahedrons of o, which share the triangle Ay, see [14].

3. The three-dimensional case

Let us explore first the effective action given by (12) in the simpler case of three-dimensional
(3D) spin-foam models. Consider the PR model partition function

Zer = ) [ [0 dim jr [ TW G (=1 @450, (20)
if v
where W is the 6 j-symbol, see [15]. The immediate problem with Zpy, is that it is divergent, so
that it has to be regularized. This can be done by introducing a maximum spin or by dividing
W by an appropriate power of the product of the dimensions of the vertex spins. The later
regularization will be more convenient for our purposes. Either way one loses the triangulation
independence, but we will see that this is not going to be a problem for our purposes.
The next problem is that

cos [Sur (/)]
Wi
for large spins, where V' (j) is the volume of the vertex tetrahedron. According to our approach,

we then need to change the vertex amplitude such that the new asymptotics is given by (14).
In order to achieve this consider

W =VVW +/VW2 —1. 1)

It is easy to show that W ~ e'S% for large spins since (21) implies
W+ w)!
= 7
Let us introduce a modified vertex amplitude
W ()
VT (dim j)r
Then, A(j) will have the asymptotic form (14) with p = 6p’ + %, when all of the six spins j

are large. The parameter P’ has to be chosen such that the state sum (12) is finite. This can be
done because W/ W is a limited function. Then, it exists M > 0 such that

W(j) ~

A()) =

(22)

M
ADI < s=——7- (23)
P Thedim jor
Consequently,
1Z,l <N Y [ Jedimjp)' =" <N T [(dim jp)' =7, (24)
T S

where Z, is the partition function associated with the state sum (12). The n; denotes the
number of vertices of a face f and since ny > 2, we obtain the last inequality. The last sum in
(24) will be convergent for p’ > 1. Therefore, Z,, will be convergent for p’ > 1. One can find

6
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a better estimate for the lower bound for p’ by using a better estimate for W /~/V, but for us it
is important that such p’ exist and that their values are independent from the triangulation.
We are interested in calculating the effective action when all the background spins in the
state sum (12) become large. Then, one can approximate each vertex amplitude in (12) by
using (14), since all the spin labels j + ;" are large. Consequently,
el o N/ Z H(]f + j})lfpmf IS+ (25)
rf
where we used A>(j + j') ~ 2(j + j') and p; = p’ + 3/2. Note that the sign factors in the
face and the vertex amplitudes, see (20), combine with the sum of the vertex Regge actions
such that the Regge action is obtained in the exponent of (25).
The main contribution in the state sum (25) comes from j} < jf, since the weights
(Jr + j}-)l_"f "7 are maximal for ]/f = 0 and drop-off as negative powers of ]} We can then
use
N\ M +/ 12
G+j)m=j" (1 - L) = [1 —m e mm+ 1 +}
J J 2j
which is valid for j/ < j. Consequently,

) 2

. o _ J J

) %NZeISR(m)H]fmf 1 —mf.—f_ +my(my + 1)._{ +. |, (26)
j f H If

where my = nypy — 1 is a positive number.

Let us choose the background spins j such that they correspond to a stationary point of
the Regge action Sk (j). This is a standard procedure in the case of QFTs, and the idea is to
simplify the calculation, since the stationary point restriction of the background spins does not
affect the important features of the effective action. Therefore, we can use the approximation

. o . l 1 A,
Sk(i+ 1)~ Se() + 5 D Sy (i
Lr
where S3 i () is the Hessian matrix for Sg (). Consequently,

e ~ NeSt-Eymrnis 30 02 T (1= m Ar), @7

~ Iy
J f

where (Sg(/)j'J') = X_¢ ¢ S s (J)j7J}- The sum in (27) can be approximated by an integral

over xy = j} /jg variables, and this integral will be given as a sum of the integrals of the

following type:

i
F ni nr 7
/d XXy xg exp (E E SR,,,,,Xan)-
m,n

These integrals can be calculated by taking the derivatives of the generating function

i
I(n) = / deexp (E ;S}émnxmxn + ; /me,”) ,

at u = 0, where I (p) is given by
PyF/2 exp(in’ (Sp) ' /2)

J/det(Sy)

I(n) = Qr (28)

and u” = (1, ..., wr).



Class. Quantum Grav. 28 (2011) 225004 A Mikovié¢ and M Vojinovié¢

This calculation can be simplified by using

a +X)7m _ efmlog(ler) — efnlx+mx2/2+--~

so that
el U0 g N e 25 7r 108 jr+iSe()) Z e Xr my il ir+5 g Sppprdpi ’ (29)
j/
where
ol " : my
SRff’ = SRff’ - I(Sf,ff.—z.
J¥
Then by using (28)

. Grp ()
exp (i X5 memyp 557)

il’ / . . .
e’ ®Nexp|— myslog jr +1Sr(j) = , 30)
; T (det S5
where G is the inverse matrix of §”. Consequently,
el ~Nexp | — me log j; +1iSr(j) — = Trlog Sk ()) —|—1memf/ f.f (.]) . (31)
7 2 7 2jriy
Equation (31) implies that
. . i G Gy (j)
I'(j) ~ Sg()) +1melogjf + ETrlogS;é(J) —ilogN' + memf/ zj;'fj
- — £r
f 1f
i
~ Sp(j) +iy mylog jr+ 5 Trlog Sg(j) —ilogN'+0(1/), (32)

f
where O(1/ ) denotes the terms which scale as 1/j when j; — jjr. When necessary, it will
be understood that notation O(j™) also includes the subleading terms.
Note that Sz = O(j), while log j; and Trlog S3 are of O(log j). Therefore, (32) implies

T(hj) ~ ATo(j) 4+ (og MT1(j) + T2()) + A7 T3(j) + O(1/4%),
in the limit A — oo. The dominant term in the large-spin limit will be I'g, which is the Regge
action (16). Hence, we can say that the classical limit of the effective action is the Regge
action, which is a discretization of the EH action. This means that if we start refining the
spacetime simplicial complex, I'y will tend to the EH action.

Note that the quantum correction terms in (32) are imaginary numbers, while the effective
action should be a real function. The same problem appears in QFT, since in that case

T/ _ / Dy eS@+0)/1
The stationary phase approximation then implies

I'(¢) ~ S(¢p) + i; Trlog " (¢) + O(H*)

for a stationary point S’(¢) = 0, so that I'(¢) is not a real action. This problem is resolved
by resorting to the Wick rotation. Namely, by performing the Wick rotation t — if, where 7 is
the time coordinate, one passes to the theory in the Euclidean metric and defines the effective
action which is real

e T@/h A / Dy =S+,
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Consequently,

I'(p) ~ S(¢) + gLTrlogS”@)) + o). (33)

Then, in the Euclidean effective action (33) one replaces the Euclidean metric with the
Minkowski metric and obtains a real effective action. In the case of spin-foam models, there
are no spacetime coordinates and there is no background metric, so that one cannot perform
the Wick rotation. However, note that the procedure used in QFT is a redefinition of a complex
function I' = I'y + iI"; into a real function I'g + I'y. Therefore, we can define a real effective
action by

I - Rel +ImT. (34)

Definition (34) is not unique, since one can also use Re I' — Im I". This ambiguity can be only
resolved by an experiment, but we will use (34), because it agrees with the QFT theory sign.
Therefore, for large spins we obtain

()~ Sr(j) + me log jr + % Trlog Sg(j) + O(1/)). (35)
f

We would like to make the following remarks. The partition function Z,, which
corresponds to the modified vertex amplitude (22) is finite, but it is not a topological invariant.
This is not a problem, since our goal is not constructing manifold invariants, but obtaining a
quantum theory of gravity whose classical limit is GR. This is achieved by requiring that the
state sum (12) is finite and that the classical limit of the effective action is the Regge action
(16). Although our construction is triangulation dependent, it still leads to a topological theory
in the continuum limit. Namely, if we start refining the triangulation, the Regge action will
become the EH action, which defines a topological theory in three spacetime dimensions.

The trace-log term in (35) is a discretization of the usual trace-log term from QFT. Since
the QFT trace-log term is divergent, the spin-foam version can be considered as a regularization
of the QFT counterpart. In contrast, the m log j terms in (35) do not have an analog in the QFT
case, and their presence is a feature of the model. It is not clear what is the smooth limit of the
mlog j terms and whether their presence is a good or a bad feature of the model, since we do
not know experimentally what are the quantum gravity corrections.

Note that one can define a spin-foam model with a simpler vertex amplitude than (22)

iSur ()

Hk (dim ji)? )
The corresponding state sum would look like the path integral for a Regge gravity model
where the lengths of the edges of a triangulation are positive half-integers. One can enforce

the triangle inequalities by inserting the dual-edge (triangle) amplitudes proportional to the
theta spin-network evaluation, so that

7= Z H(_l)zj,. dim j; H 0Gira) HA(jf(U))(_l)jl @)+ js(v) 37)
Jj / v

A(j) = (36)

The corresponding effective action will be also given by expression (35).

The spin-foam model defined by the A amplitude can be easily extended to the Lorentzian
case, simply by replacing the vertex Regge action S,z in (36) by its Lorentzian analog. We
will label the edges of the triangulation with the unitary irreps j; from the discrete series
of representations of Spin(1,2) = SL(2, R), which makes sense if the edges are space-like.
Then, the deficit angle is given by the 3D analog of (19), so that the sum of the vertex Regge
actions will be equal to the Regge action. Therefore, we will not need the sign factors in the
face and vertex amplitudes, which were necessary in the Euclidean case, in order to obtain

9
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the Regge action in the classical limit of the effective action. Hence, one can define a finite
Lorentzian 3D quantum gravity spin-foam model whose partition function is given by

Z=Y T1eCir+ [ TeGra) [ TAGrw)- (38)
i f ! v

The corresponding effective action will be given by (35) in the large-spin limit so that in the

smooth spacetime limit one will obtain the EH action.

4. The four-dimensional case

We will consider the ELPR/FK spin-foam models [16, 17], since this is the only class of four-
dimensional (4D) spin-foam models that has a well-defined LQG theory on a 3D boundary.
The partition function is given by (6) such that W, (j) = dim j, W;(j,¢t) = 1 and

5 +00
woGio= Y. ] / dpa(nl + p2) f1e 5, IWis 2jncs 27 fincs M. b).
m>0,...n530a=1"9
where y is the Barbero-Immirzi parameter, W5 is the 15j-symbol for the unitary
representations (n, p) of the Lorentz group and f are the fusion coefficients, see [16] for
the details. W, (j) was originally chosen to be a quadratic function [16], but it has been
recently argued in [12] that the linear weight is more appropriate. In any case, the essential
features of the effective action are the same.
A more convenient form of Z is

z="Y 1 dimjs [TW Gror i),
i f v

where each ¢; in a spin foam from the sum (6) is replaced by four unit 3-vectors 7i;s. An 7ij¢
is a 3-vector orthogonal to the triangle dual to face f, such that this triangle belongs to the
tetrahedron dual to a link /.

For the purposes of calculating the effective action, we only need to know the asymptotics
of W (j, i) when all the spins j are large. This asymptotics is given by

iSur (. 77) —iaSr (D)
Wi~ T A @) , (39)
40))

where @ = y when the 4-simplex boundary geometry is Lorentzian, while o« = 1 when the
4-simplex boundary geometry is Euclidean, see [9]. The real numbers Ny (o) are O(1)
functions of the spins, while V = O(j'?). There are also degenerate configurations of spins for
which W (j, @) & N(j)/V (j), where N(j) = O(1) and V (j) = O(j'?), but their contribution
to the state sum is negligible. Otherwise, W drops off faster than any power of 1/j.

In order to obtain a correct 'y, we need to redefine the vertex amplitude. Let us introduce
a new vertex amplitude W ( J» 1) such that

W= VW + / (VleVvJ)r2 — 4N+N,. 40)
This formula follows from the following relation between W and W :
N.W +N_(W)™!
40D

W =

)

which ensures that

W(j, i7) A el Sl

10
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for large spins. One can then define

W (). i)
V) I, dim jp)r°
where p is sufficiently large such that Z,, is convergent. Such a p, which does not depend on
the triangulation, can be always arranged, as shown in [6].

Amplitude (41) has the desired asymptotics and it gives a finite partition function. We can
now use formula (12) for the effective action, which takes the form

UM =N TG+ ip) + N [AGrw) + ipwy: iy + ) (42)

A(j, ) =

(41)

j.if v
The labeling of the ELPR/FK model is consistent with a space-like triangulation. In that case
kr = 0in formula (17), so that when (ji, ..., jr) = (00, ..., 00) we obtain

=1y Sur Uy Fi 7y Tt Fii )

iC(j,D) A . v €
U NS TTGr+ip] ] —
= o VOOIIGr+7pr

~N Z H(jf + j})l—mm/ eiSR(j+j/ﬁ+ﬁ/)’ (43)
il f

where py > p and my is the number of vertices belonging to a face f. Note that the contribution
to e'l" of the configurations (j 4 j/, n + n’) which are not geometric is negligible compared
to (43), since A(j + j', n + n’) decreases exponentially with large spins. The contribution
of degenerate geometric configurations is also negligible, since one sums over a lower
dimensional sub-space in the space of spins.

Let j and 77 be the background spin-foam labels such that (j, 77) is a stationary point
of Sg(j, ) and all the four complexes have the Lorentzian geometry. Then, we can use the
formulas from the 3D case, and we obtain

TG A N Z o= X5 ¢ 102U +ip )i Sk UM+ (S 4271+ S5, i)
j.a ,
~N Z Y ¢/ 108 i)+ i Sk (i + (5;§f7j’j/+2S}§f”j’ﬁ’+S}§mﬁ’ﬁ’>’ (44)
j
where ¢y = pymy — 1 and
~ C
Skrp = Skpp —i 5817
Ty
By performing the Gaussian integrations in (44) we obtain

: : - : - 1 QN 1 Gel i
ell"(],ﬁ') ~Ne > erlog(ip)+HiSr (i) =5 Trlog Sp (i) +75 25 ¢ (,f‘(,f/GRff/(J,I’T)’ (45)
where
Q/ 1
5,, _ SRjj SRjn
R — S// S// s
Rjn Rnn

Gg sy is an element of the jj block of the matrix (Sp)~!and cr=cyrljy.
Equation (45) implies

(j. ) ~ Sp(j. i)+ Y crlog jy + %TrlogS}éu, W+ csep

f f.f
where we have used ' — ReI" + ImI" and we have omitted the constant log N’. As in the
3D case, the dominant term is Sg, which is of O(j), while the other terms are of subleading
orders, namely of O(log j) and O(1/}), respectively.

Gryp (J, 1)

—, (46)
2jrjr



Class. Quantum Grav. 28 (2011) 225004 A Mikovié¢ and M Vojinovié¢

Equation (46) implies that the classical limit of the ELPR/FK effective action is the
area-Regge action

Sk ) =y Y (i, ). (47)
f

However, we can require that the background spin foam (j, n) is also a stationary point of the
partition function amplitude, see (13). This requirement imposes further restrictions on the
background spin foam, and it was shown in [18, 19] that such stationary points correspond to
Regge geometries when j are all large. This means that there is an assignment of the edge
lengths L., satisfying the triangle inequalities, such that j; o< Af(L) and 77 = ii(L), where Ay
is the area of the triangle dual to a face f.

More precisely, the stationary point equations imply that the four normals 77 associated
with a tetrahedron 7, which are determined by the four-geometry of a 4-simplex o which
contains 7, are the same as the four normals 77’ determined by the four-geometry of another
o’ containing 7. Consequently, the length of an edge € of 7 is the same when calculated
from the ten triangle areas j; of o or when calculated from the ten triangle areas j} of o/,
so that

LGy ooy j10) = LGl oy o) (48)

This is precisely the constraint which turns an area-Regge action into a length-Regge action,
see [20]. Hence,

1
SkU ) =y )i LI8p(L) = g5 3 ApLIS (L), (49)
f rof

where the labels L denote the lengths of the edges of the triangulation and /p is the Planck
length.

If we refine infinitely the spacetime triangulation, then the Regge action in (49) will
become the EH action Sgyy/ 16 112,. Therefore, the ELPR/FK spin-foam model with a modified
amplitude (41) will give GR in the limit of large spins and smooth spacetime.

Note that the structure of the quantum corrections in the effective action (46) is the same
as in the 3D case.

5. Conclusions

We have demonstrated that it is possible to construct spin-foam models of quantum gravity in
three and four spacetime dimensions such that the corresponding effective action has general
relativity as its classical limit. The effective action method resolves the long-standing problem
of how to compute the semi-classical limit of a spin-foam model. The spin-foam model defined
by the vertex amplitude (41) is the first example of a finite four-dimensional spin-foam model
with the correct classical limit.

In the 3D case, we have shown how to regularize the Ponzano—Regge (PR) model and how
to modify the vertex amplitude in order to obtain the correct classical limit. The same can be
done in the case of the Turaev—Viro (TV) model [21], which is a quantum group regularization
of the PR model. The TV model effective action can be calculated since the large-spin
asymptotics of the quantum 6 j-symbol is known [22]. Because the vertex asymptotics is also
of the cosine type, this means that the TV model vertex amplitude has to be modified in order
for the effective action to yield the EH action with a cosmological constant in the classical limit.
The same applies to the quantum group regularization of the ELPR/FK model [23, 24], since
the large-spin asymptotics will be a deformation of the classical group asymptotics (39). We

12
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were also able to construct a Lorentzian version of the PR model such that the corresponding
effective action has the desired classical limit, see (38).

The structure of the quantum gravity corrections in three and four dimensions is the same;
however, their spacetime interpretation is different. In 3D we have j; o L, so that the trace-log
term in the 3D effective action is the discretization of the quantum field theory (QFT) trace-log
term, while the log j; terms do not have the QFT analog. In the 4D case, j; oc Af(Lc) so that
the Hessian Sy ;- is not the same as the discretized version of the QFT Hessian, whichis Sy ...
Consequently, the 4D effective action will have additional terms of the type log f (L. /lp) where
f is a homogeneous function of order one. It would be interesting to analyze the implications
of the log [Af(L¢) /13] and log f (L /Ip) terms for cosmology.

Note that the terms proportional to the G matrix in (32) and (46) constitute second-
order quantum corrections, which are of O(1/). In order to obtain all second-order terms we
need to know the O(1/ ) correction terms to the vertex Regge action in the vertex amplitude
asymptotics.

It is not difficult to see that our formalism gives the area-Regge action as the classical limit
of the appropriately modified Barret—Crane (BC) model, because the length constraint (48) is
not enforced. Hence, this justifies the concerns raised about the BC model, which were based
on the convergence speed of the partition function, see [1], as well as the concerns related to
the graviton propagator for the BC model [3].

Note that our method can be applied to any state sum model of quantum gravity, which
means that one can study the effective action for the 4D Regge model.
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