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A wide range of disordered materials contain electronic states that are spatially well localized. In this work, we
investigated the electrical response of such systems in nonequilibrium conditions to external electromagnetic field.
We obtained the expression for optical conductivity valid for any nonequilibrium state of electronic subsystem.
In the case of incoherent nonequilibrium state, this expression contains only the positions of localized electronic
states, Fermi’s golden rule transition probabilities between the states, and the populations of electronic states. The
same form of expression is valid both in the case of weak electron-phonon interaction and weak electron-impurity
interaction that act as perturbations of electronic Hamiltonian. The derivation was performed by expanding the
general expression for ac conductivity in powers of small electron-phonon interaction or electron-impurity
interaction parameter. Applications of the expression to two model systems, a simple one-dimensional Gaussian
disorder model, and the model of a realistic three-dimensional organic polymer material, were presented as well.
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I. INTRODUCTION

Electronic transport in semiconductors has been attracting
significant research attention for more than half a century. Par-
ticular classes of semiconductors where interesting physical
effects arise in electronic transport are semiconductors where
a certain type of disorder is present in the system which leads
to localization of electronic states. These include amorphous
inorganic semiconductors (such as amorphous Si or Ge) [1],
inorganic crystals doped with randomly positioned impurities
[2,3], and organic semiconductors based on conjugated poly-
mers or small molecules [4–10]. The latter class of materials
triggered a particular interest in the past two decades due to
their low production cost, which led to the development of a
variety of organic electronic devices [11–17].

There is currently a solid understanding of equilibrium
electronic transport in disordered systems with localized
electronic states. dc transport in such systems can be modeled
using an equivalent network of resistors that connect each two
sites where electronic states are localized [18,19]. Electronic
conductivity or mobility in the material can then be calculated
by finding the equivalent resistance of the network or estimated
using percolation theory. However, dc mobility which quanti-
fies electronic transport properties over long length scales is in
many cases not the most relevant quantity when the description
of electronic transport processes is concerned. In particular,
in organic solar cells based on a bulk heterojunction of two
organic semiconductors, charge carriers travel over very short
length (on the order of nanometers) and time (on the order
of picoseconds) scales before they reach the interface of two
semiconductors [20–22]. The high frequency (terahertz) ac
mobility is a much better measure of charge transport over
such short time scales.

The approaches for simulation of ac conductivity are
usually based on Kubo’s formula which expresses the ac
conductivity in terms of the mean square displacement of a
diffusing carrier [23–27]. Such approaches therefore assume
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that carriers are in equilibrium and that they are only slightly
perturbed by external alternating electric field. However, in
many realistic situations, the carriers are not in equilibrium;
a typical example concerns the carriers created by external
optical excitation across the band gap of a semiconductor.
While general approaches for the treatment of nonequilibrium
electronic transport, such as the density matrix formalism [28]
or the nonequilibrium Green’s function formalism [29–31], do
exist, it is in practice quite difficult to apply them to disordered
materials, where one needs to consider large portions of
material to obtain reliable information about its properties.

The main goal of this work was to derive a simple
expression that relates the optical conductivity of a material
with localized electronic states to its microscopic parameters.
To accomplish this goal, we first derive in Sec. II the
relation between nonequilibrium optical conductivity and the
corresponding current-current correlation function. Then, in
Sec. III we derive an expression for the conductivity of the
system of localized states with electron-phonon interaction
that acts as perturbation valid for arbitrary nonequilibrium
state of the electronic subsystem. In the case of incoherent
nonequilibrium state, the obtained expression appears to have
a rather simple form—the only quantities that appear in it are
the positions of localized states, their populations, and the
phonon-induced transition probabilities between the states.
In Sec. IV we show that the same expression is obtained if
additional static potential acts as a perturbation. In Sec. V, we
present the results obtained from the application of the derived
formula to a simple one-dimensional hopping model and to a
realistic disordered conjugated polymer material. We discuss
our results in light of the other results that exist in the literature
in Sec. VI.

II. GENERAL EXPRESSION FOR NONEQUILIBRIUM
OPTICAL CONDUCTIVITY

In this section, we consider an arbitrary quantum system
described by the Hamiltonian Ĥ whose state is given by the
statistical operator ρ̂(t). We will derive the time evolution
of ρ̂(t) due to a weak external perturbation Ĥ ′(t) which is
turned on at t = 0. Next, for the system that contains charged
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particles, we will find the current density caused by external
electric field that acts as a perturbation. While the results of this
section are mostly available in the literature, we repeat them
here for completeness of the paper, as well as to introduce the
notation and terminology for the remainder of the paper.

A. Evolution of the density matrix

The equation for the density matrix ρ̂(t) describing the state
of the system for t > 0 is

i�
dρ̂(t)

dt
= [Ĥ + Ĥ ′(t),ρ̂(t)]. (1)

We search for the solution of Eq. (1) in the form ρ̂(t) =
ρ̂free(t) + f̂ (t), where

ρ̂free(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t (2)

is the statistical operator of the system in the absence of
external perturbation, ρ̂(0) is the statistical operator describing
the state of the system just before the external perturbation
is turned on, while f̂ (t) is the contribution to the statistical
operator due to linear response of the system. It satisfies the
differential equation

i�
df̂ (t)

dt
− [Ĥ ,f̂ (t)] = [Ĥ ′(t),ρ̂free(t)], (3)

with the initial condition f̂ (0) = 0̂. After solving the last
equation up to linear terms, we obtain [32]

ρ̂(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t + 1

i�
e−i Ĥ

�
t

∫ t

0
dt ′[Ĥ ′

I (t ′),ρ̂(0)]ei Ĥ
�

t ,

(4)

where Ĥ ′
I (t) = ei Ĥ

�
t Ĥ ′(t)e−i Ĥ

�
t . Equations given in this section

are strictly valid only for an isolated quantum system and do
not include the relaxation of the system from some nonequilib-
rium to the equilibrium state. In realistic systems, interaction
of the system with the environment leads to relaxation of
the system to the equilibrium state. Therefore, the equations
that we will derive are valid only if the characteristic time
of external perturbation is short compared to the relaxation
time τ . Since we shall study the response to the electric field
oscillating with a frequency ω, the aforementioned condition
reads

ωτ � 1. (5)

In that case, the relaxation of the system towards equilibrium
during one period of the perturbation is negligible and can be
ignored in the considerations.

B. Nonequilibrium optical conductivity

Next, we assume that the system contains mobile charged
particles and that external electric field acts as a perturbation.
The system responds to external electric field by nonzero value
of current density. The current density operator is given by [33]

ĵa(r) = 1

2m

∑
n

q(p̂nδ
(3)(r − r̂n) + δ(3)(r − r̂n)p̂n)a, (6)

where q and m are the charge and the mass of a carrier,
respectively, while p̂n and r̂n are the momentum and the

position operator for a single carrier, and a denotes the
component of the current density operator (x, y, or z). Using
Eq. (4), we find that the current density at time t is given as

〈ĵa(r)〉t = Tr(ρ̂(t)ĵa(r))

= Tr(ρ̂(0)ĵa(t,r))

+ 1

i�

∫ t

0
dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′

I (t ′)]), (7)

where ĵa(t,r) = ei Ĥ
�

t ĵa(r)e−i Ĥ
�

t . The first term in Eq. (7) does
not depend on the electric field, while we are interested
in the response of the system to the applied electric field.
Consequently, we shall further only consider the second term
in Eq. (7) given as

Ja(t,r) = 1

i�

∫ t

0
dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′

I (t ′)]). (8)

We shall also assume that we are dealing with a spatially
homogeneous system at the macroscopic scale. The current
density averaged over the volume of the system

Ja(t) = 1

V

∫
d3r Ja(t,r) (9)

will be considered as the response to the applied field. The
Hamiltonian of interaction with electric field E(t) is given as
[34]

Ĥ ′(t) = −�̂ · E(t), (10)

where �̂ is the electric dipole moment operator defined as

�̂ = q
∑

n

r̂n. (11)

Using Eqs. (9), (8), and (10), the quantity Ja(t) can be
expressed as

Ja(t) =
∫ t

0
dt ′σab(t,t ′)Eb(t ′), (12)

where the tensor

σab(t,t ′) = i

�V
Tr(ρ̂(0)[Ĵa(t),�̂b(t ′)]) (13)

describes the linear response to the applied electric field. In
Eq. (13), the operator Ĵa(t) is defined as

Ĵa(t) =
∫

d3r ĵa(t,r) = q

m

∑
n

(p̂n)a. (14)

The operators �̂a(t) and Ĵb(t) satisfy the equal time commu-
tation relation

[�̂a(t),Ĵb(t)] = i�
Nq2

m
δab, (15)

where N is the number of carriers, and the continuity equation

Ĵa(t) = d

dt
�̂a(t). (16)

When the condition

[ρ̂(0),Ĥ ] = 0̂ (17)

is satisfied, the tensor σab(t,t ′) defined in Eq. (13) does not
depend separately on t and t ′, but only on their difference
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u = t − t ′. The optical conductivity tensor can then be defined
as σab(ω) = ∫ +∞

0 du σab(u) eiωu and reads

σab(ω) = i

�V

∫ +∞

0
dt eiωt Tr(ρ̂(0)[Ĵa(t),�̂b(0)]). (18)

Using Eqs. (16) and (15), Eq. (18) can be cast into a more
familiar form (n = N/V is the concentration of carriers)

σab(ω) = i
nq2

mω
δab + 1

�ωV

∫ +∞

0
dt eiωt

× Tr(ρ̂(0)[Ĵa(t),Ĵb(0)]). (19)

The equation for the optical conductivity (19) can be consid-
ered as a generalization to the nonequilibrium stationary case
of well-known results [35] which relate optical conductivity to
the equilibrium current-current correlation function. General-
izations of this sort have already been proposed in the literature
[in the context of the fluctuation-dissipation theorem, which
relates the dissipative part of the optical conductivity to the
(non)equilibrium current fluctuations] [36,37].

In the case, when [ρ̂(0),Ĥ ] �= 0̂, the tensor σab(t,t ′) defined
in Eq. (13) depends separately on t and t ′

σab(t,t ′) = − 1

i�V
Tr

(
e− i

�
Ĥ t ρ̂(0)e

i
�

Ĥ t [Ĵa(0),�̂b(−(t − t ′))]
)
.

(20)

Using Eqs. (16) and (15), one obtains the following expression:

σab(t,t ′) = nq2

m
δab − i

�V

∫ t−t ′

0
dτ

× Tr
(
e− i

�
Ĥ (t−τ )ρ̂(0)e

i
�

Ĥ (t−τ )[Ĵa(τ ),Ĵb(0)]
)
. (21)

III. OPTICAL CONDUCTIVITY IN THE PRESENCE
OF ELECTRON-PHONON INTERACTION

In this section, we derive the expression for optical
conductivity of a system with localized electronic states in the
presence of weak electron-phonon interaction. In Sec. III A
we introduce the Hamiltonian of the system, derive the current
operator, and obtain the frequency-time representation of the
conductivity tensor. In Sec. III B, we derive the expression
for conductivity valid for the arbitrary reduced density matrix
of the electronic subsystem and in the limit of low carrier
concentration. For incoherent density matrix of the electronic
subsystem, this expression contains only the populations of
single-particle electronic states, their spatial positions, and
Fermi’s golden rule transition probabilities between these
states.

A. Model Hamiltonian and preliminaries

We consider the system of electrons and phonons described
by the Hamiltonian

Ĥ = Ĥ0 + Ĥe-ph = Ĥe + Ĥph + Ĥe-ph, (22)

where

Ĥ0 = Ĥe + Ĥph =
∑

α

εαĉ†αĉα +
∑

k

�ωk b̂
†
k b̂k (23)

is the Hamiltonian of noninteracting electrons and phonons,
while

Ĥe-ph =
∑

k

∑
αα′

(g−
αα′,k ĉ†αĉα′ b̂k + g+

αα′,k ĉ†αĉα′ b̂
†
k) (24)

is the electron-phonon interaction Hamiltonian. In previous
expressions, b̂†k (b̂k) are the creation (annihilation) operators for
the phonon mode k that satisfy bosonic commutation relations,
ĉ†α (ĉα) are creation (annihilation) operators for electronic
single-particle state α that satisfy fermion anticommutation
relations, �ωk is the energy of a mode k phonon, while
εα is the energy of electronic state α. Matrix elements of
electron-phonon interaction satisfy the relation

g±
αα′,k = g∓∗

α′α,k (25)

and their particular form depends on details of the electron-
phonon interaction mechanism.

We will assume that the phonon subsystem is in thermal
equilibrium and therefore we will adopt the following factor-
ization of the initial density matrix ρ̂(0):

ρ̂(0) = ρ̂e ρ̂ph,eq. (26)

The operator ρ̂ph,eq describes the phonon subsystem in equi-
librium at the temperature Tph = 1

kBβph
and it is given as

ρ̂ph,eq = e−βphĤph

Trph e−βphĤph
, (27)

whereas ρ̂e is the reduced density matrix of the electronic
subsystem. The state of the system described by Eq. (26)
assumes that electrons are out of equilibrium, while the
phonons are in equilibrium. Such states can arise naturally in
several relevant physical scenarios. A typical example of such
a scenario is a semiconductor structure excited with photons
whose energy is larger than the band gap of the structure.
Most of the energy of incident photons is then transferred
to electronic degrees of freedom and therefore it is quite
reasonable to assume that electrons are out of equilibrium,
while the phonons are in equilibrium.

The electric dipole moment operator �̂a introduced in
Eq. (11) can be expressed in the second quantization repre-
sentation as

�̂a = q
∑
αβ

xa;αβ ĉ†αĉβ, (28)

where xa;αβ ≡ 〈α|x̂a|β〉 are the matrix elements of the single
electron position operator. Using Eq. (16), we find that the
operator Ĵa reads Ĵa = Ĵ (1)

a + Ĵ (2)
a , where

Ĵ (1)
a = iq

�

∑
αβ

(εα − εβ)xa;αβ ĉ†αĉβ (29)

describes the contribution to the operator Ĵa due to direct
interaction of electrons with electric field, while

Ĵ (2)
a = iq

�

∑
k

∑
αβ

(F−
a;αβ,k ĉ†αĉβ b̂k + F+

a;αβ,k ĉ†αĉβ b̂
†
k) (30)
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describes the contribution arising from electron-phonon inter-
action. The coefficients F±

a;αβ,k are given by

F±
a;αβ,k =

∑
α′

(g±
αα′,k xa;α′β − xa;αα′g±

α′β,k) (31)

and satisfy the relation

F±
a;αβ,k = −F∓∗

a;βα,k. (32)

In this work, we are mainly interested in the case of localized
electronic states when the matrix elements of the position
operator between different states are negligible. This condition
can be mathematically expressed as

xa;αβ = δαβ xa;α. (33)

Therefore, in the case of localized electronic states, Ĵ (1)
a = 0

and consequently Ĵa = Ĵ (2)
a .

Next, we treat electron-phonon interaction as a perturbation
and perform the expansion of Eq. (21) with respect to small
interaction constants g±

αβ,k . The evolution operator that appears
in Eq. (21) can be expanded in Dyson series as

e− i
�

Ĥ t = e− i
�

Ĥ0t + 1

i�

∫ t

0
dt ′ e− i

�
Ĥ0(t−t ′)Ĥe-phe

− i
�

Ĥ0t
′ + · · · .

(34)

Consequently, the expansion of the time-dependent operator
Ĵa(τ ) from Eq. (21) reads

Ĵa(τ ) = e
i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ +

[
e

i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ ,

∫ τ

0

dt ′

i�
e

i
�

Ĥ0t
′
Ĥe-phe

− i
�

Ĥ0t
′
]
+ · · · . (35)

Furthermore, the expansion of the first term under trace in
Eq. (21) gives

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ )

= ρ̂(0) +
+∞∑
n=1

1

n!

(
− i(t − τ )

�

)n

[Ĥ , . . . ,[Ĥ ,ρ̂(0) ] . . . ]︸ ︷︷ ︸
n

.

(36)

Our aim is to obtain the first nonzero term in the expansion
of Eq. (21) in the case of localized electronic states. It
is therefore sufficient to take only the first term in the
expansion given by Eq. (35) and to isolate the contribution
from the expansion given in Eq. (36) which does not contain
electron-phonon coupling constants. One can show by direct
inspection, using the factorization of the initial density matrix
given by Eq. (26), that every summand under the sum on the
right hand side of Eq. (36) has only one term which does
not contain electron-phonon coupling constants and which is
of the type 1

n! (− i(t−τ )
�

)n[Ĥe, . . . ,[Ĥe,ρ̂e ] . . . ]︸ ︷︷ ︸
n

ρ̂ph,eq. All these

contributions can be resummed so that we finally obtain the
zeroth-order term in the expansion given by Eq. (36)

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ ) = e− i
�

Ĥe(t−τ )ρ̂(0) e
i
�

Ĥe(t−τ ) + · · · .

(37)

The first nontrivial term in the expansion of Eq. (21) in the
case of localized electronic states is thus given by

σab(t,t ′) = nq2

m
δab − i

�V

∫ t−t ′

0
dτ

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−τ )[Ĵ (2),0
a (τ ),Ĵ (2)

b (0)
]
e− i

�
Ĥe(t−τ )),

(38)

where Ĵ (2),0
a (τ ) = e

i
�

Ĥ0τ Ĵ (2)
a e− i

�
Ĥ0τ . Next, we consider the

frequency-time representation of the conductivity tensor which
can be defined as

σab(t,ω) =
∫ +∞

0
du σab(t,t − u) eiωu. (39)

When σab(t,t ′) depends only on the difference t − t ′, Eq. (39)
defines the conventional optical conductivity tensor σab(ω).
The frequency-time representation of the conductivity tensor
given in Eq. (38) is

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
du eiωu

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (2),0

a (u),Ĵ (2)
b

]
e− i

�
Ĥe(t−u)

)
.

(40)

In the case when σab(t,ω) varies slowly with t on the 1/ω

time scale, it can be interpreted as the conventional optical
conductivity tensor at time t .

We also note that when the condition of localized electronic
states [Eq. (33)] is not satisfied, the dominant term in the Ĵa

operator is the Ĵ (1)
a term. The leading terms in expansions

(35) and (36) are then given by first terms in Eqs. (35) and
(37), where Ĵa is replaced by Ĵ (1)

a in Eq. (35). These terms are
independent of electron-phonon coupling constants and lead to
the following expression for the frequency-time representation
of the conductivity tensor:

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
du eiωu

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (1),0

a (u),Ĵ (1)
b

]
e− i

�
Ĥe(t−u)

)
.

(41)

The physical origin of this term is direct absorption
of electromagnetic radiation by the electronic subsystem.
However, since this term vanishes for a system with localized
electronic states, which is of main interest in this work, this
term will not be considered in the remainder of the paper.
The focus will be on the term from Eq. (40) which arises due
to phonon-assisted transitions between states, as will become
evident in Sec. III B.

B. Frequency dependence of mobility
in low carrier density limit

We will now start from Eq. (40) for the frequency-
time representation of conductivity to derive the expres-
sion for the optical conductivity that explicitly contains
the populations of electronic states (diagonal elements
of ρ̂e) and coherences (off-diagonal elements of ρ̂e). By
replacing Eq. (30) into the expression for mean value
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Tr(ρ̂(0) e
i
�

Ĥe(t−u)[Ĵ (2),0
a (u),Ĵ (2)

b ]e− i
�

Ĥe(t−u)) and tracing out the phonon degrees of freedom one obtains

Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (2),0

a (u),Ĵ (2)
b

]
e− i

�
Ĥe(t−u)

) (
iq

�

)−2

=
∑

k

∑
αβγ δ

(
F−

a;αβ,kF
+
b;γ δ,k e− i

�
(εγ −εδ+�ωk)u − F+

a;αβ,kF
−
b;γ δ,k e− i

�
(εγ −εδ−�ωk )u

)
e

i
�

(εα−εβ+εγ −εδ )t 〈ĉ†αĉβ ĉ†γ ĉδ〉e

+
∑

k

∑
αβγ

(
F−

a;αγ,kF
+
b;γβ,k e− i

�
(εγ −εβ+�ωk )u − F+

b;αγ,kF
−
a;γβ,k e− i

�
(εα−εγ +�ωk )u

)
Nk e

i
�

(εα−εβ )t 〈ĉ†αĉβ〉e

+
∑

k

∑
αβγ

(
F+

a;αγ,kF
−
b;γβ,k e− i

�
(εγ −εβ−�ωk )u − F−

b;αγ,kF
+
a;γβ,k e− i

�
(εα−εγ −�ωk )u

)
(1 + Nk) e

i
�

(εα−εβ )t 〈ĉ†αĉβ〉e. (42)

Here, Nk is the number of phonons in mode k given by
the Bose-Einstein distribution, 〈· · · 〉e denotes averaging with
respect to ρ̂e, and coefficients F±

αβ,k are given as [by the virtue
of the definition of the localized electronic states from Eq. (33)]

F±
a;αβ,k = g±

αβ,k(xa;β − xa;α). (43)

See Eqs. (31) and (32).
In the limit of low carrier densities, only single-particle

electronic excitations are relevant. One can therefore restrict
the Hilbert space of the system to the space given as a product
of single-particle electronic space and the phonon space. In
this restricted space, the operators c†αĉβ and c†αĉβ ĉ†γ ĉδ reduce
respectively to |α〉〈β| and δβγ |α〉〈δ|, while the Hamiltonian in
this restricted space reads

Ĥ =
∑

α

εα|α〉〈α| +
∑

k

�ωk b̂
†
k b̂k

+
∑

k

∑
αα′

(g−
αα′,k |α〉〈α′|b̂k + g+

αα′,k |α〉〈α′|b̂†k). (44)

The average values of the expressions appearing in Eq. (42)
are then given as

〈ĉ†αĉβ〉e = Tre(ρ̂eĉ
†
αĉβ) = 〈β|ρ̂e|α〉 (45)

and

〈ĉ†αĉβ ĉ†γ ĉδ〉e = Tre(ρ̂eĉ
†
αĉβ ĉ†γ ĉδ) = δβγ 〈δ|ρ̂e|α〉. (46)

Combining Eqs. (45), (46), (42), and (40), the following
equation for the frequency-time representation of the conduc-
tivity tensor is obtained:

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (47)

where fab(t,ω) is defined as

fab(t,ω) = q2

�2ωV

∑
k

∑
αβγ

e
i
�

(εα−εβ )t 〈β|ρ̂e|α〉

× (F−
a;αγ,kF

+
b;γβ,kD(εβ − εγ − �ωk + �ω)(1 + Nk)

+F+
a;αγ,kF

−
b;γβ,kD(εβ − εγ + �ωk + �ω)Nk). (48)

Function D(ε) is given as

D(ε) = πδ(ε) + i P(1/ε). (49)

In the expressions (47) and (48), there are two clear signatures
of nonequilibrium: the explicit time dependence and the

presence of off-diagonal elements of ρ̂e (coherences). Both
of these effects would be absent for the system in equilibrium.

Next, we consider the case when the reduced density matrix
of the electronic subsystem is an analytic function of the
electronic Hamiltonian Ĥe, when we have

〈β|ρ̂e|α〉 = δαβ rα, (50)

where

rα = 〈α|ρ̂e|α〉 (51)

is the average occupation of electronic state α. Then in Eq. (48)
we remain only with the average occupations of individual
electronic states and since the quantity fab(t,ω) does not
depend explicitly on t , σab(t,ω) also does not depend on t

and represents the frequency-dependent conductivity tensor.
Starting from Eqs. (47) and (48) one can show that under the
aforementioned condition the following relation for the real
part of the optical conductivity holds:

Re σab(ω) = q2

2�ωV

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)rβ

× [wβα,ph(εβ − εα + �ω)

−wβα,ph(εβ − εα − �ω)], (52)

where the terms wβα,ph are of the form

wβα,ph(εβ − εα) = 2π

�

∑
k

[|g−
αβ,k|2δ(εβ − εα + �ωk)Nk

+ |g+
αβ,k|2δ(εβ − εα − �ωk)(1 + Nk)].

(53)

These are identical to the rates that would be obtained by
applying Fermi’s golden rule to calculate the transition prob-
ability from the state β to the state α due to electron-phonon
interaction. Equation (52) gives a rather simple expression for
the dissipative part of the optical conductivity as it involves the
positions of electronic states, their occupations, and Fermi’s
golden rule transition probabilities. Equations (52) and (53)
also offer an intuitive interpretation of elementary processes
giving contribution to the dissipative part of the optical
conductivity in the lowest nontrivial order of the perturbation
expansion. These processes are one-particle transitions β → α

induced by emission (absorption) of one phonon accompanied
by emission (absorption) of the quantum of the external
electromagnetic field �ω. One should note that within our

224201-5
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lowest-order perturbative approach, one does not take into
account multiphonon transitions which may be important in
some systems.

From the definition of mobility, one then also obtains for
the real part of ac mobility

Re μab(ω) = q

2�ω

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ∑
γ rγ

× [wβα,ph(εβ − εα + �ω)

−wβα,ph(εβ − εα − �ω)]. (54)

Equation (54) was derived under the assumption that hopping
rates have the mathematical form given by Eq. (53). In
Sec. V, the hopping rates given by Eqs. (70) and (66) will
be used. Equation (70) can be derived from Eq. (53) under
the assumption that electron-phonon coupling elements are
proportional to wave function moduli overlap (see Ref. [38]).
Equation (66) can then be obtained from Eq. (70) if one
assumes that wave function overlaps decay exponentially with
distance between states and that phonon density of states
(DOS) is such that energy dependence in Eq. (70) disappears.
Therefore, both Eqs. (70) and (66) are compatible with the
mathematical structure of Eq. (53) and it is appropriate to use
them in Eq. (54).

IV. OPTICAL CONDUCTIVITY IN THE PRESENCE
OF IMPURITY SCATTERING

In this section, we will show that similar expressions for
optical conductivity are obtained if electrons interact with an
additional static potential, rather than with phonons. A typical
cause of such potential could be the impurities that are present
in the material.

Therefore, we consider the Hamiltonian

Ĥ = Ĥ0 + Û =
∑

α

εαĉ†αĉα +
∑
αβ

Aαβ ĉ†αĉβ, (55)

where Ĥ0 is the noninteracting part of the Hamiltonian, while
Û describes the interaction of electrons with static potential.
The operator Ĵa can be computed using Eq. (16) and reads

Ĵa = Ĵ (dir)
a + Ĵ (imp)

a

= iq

�

∑
αα′

xa;αα′ (εα − εα′)ĉ†αĉα′ + iq

�

∑
αβ

Aa;αβ ĉ†αĉβ .

(56)

The Ĵ (dir)
a operator is analogous to the operator Ĵ (1)

a in the case
of a system with electron-phonon interaction and describes
direct interaction of electrons with perturbing electric field. On
the other hand, the Ĵ

(imp)
a operator describes the contribution

to Ĵa due to the interaction with the static potential (or, in
particular, with impurities). The coefficients Aa;αβ that appear
in Eq. (56) are given as

Aa;αβ =
∑
α′

(Aαα′xa;α′β − xa;αα′Aα′β) (57)

and satisfy [compare to Eq. (32)]

Aa;βα = −A∗
a;αβ. (58)

We will treat the interaction with the static potential as
a perturbation and we will derive the formula for optical
conductivity in the lowest order of the perturbation expansion
with respect to small coefficients Aαβ . We will assume that
electronic states are localized; see Eq. (33). This way, the
expression for the operator Ĵa simplifies to

Ĵa = Ĵ (imp)
a = iq

�

∑
αβ

Aαβ(xa;β − xa;α)ĉ†αĉβ . (59)

The starting point for the perturbation expansion is again
Eq. (21). Following a discussion, similar to that conducted in
Sec. III, we obtain that the first nonzero term in the expansion
of Eq. (21) in the case of localized electronic states is quadratic
in quantities Aαβ and that the corresponding expression for
the time-frequency representation of the conductivity tensor
[Eq. (39)] reads

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
dt eiωt

×Tr
(
ρ̂(0) e

i
�

Ĥ0(t−u)
[
Ĵ (imp),0

a (u),Ĵ (imp)
b

]
e− i

�
Ĥ0(t−u)

)
.

(60)

The notation Ĵ
(imp),0
a (t) again suggests that the time depen-

dence is governed by the noninteracting Hamiltonian.
In the low density limit, the projection of the Hamiltonian

onto the single-particle subspace reads

Ĥ0 =
∑

α

εα|α〉〈α| +
∑
αβ

Aαβ |α〉〈β|, (61)

with the average values 〈ĉ†αĉβ〉 = 〈β|ρ̂(0)|α〉. Deriving
Eq. (60) we obtain the expression for the frequency-time
representation of the conductivity tensor which bears formal
resemblance to the analogous expression [Eq. (47)] in the case
with electron-phonon interaction,

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (62)

where fab(t,ω) is defined as

fab(t,ω) = q2

�2ωV

∑
αβγ

e
i
�

(εα−εβ )t 〈β|ρ̂e|α〉Aαγ (xa;γ − xa;α)

×Aγβ(xb;β − xb;γ )D(εβ − εγ + �ω). (63)

Again, when the initial density matrix ρ̂(0) is an analytic
function of the electronic part of the Hamiltonian Ĥ0, the
quantity fab(t,ω) defined in Eq. (63) contains only populations
of the individual electronic states rα = 〈α|ρ̂(0)|α〉 and does
not depend explicitly on time. Thus σab(t,ω) is the optical
conductivity tensor (entirely expressed in terms of populations
of electronic states). The final expression for the real part of ac
mobility in the presence of interaction with impurities reads

Re μab(ω) = q

2�ω

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ∑
γ rγ

× [wβα,imp(εβ − εα + �ω)

−wβα,imp(εβ − εα − �ω)], (64)
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where the terms wβα,imp are of the form

wβα,imp(εβ − εα) = 2π

�
|Aαβ |2δ(εβ − εα). (65)

We emphasize the formal analogy between Eqs. (54) and
(64) for the ac mobility. The form of both equations is
the same, regardless of the particular interaction mechanism
(electron-phonon interaction or interaction with an additional
static potential) which causes transitions between localized
states.

V. NUMERICAL RESULTS

A. One-dimensional model with Miller-Abrahams rates
and Gaussian density of states

In this section, we apply the derived formulas to a one-
dimensional Gaussian disorder model. The assumption of
the model is that the states are located on the sites of a
one-dimensional lattice with spacing a and that the energies
of the states are drawn from a Gaussian distribution with
standard deviation σ . The transition rates were assumed to
take the Miller-Abrahams form and only the hops between

nearest neighbors were considered. Under these assumptions,
the transition rate from the state β to the state γ has the form

wβγ = w0 e−a/aloc exp

(
εβ − εγ − |εβ − εγ |

2kBT

)
, (66)

where aloc is the localization length which is assumed equal for
all sites, T is the temperature, and w0 is a constant prefactor.
Real part of the frequency dependent mobility can under all
these assumptions be written in the form

Re μxx(ω) =
∑

γ

μγ,γ+1(ω), (67)

where μγ,γ+1(ω) is the contribution of the pair of sites
(γ,γ + 1) given as

μγ,γ+1(ω) = qa2

2kBT
w0 e−a/aloc M(x). (68)

In the last equation, x is a dimensionless parameter defined
as x = β�ω [β = 1/(kBT )], while M(x) is the function that
reads

M(x) =
⎧⎨
⎩

rmin∑
δ rδ

e−xγ,γ+1 × 2 sinh x
x

, x < xγ,γ+1,

rmax∑
δ rδ

1
x

(1 − exγ,γ+1e−x) + rmin∑
δ rδ

1
x

(1 − e−xγ,γ+1e−x), x > xγ,γ+1,
(69)

where xγ,γ+1 = β|εγ − εγ+1| and rmax (rmin) is the population
of the state with larger (smaller) energy among the states γ

and γ + 1.
The frequency range in which this formula can be applied

is determined by the condition (5) where τ is the relaxation
time towards equilibrium. The relaxation time τ must be
larger than the reciprocal value of largest hopping rates
τ � w−1

0 ea/aloc , so that the relevant frequencies obey the
condition f � (2π )−1 w0 e−a/aloc .

The calculations were performed for a lattice with 105

sites, where the following values of the parameters were used:
T = 300 K, σ = 100 meV, a = 1 nm, aloc = 2a/9, and
w0 = 1.0×1014 s−1. Two different cases for initial popula-
tions of localized states were considered. In case 1, we assume
that initial distribution of carriers are nonequilibrium, but
still of Maxwell-Boltzmann form with electronic temperatures
Te which can be different than T . Therefore, in this case
rγ = e−βeεγ , where βe = 1/(kBTe). In case 2, we assume that
only the states in some narrow energy window are initially
populated, while the other states are not populated. The initial
populations are then given as rγ = 1 for εmin < εγ < εmax,
rγ = 0 otherwise. The results for different values of the
parameter Te in case 1 and different intervals (εmin,εmax) in
case 2 are shown in Figs. 1 and 2.

As can be immediately seen from expressions in
Eqs. (67)–(69), for sufficiently high frequencies f , such that
hf > maxγ |εγ − εγ+1|, real part of the ac mobility decreases
as Re μxx(f ) ∼ 1/f . On the other hand, for sufficiently low
frequencies f , such that hf < minγ |εγ − εγ+1|, real part of
the mobility tends to a constant value which depends on the
particular choice of rγ .

In case 1 and in the intermediate frequency range real part of
the ac mobility reaches its maximum value. The height of this
maximum (measured relative to the low-frequency limit of the
mobility) decreases with increasing the temperature Te. The
position of the maximum moves towards lower frequencies
with increasing the temperature Te. Namely, the position of
the maximum of the mobility spectrum is determined by the
positions of the maximum of the function M(x). For all values

FIG. 1. (Color online) Frequency dependence of real part of
the normalized mobility μ̃xx = μxx/(qa2βw0e

−a/aloc/2) for different
electronic temperatures Te in one-dimensional Gaussian disorder
model. The nonequilibrium populations of electronic states were
assumed as rγ = e−βeεγ .
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FIG. 2. (Color online) Frequency dependence of real part of
the normalized mobility μ̃xx = μxx/(qa2βw0e

−a/aloc/2) for different
choices of the energy interval ε ∈ (εmin,εmax) of the populated states
in one-dimensional Gaussian disorder model. The nonequilibrium
populations of electronic states were assumed as rγ = 1 for εmin <

εγ < εmax, and rγ = 0 otherwise.

of the parameter Te considered in Fig. 1, it can be shown (by
direct inspection) that the function M(x) has its maximum at
x = xγ,γ+1. At low temperatures Te the lowest energy states
have the highest values of the factors rγ and the typical energy
difference |εγ − εγ+1| of the pair of neighboring sites giving
significant contribution to the mobility (at least one of the states
should have high enough population factor) is fairly high, so
that the peak of the contribution μγ,γ+1 is at high frequencies.
This typical energy difference decreases with increasing the
temperature Te (since higher energy states, which are more
numerous, also have appreciable values of population factors),
which leads to the shift of the peak position towards lower
frequencies. For small enough |εγ − εγ+1| (compared to kBT ),
the function M(x), for x < xγ,γ+1, can be approximated by a
constant, which leads to flattening of the maximum, as seen at
higher electronic temperatures in Fig. 1.

A similar analysis can be used to understand the shapes
of the mobility spectra for case 2 shown in Fig. 2. The
contribution to the mobility of the pair (γ,γ + 1) reaches
its maximum at frequency f∗ such that hf∗ > |εγ − εγ+1|.
When the interval (εmin,εmax) is in the tail of the Gaussian,
the typical energy difference |εγ − εγ+1| is rather high for
the pairs contributing significantly to the mobility, so that the
maximum of the mobility spectrum is at high frequencies.
Moving the interval towards the center of the Gaussian, the
typical energy difference decreases and so does the position of
the maximum of the mobility spectrum. For sufficiently small
energy difference (compared to kBT ), the function M(x) can
be well approximated by a constant in the range x < xγ,γ+1

which explains the disappearance of the maximum.
Since the flattening of the maximum in the mobility

spectrum appears due to the presence of carriers at higher
energies under nonequilibrium conditions, this flattening may
be considered as a signature of nonequilibrium effects in the
system. It is less pronounced when nonequilibrium distribution
is of Maxwell-Boltzmann type with a different electronic

temperature and more pronounced in the case when the carriers
are present only at energies in a certain spectral window—a
situation where the carrier distribution more strongly differs
from the equilibrium one.

B. Model of a disordered conjugated polymer material

Next, we apply the derived formula for frequency depen-
dence of the mobility to a realistic polymer material—strongly
disordered poly(3-hexylthiophene) (P3HT) polymer. The po-
sitions of electronic states, hopping probabilities between the
states, and the energies of states were extracted from our pre-
vious calculations reported in Ref. [39]. For completeness, we
briefly summarize the methodology employed in these calcula-
tions. First, the positions of atoms were obtained from classical
molecular dynamics simulations using a simulated annealing
procedure. 50 different realizations of the 5 nm×5 nm×5 nm
portion of material (that consists of 120 24 atoms) were
obtained from these simulations and were subsequently used
in electronic structure calculations. Charge patching method
[40] was used to obtain the single-particle Hamiltonian that
approximates well the Hamiltonian that would be obtained
from density functional theory in local density approximation.
This Hamiltonian was diagonalized using the overlapping
fragments method [41]. The transition rates for downhill
transitions between the states were then calculated as

wαβ = α2S2
αβ[N (εαβ) + 1]Dph(εαβ)/εαβ, (70)

where Dph(E) is the phonon DOS normalized such that∫ ∞
0 Dph(E)dE = 1, εαβ = |εα − εβ |, N (E) is the phonon

occupation number given by the Bose-Einstein distribution at
a temperature T , Sαβ = ∫

d3r|ψα(r)| · |ψβ(r)| is the overlap
of the wave function moduli, and α is a constant factor equal
to 107 eV s−1/2. The phonon energies and the phonon DOS
were calculated from the classical force field that was used
in molecular dynamics simulations by diagonalizing the
corresponding dynamical matrix, as reported in Ref. [42].
Equation (70) gives a good approximation of the transition
rates that would be obtained from Eq. (53), as shown in
Ref. [38]. The value of the parameter α in Eq. (70) was chosen
to provide the best fit of Eqs. (70) to (53).

Frequency dependence of the real part of hole mobility
was then calculated using Eqs. (52) and (70) where all data
from 50 different realizations of the 120 24 atom system were
used. The results obtained from the calculation are presented
in Fig. 3. We note that the data from electronic structure
calculations that were performed are not sufficient to yield
convergent results for the mobility. This can be evidenced
from the noisy dependence in Fig. 3 and from the fact that the
mobility obtained from a smaller number of realizations of the
system is different than the one in Fig. 3. Larger number of
calculations or the calculations performed on larger systems
would be needed to obtain converged value of the mobility.
However, such calculations require a huge computational cost
and we cannot currently perform them. Nevertheless, from the
set of calculations that were performed one can identify the
main trends in the frequency dependence of the mobility. As
in the simple model discussed in Sec. V A, the real part of
the mobility exhibits a peak at a frequency that corresponds to
typical transition energies in the system, which is then followed
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FIG. 3. (Color online) Frequency dependence of real part of
hole mobility in disordered P3HT polymer for different electronic
temperatures Te and the lattice temperature T = 300 K.

by a decay at higher frequencies. The mobility also increases
with an increase in electronic temperature, as expected.

We next compare the results obtained in this work to
measurements of high-frequency P3HT hole mobility reported
in the literature. These measurements are typically based on
time-resolved terahertz spectroscopy [43] and cover the fre-
quencies around 1 THz. At these frequencies our simulations
yield the mobilities on the order of (50–100) cm2/(V s). In
Ref. [44] the mobilities on the order of 10 cm2/(V s) were
extracted from the fits to measurements. On the other hand,
the mobilities on the order of 50 cm2/(V s) were obtained in
Ref. [45]. Therefore, the simulation yields the same order of
magnitude of the terahertz mobility as previously reported in
experiments.

VI. DISCUSSION

In this section, we discuss our results in light of other results
that exist in the literature and concern optical conductivity in
a system with localized states.

Our result for nonequilibrium optical conductivity should,
of course, in the special case of equilibrium reduce to the
formula valid in equilibrium case. A well-known expression
for the real part of optical conductivity in equilibrium that
relates it to the mean square displacement of a diffusing carrier
reads (see, for example, Ref. [24])

Reσ (ω) = −q2ω2

V

tanh (β�ω/2)

�ω
Re

∫ +∞

0
dt eiωt�X2(t),

(71)

where �X2(t) = 〈(X̂(t) − X̂(0))2〉, X̂ is the sum of position
operators of all electrons, and 〈· · · 〉 = Tr(e−βĤ · · · )/Tr e−βĤ

is the thermodynamic average at the temperature T =1/(βkB).
While, at first sight, Eq. (71) seems to lead to rather different
results for the lowest-order optical conductivity than the one
embodied in Eq. (52), a detailed proof can be conducted,
showing that the two expressions are identical for the system
with localized states in equilibrium. The details of this proof
are given in the Appendix.

A somewhat different version of Eq. (71) is often encoun-
tered in the literature which contains the β/2 term instead of
the tanh (β�ω/2)

�ω
term and reads [23,26,27,46]

Re σ (ω) = −q2ω2β

2V
Re

∫ +∞

0
dt eiωt�X2(t). (72)

When the condition β�ω � 1 is satisfied these two expres-
sions are approximately equal. However, at high frequencies
these two expressions essentially differ. While Eq. (71) leads
to the real part of the conductivity that vanishes at sufficiently
high frequencies, Eq. (72) gives a constant real part of the
mobility at these frequencies which is not the correct trend.
Therefore, Eq. (72) should be applied only if the condition
β�ω � 1 is satisfied.

An expression for optical conductivity in the form similar to
the one given in Eq. (52) has also been previously obtained for
the case of equilibrium [47,48]. These expressions [Eq. (12)
in Ref. [47] and Eq. (3.21) in Ref. [48]] in the limit of low
concentration are the special case of Eq. (52) for the case of
equilibrium in the limit �ω � kBT . It is very interesting that
our main result given by Eq. (52) has the same mathematical
form as the expressions for the case of equilibrium. Therefore,
we have generalized the result that was known for the case of
equilibrium to the case of nonequilibrium systems that satisfy
the assumptions of factorization of the density matrix into the
electron and the phonon part [Eq. (26)] and weak relaxation at
relevant time scales [Eq. (5)].

As we have already pointed out, our results are not expected
to be valid at low frequencies, such that the period of
perturbation is larger than the carrier relaxation time. For
that reason, one can certainly not assume that dc mobility
or conductivity is equal to the low frequency limit of our
results. There is an additional reason that our results cannot
be extended to low frequencies. It has been pointed out in
Refs. [47,48] that conductivity at low frequencies cannot be
obtained from a formal expansion in powers of electron-
phonon interaction strength, which is an approach used in
our work.

From the previous discussion, we can conclude that our
results reduce to previous results from the literature for the case
of equilibrium state. On the other hand, there have been almost
no works in the literature with an attempt to obtain similar
results for the system out of equilibrium. The exceptions are
Refs. [36,37] where Eq. (19) was derived. However, we are
not aware of any attempt to obtain a more specific form of
nonequilibrium conductivity in a system with localized states
and the main contribution of our work is that it covers this so
far unexplored area.

VII. CONCLUSION

In conclusion, we have developed an approach for the
treatment of nonequilibrium optical conductivity in a system
with localized electronic states and weak electron-phonon or
electron-impurity interaction. Starting from nonequilibrium
generalization of Kubo’s formula and performing the expan-
sion of optical conductivity in powers of small electron-phonon
interaction parameter, we obtain a relatively simple expression
for the optical conductivity of the material. In the special case
of incoherent nonequilibrium state the expression contains

224201-9
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only the positions of electronic states, their nonequilibrium
populations, and Fermi’s golden rule transition probabilities
between the states. Interestingly, the same mathematical form
of the expression is valid both in the case of electron-phonon
and electron-impurity interaction. Our result opens the way
to better understanding of the response of nonequilibrium
systems to electromagnetic radiation. A typical example where
our results can be applied is photoexcited semiconductor where
electrons and holes are formed by the optical excitation. If
that semiconductor is then probed by low energy (terahertz)
excitation, the response will depend on the nonequilibrium
distribution of excited carriers. Our final expressions should
be able to predict the response of the system to such probes.

The application of the derived formula to two model systems
was presented to illustrate the features that one may expect to
see in terahertz conductivity spectra.
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APPENDIX: PROOF OF EQUIVALENCE OF THE LOWEST-ORDER OPTICAL CONDUCTIVITY CALCULATED
FROM EQ. (71) AND THE EXPRESSION IN EQ. (52)

The operator X̂(t) − X̂(0) appearing in Eq. (71) can be expressed as [see Eqs. (11) and (16)]

q(X̂(t) − X̂(0)) =
∫ t

0
dt ′ Ĵx(t ′), (A1)

so that in the case of localized carriers, when Ĵx = Ĵ (2)
x , the operator (X̂(t) − X̂(0))2 is quadratic in electron-phonon coupling

constants. If we are to obtain the conductivity up to quadratic terms in small interaction constants g±
αβ,k , it is clear that the

following factorization of the equilibrium statistical operator should be adopted [compare to the decomposition of the initial
density matrix in Eq. (26)]

e−Ĥ /(kBT )

Tr e−Ĥ /(kBT )
≈ e−Ĥe/(kBT )

Tre e−Ĥe/(kBT )

e−Ĥph/(kBT )

Trph e−Ĥph/(kBT )
, (A2)

and that time dependencies appearing in (71) should be taken with respect to the noninteracting Hamiltonian Ĥ0. The average
value 〈(X̂(t) − X̂(0))2〉 is then transformed into

〈(X̂(t) − X̂(0))2〉 =
∑

k

∑
αβγ δ

(xβ − xα)(xδ − xγ )〈ĉ†αĉβ ĉ†γ ĉδ〉e

(
g−

αβ,kg
+
γ δ,k

e
i
�

(εα−εβ−�ωk )t − 1

εα − εβ − �ωk

e
i
�

(εγ −εδ+�ωk)t − 1

εγ − εδ + �ωk

(1 + Nk)

+ g+
αβ,kg

−
γ δ,k

e
i
�

(εα−εβ+�ωk)t − 1

εα − εβ + �ωk

e
i
�

(εγ −εδ−�ωk)t − 1

εγ − εδ − �ωk

Nk

)
, (A3)

where 〈· · · 〉e denotes averaging with respect to the electronic part of the decomposition (A2). Combining Eqs. (71) and (A3)
and in the limit of low carrier densities, when Eqs. (46), (50), and (51) can be used, the following expression for the optical
conductivity (ω �= 0) is obtained:

Re σxx(ω) = q2

2�ωV
tanh

(
�ω

2kBT

) ∑
αβ

(xβ − xα)2rβ[wβα,ph(εβ − εα − �ω) + wβα,ph(εβ − εα + �ω)], (A4)

where the transition probabilities wβα,ph are defined in Eq. (53) and the average occupation of electronic state β is rβ =
e−εβ/(kBT )/Tre e−Ĥe/(kBT ). In order to prove that the relation (52) (in which we take rβ = e−εβ/(kBTph)/Tre e−Ĥe/(kBTph)) gives the
same result for the lowest-order optical conductivity as Eq. (A4) (assuming that T = Tph), we note that the transition probabilities
satisfy the detailed-balance condition (in the low-density limit and in the presence of external harmonic perturbation)

wβα,ph(εβ − εα + �ω)

wαβ,ph(εα − εβ − �ω)
= e−(εα−εβ−�ω)/(kBT ) = rα

rβ

1 + tanh �ω
2kBT

1 − tanh �ω
2kBT

. (A5)

Interchanging the dummy electronic indices α,β in the first summand in Eq. (52) we obtain

Re σxx(ω) = q2

2�ωV

∑
αβ

(xβ − xα)2[−rαwαβ,ph(εα − εβ − �ω) + rβwβα,ph(εβ − εα + �ω)], (A6)
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whereas performing the same operation on Eq. (A4) gives

Re σxx(ω) = q2

2�ωV
tanh

(
�ω

2kBT

)∑
αβ

(xβ − xα)2[rαwαβ,ph(εα − εβ − �ω) + rβwβα,ph(εβ − εα + �ω)]. (A7)

The right-hand sides of Eqs. (A6) and (A7) are equal since, by the condition (A5), single summands under the double sums are
mutually equal.
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Syuera, rrin cryll4ja: Aor(ropcKe aKaAeMcKe crylr4je, crylr4jcr{l.i trporpaM: On:nxa.

llpeua Craryry (raxymera cryAr.rje rpajy (6poj ro4uira): rpir.
Pox.la raBpueraK cr\,[hJa. y -tBocrpyr(oM rpajaruy cryauja.

Oeo oe yeeperse r\to/*(e ynorpe6u'nr 3a pefyxllca]le eojue o6aee:e, h3raBiibe B]13e, nprtsil ua 4eunju;loAaraK, lopoAuqHe
leH.inje, l{HBarutrcxor noAarKa, 4o6ujarla 3ApaBclBeHe rinri}r(Lrqe, lerr.mrrvaqnje :a iloeraurheHy Bo)K}ty rr crnrreHgrrje.

o nuue $axy.rirera



YHI4BEP3I,ITET Y E EOf PAAY
OI43tr{TIKI'I OAKYJIT E T
Epoj 2302013
Beorpa4, 26. 08. 2013, roAI4He

Ha ocnony qJraHa 161, 3axona o orlttrreM ynpaBHoM nocrynKy vtutaaa4.

flpanranuuKa o caAp)Kajy vt o6lurcy o6pasaqa jaeurax ucrlpaBa xoje ns4ajy BI4ue

uKoJre, SaxynrerLr u yHaBep3r4Terr4, no 3axreByo Jauronrah (fopaaua) Bersna

n:aa.ie ce creAehe

YBEPETbE

JAHKOBI4h (|OPAAHA) BEJbKO pofeu- a 23. 09. 1990,

foAr4He y Beorpagy, Cancxu BeHaU, P. Cp6uja, yilllcaH-a ulKolrcKe 200912010.

roAr4He Ha qerBoporoAr.{mrbe ocHoBHe aKaAeMcKe cryauie, CryaujcKa rpyna

@I43I4KA, cMep: Teoprajcra u eKcrepr4MeHrarlHa $a:uxa, noJloxl4o-na je

rrcrrr4Te npe4nuleHe HacraBHI{M lLtaHoM II nporpaMoM HaBeAeue CryArajcxe

fpyne 14 3aBprluo-Jla cryAraje ua @usuqKoNa Saxynrery 26. avrycra 2013.

roAr4He, ca cpeArL,oM orreHoM 9,97 (aeser v 971100 ) y roKy crywtja 14

nocrurHyrr4M yKyrrHav 6pojerra 240 ECIIF (geecrauerpAecer ECll 6oaoea) ra

Tr4Me CTeKaO-J'Ia BI4COKy CTpyLIHy C[peMy 14 CTpyt{HI4 Ha3I4B

AI4TIJIOMI,IPAHI,I @U3I{qAP - TEOPI{JCKA 14

EKCTIEPIIMEHTATHA OII3I4KA

Vnepeme ce I'I3AaJe

ar,rcoxo.j crpyuuo.l cnpeM14

Ha rI4rtHI4 3aXTeB, a cJlyxl4

AO r43AaBarba AI4nnoMe.

Kao AoKa3 o :anprueHoj

AEKAH
OAKYJITETA

Veepeme je oc,'ro6of euo nlahama raKce.

lp Ja6naH lojuranonuh



YHI,IBEP3I,ITET ]/ EEO| PAAY
OISIIqKI,I OAKYJITET
Bpoj 2142014
Feorpa4,25. 08. 2014. rorrzHe

Ha ocHony qnaHa 99' 3aroHa o BI4coKoM o6pa:onamy ("C.n. rJracHrrK peny6nure Cp6uje>6poj 76105)' rd rrrraHa 9. u 184. craryra (DHszqxor saxynrera (6poj 442r1oA 10. 10.2006 Lr ra-recaruracHocrn ynznep3r{rera y Eeorpagy 6poj oi eiz-tg52 ;i 29.01.2007), y cKnaAy callpanurHI,roM o canpxaiy n o6nzxy oopasat{a jannux r4crrpaBa noje ra:4ajy Br4coKorrrKoJrcKeycraHoBe ("cr. rracHzx peny6nzre cp6nje > 6poj 2U06, 66106 u uoi)"ro":" .. creAehe

JaHnoeuh (fopgaHa) Berxo pofen_a 23.0g,1990. roaune y Beorpa4y, Caecrr4 BeHarJ,cp6uia, ynucaH-a IrIKorIcKe 201312014. rolu4He, 3aBprrr'o-na je aznior.n. unlo.lrcxe cry4raje -cry4uje Apyror crerl€Ha (ruacrep) Ha cryAujcnonn ,rporpaony @a:ruoxor $axynrer yHzeep3ureray Eeorpa4y' cMep: Teopajcxa I4 eKcnepuMeHrarHa clra:ulra, nava 7J. jyua 2014. rorr{He, cailpocerruoM orIeHoM 10,00 (4ecer rz 00/100) y roKy criruSar4 nocrr.{rHyrr4M yKyrrHlzu 6pojev 60ECnE (ures4ecer EC|I6oaona) u rulre creKao-Jra Br.rcoKo oopa:onarre Lr aKaAeMcKH Ha3r4B:

YBEPEIbE

MACTEP OI43I4I{AP

Yneperre ce a:4aje Ha JITITIHIZ 3axreB, a cny)Kr{ Kao AoKa3 o 3aBprrreHoj crpyuHoj clpeMrrAO r43AaBarba nalnoMe.

AEKAH

po$. ap J a6nas {ojvH:ronah


