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The dynamics of branelike extended objects in spacetimes with torsion is derived from the conservation

equations of stress-energy and spin tensors. Thus obtained world-sheet equations are applied to macro-

scopic test membranes made of spinning matter. Specifically, we consider membranes with maximally

symmetric distribution of stress energy and spin. These are characterized by two constants only: the

tension and spin magnitude. By solving the world-sheet equations, we discover a similarity between such

membranes in Riemann-Cartan backgrounds, and string theory membranes in low-energy string back-

grounds. In the second part of the paper, we apply this result to cylindrical membranes wrapped around the

extra compact dimension of a (Dþ 1)-dimensional spacetime. In the narrow membrane limit, we discover

how effective macroscopic strings couple to torsion. An observed similarity with the string sigma model is

noted.
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I. INTRODUCTION

The problem of motion of branelike extended objects in
backgrounds of nontrivial geometry is addressed by using
some form of the Mathisson-Papapetrou method [1,2]. One
starts with the covariant conservation law of the stress-
energy and spin tensors of matter fields, and analyzes it
under the assumption that matter is localized to resemble a
brane. In the lowest, single-pole approximation, the mov-
ing matter is viewed as an infinitely thin brane. In the pole-
dipole approximation, its nonzero thickness is taken into
account.

The known results concerning extended objects in
Riemann-Cartan geometry can be summarized as follows.
Spinless particles in the single-pole approximation obey
the geodesic equation. In the pole-dipole approximation,
the rotational angular momentum of the localized matter
couples to spacetime curvature, and produces geodesic
deviation [1–5]. If particles have spin, the curvature cou-
ples to the total angular momentum, and the torsion to the
spin alone [6–10]. Higher branes have been considered in
[11–13]. In the spinless case, the curvature couples to the
internal angular momentum of a thick brane. The coupling
disappears in the limit of an infinitely thin brane [11,12].
The dynamics of spinning branes has been investigated in
[13]. The spin-torsion coupling has been derived for an
arbitrary distribution of spinning matter over the brane.

In this paper, we want to examine infinitely thin branes
with maximally symmetric distribution of stress energy
and spin. In the spinless case, such branes are characterized
by the tension alone, and are known as the Nambu-Goto
branes [14,15]. These branes do not couple to torsion, and
our idea is to consider their minimal extension character-
ized by an additional constant—the spin magnitude. The

analysis along these lines has already been attempted in
[13]. The idea has been to try and find the circumstances
under which the classical dynamics of strings could possi-
bly resemble the dynamics of [16–21]. Two major results
have been obtained. First, the nontrivial string-torsion
coupling exists only if the string is made of spinning
matter. Second, if the torsion is totally antisymmetric, the
form of the obtained dynamics necessarily differs from
[16–21].
In this paper, we continue investigating the behavior of

branelike extended objects in Riemann-Cartan spacetime.
We emphasize that our work is not a part of the mainstream
string theory considerations. Our branelike objects are
made of conventional matter, and are used to probe
Riemann-Cartan geometry. The only connection with
string theory is seen in the form of our resulting equations.
Namely, we notice a similarity between the motion of
macroscopic test membranes in Riemann-Cartan back-
grounds and the motion of string theory membranes in
the low-energy string backgrounds. Whether this is just a
coincidence, or there is more content in this analogy is not
the subject of this paper.
In the subsequent paragraphs, we shall investigate the

influence of torsion on the dynamics of membranelike
extended objects. Our effort is motivated by the observa-
tion that problems encountered in treating strings in
Riemann-Cartan spacetime are nicely solved if membranes
are considered instead. In particular, the nontrivial projec-
tion of the totally antisymmetric spin tensor on the p-brane
world sheet is shown to exist only if p � 2. This form of
spin tensor proves to be the basic ingredient in the con-
struction of membranes with maximally symmetric distri-
bution of spin. We apply the p-brane equations of [13] to a
membrane characterized by two constants only: the tension
and spin magnitude. As a result, the behavior of such
membranes in Riemann-Cartan backgrounds is shown to
follow from an action functional. A resemblance with the
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�-model action of [22] is noted. The latter describes a
membrane coupled to the string theory 3-form field.

The effective string dynamics is obtained in the narrow
membrane limit. We consider cylindrical membranes
wrapped around the extra compact dimension of a
(Dþ 1)-dimensional spacetime, and perform a Dþ 1 !
D dimensional reduction. As a result, a �-model action
similar to that of [16–21] is revealed.

The layout of the paper is as follows. In Sec. II, we
review the basic notions of the multipole formalism devel-
oped in [11–13]. The manifestly covariant world-sheet
equations and boundary conditions are explicitly dis-
played. In Sec. III, the p ¼ 2 brane is investigated. The
free coefficients of the theory are chosen to define a
Nambu-Goto membrane with a totally antisymmetric spin
tensor parallel to the world sheet. This membrane is char-
acterized by the constant tension and spin, and its dynam-
ics in Riemann-Cartan geometry is shown to resemble the
dynamics of elementary membranes in the low-energy
string backgrounds [22]. In Sec. IV, a narrow membrane
wrapped around the extra compact dimension of a (Dþ 1)-
dimensional spacetime is considered. An effective string
dynamics is revealed in the limit of the small extra dimen-
sion. Section V is devoted to concluding remarks.

Our conventions are the same as in [12]. Greek indices
�, �; . . . are the spacetime indices, and run over
0; 1; . . . ; D� 1. Latin indices a, b; . . . are the world-sheet
indices and run over 0; 1; . . . ; p. Latin indices i, j; . . . refer
to the world-sheet boundary and take values 0; 1; . . . ; p�
1. The coordinates of spacetime, world sheet, and world-
sheet boundaries are denoted x�, �a, and �i, respectively.
The spacetime metric is denoted by g��ðxÞ, and the in-

duced world-sheet metric by �abð�Þ. The signature con-
vention is defined by diagð�;þ; . . . ;þÞ, and the indices
are raised using the inverse metrics g�� and �ab.

II. MULTIPOLE FORMALISM

It has been shown in [11,12] that an exponentially
decreasing function can be expanded as a series of
�-function derivatives. For example, a tensor-valued func-
tion F��ðxÞ, well localized around the pþ 1-dimensional
surface M in D-dimensional spacetime, can be decom-
posed in a manifestly covariant way as

F��ðxÞ ¼
Z
M

dpþ1�
ffiffiffiffiffiffiffiffi��

p �
M�� �

ðDÞðx� zÞffiffiffiffiffiffiffi�g
p

�r�

�
M��� �

ðDÞðx� zÞffiffiffiffiffiffiffi�g
p

�
þ . . .

�
: (1)

The surface M is defined by the equation x� ¼ z�ð�Þ,
where �a are the surface coordinates, and the coefficients
M��ð�Þ, M���ð�Þ; . . . are spacetime tensors called multi-
pole coefficients. Here, and throughout the paper, we make
use of the surface coordinate vectors

u
�
a � @z�

@�a ;

and the surface induced metric tensor

�ab ¼ g��u
�
a u�b:

The induced metric is assumed to be nondegenerate, � �
detð�abÞ � 0, and of a Minkowski signature. The same
holds for the target space metric g��ðxÞ and its determinant

gðxÞ. The covariant derivative r� is defined by the Levi-

Cività connection.
It has been shown in [12] that one may truncate the

series in a covariant way in order to approximate the
description of matter. Truncation after the leading term is
called single-pole approximation, truncation after the sec-
ond term is called pole-dipole approximation. In the single-
pole approximation, one assumes that the brane has no
thickness, which means that matter is localized on a sur-
face. All higher approximations, including pole-dipole,
allow for a nonzero thickness, and thus, for the transverse
internal motion.
The decomposition (1) is particularly useful for the

description of branelike objects in spacetimes of general
geometry. In [13], the pole-dipole approximation has been
used to model the fundamental matter currents—stress-
energy tensor 	��, and spin tensor ��

��. The brane dy-

namics in the Riemann-Cartan backgrounds is obtained
from the covariant conservation laws

ðD� þT �
��Þ	�� ¼ 	��T �

�� þ 1
2�

���R����; (2a)

ðD� þT �
��Þ��

�� ¼ 	�� � 	��: (2b)

Here,D� is the covariant derivative with the nonsymmetric
connection ��

��, which acts on a vector v� according to

the rule D�v
� � @�v

� þ ��
��v

�. The torsion T �
�� and

curvature R�
��� are defined in the standard way:

T �
�� � ��

�� � ��
��;

R�
��� � @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��:

The covariant derivative D� is assumed to satisfy the
metricity condition D�g�� ¼ 0. As a consequence, the

connection ��
�� is split into the Levi-Cività connection

�
�
��

�

and the contorsion K�
��:

��
�� ¼

�
�
��

�
þ K�

��;

K�
�� � � 1

2
ðT �

�� �T �
�
� þT ��

�Þ:

The curvature tensor can then be rewritten in terms of the
Riemann curvature R�

��� � R�
���ð� ! fgÞ, and the

Riemannian covariant derivative r� � D�ð� ! fgÞ:
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R �
��� ¼ R�

��� þ 2r½�K�
��� þ 2K�

�½�K
�
���:

Given the system of conservation equations (2), one
finds that the second one has no dynamical content.
Indeed, the antisymmetric part of the stress-energy tensor
is completely determined by the spin tensor. One can use

(2b) to eliminate 	½��� from (2a), and thus obtain the

conservation equations in which only 	ð��Þ and ���� ap-
pear. The resulting equation has the form

r�

�

�� � K½�

���
���� � 1

2
K��

½������
�

¼ 1

2
����r�K���; (3)

where 
�� ¼ 
�� stands for the generalized Belinfante
tensor:


�� � 	ð��Þ � r��
ð��Þ� � 1

2K��
ð���Þ��: (4)

The independent variables 
�� and ���� are in 1-1 corre-
spondence with the original variables. The conservation
law in the form (3) is the starting point for the derivation of
brane world-sheet equations.

In this paper, we are interested in infinitely thin branes,
and therefore, restrict our analysis to the single-pole ap-
proximation. The multipole expansion of our basic varia-
bles then reads


�� ¼
Z
M

dpþ1�
ffiffiffiffiffiffiffiffi��

p
B�� �

ðDÞðx� zÞffiffiffiffiffiffiffi�g
p ; (5a)

���� ¼
Z
M

dpþ1�
ffiffiffiffiffiffiffiffi��

p
C��� �

ðDÞðx� zÞffiffiffiffiffiffiffi�g
p ; (5b)

where B��ð�Þ and C���ð�Þ are the corresponding multi-
pole coefficients. The decomposition (5) is used as an
ansatz for solving the conservation equations (3). This
has already been done in [13], resulting in manifestly
covariant p-brane world-sheet equations.

In the next section, the general result of [13] is applied to
the p ¼ 2 case. In particular, the Nambu-Goto type of
membrane with a totally antisymmetric spin tensor parallel
to the world sheet is thoroughly examined.

III. MEMBRANE DYNAMICS

In this section, the stress-energy and spin tensor conser-
vation equations (3) are solved in the single-pole approxi-
mation. The general brane world-sheet equations and
boundary conditions are applied to the membrane case.

A. Preliminaries

The p-brane world-sheet equations in the single-pole
approximation are obtained in the following way. We insert
the ansatz (5) into the conservation equations (3), and solve
for the unknown variables z�ð�Þ, B��ð�Þ, and C���ð�Þ.
The algorithm for solving this type of equation has been

discussed in detail in [12,13], and here we use the ready-
made result. According to [13], the single-pole world-sheet
equations are given by

P?�
�P?�

�D�� ¼ 0; (6a)

raðmabu�b � 2ua�D
�� þ u�b u

b
�u

a
�D

��Þ ¼ 1
2C���r�K���;

(6b)

while the boundary conditions have the form

naðmabu�b � 2ua�D
�� þ u�b u

b
�u

a
�D

��Þj@M ¼ 0: (7)

Here, P?�
� � �

�
� � u

�
a ua� is the orthogonal world-sheet

projector, na is the unit boundary normal, andra stands for
the total covariant derivative that acts on both types of
indices:

raV
�b � @aV

�b þ
�
�
��

�
u
�
aV�b þ

�
b
ca

�
V�c:

The coefficients mabð�Þ and C���ð�Þ are the residual free
parameters of the theory. While mab represents the effec-
tive stress-energy tensor of the brane, the C��� currents are
related to its spin density. The shorthand notation

D�� � K½�
��C

���� þ 1
2K��

½�C����

is introduced for convenience.
The world-sheet equations (6) and boundary conditions

(7) describe the dynamics of an infinitely thin p-brane in
D-dimensional spacetime with curvature and torsion. We
want to emphasize that the obtained dynamics has rather
universal character. This is because our derivation rests
upon the mere existence of the conservation equations of
the stress-energy and spin tensors. These conservation
equations are the direct consequence of the diffeomor-
phism and local Lorentz symmetry of the matter
Lagrangian. As a consequence of the universality of these
symmetries, the conservation equations hold regardless of
the details of the theory. This is the virtue of our approach,
as it is independent of the particular action used. On the
other hand, the conservation equations have the weakness
of being incomplete, in the sense that they carry much less
information than the full set of field equations. As a con-
sequence, the derived p-brane world-sheet equations con-
tain free coefficients. The details of the initial theory are
hidden in the form of these coefficients.
By inspecting the form of the obtained world-sheet

equations, we realize that only branes made of spinning
matter can probe spacetime torsion. Moreover, if the tor-
sion is totally antisymmetric, only axial component of the
spin tensor C��� survives in the world-sheet equations. In
this paper, we shall examine how axial spin tensors couple
to torsion. In particular, we are interested in branes char-
acterized by maximally symmetric distribution of stress
energy and spin. It has already been shown in [13] that this
task can not be accomplished with strings. The reason for
this is that the only candidate for the right type of spin-
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torsion coupling turns out to be the projection of the axial
C��� on the world sheet, and it identically vanishes if p ¼
1. In what follows, we shall turn to membranes (p ¼ 2),
and demonstrate how the choice of axial C��� parallel to
the world sheet solves the problem.

B. World-sheet equations

Let us consider an infinitely thin membrane whose spin
tensor is totally antisymmetric and parallel to the world
sheet. It is defined by the C��� coefficient of the form

C��� ¼ seabcu�au
�
b u

�
c ; (8)

where eabc is the covariant Levi-Cività symbol, and s is a
scalar which measures the spin magnitude. In addition, we
shall restrict the scalar s to be a constant, so that our
membrane has maximally symmetric distribution of spin.
Indeed, the constant s is the only variable in (8) which
carries the information about the nature of matter fields the
membrane is made of. The rest of C��� is given in pure
geometric terms. At any given point of the world sheet,
these terms can be gauged away by the proper choice of the
target space and world-sheet coordinates. Precisely, we can
achieve g�� ¼ ��� and u

�
a ¼ ��

a , so that the nonvanishing

components of C��� reduce to Cabc ¼ s�abc. The Levi-
Cività symbol �abc is a constant tensor of the Lorentz
group, which ensures local isotropy of C���. As the whole
procedure can be repeated with a different choice of the
word-sheet point, the C��� is a homogeneous tensor, as
well. This is exactly what ensures maximal symmetry of
the spin tensor.

It is immediately seen that this kind of spin tensor does
not exist in the string case. There, the world sheet is 2-
dimensional, and the corresponding Levi-Cività tensor is a
second rank tensor. In the membrane case, the world-sheet
indices a, b; . . . take three values, exactly as needed for the
existence of the third rank Levi-Cività tensor. As we have
seen, this tensor is indispensable for the construction of the
maximally symmetric spin tensor.

Let us now see how the membrane spin tensor of the
form (8) influences the world-sheet equations (6). First, we
calculate the D�� tensor, and find that it reduces to

D�� ¼ 3s

2
eabcu

c½�K
A
ab��: (9)

It depends on the axial part of the contorsion

K
A
��� � 1

3ðK��� þ K��� þ K���Þ

through its world-sheet projectionK
A
ab� � ua�u

b
�K

A
���

. The

precession equations (6a) are identically satisfied, and we
are left with the world-sheet equations (6b) and boundary
conditions (7). Now, we calculate the right-hand side of
(6b), and find

C���r�K��� ¼ su���K
A
���� þrcð3seabcK

A
ab�Þ; (10)

with

K
A
���� � r�K

A
��� �r�K

A ��� þr�K
A
��� �r�K

A
���;

and

u��� � eabcu�a u�bu
�
c :

With the help of (9) and (10), the world-sheet equations are
rewritten as

rbð �mabu�a Þ ¼ s

2
u���K

A
����; (11)

where �mab � mab � s
2�

abK���u��� are the residual free

coefficients. Using the total antisymmetry of the K
A
����

field in (11), the coefficients �mab are shown to be cova-
riantly conserved,

rb �m
ab ¼ 0: (12)

This means that Nambu-Goto matter is allowed as the
constituent matter of our membrane. Indeed, by demanding

�mab ¼ T�ab; (13)

where T is a constant commonly interpreted as the mem-
brane tension, the condition (12) is automatically satisfied.
At the same time, this choice ensures maximally symmet-
ric distribution of the membrane stress energy. That it is
indeed so can be seen by repeating the arguments used for
the demonstration of maximal symmetry of the spin tensor.
Now we are left with only two constants, T and s, to

characterize our membrane. With this, the world-sheet
equations receive their final form

rau
a� ¼ s

2T
K
A
����u���: (14)

Following the same procedure, the boundary conditions are
rewritten as

nc
�
u�c þ 3s

2T
eabcK

A
ab�

���������@M
¼ 0: (15)

The world-sheet equations (14), and the boundary condi-
tions (15) govern the dynamics of a Nambu-Goto type of
membrane with axial spin tensor parallel to the world
sheet. Such a membrane is characterized by two constants,
the tension T and the spin magnitude s, and represents a
minimal extension of the Nambu-Goto case.
The equations (14) and (15) are shown to follow from an

action functional. Indeed, they are obtained by varying the
action

I ¼ T
Z

d3�
ffiffiffiffiffiffiffi�h

p �
g��ðxÞu�a u�bhab

þ s

T
K���ðxÞu�a u�bu�c eabc � 1

�
(16)

with respect to the independent variables x�ð�Þ and habð�Þ.

MILOVAN VASILIĆ AND MARKO VOJINOVIĆ PHYSICAL REVIEW D 81, 024025 (2010)

024025-4



We cannot help noticing the resemblance of this action to
the �-model action of [22]. The latter describes an ele-
mentary membrane interacting with the 3-form fieldB���.

In fact, the two actions differ in one instance only: the role
of the 3-form fieldB��� in [22] is played by the contorsion

field s
T K

A

��� in (16). Although this matching may be just a

coincidence, we find it appropriate to draw the reader’s
attention to it.

In the next section, we shall demonstrate how the effec-
tive string dynamics is obtained in the narrow membrane
limit. This way, the dimensionally reduced analogue of the
action functional (16) will be obtained.

IV. DIMENSIONAL REDUCTION

The results of the preceding section are obtained under
very general assumptions concerning the dimensionality
and topology of spacetime and world sheet. In what fol-
lows, we shall use this freedom to apply these results to a
cylindrical membrane wrapped around the extra compact
dimension of a (Dþ 1)-dimensional spacetime. In the
limit of a narrow membrane, we expect to obtain the
effective string dynamics. In fact, this kind of double
dimensional reduction has already been considered in
[22]. There, the string effective action in ten dimensions
has been obtained from the membrane action in 11 dimen-
sions. To complete our exposition, we shall describe a
similar Dþ 1 ! D dimensional reduction.

Let us consider a (Dþ 1)-dimensional spacetime with
one small compact dimension. It is parametrized by the
coordinates XM (M ¼ 0; 1; . . . ; D), which we divide into
the ‘‘observable’’ coordinates x� (� ¼ 0; 1; . . . ; D� 1),
and the extra periodic coordinate y. In the limit of small
extra dimension, we use the Kaluca-Klein ansatz

@yKMNL ¼ 0; @yGMN ¼ 0; Gyy ¼ 1; (17)

to model the contorsion and metric. This ansatz violates the
(Dþ 1)-dimensional diffeomorphisms, leaving us with the
coordinate transformations

x�
0 ¼ x�

0 ðxÞ; y0 ¼ yþ "ðxÞ:
In what follows, we shall use the decomposition

GMN ¼ g�� þ a�a� a�
a� 1

� �
; (18)

as it yields the variables that transform as tensors with
respect to the residual D-diffeomorphisms. The same
kind of argument applies to KMNL. We shall use a totally
antisymmetric contorsion, and decompose it as

KMN
L � ðK��

�; K
��

yÞ � ðK��
� þ k��a�; k

��Þ: (19)

The componentsK��
� and k

�� are tensors with respect to
the residual diffeomorphisms. Now, we consider a mem-
brane wrapped around the extra compact dimension y. Its
world sheet XM ¼ ZMð�AÞ is denoted by M3, and is

chosen in the form

x� ¼ z�ð�aÞ; y ¼ �2; (20)

where the world-sheet coordinates �A (A ¼ 0, 1, 2) are
divided into �a (a ¼ 0, 1) and �2. This ansatz reduces the

reparametrizations �A0 ¼ �A0 ð�BÞ to
�a0 ¼ �a0 ð�bÞ; �20 ¼ �2 þ "ðz�ð�ÞÞ;

and the world-sheet tangent vectors UM
A ¼ @ZM=@�A to

U�
a ¼ u�a ; U�

2 ¼ Uy
a ¼ 0; Uy

2 ¼ 1: (21)

One can verify that u
�
a � @z�=@�a transforms as a tensor

with respect to the residual spacetime and world-sheet
diffeomorphisms. The induced metric �AB � GMNU

M
A U

N
B

is shown to satisfy the condition @2�AB ¼ 0. It is decom-
posed as

�AB ¼ �ab þ aaab aa
ab 1

� �
; (22)

with �ab � g��u
�
a u�b, and aa � a�u

�
a . In what follows,

we shall refer to x� ¼ z�ð�aÞ as the string world sheet, and
denote it by M2.
The membrane boundary @M3 is given by �

A ¼ 
Að�iÞ,
where �i (i ¼ 0, 1) are the boundary coordinates. In ac-
cordance with the ansatz (20), it is chosen in the form

�a ¼ 
að�0Þ; �2 ¼ �1: (23)

The boundary tangent vectors VA
i � @
A=@�i and the

boundary normal NA � eABCV
B
0 V

C
1 are thereby reduced

to va ¼ @
a=@�0 and na ¼ eabv
b, respectively. In what

follows, we shall refer to �a ¼ 
að�0Þ as the string bound-
ary @M2.
The membrane world-sheet equations of Sec. III are now

rewritten as

rAU
AM ¼ s

2T
eABCU

A
NU

B
LU

C
RK

MNLR; (24)

with

KMNLR � rMKNLR �rNKLRM þrLKRMN �rRKMNL:

Using the Kaluca-Klein ansatz (17) and (20), and the
decompositions (18), (19), (21), and (22), one finds the
following. TheM ¼ y component of the world-sheet equa-
tions (24) is identically satisfied. The M ¼ � components
become

rau
a� ¼ 3s

2T
eabu

a
�u

b
�k

���; (25)

with

k��� � r�k�� þr�k�� þr�k��:

Similarly, the M ¼ y component of the boundary condi-
tions
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NC

�
UM

C þ 3s

2T
eABCK

ABM

���������@M3

¼ 0 (26)

is identically satisfied, whileM ¼ � components reduce to

na
�
u
�
a þ 3s

T
eabk

�b

���������@M2

¼ 0: (27)

The world-sheet equations (25) and boundary conditions
(27) are shown to follow from the action functional

I ¼ T
Z

d2�
ffiffiffiffiffiffiffi�h

p �
g��ðxÞhab þ 3s

T
k��ðxÞeab

�
u
�
a u�b:

(28)

Again, we notice a similarity between our action (28) and
the string sigma model action of [16–21]. The latter de-
scribes an elementary string coupled to the string axion
B��. As in the membrane case, the two actions differ in

one instance only: the role of the string axion B�� in [16–

21] is played by the extra dimensional components of the
contorsion 3s

T k�� in (28). Whether this is just a coinci-

dence, or there is more content in this matching is not the
subject of our paper. Anyway, it is an interesting observa-
tion which, we believe, deserves to be mentioned.

In summary, we have derived how uniform membranes
made of spinning matter behave in Riemann-Cartan back-
grounds. We have considered a minimal extension of the
Nambu-Goto membrane, characterized by two constants
only: the tension and spin magnitude. Such membranes
proved to be the simplest branes with a nontrivial spin-
torsion coupling. The effective string dynamics is obtained
from cylindrical membranes in the narrowmembrane limit.
Both sets of equations are found to follow from corre-
sponding action functionals. By inspecting their form we
have discovered a similarity with string theory sigma
models.

V. CONCLUDING REMARKS

In this paper, we have analyzed the behavior of classical
membranes in Riemann-Cartan backgrounds. The mem-
brane constituent matter is specified in terms of its stress-
energy and spin tensors. In particular, the stress energy is
assumed to be of the Nambu-Goto type, and the spin tensor
is chosen totally antisymmetric and parallel to the world
sheet. Such membranes have maximally symmetric distri-
bution of stress energy and spin, and are characterized by
two constants only: the tension and spin magnitude. The
idea behind these considerations is the search for the
simplest brane with nontrivial spin-torsion coupling.

The method we use is a generalization of the Mathisson-
Papapetrou method for pointlike matter [1,2]. It has al-

ready been used in [11–13] for the study of strings and
higher branes in Riemann-Cartan backgrounds. In this
work, the general results of [13] have been applied to a
membrane with maximally symmetric distribution of stress
energy and spin. The effective string is seen as a narrow
membrane wrapped around the extra spatial dimension.
Our exposition is summarized as follows. In Sec. II, we

have reviewed the basics of the multipole formalism de-
veloped in [11–13]. A manifestly covariant multipole ex-
pansion has been defined for an arbitrary exponentially
decreasing function, and then applied to the stress-energy
and spin tensors of localized matter. The dynamics is
specified through the stress-energy and spin tensor cova-
riant conservation equations.
In Sec. III, the conservation equations have been solved

for an arbitrary infinitely thin p-brane. The resulting man-
ifestly covariant world-sheet equations and boundary con-
ditions have then been applied to the p ¼ 2 case. The
motivation comes from the observation that the needed
world-sheet projection of the axial spin tensor vanishes if
p ¼ 1. This kind of spin tensor proved to be the basic
ingredient for the construction of a membrane with maxi-
mally symmetric distribution of spin. The obtained mem-
brane dynamics has been verified to follow from an action
functional. A resemblance with the �-model action of [22]
has been noted.
In Sec. IV, we have considered cylindrical membranes

wrapped around the extra compact dimension of a (Dþ 1)-
dimensional spacetime. The effective string dynamics is
obtained in the narrow membrane limit. It turns out to
resemble the string dynamics of [16–21]. Precisely, we
have noticed that macroscopic strings couple to torsion
the same way as fundamental strings couple to the string
axion.
In summary, let us say something about the prospects of

our research. We are aware of the fact that considerable
additional work can be done along the lines followed in this
paper. In fact, our world-sheet equations (6) and boundary
conditions (7) contain free parameters that can be chosen in
a variety of ways, each leading to a different brane dynam-
ics. The simple choice considered in this paper (mem-
branes with constant tension and spin density), has been
shown to lead to the familiar membrane dynamics, and
after simple compactification, to the familiar string dynam-
ics. An interesting possibility is to consider more general
membranes, and more general compactifications.
Hopefully, couplings to the electromagnetic and scalar
fields could be discovered in the dimensionally reduced
theory. This is, however, a difficult task for itself, and will
be considered in a separate paper.
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(2006).
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