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Abstract
An approximate analytical expression is obtained for the escape factors for
thermionically emitting cathodes in atomic gases that is uniformly valid at
all values of the reduced electric field. This expression is used for evaluation
of the escape factors in neon, helium and mercury. An independent
evaluation is performed by means of Monte Carlo simulations. The
analytical results are in good agreement with the results of Monte Carlo
simulations, both for reflecting and non-reflecting cathodes.

1. Introduction

A boundary condition describing electron balance on the
surface of an emitting cathode is conventionally formulated
in terms of the so-called escape factor fes = Je/Jem; see,
e.g., [1]. Here Jem is the density of electron emission flux and
Je is the value of the density of the net electron flux at the
cathode surface (i.e. of the difference between the density of
electron emission flux and the density of flux of backscattered
electrons). In order to formulate this boundary condition
explicitly, one needs to know the dependence of fes on the
electric field E in the near-cathode region.

In [2], an analytical expression for fes has been derived
for the range of low values of the reduced electric field
where the effect of electric field on the energy relaxation of
emitted electrons is minor. In [3], an analytical expression
for fes in atomic gases has been derived for the ranges of
intermediate to high values of the reduced electric field, where
dominating electron energy losses are due to inelastic collisions
of electrons with atoms.

It is desirable to develop, on the basis of analytical
results [2, 3], an analytical expression for fes which would be
uniformly valid at all values of the reduced electric field. This
task is dealt with in the present communication for the case
of thermionic cathodes. The expression derived is used for
evaluation of the escape factors in neon, helium and mercury.
An independent evaluation of the escape factor is performed
by means of Monte Carlo simulations, representing the most

accurate technique for studying the influence of different
parameters, such as energy distribution function of emitted
electrons and reflection of electrons from the electrode, on the
back diffusion. A good agreement between the analytical and
Monte Carlo results is found.

2. Analytical formula for the escape factor in atomic
gases in a wide electric field range

In different ranges of electric field values E, the distribution
function of emitted electrons and, consequently, the escape
factor are governed by different physical mechanisms.
Hierarchy of these ranges is governed by the parameter ρ =
(ε0/εex)

√
M/2m [3], where ε0 is the average energy with

which an electron is emitted, εex is the energy of excitation
of atoms (it is assumed that ε0 � εex) and m and M are the
masses of electrons and atoms, respectively. ρ is typically of
the order unity for gases of light atoms with high excitation
energy and large for gases of heavy atoms with low excitation
energy.

Let us restrict ourselves, for now, to the case ρ � 1.
In this case, the dependence of the escape factor fes on E is
characterized by three scales of electric field which are, in the
increasing order, ε0/(eλu), εex/(eλu) , ε0/(eλe) [3], where λe

is the mean free path of emitted electrons and λu = λe
√

M/2m

is the length of energy transfer in elastic collisions electron–
atom. Hence, one can distinguish seven physically different
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ranges of E:

E � ε0

eλu
, E = O

(
ε0

eλu

)
,

ε0

eλu
� E � εex

eλu
,

E = O

(
εex

eλu

)
,

εex

eλu
� E � ε0

eλe
,

E = O

(
ε0

eλe

)
, E � ε0

eλe
. (1)

In the first range, E � ε0/eλu, the energy gained by
electrons on the length scale λu is much smaller than ε0. Hence,
the effect of electric field on the energy relaxation of emitted
electrons is minor. In particular, the equilibrium electron
distribution, which is established due to elastic collisions
and holds on distances from the cathode surface much larger
than λu, is close to the Maxwellian function with the gas
temperature. It is natural to term this range the range of low
electric fields. A formula for the escape factor for this case was
derived in [2] by means of asymptotic analysis of the equation
for the isotropic part of the electron distribution function;
see equation (9) of [2]. In particular, for a thermionically
emitting cathode, where the distribution of emitted electrons
is a Maxwellian function with the cathode surface temperature
T , the latter coinciding with the gas temperature, the escape
factor is

χ(LF) = 4eE

3p(kT )2

∫ ∞

0

εe−ε/kT

Qm(ε)
dε, (2)

where Qm is the transport (momentum-transfer) cross section
of collisions of electrons with atoms, ε is the electron kinetic
energy, p = nkT is the plasma pressure and n is the number
density of atoms. It should be emphasized that while equation
(9) of [2] was written for the case where the dependence of
Qm(ε) is power-like, equation (2) is written for a general
dependence Qm(ε).

Note that equation (2) may be re-written in the form

χ(LF) = 4Ve

C̄e

, (3)

where

Ve = eE

3p(kT )2

√
8kT

πm

∫ ∞

0

εe−ε/kT

Qm(ε)
dε (4)

is the drift velocity and C̄e = √
8kT /πm is the mean velocity

of the emitted electrons. Equation (3) represents the low-field
limit of the Thomson–Loeb formula (e.g. [3]) and its physical
meaning is quite clear: the electron distribution function
throughout the near-cathode region is close to a Maxwellian
function with the gas temperature T under conditions being
considered, hence the number density of electron flux equals
the product of the electron number density, 4Jem/C̄e, and the
drift velocity.

Let us consider now the fifth range in the hierarchy (1),
εex/(eλu) � E � ε0/(eλe). This range will be termed the
range of intermediate electric fields. Finding the escape factor
in this range amounts to solving the equation describing the
isotropic part of the electron distribution function with account
of electron energy losses only in inelastic collisions. This

solution was found in [3]. In particular, the escape factor for a
thermionically emitting cathode is

χ(IF) = 4eE

3p

∫ εex/kT

0

e−x

∫ εex

kT x

Qm(ε)

ε
dε

dx. (5)

One can see from equations (2) and (5) that the escape
factor in both ranges of low and intermediate fields is
proportional to the electric field. It is natural to try to describe
the escape factor in all the ranges from low to intermediate
fields [i.e. in the first to fifth ranges in the hierarchy (1)] by
means of the interpolation formula

χ = χ(LF) + ζEχ(IF)

1 + ζE
, (6)

where ζ is a constant (independent ofE) parameter. Obviously,
the right-hand side of equation (6) represents a weighted
average of χ(LF) and χ(IF) and the weights are equal at E =
1/ζ . Let us assume that the latter happens in the centre of the
third range in the hierarchy (1), i.e. at E = √

ε0εex/eλu. In
other words, we set ζ = eλu/

√
ε0εex or, equivalently,

ζ = e√
ε0εexnQ̄m

√
M

2m
, (7)

where Q̄m is a mean value of the transport cross section.
A formula uniformly valid through the last three electric

field ranges in the hierarchy (1), i.e. at E � εex/eλu, was
obtained in [3] by means of an asymptotic interpolation (a two-
point Padé approximant) between equation (5) and the value
fes = 1 at E � ε0/eλe and reads as

fes = χ(IF)

1 + χ(IF)
. (8)

Here χ(IF) is the escape factor for the range of intermediate
electric fields given in the case of a thermionic cathode by
equation (5). Replacing in this formula χ(IF) by χ the escape
factor for the ranges from low to intermediate fields given by
equation (6), one arrives at a formula uniformly valid at all E,
i.e. in all the seven ranges of the hierarchy (1):

fes = χ

1 + χ
. (9)

In what follows, equation (9) is used for the calculation
of escape factors for Ne, He and Hg plasmas. (Note that
the particular case of a mercury plasma is of considerable
importance for simulation of interaction of thermionic
cathodes with high-pressure arc plasmas in high-intensity
discharge lamps.) The transport cross sections are taken from
[4] (for neon and helium) and [5] (for mercury).

Note that the above approach in principle may be applied
also to describe emission from cold cathodes (ion–electron
emission or γ -process). However, the characteristic energy of
emitted electrons ε0 substantially exceeds the gas temperature
in the case of cold cathodes and the hierarchy of electric
field ranges becomes more complex [the first range in the
hierarchy (1) is replaced by three ranges E � (kT )/(eλu),
E = O(kT )/(eλu), (kT )/(eλu) � E � (ε0/eλu)].
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The above treatment refers to non-reflecting cathodes.
Escape factors for reflecting cathodes may be evaluated by
means of the approximate formula [3]

f (R)
es = fes[1 + R(1 − fes)], (10)

where R is the reflection coefficient and fes is the escape factor
without reflection given by equation (9). This formula was
obtained by summing contributions of electrons that escaped
without reflection and those that escaped after having suffered
one reflection, under the assumption that the energy and
angular distributions of emitted and reflected electrons are
identical. It was shown in [3] that at R = 0.6, which is a
value typical for metals, the escape factors in argon given by
(10) are closer to Monte Carlo results than those given by
the well-known expression which is obtained with account of
contributions of a higher number of reflections (two, three, etc):

f (R)
es = fes[1 + R(1 − fes) + R2(1 − fes)

2 + . . .]

≡ fes

1 − R(1 − fes)
(11)

(see the discussion in [3]). Note that equation (10) should not
be used at R values close to unity since this equation does not
ensure a correct asymptotic behaviour in the limit R → 1.

3. Monte Carlo simulations

In addition to evaluation by means of equation (9), the escape
factors for Ne, He and Hg plasmas have been evaluated also
by means of the Monte Carlo code [6]. The latter is a null
collision code for dc fields [7] that has all the features required
to model both the relaxed hydrodynamic properties and the
non-hydrodynamic development close to electrodes. At the
moment of collision, the type of collision for each projectile
particle (electron) is determined by a random number. For
each particle, a total collision probability can be determined,
independent of particle energy and position, as

Pt = 1 − exp(−νmaxdt), (12)

where maximum collisional frequency is given by the
expression

νmax = n max
ε

[σt (ε)v(ε)]. (13)

In the above equation, n is a spatially uniform target (atomic)
density, v(ε) = (2ε/m)1/2 is the velocity of electrons with
energy ε and dt is the time interval; the total cross section
σt (ε) represents the sum over all processes j :

σt (ε) =
∑

j

σj (ε). (14)

The number of projectile particles dN taking part in collisions
at each time step is given by the total collision probability

dN = PtN, (15)

where N is the total number of projectile particles.
In order to implement effects of back diffusion of

electrons, a part is added that checks if an electron goes back to

the cathode after collision or continues travelling to the anode.
Furthermore, the reflection of electrons from the cathode is
considered, bearing in mind that electrons are reflected from
the cathode surface without any energy loss. More precisely,
the code follows individual electrons released from the cathode
until they reach either the anode or cathode. When an electron
hits the cathode it may be absorbed or it may be reflected
with the given energy and angular distribution. The number
of released electrons is chosen to allow one to determine the
escape factors with an accuracy of about 2%.

The code has been applied to model electron transport
in argon [8], nitrogen [9], neon and xenon [10] and many
other gases and has been also used to derive the cross sections
for electron excitation. The code has been tested extensively
against other codes and numerical techniques and was found to
produce transport data limited in accuracy only by the accuracy
of cross sections and statistical scatter. When the code
was modified to calculate escape (back diffusion) coefficients
special care was taken to include reflection from the
cathode.

In this work, the code is used for the calculation of escape
factors for thermionic emission. The distribution of emitted
electrons was assumed Maxwellian in these calculations. Note
that calculations for both Maxwellian and monoenergetic
distributions of emitted electrons have been reported in [11].
It was found in those calculations that results are very sensitive
to the choice of the initial energy and its distribution. When
the initial energy distribution is broad there is a large number
of electrons with energies close to zero and they cannot return
to the cathode. The dependence of the escape factor on the
initial (monoenergetic) energy is quite nonlinear and thus for
low mean initial energies the results are quite sensitive to the
choice of distribution.

In the present work, calculations of escape factors fes

by means of the Monte Carlo code have been performed
using the sets of electron–atom collision cross sections for
neon [12] and for helium [4]. Both the sets are based on the
data [4,13,14] which have been completed by adding excitation
cross sections and extrapolating the available cross sections
to higher energies. However, for moderate energies that are
covered here the cross section sets should be fully compatible
with the recommended cross sections of A V Phelps [4]. In
particular, the cross section sets were tested to reproduce the
low energy electron transport data.

4. Results

In figures 1–3, the results for the escape factors given by
equation (9) and by the Monte Carlo code are given for
thermionic emission into neon, helium and mercury plasmas
from non-reflecting cathodes for two values of the cathode
temperature, corresponding to the mean energies of emitted
electrons ε0 = 0.2 and 0.6 eV (note that ε0 = (3/2)kT ). One
can see that for all three gases the dependence of fes on E,
predicted by the interpolation formula for the range between
the low-field and intermediate-field regions, is weaker than
linear. The low-field values, χ(LF), and the values calculated
using equation (8) are also shown.

Note that expression (7) for the interpolation parameter
ζ contains a mean transport cross section Q̄m which is not
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Figure 1. The escape factor in Ne versus the reduced electric field at
the cathode for the Maxwellian distribution of emitted electrons with
the mean energies 0.2 and 0.6 eV. Points, Monte Carlo data; solid
lines, equation (9); dashed, equation (2); dot–dashed, equation (8).

Figure 2. The escape factor in He versus the reduced electric field at
the cathode for the Maxwellian distribution of emitted electrons with
the mean energies 0.2 and 0.6 eV. Points, Monte Carlo data; solid
lines, equation (9); dashed, equation (2); dot–dashed, equation (8).

uniquely defined and may be shifted within certain limits. It
is natural to choose such a value of this parameter that ensures
the best fit of results given by equation (9) into the Monte
Carlo data. The data shown in figures 1–3 correspond to Q̄m

values equal to 2 × 10−20 m2 for Ne, 6 × 10−20 m2 for He and
7 × 10−19 m2 for Hg.

It is seen that the interpolation formula (9) gives values
of fes that are in reasonable agreement with the Monte Carlo
data: the difference between Monte Carlo results and estimates
for neon and mercury in the considered range of E/n does not
exceed 30%, for helium the difference is larger but still does
not exceed a factor of two, which is not unreasonable given
the range of variation of fes. Note that ρ is of the order unity
rather than large for He [3]. Hence, the reasonable agreement
with the Monte Carlo data for He indicates that equation (9)

Figure 3. The escape factor in Hg versus the reduced electric field at
the cathode for the Maxwellian distribution of emitted electrons with
the mean energies 0.2 and 0.6 eV. Points, Monte Carlo data; solid
lines, equation (9); dashed, equation (2); dot–dashed, equation (8).

Figure 4. The escape factor in Ne versus the reduced electric field at
the cathode for the Maxwellian distribution of emitted electrons with
the mean energy 0.2 eV, for two values of the reflection coefficient, 0
and 0.6. Points, Monte Carlo data; lines, equation (10).

may be applicable also in cases where ρ is of the order unity
rather than large.

In figures 4–6 the escape factors are shown for thermionic
emission into neon, helium and mercury plasmas from
reflecting cathodes with R = 0.6 calculated by means of
equation (10) for ε0 = 0.2 eV. For comparison, the values
of fes at R = 0 are also shown. In the same figures the results
are also presented of the Monte Carlo simulation for reflecting
and non-reflecting cathodes. It is seen that the approximate
account of reflection according to equation (10) results in fes

values rather close to the Monte Carlo data. In figure 6 the
values of fes at R = 0.6 calculated using equation (11) are
also given. They are noticeably higher than the Monte Carlo
data.
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Figure 5. The escape factor in He versus the reduced electric field at
the cathode for the Maxwellian distribution of emitted electrons with
the mean energy 0.2 eV, for two values of the reflection coefficient, 0
and 0.6. Points, Monte Carlo data; lines, equation (10).

Figure 6. The escape factor in Hg versus the reduced electric field
at the cathode for the Maxwellian distribution of emitted electrons
with the mean energy 0.2 eV, for two values of the reflection
coefficient, 0 and 0.6. Points, Monte Carlo data; solid lines,
equation (10); dashed line, equation (11).

5. Conclusions

An analytical expression has been derived for escape factors for
thermionically emitting cathodes in atomic plasmas, which is

uniformly valid at all values of the reduced electric field.
Results for the escape factors in neon, helium and mercury
are given. An independent evaluation of the escape factor
is performed by means of Monte Carlo simulations. A good
agreement between the analytical data and Monte Carlo results
is found for all the three gases and for both the non-reflecting
and reflecting cathodes.

The analytical results obtained may be used for a rapid
evaluation of escape factors for thermionic cathodes in atomic
plasmas. In particular, the results for the mercury plasma may
be used for the simulation of plasma–cathode interaction in
high-intensity discharge lamps.
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[6] Radmilović M and Petrović Z Lj 2000 Eur. Phys. J. Appl.
Phys. 11 35
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