


BIOGRAFSKI PODACI

Zlatko  Papić  je  rođen  25.  10.  1981.  godine  u  Zrenjaninu.  Diplomirao  je  2006.  na 
Fizičkom fakultetu Univerziteta u Beogradu sa diplomskim radom Bozonske korelacije u 
kvantnom  Holovom  dvosloju  na  punjenju  1,  koji  je  realizovan  pod  mentorstvom dr. 
Milice Milovanović na Institutu za fiziku u Beogradu. Ovaj rad je iste godine osvojio 
nagradu dr. Ljubomir Ćirković. Nakon diplomskih i master studija, 2007. godine upisuje 
doktorske studije na Fizičkom fakultetu u Beogradu i Univezitetu Pariz XI u Francuskoj, 
pod zajedničkim mentorstvom dr. Milice Milovanović, dr. Marka Gerbiga i dr. Nikolasa 
Rinjoa. Tokom boravka u Francuskoj 2007-2008. godine primao je stipendiju Marija Kiri, 
a  u  periodu  2009-2010.  bio  je  zaposlen  na  Institutu  za  fiziku  u  Beogradu  u  zvanju 
istraživač-saradnik  na  projektu  141035  Modeliranje  i  numeričke  simulacije  složenih  
fizičkih sistema. Tema doktorske disertacije pod imenom Frakcioni kvantni Holov efekat  
u višekompontentnim sistemima su jako korelisani elektronski sistemi i topološke faze 
materije, pre svega kao što su kvantne jame i grafen. Ovoj tezi je dodeljena studentska 
nagrada Instituta za fiziku 2010. godine. Nakon odbrane teze u septembru 2010. godine, 
prelazi na Univerzitet Prinston (SAD) kao istraživač na postdoktorskim studijama u grupi 
prof. Ravina Bata i prof. Dankana Holdejna.  Od oktobra 2013. godine je na Perimeter 
institutu u Kanadi kao postdoktorant.



NAUČNA I STRUČNA AKTIVNOST

ELEMENTI ZA KVALITATIVNU ANALIZU RADA KANDIDATA

Uvodna predavanja na konferencijama i druga predavanja po pozivu     

Kandidat je  održao predavanje po pozivu na Martovskom skupu Američkog društva 
fizičara (APS March meeting) 22. marta 2013. godine u Baltimoru (SAD) pod nazivom 
Tunable  interactions  and  ways  of  engineering  fractional  quantum  Hall  states. 
Predavanje je bilo deo sesije o novim pravcima u fizici frakcionog kvantnog Holovog 
efekta (http://meetings.aps.org/Meeting/MAR13/Event/190149).  Tokom  2013. kandidat 
je održao predavanje po pozivu i na Purdue univerzitetu
 (http://www.physics.purdue.edu/seminar/abstract.php?id=230), na McGill univerzitetu
(http://www.physics.mcgill.ca/events/CPM_papic.html), kao i na Univerzitetu u Tuluzu 
(http://www.lpt.ups-tlse.fr/spip.php?article1058&lang=fr). 

Tokom 2011-2012. kandidat je održao  predavanja po pozivu u okviru Conference on 
Computational Physics CCP2011  (  http://ccp2011.ornl.gov/sessions_schedule.shtml )  u 
Getlinburgu (Tenesi,  SAD),   kao i  konferencije U potrazi  za topološkim fazama (In 
search of topological phases,
 http://pctp.princeton.edu/pctp/lowDsys/lowDsys_SearchTopologicalPoster.pdf 
na Univerzitetu Prinston (SAD). Pored ovoga, kandidat je održao predavanja po pozivu 
na Laboratoire  de Physique Theorique de la  Matiere  Condensee – LPTMC u Parizu, 
Microsoft  Station  Q  http://research.microsoft.com/en-us/labs/stationq/seminars.aspx 
(Santa Barbara, SAD) i Perimeter institutu u Kanadi http://pirsa.org/12110081/. 

Kandidat je takođe u dva navrata učestvovao na programima Kavli instituta za teorijsku 
fiziku  (KITP)  u  Santa  Barbara:  program  Low-dimensional  electron  systems  2009. 
godine,  http://online.itp.ucsb.edu/online/lowdim09/, kao i  Exotic Phases of Frustrated  
Magnets 2012. godine. Pored ovoga, u nekoliko navrata je učestvovao i u programima 
Nordite u Stokholmu, gde je 2010. održao predavanje  
( http://agenda.albanova.se/contributionDisplay.py?contribId=250&confId=1128 ).
      
Dokazni  materijal  o  gorenavedenim  predavanjima  po  pozivu  (pozivna  pisma  na 
konferencije, najava predavanja i sl.) priložen je na kraju ovog zahteva.
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Članstva u uređivačkim odborima časopisa i recenzije naučnih radova

Recenzent  je  časopisa Science,  Physical  Review  B  i  Physical  Review  Letters (40 
recenzija).

Kvalitet naučnih rezultata

              Zlatko Papić je objavio 22 naučna rada, оd čega 20 kategorije М21 (11 u 
Physical Review B i 7 u Physical Review Letters),  1  kategorije М22 i 1 kategorije 
M23 .

Uticajnost 

              Radovi su citirani 153 puta i od toga 123 puta bez autocitata.

  U visokocitiranom radu M21[3] (citiran 16 (12) puta) dat je teorijski model za 
tzv. široke kvantne jame na kojima je vršen veći broj transportnih eksperimenata u režimu 
kvantnog Holovog efekta, što je dovelo do detekcije novih stanja poput onog na punjenju 
1/4.  Teorijski  model  ovih  eksperimenata  je  proučavan  u  okviru  obimnih  numeričkih 
simulacija koristeći tehniku egzaktne dijagonalizacije, u potpunosti razvijenu  od strane 
kandidata. Pored objašnjenja novog kvantnog Holovog stanja na punjenju 1/4, ovaj rad je 
otvorio mogućnosti za proučavanje niza eksperimenata na sličnim sistemima i drugim 
punjenjima.

   U visokocitiranim radovima M21[7] (citiran 17 (12) puta) i M21[10] (citiran 17 
(14) puta) proučavane su jako korelisane faze u grafenu. U radu  M21[7]  dato je prvo 
teorijsko objašnjenje stanja na punjenju 1/3 koje je nedavno pre toga bilo otkriveno u 
eksperimentima. Pokazano je da se ovo stanje razlikuje od uobičajenog Laflinovog stanja 
koje bi se naivno moglo očekivati na punjenju 1/3, usled narušenja SU(4) simetrije koja u 
grafenu nastaje od kombinacije spinskih i zonskih stepena slobode. Rad M21[10] iznosi 
predlog za eksperimentalnu postavku koja bi omogućila kontrolisano variranje efektivne 
Kulonove  interakcije  između  elektrona  u  grafenu  pomoću  dielektrika  (``screening“ 
efekat). Ovaj predlog može dovesti do povećanja stabilnosti određenih jako korelisanih 
stanja (čak i onih sa tzv. neabelijanskom statistikom), a takođe omogućava proučavanje 
kvantnih faznih prelaza na kontrolisan način. 

Parametri kvaliteta časopisa i pozitivna citiranost kandidatovih radova

              Najveći deo publikacija Zlatka Papića je objavljen u vrhunskim međunarodnim 
časopisima Physical Review B i  Physical Review Letters i citirani su od strane radova 
objavljenih u istim ili drugim vrhunskim međunarodnim časopisima. Jedan od elemenata 
za procenu kvaliteta naučnih rezultata kandidata je i kvalitet časopisa u kojima su radovi 
objavljivani,  odnosno njihov impakt faktor (IF).  Zlatko  Papić  je objavio 20 radova 
kategorije М21, od kojih 



11 u Physical Review B (za poslednjih pet radova: IF=3.364 za 3 rada u 2010, 
IF=3.405 za 1 rad u 2011, IF=3.603 za 1 rad u 2012. godini, i 2 rada su izašla u  
2013. godini) 

            7 u Physical Review Letters (IF=7.155 za 1 rad, IF=7.013 za 2 rada, IF=7.435 za 
2 rada, i dva rada su izašla u 2013. godini)

Efektivni broj radova i broj radova normiran na osnovu broja koautora.
              
              Svi radovi kandidata su sa punom težinom u odnosu na broj koautora. 

Stepen samostalnosti i stepen učešća u realizaciji radova
 
              Izrazita je samostalnost ili doprinos osnovne ideje, tj. idejnog rešenja u skoro 
svim radovima kandidata. 
              
Pregled i analiza naučnih rezultata

Oblasti  naučnog  rada  kandidata  su  u  fizici  kondenzovane  materije  i  jako korelisanih 
sistema: (1) frakcioni kvantni Holov efekat, posebno u tzv. višekomponentnim sistemima 
gde spin ili pseudospin igraju ulogu, (2) grafen, (3) numeričke simulacije jako korelisanih 
sistema koje se oslanjaju na koncepte iz polja kvantne informacije, poput entanglement-a 
i DMRG (``density-matrix renormalization group”), i  (4) neuređeni višečestični sistemi. 
Svi navedeni radovi u ovom poglavlju su iz kategorije M21.

(1) Frakcioni kvantni Holov efekat:

U radovima M21[1], M21[2] proučavan je problem dva kvantna Holova sistema koja su 
na malom rastojanju jedan od drugog i čine tzv. dvosloj, pri čemu je rastojanje između 
njih moguće varirati u eksperimentu, dok je totalno punjenje 1. Pri velikim rastojanjima 
između slojeva, sistem je kompresibilan, dok je za mala rastojanja nekompresibilan fluid 
koji  ispoljava  ekscitonsku  superfluidnost.  Prelaz  između  ovih,  vrlo  različitih  režima, 
prilikom  promene  rastojanja  između  slojeva  predstavlja  otvoreni  problem.  Radovi 
M21[1], M21[2] daju doprinos razumevanju ovog problema sa tačke gledišta varijacionih 
funkcija  koje  reprezentuju  mešana  stanja  tzv.  kompozitnih  fermiona  i  kompozitnih 
bozona,  koji  predstavljaju  kvazičestice  u  limitu  velikih,  odnosno  malih  rastojanja, 
respektivno. Na osnovu varijacionih funkcija za osnovno stanje, konstruisane su i Čern-
Sajmons topološke teorije  polja  na osnovu kojih je  računat  linearni  odgovor sistema, 
ispitivana topološka svojstva ekscitacija i sl.

U seriji  radova  M21[3],  M21[5],  M21[6],  M21[8]  proučavane su tzv.  široke kvantne 
jame gde  višekomponentni  stepeni  slobode  predstavljaju  elektronske  nivoe  u  kvatnoj 
jami. U prisustvu jakih interakcija u magnetnom polju, u ovim sistemima nastaju stanja 



koja  se  mogu  opisati  tzv.  Halperinovim  funkcijama  koje  predstavljaju  uopštenje 
Laflinove  talasne  funkcije.  Ono  što  je  posebno  zanimljivo  sa  eksperimentalne  tačke 
gledišta je mogućnost da se, variranjem tuneliranja između elektronskih nivoa, uspostavi 
prelaz  između  višekomponentih  i  jednokomponentnih  (polarizovanih)  stanja,  koja  u 
određenim  slučajevima  poseduju  neabelijanske  ekscitacije.  Najvažniji  primer  ovog 
scenarija  se  odnosi  na  punjenje  1/2  gde  je  moguće  uspostaviti  prelaz  između  331 
Halperinovog stanja i tzv. Fafijana, koji je reprezentovan čuvenom talasnom funkcijom 
koju su formulisali Greg Mur i Nikolas Rid. Fafijan je spareno stanje koje se može opisati 
kao “p-wave” superprovodnik. Njegove kvazičestice su Majorana fermioni koje odlikuje 
neabelijanska statistika: stanje nakon izmene dveju kvazičestica nije jednako početnom 
stanju (do na fazu, kao kod fermiona ili bozona). U radu  M21[6]  detaljno je izučavan 
ovaj prelaz putem BCS modela, kao i egzaktne dijagonalizacije. Istaknuto je da prelaz od 
331 stanja ne vodi u spareno stanje,  već verovatnije u kompresibilno stanje koje ima 
svojstva Fermi tečnosti.  

(2) Grafen

Rad M21[7] pružio je teorijski opis kvantnog Holovog stanja na punjenju 1/3 u grafenu 
koje je eksperimentalno uočeno tokom 2009. godine. Iznenađujući aspekt ovog stanja u 
grafenu je da se razlikuje od Laflinovog stanja koje nastaje pri istom punjenju u galijum 
arsenidu (GaAs). Razlog za ovo je veća unutrašnja simetrija u slučaju grafena koja potiče 
od prisustva spina i zonskog pseudospina koji ukupno daju SU(4) simetriju.  Posledica 
ovoga u slučaju 1/3 je da,  iako talasna funkcija osnovnog stanja ima oblik Laflinove 
funkcije,  ekscitacioni  spektar  je  drastično  različit:  najniža  ekscitacija  je  spinski  ili 
pseudospinski talas, a ne tzv. magneto-roton koji nastaje u slučaju Laflinovog stanja. 

U radovima M21[10], M21[11], M21[12] ispitivane su praktične mogućnosti grafenskih 
sistema  (jednosloj,  dvosloj  itd.)  za  kontrolisano  variranje  oblika  i  jačine  efektivne 
Kulonove interakcije između elektrona, u cilju kompletnijeg izučavanja jako korelisanih 
faza  i  kvantih  faznih  prelaza.  U  radu  M21[10]  pokazano  je  da  se  postavljanjem 
dielektrika u blizini grafenskog sloja može uzrokovati odgovarajući tip “screening”-a koji 
stabilizuje  neabelijanska  stanja.  U  radovima  M21[11],  M21[12]  ispitivana  je 
modifikacija interakcije usled promene zonske strukture, na primer dodavanjem masenog 
člana putem električnog polja u slučaju grafenskog dvosloja. Pokazano je da ovaj metod 
takođe omogućava proučavanje različitih faznih prelaza između topoloških faza i onih sa 
narušenom simetrijom.    

(3) Numeričke simulacije bazirane na entanglement-u 

Poslednjih  decenija  došlo  je  do  intenzivnog  razvoja  numeričkih  simulacija  jako 
interagujućih sistema u fizici kondenzovane materije. Neki od uticajnih metoda, poput 
“density-matrix  renormalization  group”  (DRMG),  direktno  su  zasnovani  na  primeni 
“entanglement”-a u karakterizaciji  kvantnih  višečestičnih stanja.  U slučaju  sistema sa 
topološkim uređenjem, nedavno je pokazano da tzv. entanglement spektar donosi potpunu 
informaciju o sistemu, uključujući ekscitacije na granici. U radu  M21[9]  proučavan je 



entanglement  spektar  za  kvantne  Holove  sisteme  u  prisustvu  određenog  broja 
kvazičestica. Pokazano je da kod ovih, topoloških uređenih, sistema entanglement spektar 
daje potpunu informaciju i o eksitacijama, a ne samo o osnovnom stanju. Pored toga, 
demonstrirano je da entanglement spektar daje jasan uvid u statistiku kvazičestica kada se 
one  premeštaju  unutar  sistema.  U  radu  M21[15] implementiran  je  DMRG metod  za 
kvantne  Holove  sisteme  i  testiran  na  nekoliko  tipova  graničnih  uslova,  kao  što  su 
geometrija sfere ili cilindar. Pokazano je da je geometrija cilindra znatno pogodnija sa 
aspekta numeričke konvergencije, što omogućava DMRG metodu da uspešno simulira 
znatno veće sisteme od onih koje je moguće egzaktno dijagonalizovati. Razvoj DMRG 
metoda  otvara  mogućnosti  za  proučavanje  mnogih  fenomena  gde  egzaktna 
dijagonalizacija nije uspela da dostigne odgovarajući broj čestica kod kojih korelaciona 
dužina postaje znatno manja od dimenzije sistema.    

(3) Neuređeni interagujući sistemi i lokalizacija

Još  1958.  u  svom  čuvenom radu,  Anderson  je  pokazao  da  prisustvo  neuređenosti  u 
izolovanim kvantnim sistemima dovodi do lokalizacije i odsustva provodnosti. Međutim, 
do današnjih dana je ostalo nerazjašnjeno šta se događa kada pored neuređenosti postoji i 
interakcija među česticama. U radovima M21[18] (citiran 5(4) puta) i  M21[20] (citiran 
1(1) put) ispitivana su svojstva nove faze – tzv. višečestične lokalizovane faze – koja je 
uočena  u  numeričkim  simulacijama  modela  interagujućih  spinova  u  prisustvu 
neuređenosti. Pokazano je da se takva faza razlikuje od dobro-poznatog Andersonovog 
izolatora  po  vremenskoj  evoluciji  entanglement  entropije  sistema.  Pored  ovoga, 
pronađeno je da stanja interagujućih neuređenih sistema imaju posebnu strukturu koju 
odlikuje kratko-dometni entanglement, što sugeriše da bi takvi sistemi mogli biti uspešno 
simularani  tehnikama  poput  DMRG-a.  Postojanje   višečestične  lokalizovane  faze  je 
važno za eksperimentalne sisteme poput polarnih molekula ili NV centara u dijamantu 
koji se koriste za kvantno računanje.



SPISAK NAUČNIH RADOVA RAZVRSTANIH PREMA 
KATEGORIJAMA NAUČNOG RADA (M  KOEFICIJENTI)

RADOVI OBJAVLJENI U NAUČNIM ČASOPISIMA MEĐUNARODNOG 
ZNAČAJA (М 20)

M21

[1] Z. Papić, M. V. Milovanović
Quantum disordering of the 111 state and the compressible-incompressible transition in 
quantum Hall bilayer systems,
Phys. Rev. B 75,  195304 (2007)

Citiran 8 puta (5 bez autocitata)

[2] M. V. Milovanović, Z. Papić
Nonperturbative approach to the quantum Hall bilayer 
Phys. Rev. B 79, 115319 (2009)

Citiran 5 puta (3 bez autocitata)

[3] Z. Papić, G. Moeller, M. V. Milovanović, N. Regnault, M. O. Goerbig
Fractional quantum Hall state at nu=1/4 in a wide quantum well 
Phys. Rev. B 79, 245325 (2009)

Citiran 16 puta (12 bez autocitata)

[4] Z. Papić, N. Regnault, S. Das Sarma
Interaction-tuned compressible-to-incompressible phase transitions in quantum Hall 
systems 
Phys. Rev. B 80, 201303 (2009) 

Citiran 18 puta (14 bez autocitata)

[5] M. V. Milovanović, Z. Papić
Transition from two-component 332 Halperin state to one-component Jain state at filling 
factor nu=2/5
Phys. Rev. B 82, 035316 (2010)

Citiran 1 put (1 bez autocitata)
 
[6]  Z. Papić, M. O. Goerbig, N. Regnault, and M. V. Milovanović



Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite 
Fermi liquid phases
Phys. Rev. B 82, 075302 (2010).
 
Citiran 3 puta (1 bez autocitata)

[7]  Z. Papić, M. O. Goerbig, and N. Regnault 
Atypical Fractional Quantum Hall Effect in Graphene at nu_G = 1/3
Phys. Rev. Lett. 105, 176802 (2010)

Citiran 17 puta (12 bez autocitata)

[8] Michael R. Peterson, Z. Papić, S. Das Sarma
Fractional quantum Hall effects in bilayers in the presence of inter-layer tunneling and 
charge imbalance
Phys. Rev. B 82, 235312 (2010)

Citiran 4 puta (4 bez autocitata)

[9] Z. Papić, B. A. Bernevig, N. Regnault 
Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
Phys. Rev. Lett. 106,  056801 (2011)

Citiran 13 puta (13 bez autocitata)

[10] Z. Papić, R. Thomale, D. A. Abanin 
Tunable Electron Interactions and Fractional Quantum Hall States in Graphene
Phys. Rev. Lett. 107, 176602 (2011)

Citiran 17 puta (14 bez autocitata)

[11] Z. Papić, D. A. Abanin, Y. Barlas, R. N. Bhatt 
Tunable interactions and phase transitions in Dirac materials in a magnetic field
Phys. Rev. B 84, 241306 (2011)

Citiran 9 puta (7 bez autocitata)

[12] D. A. Abanin, Z. Papić, Y. Barlas, R. N. Bhatt
Stability of the k = 3 Read-Rezayi state in chiral two-dimensional systems with tunable 
interactions
New Journal of Physics 14, 025009 (2012)

Citiran 1 put (1 bez autocitata)

[13]  Bo Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, F. D. M. Haldane
Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems,



Phys. Rev. B 85, 165318 (2012)

Citiran 8 puta (7 bez autocitata)

[14] Bo Yang, Z. Hu, Z. Papić, F. D. M. Haldane 
Model Wavefunctions for the Collective Modes and the Magneto-roton Theory of the 
Fractional Quantum Hall Effect
Phys. Rev. Lett. 108, 256807 (2012)
 
Citiran 3 put (3 bez autocitata)

[15] Z. Hu, Z. Papić, S. Johri, R. N. Bhatt, P. Schmitteckert 
Comparison of the density-matrix renormalization group method applied to fractional 
quantum Hall systems in different geometries
Phys. Lett. A 376, 2157 (2012)

Citiran 3 puta (2 bez autocitata)

[16] Z. Papić, F. D. M. Haldane, E. H. Rezayi
Quantum Phase Transitions and the nu=5/2 Fractional Hall State in Wide Quantum Wells 
Phys. Rev. Lett. 109, 266806 (2012) 

Citiran 2 puta (1 bez autocitata)

[17] B. Estienne, Z. Papic, N. Regnault, B. A. Bernevig
Matrix Product States for Trial Quantum Hall States
Phys. Rev. B 87, 161112(R) (2013) 

Citiran 4 puta (4 bez autocitata)

[18] Maksym Serbyn, Z. Papić, Dmitry A. Abanin
Universal slow growth of entanglement in interacting strongly disordered systems 
Phys. Rev. Lett. 110, 260601 (2013) 

Citiran 5 puta (4 bez autocitata)

[19] Z. Papic 
Fractional quantum Hall effect in a tilted magnetic field 
Phys. Rev. B 87, 245315 (2013) 

Citiran 2 puta (2 bez autocitata)

[20] Maksym Serbyn, Z. Papić, Dmitry A. Abanin 
Local conservation laws and the structure of the many-body localized states 
Phys. Rev. Lett. 111, 127201 (2013) 



Citiran 1 put (1 bez autocitata)

M22

[1] Z. Papić, M. O. Goerbig, N. Regnault
Theoretical expectations for a fractional quantum Hall effect in graphene 
Solid State Communications 149, 1056 (2009) 

Citiran 13 puta (12 bez autocitata)

M23

[1] Z. Papić, M. V. Milovanović 
Disordering of the correlated state of the quantum Hall bilayer at filling factor nu = 1
Mod. Phys. Lett. B 26,  1250134 (2012)

ZBORNICI SA MEDJUNARODNIH NAUČNIH SKUPOVA (М 30)

М 31

[1] Z. Papić
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ELEMENTI ZA KVALITATIVNU OCENU NAUČNOG DOPRINOSA 
KANDIDATA I MINIMALNI USLOVI ZA IZBOR U ZVANJE DR ZLATKA 

PAPIĆA

Pošto se kandidat nakon sticanja doktorata bira direktno u zvanje viši naučni saradnik, 
prikazani su minimalni uslovi za izbor u zvanje naučni saradnik i viši naučni saradnik, 
kao i zbirni uslov za oba zvanja. Nakon toga su prikazani kvantitativni rezultati kandidata 
u dosadašnjem naučnom radu i upoređeni sa minimalnim zbirnim uslovima za izbor u 
zvanje viši naučni saradnik.

Minimalni kvantitativni uslovi za izbor u zvanje

Zvanje Minimalan broj M bodova
Naučni 
saradnik

Ukupno 16
M10+M20+M31+M32+M33+M41+M42 10

M11+M12+M21+M22+M23+M24 5
Viši 
naučni 
saradnik

Ukupno 48
M10+M20+M31+M32+M33+M41+M42+M51 40

M11+M12+M21+M22+M23+M24+M31+M32+M41+M42 28
Zbirno za 
oba 
zvanja

Ukupno 64
M10+M20+M31+M32+M33+M41+M42 50

M10+M20+M31+M32+M33+M41+M42+M51 50
M11+M12+M21+M22+M23+M24 33

M11+M12+M21+M22+M23+M24+M31+M32+M41+M42 33

Ostvareni rezultati kandidata

M 
kategorija

M bodova po 
radu

Broj 
radova

Ukupno M 
bodova

M21 8 20 160
M22 5 1 5
M23 3 1 3
M31 3 1 3
M32 3 2 3
M34 2 4 2
M61 1 1 1
M62 0,5 1 0,5



Poređenje minimalnih uslova sa ostvarenim rezultatima kandidata

Zbirno za oba zvanja Uslov Ostvareni 
rezultat

Ukupno 64 177,5
M10+M20+M31+M32+M33+M41+M42 50 174

M10+M20+M31+M32+M33+M41+M42+M51 50 174
M11+M12+M21+M22+M23+M24 33 174

M11+M12+M21+M22+M23+M24+M31+M32+M41+M42 33 174
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Quantum disordering of the 111 state and the compressible-incompressible transition
in quantum Hall bilayer systems

Zlatko Papić and Milica V. Milovanović
Institute of Physics, P.O. Box 68, 11080 Belgrade, Serbia
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We systematically discuss properties of quantum disordered states of the quantum Hall bilayer at �T=1. For
one of them, the so-called vortex metal state, we find off-diagonal long-range order of algebraic kind, and
derive its transport properties. It is shown that this state is relevant for the explanation of the “imperfect”
superfluid behavior and persistent intercorrelations, for large distances between layers, that were found in
experiments.

DOI: 10.1103/PhysRevB.75.195304 PACS number�s�: 73.43.Cd, 73.21.Ac, 73.43.Nq

I. INTRODUCTION

Electrons in quantum Hall bilayer systems at total filling
factor �T=1 naturally correlate in two different ways due to
Pauli principle and Coulomb interaction. If the layers are
sufficiently far apart, dominant correlations would be those
of intralayer kind because electrons in one layer are unable to
sense what is taking place in the opposite layer. This does not
hold, however, in the limit of small layer separation. Instead,
with decreasing d / lB, the ratio of the distance between layers
to the magnetic length, the correlations between electrons in
different layers gain strength and begin to compete with in-
tralayer correlations. It is the interplay of those two kinds of
correlations that we focus on in this paper.

For the case of prevalent interlayer correlations, there are
already a few theoretical models at hand which provide a
satisfactory description: 111 state given by Halperin’s1 111
wave function �111=�i�j�zi↑−zj↑��k�l�zk↓−zl↓��m,n�zm↑
−zn↓�, quantum Hall ferromagnet,2 condensate of excitons,3

or composite bosons.4 Nevertheless, both theoretically and
experimentally, it is evident that with increasing d / lB, a
quantum disordering of this state is bound to take place. For
example, the tunneling peak observed by Spielman et al.5 is
indeed sharp and pronounced, but its nature is more that of a
resonance than of the speculated Josephson effect, while the
temperature dependences of Hall and longitudinal resistances
in experiments of Kellogg et al.6 and Tutuc et al.7 do not
provide support to the predicted Berezinskii-Kosterlitz-
Thouless �BKT� scenario of a bilayer finite temperature
phase transition.2 Deeper understanding of the regime d
� lB is therefore an important, open problem in the physics
of quantum Hall bilayers and strongly correlated electron
systems in general.

Hereinafter, we present some results which pertain to
quantum disordering that is believed to take place in the
quantum Hall bilayer at �T=1. The ground state at d=0 is a
Bose condensate well described by 111 wave function due to
Halperin, while the low-lying excitations are composite
bosons, i.e., electrons dressed with one quantum of magnetic
flux.4 The idea of disordering that we employ is to allow the
formation of composite fermions �i.e., electrons dressed with
two quanta of magnetic flux� that coexist with composite
bosons.8 There are two ways to introduce composite fermi-
ons into the Bose condensate and this will be explained in

Sec. II. We then pursue a phenomenological Chern-Simons
transport theory of Drude in order to examine the elementary
predictions of those two model states. In Sec. III, we arrive at
an effective gauge theory for both cases. This enables us to
calculate the correlation functions, modes of low-lying exci-
tations, and characteristic off-diagonal long-range order
�ODLRO�. We will be primarily interested in the pseudospin
channel of these states. In one of those, the so-called vortex
metal state that we believe may appear in the bilayer at larger
d / lB as a manifestation of increasing intracorrelations, we
derive an algebraic ODLRO. In Sec. IV, we focus on the
incompressible region and the crossover around the critical
layer separation. We will argue that our field-theoretical, ho-
mogeneous picture in fact suggests that vortex metal, if rel-
evant for the strongly coupled, incompressible region, may
appear only localized in the form of islands in the back-
ground of the superfluid state for smaller d / lB. In Sec. V, we
give a more thorough analysis of the experiments on bilayer,
addressing especially the compressible, weakly coupled re-
gion, and the question of persistent intercorrelations9 in the
framework of the vortex metal state. Section VI is devoted to
discussion and conclusion. For the sake of clarity and in
order to make the text self-contained, some of the known
results8,10 will be rederived in this paper.

II. TRIAL WAVE FUNCTIONS FOR THE BILAYER

Building on Laughlin’s proposal for the wave function of
a single quantum Hall layer,11 the construction of Rezayi-
Read wave function12 for �=1/2 and Halperin’s 111 wave
function for bilayer,1 we may formally imagine that there are
two species of electrons in each layer �z ,w�, which are all
mutually correlated through intracorrelations �within the
same layer� and intercorrelations �between opposite layers�
�Fig. 1�.

Starting from the 111 function of the Bose condensate, we
will minimally deform it in order to include the composite
fermions. Given that each particle binds the same number of
flux quanta and taking Pauli principle into account, this be-
comes a combinatorial problem with two solutions. In the
first case,
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�1 = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

�� f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�� f�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zp,↓ − wq,↑��
m,n

�zm↓ − wn↓�� . �1�

The first line in this formula can be recognized as 111 func-
tion, followed by two �=1/2 separate layers �� f’s denote the
Slater determinants of free composite fermions�, while the
last two lines stem from the flux-particle constraint �all these
correlations are depicted on the left hand side of Fig. 1�. P
and A denote projection to the lowest Landau level �LLL�
and fermionic antisymmetrization �independently for each
layer�, respectively. In the thermodynamic limit, the relation
between the number of particles and flux quanta reads10

N� = Nb↑ + Nb↓ + Nf↑ + Nf↓

= 2Nf↑ + Nb↑ + Nb↓ = 2Nf↓ + Nb↑ + Nb↓. �2�

N� is the number of flux quanta through the system and Nb�

and Nf� are the number of bosons and fermions inside the
layer �, respectively; �= ↑ ,↓ is the layer index. Equation �2�
enforces an additional constraint Nf↑=Nf↓. Therefore, the
number of fermions is balanced in two layers, while the bo-
son numbers are not subject to any such constraint. This fact
is important because of the broken symmetry of spontaneous
interlayer phase coherence in the 111 state, which demands
nonconservation of Nb↑−Nb↓. Although we work in a fixed
�relative� number representation �allowed in a broken sym-
metry case� to account for a broken symmetry situation, we
need to have a possibility of unconstrained relative number
of bosons. Then, a superposition of the wave functions of the
form in Eq. �1� would lead to the usual representation.

In the second case which is expected to describe dominant
intracorrelations, fermions bind exclusively within the layer
they belong to �right side of Fig. 1� and the corresponding
wave function is

�2 = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

�� f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�� f�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑�2�
k,l

�zk↓ − wl↓�2� . �3�

In this case, the flux-particle relation10 is

N� = 2Nf↑ + 2Nb↑ = 2Nf↓ + 2Nb↓

= 2Nf↑ + Nb↑ + Nb↓ = 2Nf↓ + Nb↑ + Nb↓,

�4�

implying that both fermion and boson numbers must be bal-
anced: Nf↑=Nf↓ and Nb↑=Nb↓.

In Ref. 8, the authors numerically calculated the overlap
of �1 with the exact ground-state wave function for a system
of five electrons in each layer with varying d / lB. Their re-
sults seem to demonstrate convincingly that �at least for
small systems� the approach with trial wave functions that
interpolate between two well-established limits, namely,
those of 111 state and decoupled �=1/2 layers, is not only
an artificial mathematical construction but also corresponds
to physical reality. Despite the fact that the number of elec-
trons in this simulation is certainly well below the thermo-
dynamic limit, the fact that the overlaps between �1 and the
exact ground state display peaks very close to 1 at small d / lB
provides confidence in the choice of wave function �1 �at
least for small d / lB�.

If there is a phase separation in between the sea of com-
posite bosons and composite fermions, the phase transition
will be of the first order. Such a scenario is launched in Ref.
13, where the authors imagine static, isolated regions of in-
coherent phase inside 111 phase. Although this model cor-
rectly explains some of the observed phenomena �e.g., semi-
circle law�, the persistence of intercorrelations in the weakly
coupled, compressible regime9 which gradually die out sug-
gests a continuous transition. Such a possibility is naturally
present in the picture of composite boson-composite fermion
mixture.

A transport theory of Drude kind can be easily
formulated8 if we consider that composite fermions bind two
quanta of magnetic flux, unlike composite bosons which bind
only one quantum of magnetic flux. As long as we remain in
the random-phase approximation �RPA�, they can all be
treated as free particles moving in the presence of the effec-
tive field which is given by the sum of the external and
self-consistently induced electric field. In the first case ��1�,
the effective field as seen by particles in the layer � is

E f
� = E� − 2�J f

� − ��Jb
1 + Jb

2� , �5�

Eb
� = E� − ��Jb

1 + Jb
2 + J f

1 + J f
2� , �6�

where J f�b�
� denote Fermi and Bose currents in the layer �

and

FIG. 1. Correlations between electrons in two layers.
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� = � 0 �

− � 0
� ,

with �= h
e2 . Transport equations are

E f�b�
� = 	 f�b�

� J f�b�
� �7�

and, as required by symmetry, 	 f�b�
1 =	 f�b�

2 , while the total
current is given by J�=Jb

�+J f
�. We define single layer resis-

tance �	11� and drag resistance �	D� as follows:

E1 = 	11J1, �8�

E2 = 	DJ1. �9�

When both layers have the same filling, �1=�2=1/2, tensors
	b and 	 f are diagonal �because the composite particles are in
zero net field�: 	b=diag�	bxx ,	bxx� and 	 f =diag�	 fxx ,	 fxx�,
and in the case of drag, we have in addition J2=0;J1 is
finite. Then, from Eqs. �5�–�9� via elementary algebraic ma-
nipulations, we obtain

	11 = 1/2	�	b
−1 + 	 f

−1�−1 + 2� + ��	 f + 2��−1 + 	b
−1�−1
 ,

�10�

	D = 1/2	�	b
−1 + 	 f

−1�−1 + 2� − ��	 f + 2��−1 + 	b
−1�−1
 ,

�11�

or in terms of matrix elements,

	xx
D = −

2	bxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 , �12�

	xy
D =

��2	bxx	 fxx + 	 fxx
2 + 4�2�

	bxx
2 + 2	bxx	 fxx + 	 fxx

2 + 4�2 , �13�

	xx
11 =

2	bxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 +
	bxx	 fxx

�	bxx + 	 fxx�
.

�14�

The formulas in Eqs. �12�–�14� include parameters �, 	bxx,
and 	 fxx, the last two being the free parameters about which
nothing can be said a priori. This prompted Simon et al.8 to
reason as follows. At large d / lB, the number of composite
bosons is small because the condensate is broken and 	bxx is
large compared to �, which is the typical Hall resistance. On
the other hand, from the experiments,14 we know that for
large d / lB holds 	 fxx
�. Furthermore, even as d / lB is de-
creased, we expect 	 fxx to increase only slightly.8 All in all,
for large d / lB, they assume 	bxx���	 fxx, and if in addition
we allow 	bxx	 fxx
�2, asymptotically we obtain

	xx
D � −

2�2

	bxx
, �15�

	xy
D � 4�� �

	bxx
2

, �16�

�	xx
11� � �	xx

D � . �17�

Semicircle law follows directly from the previous formulas,

�	xx
D �2 + �	xy

D −
�

2
2

� ��

2
2

, �18�

in agreement with Ref. 13 �semicircle law is of general va-
lidity for two-component systems in two dimensions and it
serves us as a crucial test for the line of reasoning quoted
above, which may at first sound somewhat naive�.

In the opposite limit �when d / lB is reduced�, 	bxx
	 fxx

� because 	bxx drops as a result of Bose condensation.8

When 	bxx→0, we obtain the quantization of Coulomb drag,

	xy
D � � , �19�

	xx
D → 0, �20�

as measured by Kellogg et al.6

Let us return now to the case of dominant intracorrela-
tions, the vortex metal state10 represented by Eq. �3�. From
Fig. 1, the formulas for effective fields are modified into

E f
� = E� − 2�J f

� − 2�Jb
�, �21�

Eb
� = E� − ��Jb

1 + Jb
2 + 2J f

�� , �22�

and the analogous calculation yields the resistivity tensors,

	11 =
1

2
	�	b

−1 + 	 f
−1�−1 + 2� + ��	b − 2��−1 + 	 f

−1�−1

���	b − 2��−1	b + 2	 f
−1��
 , �23�

	D =
1

2
	�	b

−1 + 	 f
−1�−1 + 2� − ��	b − 2��−1 + 	 f

−1�−1

���	b − 2��−1	b + 2	 f
−1��
 . �24�

The matrix elements of these tensors are

	xx
D = −

2	 fxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 , �25�

	xy
D =

	 fxx
2 �

�	 fxx + 	bxx�2 + 4�2 , �26�

	xx
11 =

2	 fxx
2 �2

�	bxx + 	 fxx�3 + 4�	bxx + 	 fxx��2 +
	bxx	 fxx

�	bxx + 	 fxx�
.

�27�

In this case as well, there are two physically significant limits
depending on the assumptions for the values of 	bxx and 	 fxx.
In the case when 	bxx
	 fxx
�,

	xx
D � −

	 fxx

2
, �28�

	xy
D �

1

4

	 fxx
2

�
, �29�
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	xx
11 �

	 fxx

2
, �30�

and the semicircle law follows �Eq. �18��, whereas �	xx
D �

= �	xx
11�. Similarly, in the regime 	bxx
�
	 fxx, we deduce the

quantization of Coulomb drag �Eqs. �19� and �20��.
We emphasize that these two limits are different from

those in Simon et al.8 For example, the semicircle law was
derived assuming that 	bxx is small �which is exactly the
opposite situation to the one in Ref. 8�, while 	 fxx is not
necessarily small with respect to �. As noted in the first case
above, the exact values for 	bxx and 	 fxx are in fact unknown
and this prevents us from discriminating between the differ-
ent proposed limits. In other words, we cannot say which one
of the proposed limits is plausible—the analysis above
serves us only to conclude that each of the two composite
boson-composite fermion mixed states is able �with certain
assumptions� to reproduce the phenomenology of drag ex-
periments.

III. CHERN-SIMONS THEORY FOR BILAYER

Encouraged by the preliminary analysis from the previous
section, we will pursue the idea of composite boson-
composite fermion mixture further by formulating an ex-
ample of Chern-Simons �CS� field theory which can contain
wave functions �1, and �2 as ground states. We do not
embark on such a task only for the sake of completeness, but
also because such a theory would enable efficient calculation
of response functions and provide insight into the long-range
order of the system and the nature of low-lying excitations. A
general drawback of CS theories is the inability to include
the projection to LLL which is the arena where all the phys-
ics must be taking place. Nevertheless, we will use these
theories established in the works of Zhang et al.15 for com-
posite bosons and Halperin et al.16 for composite fermions
because even projected to the LLL type of theories, of Mur-
thy and Shankar,17 came to the conclusion that in order to
get, in the most efficient way, to the qualitative picture of the
physics of response, the usual CS theories are quite enough
and accurate. In addition to this simplification, in construct-
ing the CS theories, we will neglect the antisymmetrization
requirement implied by Eqs. �1� and �3�. The reason for this
is that just like in hierarchical constructions, composite fer-
mions represent meron excitations �see Ref. 10� that quan-
tum disorder the 111 state, and, as it is usual when we dis-
cuss the dual picture of the fractional quantum Hall effect,18

we do not extend the antisymmetrization requirement to the
quasiparticle part of the electron fluid.

Therefore, we start from the Lagrangian given by10

L = �
�
���

†�i�0 − a0
F� + A0 + �B0���

−
1

2m
��− i � + aF� − A − �B����2�

+ �
�
���

†�i�0 − a0
B� + A0 + �B0���

−
1

2m
��− i � + aB� − A − �B����2� + �

�
�

i=F,B

1

2�

1

2
a0

i�

��� � ãi�� −
1

2 �
�,��

� d2r��	��r�V����	���r�� , �31�

where � enumerates the layers, �� and �� are composite
fermion and composite boson fields in the layer �, V↑↑
=V↓↓�Va, V↑↓=V↓↑�Ve, and the densities are �	�=�	�

F

+�	�
B. By A �and B� here, we mean external fields in addi-

tion to the vector potential of the uniform magnetic field AB,
which is accounted for and included in gauge fields aF�B��.
Therefore, we have aF�B��= ãF�B��−AB. External fields A and
B couple with charge and pseudospin, and in general we
must introduce four gauge fields aF�B��. Fortunately, not all
of them are independent. In the first case, the relation analo-
gous to Eq. �2� becomes the following gauge field equation:

1

2�
� � aF� = 2�	F� + �	B↑ + �	B↓,

1

2�
� � aB� = �	F↑ + �	F↓ + �	B↑ + �	B↓. �32�

From the equations above, it is obvious that there are only
two linearly independent gauge fields: aC= aF↑+aF↓

2 = aB↑+aB↓

2

and aS= aF↑−aF↓

2 , and Eq. �32� expressed in Coulomb gauge
reads

ikaC

2� =�	↑+�	↓��	 and
ikaS

2� =�	F↑−�	F↓��	S
F �aC and

aS are the transverse components of the gauge fields�. These
are the constraints we wish to include into the functional
integral via Lagrange multipliers a0

C and a0
S. The interaction

part of the Lagrangian is easily diagonalized by introducing
VC=

Va+Ve

2 and VS=
Va−Ve

2 .
The strategy for integrating out the bosonic functions is

the Madelung ansatz �=�	�+ 	̄�ei��, which expands the
wave function in terms of a product of its amplitude and
phase factor, while fermionic functions are treated, as elabo-
rated in Ref. 16. After Fourier transformation, within the
quadratic �RPA� approximation, and introducing substitu-
tions �	C

i =�	↑
i +�	↓

i and �	S
i =�	↑

i −�	↓
i , i=F, B and �C

=
�↑+�↓

2 , �S=
�↑−�↓

2 , all the terms neatly decouple into a charge
and a pseudospin channel,

LC = K00��a0
C�2 + K11��aC�2 + i��	C

B�C − �	C
B�a0

C −
	̄b

m
k2�C

2

−
	̄b

m
��aC�2 +

1

2�
a0

CikaC −
1

2

k2aC
2

�2��2VC, �33�

LPS = K00��a0
S�2 + K11��aS�2 + i��	S

B�S − �	SB0 −
	̄b

m
k2�S

2

−
	̄b

m
B2 +

1

2�
a0

SikaS −
1

2
VS��	S

B +
ik

2�
aS2

, �34�

where �a0
C�a0

C−A0, �aC�aC−A, �a0
S�a0

S−B0, �aS�aS−B,
and 	̄b the mean density of bosons in �each� layer. In writing
down Eqs. �33� and �34�, we utilize a compact notation sup-
pressing k �−k� dependence, where all the quadratic terms of
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the type �X+Y�2 stand for �X�−k�+Y�−k���X�k�+Y�k��.
K00�k� and K11�k� are the free fermion �RPA� density-density
and current-current correlation functions.16 In the long-
wavelength limit �k /kf 
1�, they can be explicitly evaluated
from the general expressions,16

K00�k,�� =
m

2�
�1 − ��x2 − 1�

�x�
�x2 − 1

+ i��1 − x2�
�x�

�1 − x2� ,

�35�

K11�k,�� =
2nf

m
�− x2 −

k2

24�nf
+ ��x2 − 1��x��x2 − 1

+ i��1 − x2��x��1 − x2� , �36�

where x= m�
kfk

, kf the Fermi wave vector, nf the fermion den-
sity, and � the Heaviside step function. The mass appearing
in expressions for K00 and K11 is equal to the bare electron
mass only in the RPA approximation �in which we work
here�.

Focusing on the charge channel only �Eq. �33�� and inte-
grating out first �	C

B, then a0
C and �aC, we arrive at the

density-density correlator,

�00�k� =
� k

2�
2

2	̄b

m
− 2K11 + VC� k

2�
2

−
� k

2�
2

2	̄bk2

m�2 − 2K00

. �37�

In the limiting case x
1: K00� m
2� �1+ ix� and K11�− k2

12�m

+ i
2nf

m x, and we conclude that as �→0 �and then k→0�, the
system is incompressible in the charge channel, so long as
there is a thermodynamically significant density of bosons
	̄b.

In the pseudospin channel, we are primarily looking for
the signature of a Bose condensate, i.e., whether there exists
a Goldstone mode of broken symmetry and what is the long-

range order of the state. Therefore, in Eq. �34� we set A�

=B�=0 and integrate over a0
S, aS, and �	S

B,

��S�− k��S�k�� =
VS

�2
1
2VS + �

�
−

2	̄bVS

m
k2

, �38�

where �= 1
4K00

−1−K11� 2�
k

�2 �in Appendix, we give the full lin-
ear response in the pseudospin channel�. Indeed, there exists
a Goldstone mode, albeit with a small dissipative term
�which, if desired, can be removed by pairing
construction10�,

�0�k� =�2	̄bVS

m
k − i

VS

16�3/2�nf

k3. �39�

Even for large x, it is easy to check that the pole remains
at the same value if we assume 	̄b�nf �which is, in fact, the
most appropriate assumption in this case�. Also, the imagi-
nary term disappears in this case. Such robust Goldstone
mode implies the existence of a true ODLRO and the genu-
ine Bose condensate. Goldstone mode �0�k� �Eq. �39�� is
easily observed in Fig. 2, where we plotted the real part of
density-density correlation function �00�k� �Eq. �A1�� in
terms of parameters Q�k /kf and x�� / �kkf�. Other �fixed�
parameters are m= lB=1, d=0.5, �=12.6, VS=�d /�, 	̄b+nf
=1/ �4��, and �=nf / 	̄b=1/10.

Let us return to the second case, that of Eq. �3� and domi-
nant intracorrelations. According to Fig. 1, relations �Eq.
�32�� are modified to become

1

2�
� � aF� = 2�	F� + 2�	B�,

1

2�
� � aB� = 2�	F� + �	B↑ + �	B↓. �40�

It is obvious that in this case we have only three linearly
independent gauge fields, namely, aC= aF↑+aF↓

2 = aB↑+aB↓

2 , aS

= aF↑−aF↓

2 , and aFS= aB↑−aB↓

2 . Introducing the same substitutions

FIG. 2. Re �00�k� and the Goldstone mode in
the case of �1.
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as before, the Lagrangian again decouples into a charge
channel,

LC = K00��a0
C�2 + K11��aC�2 + i��	C

B�C − �	C
B�a0

C −
	̄b

m
k2�C

2

−
	̄b

m
��aC�2 +

ik

2�
a0

CaC −
1

2
VC� k

2�
2

aC
2 , �41�

and a pseudospin channel,

LPS = K00��a0
S�2 + K11��aS�2 + i��	S

B�S − �	S
B�a0

FS −
	̄b

m
k2�S

2

−
	̄b

m
��aFS�2 +

ik

2�
a0

SaFS +
ik

2�
a0

FS�aS − aFS�

−
1

2
VS� k

2�
2

aS
2, �42�

where �a0
FS�a0

FS−B0 and �aFS=aFS−B; all the other sym-
bols have retained their meanings.

This time we will not analyze the charge channel in detail.
To this end, we note that the system in incompressible in this
sector, the fact which is easily established by integrating out
all the gauge fields, densities, and boson phase in Eq. �41�.

In the pseudospin channel, a calculation of the density-
density correlator leads to the conclusion that in this channel,
the system is compressible �see also Fig. 3�. The �-� cor-
relator is

��S�− k��S�k�� =

1

k2��

� �

2�
2

�� + �� −
2	b

m
��

, �43�

where �= 1
2K00

� k
2�

�2+
2	̄b

m and �=VS� k
2�

�2−2K11. For small

k /kf and x, the correlator diverges for �0=
4�	̄b

m =const, which
obviously contradicts the original assumption for the range
of x and hence we reject this pole. For x�1 �and still k

kf�, the relations �Eqs. �35� and �36�� are approximately
K00�− 1

4�x2 and K11�−
nf

m , and we obtain two poles,

�0�k� =
4�nf

m
�1

2
+ � −

1

2
�1 + 4� , �44�

�0�k� =
4�nf

m
�1

2
+ � +

1

2
�1 + 4� , �45�

where �= 	̄b /nf is the ratio of boson to fermion density �Eqs.
�44� and �45� hold for any �, although in the physical limit
that we are presently interested, � may be regarded as small�.
In Fig. 3 we plotted the real part of the density-density cor-
relation function in the case of �2 �Eq. �A4��. In contrast to
Fig. 2, here we opt for � and Q as free parameters and set
d=1.5 and �= 	̄b /nf =1/10 as the more likely values in this
case. Distinctive feature of Fig. 3 at ��1 is the plasma
frequency �0 and the smaller singularity at ��1/10 corre-
sponds to �0. There is also a striking absence of Goldstone
mode in this case.

We now proceed to calculate ODLRO in the pseudospin
channel of �2. As it turns out, ODLRO will be nontrivially
modified and assume algebraic form. We know that interac-
tion does not affect the value of characteristic exponent19 and
therefore set VS�0. Bearing in mind that we work in the
long-wavelength limit, we arrive at the following expression
for the correlator:

��S�− k��S�k�� =
�2��P/k2���2 − �P

2 ��
	�2 − ��0�k��2
	�2 − ��0�k��2


, �46�

where we introduced �P=
4�nf

m . After contour integration over
�,19

��S�− k��S�k�� = −
2�

k2 f��� ,

where f���= 1
�1+4�

, which leads to the algebraic ODLRO,

�ei�S�r�e−i�S�r��� �
1

�r − r�� f��� � �r − r��−�1−2�+o��2��. �47�

This algebraic ODLRO persists as long as ��0 �function
f is positive everywhere in this domain�. The expression Eq.
�47� is formally reminiscent of BKT XY ordering; only the

FIG. 3. Re �00�k� in the case of �2.
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role of the temperature is overtaken by the parameter � �the
analysis of this paper assumes temperature T=0�. Pursuing
this analogy further, we conclude that the relative fluctua-
tions of composite boson and composite fermion densities
represent the mechanism which may lead to the ultimate
breakdown of the 111 condensate.

IV. EVOLUTION OF THE GROUND STATE WITH d

In order to investigate the transition from the incompress-
ible, 111-like state at lower d / lB, to the compressible, possi-
bly vortex metal-like state at higher d / lB, we are motivated
to introduce what we call generalized vortex metal. In addi-
tion to the ordinary vortex metal ��2�, we include �in each
layer� another kind of composite fermions that connect to the
composite boson sea as in the case of �1. The generalized
vortex metal is clearly the only additional option left of con-
necting electrons divided in composite bosons and composite
fermions beside the two extreme cases, �1 and �2. Again, in
this state some of composite fermions connect in the manner
of 111 state to the composite bosons and the rest of compos-
ite fermions connect exclusively to the composite bosons of
the same layer in the manner of the Rezayi-Read state. This
is succinctly represented by the following gauge field con-
straints:

1

2�
� � aB� = �	B↑ + �	B↓ + �	F↑

�1� + �	F↓
�1� + 2�	F�

�2� ,

�48�

1

2�
� � a1

F� = �	B↑ + �	B↓ + 2�	F�
�1� + 2�	F�

�2� , �49�

1

2�
� � a2

F� = 2�	B� + 2�	F�
�1� + 2�	F�

�2� , �50�

where the superscripts �1� and �2� indicate composite fer-
mion species in each layer. Chern-Simons theory easily fol-
lows from the above gauge field equations and yields incom-
pressible behavior in the charge channel. In the pseudospin
channel,

LPS = K00
�1���a0,1

FS �2 + K00
�2���a0,2

FS �2 + K11
�1���a1

FS�2 + K11
�2���a2

FS�2

+ i��	S
B�S − �	S

B�a0
S −

	̄b

m
k2�S

2 −
	̄b

m
��aS�2

+
ik

2�
a0,1

FS �a1
FS − aS� +

ik

2�
a0

S�a2
FS − a1

FS� +
ik

2�
a0,2

FS aS

−
1

2
VS� k

2�
2

�a2
FS�2 −

1

2
Vhc� k

2�
2

aS�a1
FS − aS� , �51�

where the linearly independent fields are given by aS

= aB↑−aB↓

2 , a1
FS=

a1
F↑−a1

F↓

2 , and a2
FS=

a2
F↑−a2

F↓

2 , subscripts 1 and 2 dis-
tinguish between composite fermion species and S denotes
antisymmetric combination of the densities in two layers
�like in Sec. III�. A noteworthy feature of the Lagrangian
�Eq. �51�� is the existence of Vhc, the hard-core repulsion

term between the two species of composite fermions inside
each layer. The presence of such a term �added by hand� is
natural if we imagine composite fermions residing in two
separate Fermi spheres. However, the danger of blindly in-
troducing this term is that it may incidentally bring about the
incompressible behavior �otherwise not present� in the sys-
tem. We have verified that this is not the case here; i.e., the
system remains incompressible whether or not we choose to
introduce Vhc. It therefore appears more intuitive to keep Vhc,
taking the limit Vhc→� in the end. Step by step, eliminating
all the gauge fields, we are lead to the following correlation
function:

��S�− k��S�k�� =

VS +
2nf2

m
�2�

k
2

�2 − �2	̄bVS

m
k2 + �4�

m
2

	̄bnf2� , �52�

and the low-energy spectrum is dominated by the plasma
frequency,

�0�k� =
4�

m
�	̄bnf2, �53�

where nf2 is the density of the composite fermions which
bind exclusively within the layer they belong. Generalized
vortex metal therefore is a state that only supports gapped
collective excitations, despite the presence of composite
bosons and the kind of composite fermions which enforce
interlayer correlation. If it is pertinent to the region of the
tunneling experiments of Spielman et al.5 and counterflow
experiments of Kellogg et al.,6 we believe that our homoge-
neous theory of Secs. III and IV then suggests that �general-
ized� vortex metal can appear only as localized islands �due
to presence of disorder at low temperatures� amidst the back-
ground of �1 phase �Fig. 4�. In Fig. 4 weakly coupled
vortex-antivortex pairs are depicted, i.e., meron-antimeron
pairs �due to the charge degree of freedom, there are four
kinds of merons2� inside the vortex metal phase. They are
expected to exist in the vortex-metal phase on the grounds of
disordering of the correlated phase. As argued in Ref. 10, the
inclusion of composite fermions into the 111 state ��1 and
�2� corresponds to the creation of meron-antimeron pairs.
There are more pairs and more of larger size as d increases

FIG. 4. Evolution of the ground state with varying d, before and
after the transition at d=dC. The regions with meron pairs represent
the vortex metal ��2� phase. The background represents the super-
fluid ��1� phase.
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consistently with the BKT picture of the phase that supports
algebraic ODLRO �Eq. �47��.

V. FURTHER COMPARISON WITH EXPERIMENTS

In this section, we wish to address in depth the potential
of the model states, �1 and �2, in explaining the phenom-
enology of experiments on bilayer. The key question in this
analysis is: what is the nature of the compressible phase cor-
responding to higher d / lB that still harbors some of the in-
tercorrelation present at lower d / lB?9

The answer to this question cannot be given by looking at
simple transport properties. In Sec. II, it was shown that both
�1 and �2 in certain regimes can recover the two main
experimental findings of Kellogg et al. in drag experiments:
the semicircle law9 and the quantization of Hall drag
resistance.20 On the other hand, our Chern-Simons RPA ap-
proach at T=0 stresses that all that states considered in this
paper are incompressible. However, at finite T, a finite
energy10 is needed to excite a meron in �2 and therefore �2
seems like a better candidate for exhibiting compressible be-
havior at any finite T or, at least, a very small gap. Further-
more, within the vortex metal picture, �2 allows the follow-
ing simple scenario. For 	bxx
	 fxx
�, one gets the
semicircle law derived in Sec. II. As d / lB increases, the den-
sity of bosons decreases and one enters the regime 	 fxx

	bxx
�, where �	xx

D ��	xy
D �as witnessed in the

experiments9�. The persistence of enhanced longitudinal drag
resistance9 up to very high d / lB provides additional support
to our choice of �2 which can explain the remaining inter-
correlation �drag� in the case where explicit tunneling is ab-
sent. Finally, as 	bxx→�, both resistances go to zero, the
bilayer decouples, and bosons vanish from the system.

Our picture is certainly incomplete because it does not
explicitly include the effects of disorder �which must be very
relevant for the physics of bilayer in the regimes d� lB—a
simple way to see this is to look at the behavior of measured
counterflow resistances6,7 	xx

CF and 	xy
CF that enter the insulat-

ing regime very quickly after passing through �T=1�. Fertig
and Murthy21 provided a realistic model for the effects of
disorder and in their disorder-induced coherence network in
the incompressible phase of the bilayer, merons are able to
sweep by hopping across the system, causing the activated
behavior of resistance �dissipation� in counterflow. This find-
ing is consistent with our own.

At the end our picture is in the spirit of the Stern and
Halperin proposal13 but instead of the 1/2 compressible
phase coexisting in a phase separated picture with the super-
fluid phase ��1�, we assume the existence of the vortex
metal phase ��2�. This coincides with the proposal of Fertig
and Murthy21 for the incompressible region that explains the
“imperfect” superfluid behavior. It is the continuous extrapo-
lation of this phase separated picture that brings and favors
�2 for larger d / lB �instead of �1�. There �2 is able to ex-
plain the persistence of intercorrelations through enhanced
longitudinal drag accompanied by the absence of tunneling
and phase coherence.20

Finally, we are able to account for the effects of the layer
density imbalance in tunneling, drag,22 and counterflow23 ex-

periments. Spielman et al.22 observed that small density im-
balance stabilizes the resonant tunneling peak—a simple rea-
son for this is that �1 can easily accommodate the
fluctuations in density �see comment after Eq. �2��. Because
of the same reason, Hall drag resistance remains quantized
up to larger d / lB in the presence of density imbalance. On the
other hand, the enhancement of longitudinal drag resistance
at large d / lB was also reported9 to be insensitive to density
imbalance. While the reason for this cannot be seen only
from looking at the form of �2 �this state constrains both
fermion and boson numbers in two layers, see comment after
Eq. �4��, we believe that meron excitations are responsible
for absorbing the density fluctuations, especially at finite T.

Recently, the quantum Hall bilayer was probed using
resonant Rayleigh scattering24 for samples with different tun-
neling amplitudes and when the in-plane magnetic field is
present. They detected a nonuniform spatial structure in the
vicinity of the transition, suggesting a phase-separated ver-
sion of the ground state. Our results �for zero tunneling limit
and excluding disorder� hint that such phase separation may
indeed be necessary to invoke in order to achieve a full de-
scription of the strongly coupled, incompressible phase and
the transition in a bilayer.

VI. DISCUSSION AND CONCLUSION

In conclusion, we showed how two model states, �1 and
�2, can account for the basic phenomenology of the bilayer
that came up from various experiments.

A very interesting question pertains to the model state �2.
Effectively the state represents a collection of meron excita-
tions interacting through topological interactions. A question
comes when they are in a confined �dipole� phase and when
in a metallic �plasma� phase. So in principle we can expect
that the static correlator in Eq. �47� can be reproduced by
considering a two-dimensional �2D� bosonic model with
meron excitations interacting via 2D Coulomb plasma
interaction.25 Therefore we believe that the Laughlin ansatz26

of considering �static� ground-state correlators as statistical
models in 2D can also be applied here. We expect that the
ground-state correlators in a dual approach, in which we
switch from composite fermion to meron coordinates, can be
mapped to a partition function of a 2D Coulomb plasma.27

The 2D Coulomb plasma has two different phases. For large
� �inverse T�, the charges form dipoles and the system is
with long-range correlations �no mass gap�. At some critical
�, dissociation of dipoles occurs and we have a plasma phase
with a Debye screening, and therefore a mass gap. Thus,
calculations that will capture more of the meron contribution
than our RPA approach in the Chern-Simons theory may find
a transition and exponential decay of the correlator �Eq. �47��
before reaching the 	̄b=0 limit. Indeed, our ODLRO expo-
nent in Eq. �47� at 	̄b=0 is 1 which is well above the expo-
nent of the BKT transition or critical exponent 1 /4. At that
point our system may develop a gap in the pseudospin chan-
nel and completely lose interlayer coherence �exponential
decay of correlators�. Furthermore, we expect that the super-
fluid portion of the composite boson density will disappear
leading to compressible behavior in the charge channel.19
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This is all consistent with experiments9,20 which find that, at
d / lB�1.84, the vanishing of the conventional quantum Hall
effect and the system’s Josephson-like tunneling characteris-
tics occur simultaneously. Intercorrelated bosons continue to
exist without a superfluid property and lead to enhanced �
=1 drag at large d / lB. They disappear from the system
around d / lB�2.6.9
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APPENDIX

In order to extract the response functions in functional
integral formalism, one needs to integrate over all degrees of
freedom except those of the external fields. The integration
of these fields in the RPA proverbially reduces to the Gauss-
ian integral,

� d�z,z � �exp�− z � wz + u � z + vz � �

=
�

w
exp�u � v

w
, Re w � 0.

For the pseudospin channel in the case of �1 �Eq. �1��, we
therefore obtain the following linear response:

�00�k� =
1

�
���3VS + 2�� + 1� , �A1�

�01�k� = �10�k� =
1

�

− i�

k
K11�1 + �VS� , �A2�

�11�k� =
1

�
�2VS�1 − �VS��K11 −

	̄b

m
 + K11/K00 − 4�

	̄b

m
� ,

�A3�

where �� 1
4K00

−1−K11� 2�
k

�2, ���VS− m�2

2	̄bk2�−1
, and �=VS�1

−�VS�+2�.
The response functions in the case of the pseudospin

channel of �2 �Eq. �3�� are

�00 =
1

�
� k

2�
2

, �A4�

�01 = �10 =
1

�

ik

2�
� , �A5�

�11 =
1

�
��2 + ��2K11 −

2	̄b

m
− 16W4�2�	̄b

m�
4�� ,

�A6�

where W4�−
� m�2

2	̄b�2��2 �2

1
2K00

� k
2�

�2− m�2

2	̄b�2��2 +
2	̄b

m

, ��W4− m�2

2	̄b�2��2 −2K11

+VS� k
2�

�2, and ��4W4� 2�	̄b

m�
�2

−2K11.
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Nonperturbative approach to the quantum Hall bilayer
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We develop a nonperturbative approach to the quantum Hall bilayer �QHB� at �=1 using trial wave func-
tions. We predict phases of the QHB for arbitrary distance d and, our approach, in a dual picture, naturally
introduces a new kind of quasiparticles—neutral fermions. Neutral fermion is a composite of two merons of the
same vorticity and opposite charge. For small d �i.e., in the superfluid phase�, neutral fermions appear as
dipoles. At larger d dipoles dissociate into the phase of the two decoupled Fermi-liquid-like states. This
scenario is relevant for the experimental situation where impurities lock charged merons. In a translation
invariant �clean� system, continuous creation and annihilation of meron-antimeron pairs evolves the QHB
toward a paired phase. The quantum fluctuations fix the form of the pairing function to g�z�=1 /z�. A part of the
description of the paired phase is the two-dimensional superconductor i.e., BF Chern-Simons theory. The
paired phase is not very distinct from the superfluid phase.

DOI: 10.1103/PhysRevB.79.115319 PACS number�s�: 73.43.Nq, 03.65.Vf

I. INTRODUCTION

The quantum Hall bilayer at �=1 consists of two layers of
two-dimensional �2D� electron gases that are brought close
to one another in the quantum Hall regime of strong mag-
netic fields. When the distance between the layers is much
smaller than the average distance between electrons inside
each layer, inter- and intra-Coulomb interactions are about
the same. Then the expected �=1 state is the state of a single
layer filled lowest Landau level �LLL� generalized to two
species. There is obvious degeneracy in dividing electrons
into two groups which leads to the phenomenon of sponta-
neous symmetry breaking1 and the existence of a Goldstone
mode.2 The expected superfluid behavior was verified also
by very large zero-bias voltage peak in tunneling
conductance,3 but no clear evidence was found for finite tem-
perature Berezinskii-Kosterlitz-Thouless �BKT� transition4

in transport experiments.5

Therefore there is a need to systematically address the
question of superfluid disordering in the quantum Hall bi-
layer �QHB�. In particular there is a need to understand the
role of quantum disordering in this system that becomes im-
portant as the distance between the layers is increased. In
most of the previous work the starting point for the discus-
sion of the physics of the bilayer was the ground state �GS�
for very small distance between the layers as a mean-field
solution to which none or some corrections were
developed.4,6 We will take a nonperturbative approach in-
spired by the Laughlin solution of the �=1 /3 problem in
which we will uniquely determine possible wave functions
�WFs� for the GSs of the bilayer at an arbitrary distance.

There are two basic paradigms of superfluid disordering
that are known: �1� BKT �2D XY model� for which the tran-
sition proceeds via unbinding of dipoles of vortex-antivortex
pairs, and �2� � transition type �three-dimensional �3D� XY
model� for which the transition is characterized by a conden-
sation of vortex-antivortex loops.7

On the other hand, in this paper, through an analysis of
the allowed possibilities for homogeneous WFs as the dis-

tance is varied, we will identify two families of WFs and
relate them to the two ways of disordering the QHB super-
fluid mentioned previously. The families will be introduced
in Sec. II.

One family, as it will turn out does not include elementary
vortices—merons of QHB, in its description of superfluid
disordering. Merons are part of the description of the QHB
superfluid for small distances as is well known and well es-
tablished in Ref. 4. Therefore this family of �homogeneous�
WFs can be relevant only for dirty systems—systems with
impurities, which can lock merons due to merons being
charged quasiparticles. Then the only vortices that may par-
ticipate in superfluid disordering and on which description of
this family of WFs is based are neutral composites of two
merons of opposite charges—neutral vortices, and as we will
find fermionic quasiparticles that carry only layer degree of
freedom. We will show that the superfluid disordering of this
family can be understood through a Coulomb �fermionic�
plasma picture of dipoles of these neutral fermions. There-
fore this family we can consider as the one that exemplifies
the BKT way of superfluid disordering, our first paradigm.
This whole picture will be corroborated by the fact that the
WFs of this family do not incorporate quantum fluctuations
�Sec. IV� and, therefore, do not incorporate quantum disor-
dering that is based on merons. The family from the view-
point of a dual description �i.e., in terms of quasiparticles—
neutral fermions� will be analyzed in Sec. III.

The other family incorporates weak pairing among neutral
fermions and, as we will show, by assuming a special kind of
pairing agrees and correlates with the description of quantum
fluctuations of the usual superfluid disordering in a transla-
tory invariant system that one finds in other approaches
�field-theoretical�. It is expected that this kind of disordering
and pairing would lead to a charge-density wave �CDW�
solution.8 Still our general considerations open possibilities
for other kinds of weak pairing that can be present in this
quantum Hall system. The most likely candidate is the one
with pairing function g�z�� 1

z� that results in nontrivial cor-
rections �from quantum fluctuations and disordering� to the
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ground-state wave function as the distance is varied. In gen-
eral we expect that a weak pairing scenario will correspond
to the superfluid disordering of the usual superfluid in 2+1
dimension and therefore to the class of 3D XY, our second
paradigm. The family with weak pairing ansatz will be ana-
lyzed in Sec. IV.

With respect to the experiments, where impurities are nec-
essarily present and we can expect also inhomogeneous
ground-state solutions, our homogeneous candidates of the
first family �without neutral fermion weak pairing� are still
possible solutions for which transitions may proceed via dis-
sociation of dipoles—pairs of opposite vorticity neutral fer-
mions. In this sense and as will be more clear later, the
quantum phase transitions with respect to changing the dis-
tance in Refs. 9–11 correspond to this dissociation. On the
other hand, an analysis will show that in a translatory invari-
ant system meron excitations via their loop condensation
may produce an intercorrelated paired liquid state for the
neutral sector, if a transition to a CDW does not occur.

II. UNIVERSALITY CLASSES OF GROUND STATES

A. Introduction

A great deal is known from the experimental and theoret-
ical point of view of the QHB in the two extremes when the
distance between layers, d, is �1� much smaller or �2� much
larger than the magnetic length, lB= �� /eB�1/2, where B is the
magnetic field, the characteristic distance between the elec-
trons inside any of the layers. When d� lB, i.e., inter and
intra Coulomb interactions are about the same, the good
starting point and description is so-called �111� state,12

�111�z↑,z↓� = �
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓� ,

�1�

where zi↑ and zi↓ are two-dimensional complex coordinates
of electrons in upper and lower layer, respectively, and we
omitted the Gaussian factors. This is suggestive of the exci-
ton binding;13 any electron coordinate is also zero of the WF
for any other electron coordinate—the correlation hole is just
opposite to electron. This exciton description can be a view-
point of the phenomenon of superfluidity found in these
systems2,3 and is closely connected to the concept of com-
posite bosons �CBs� �Ref. 14� that can be used as natural
quantum Hall quasiparticles in this system. When d� lB we
have the case of the decoupled layers and the GS is a product
of single-layer filling factor 1/2 WFs; each describes a
Fermi-liquid-like state,15

�1/2�w� = P�Fs�w,w̄��
i�j

�wi↑ − wj↑�2� , �2�

where Fs is the Slater determinant of free waves of nonin-
teracting particles in zero magnetic field and P represents
projection to LLL. Underlying quasiparticles are composite
fermions �CFs�, the usual quasiparticles of the single layer
quantum Hall physics.

B. Two families—universality classes of wave functions

To answer the question of intermediate distances we may
try to, classically speaking, divide electrons into two groups,
one in which electrons correlate as CBs and the other as
CFs.16 The ratio between the numbers of CBs and CFs would
be determined by the distance between layers. The WF con-
structed in this way would need an overall antisymmetriza-
tion in the end, but also intercorrelations among the groups
as each electron of the system sees the same number of flux
quanta through the system �equal to the number of elec-
trons�. This requires that the highest power of any electron
coordinate is the same as the number of electrons in the
thermodynamic limit. If we denote by a line the Laughlin-
Jastrow factor �A,B�zA−zB� between two groups of electrons,
A and B �A ,B=CB ,CF�, the possibilities for the QHB
GSWFs can be summarized as in Fig. 1.

If we ignore the possibility of pairing between CFs �Ref.
17� denoted by wriggly lines in Figs. 1�c� and 1�d� we have
two basic families of the GSWFs depicted in Figs. 1�a� and
1�b�. The requirement that each electron sees the same num-
ber of flux quanta through the system equal to the number of
electrons �we are at �=1� very much reduces the number of
possible states—wave functions in the mixed CB-CF ap-
proach. We can consider, for example, the possibility �a�
depicted in Fig. 1 which stands for the following wave func-
tion in the LLL:

�1 = PA↑A↓��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

� Fs�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�Fs�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zp,↓ − wq,↑��
m,n

�zm↓ − wn↓�� , �3�

FIG. 1. Universality classes of wave functions.
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where A↑ and A↓ denote the overall antisymmetrizations. In
the thermodynamic limit, the relation between the number of
particles and flux quanta reads

N	
b = Nb↑ + Nb↓ + Nf↑ + Nf↓,

N	
f↑ = 2Nf↑ + Nb↑ + Nb↓,

N	
f↓ = 2Nf↓ + Nb↑ + Nb↓, �4�

where we denoted by N	
b and N	

f
 separately the number of
flux quanta that electrons that correlate as CBs and CFs see,
respectively, and Nb
 and Nf
 are the number of CBs and
CFs inside the layer 
, respectively �
= ↑ ,↓ is the layer
index�. The requirement constrains N	=N	

b =N	
f
, where N	

is the number of flux quanta through the system. �This leads
to the additional requirement Nf↑=Nf↓ which leaves Nb↑
−Nb↓ unconstrained, connected with the Bose condensation
phenomenon that the wave function should be part of.4,13,18�

The only additional way to count the flux quanta that
electrons see, with the �symmetric under ↑↔↓ reversal� ap-
plication of the Jastrow-Laughlin factors that we need to
have, is

N	
b↑ = Nb↑ + Nb↓ + 2Nf↑,

N	
b↓ = Nb↑ + Nb↓ + 2Nf↓,

N	
f↑ = 2Nf↑ + 2Nb↑,

N	
f↓ = 2Nf↓ + 2Nb↓, �5�

which leads to the possibility �b� �with constraints Nb↑=Nb↓
and Nf↑=Nf↓�. The intercorrelations in the first family in Fig.
1�a� are in the spirit of �111 correlations, and those in the
second family in Fig. 1�b� are in the spirit of the decoupled
state, �1/2��1/2, where we correlate exclusively inside each
layer.

C. Discussion

We can imagine a mixture of both intercorrelations �of
Fig. 1�a� and Fig. 1�b�� in a single wave function but these
mixed states, by their basic response,18 fall into one of the
universality classes depicted in Fig. 1. In Ref. 18 explicitly
such a mixture and possibility under name “generalized vor-
tex metal” was considered, in the scope of a Chern-Simons
�CS� theory, and it was proved that it does not support a
Goldstone �gapless� mode which was found to exist for the
state depicted in Fig. 1�a�. These generalized states belong to
the universality class of the state depicted in Fig. 1�b� for
which in the scope of the same theory we find in the low-
energy spectrum only a gapped collective mode.18

The Chern-Simons theory we mentioned neglects the
overall antisymmetrization built in the classes of Fig. 1. We
can justify this neglect �1� by taking a point of view that
stems from similar situations with quantum Hall states like
hierarchy and Jain’s constructions that in the low-energy sec-
tor can be considered as multicomponent systems19 �we will
argue later that the state of Eq. �3� can be mapped to a

hierarchy construction�, or �2� a posteriori because the re-
sults of the effective description of the classes in Fig. 1 are
quite sensible and are expected for the states we are familiar
with from numerics �the state in our Fig. 1�a� as analyzed in
Ref. 16�. �We do not ask this type of theory for detailed
answers anyway.� In this way it was found by us �Refs. 18
and 20�, examining the basic response in the pseudospin
channel in the random-phase approximation �RPA� of these
Chern-Simons theories that the states in Figs. 1�a� and 1�c�
represent superfluids, and the states in Figs. 1�b� and 1�d�
represent disordered superfluids, compressible and incom-
pressible, respectively. �Later, in a more complete study, we
will find that the states of Fig. 1�d� are also compressible in
the neutral channel.�

The two basic possibilities of connecting two extremes as
depicted in Fig. 1, i.e., without and with pairing of CFs, must
correspond to the two possible ways or paradigms that we
know of disordering a superfluid. We will substantiate this
claim further by examining the two superfluid constructions
�Figs. 1�a� and 1�c�� in more detail.

III. NEUTRAL FERMIONS AND BKT DISORDERING

A. Dual picture of the first family of wave functions with
neutral fermions

Let us write out the unprojected in the LLL version of the
construction in Fig. 1�a� �Eq. �3�� in the following way:

�1 = A↑A↓��111�z↑,z↓��1/2�w↑��1/2�w↓�

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zi↓ − wq↑��
m,n

�zm↓ − wn↓�� , �6�

where, as before, z
’s and w
’s denote coordinates of elec-
trons belonging to the layer with index 
 and A↑ and A↓, as
before, stand for the antisymmetrizations. Using S↑ and S↓
symmetrizers inside each layer, the same function, �1, can
be written as

�1 = S↑S↓��k�l
�wk↑ − wl↑��p�q

�wp↓ − wq↓�

�i,j
�wi↑ − wj↓�

�Fs�w↑�Fs�w↓���111, �7�

where �111 denotes the Vandermonde determinant �Slater
determinant in the LLL� of all coordinates in which all
groups equally participate.

By using the expressions for the densities of electrons in
each layer, �
���=	i

2��−zi

�, here now z
’s denote all

electrons of the layer 
, we can rewrite the wave function in
the following way:
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�1 =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�

�Fs��↓��↑��1↑� ¯ �↓��n↓��111�z↑,z↓� , �8�

where n is the total number of electrons that correlate as CFs.
The equality is exact; any time we have in the product of �’s
the same layer electron coordinate more than once, the
Laughlin-Jastrow factors of �’s in the same layer force the
wave function to become zero. The expression in Eq. �8�
reminds us of a dual picture in terms of some quasiparticles
with � coordinates as in Ref. 21. Certainly we are not de-
scribing the incompressible physics of a Laughlin state
where quasihole operators of coherent states span the basis
of low-energy physics and allow the description in terms of
wave functions of quasiholes �dual picture�.21 Nevertheless
we will argue that we can delineate a sector �find a subspace�
to which constructions �Eq. �8� where n is arbitrary� belong,
which is spanned by a quasiparticle basis of some neutral
fermionic quasiparticles.

To find those quasiparticles we will rewrite Eq. �8� as

�1 =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�Fs��↓�

��exp�i	��1↑ ¯ �n↓��↑��1↑� ¯ �↓��n↓��111�z↑,z↓� ,

�9�

where exp�i	��� factor denotes the phase part of the
Laughlin-Jastrow factors in front of the Fermi seas in Eq.
�8�. With respect to Eq. �8� we are allowed to take for defi-
niteness that the phase factor always vanishes when any of
two �’s �or more� from the same layer coincide.

Our first question may be why states as

�↑��1↑� ¯ �↓��n↓��111 � �b��1↑, . . . ,�n↓� �10�

would not make a bosonic basis. We look for the following
overlap:


 dz1↑¯
 dzN↓�b��1↑� , . . . ,�n↓� ��b��1↑, . . . ,�n↓� .

�11�

In the expansion of the density sums we may get

2��1� − z1
↑�2��2� − z1

↑�2��1 − z1
↑�2��2 − z2

↑� ¯ , �12�

which would lead to the following contribution after z inte-
gration:

2��1� − �2��
2��1 − �1����1 − �2�2exp�−

1

2
���1�2 + ��2�2��

�
1

��1 − �2�2
exp�1

2
���1�2 + ��2�2��¯ . �13�

The last term, before the dots, comes after the integration
over z’s that do not participate in the delta functions. As
usual21 the term is the result of the screening of plasma
which we find in the plasma analogy of �111 state in its
charge channel. The term exactly cancels the preceding one
�it is equal to its inverse� and the same cancellation will
happen for any pair of �’s �in the place of . . .� that in remain-
ing z integration have the role of impurities �of charge one�
in the plasma of remaining z’s. This is very good because of
our goal to find basis states and leaves us to consider only
delta functions in the contribution. But we can see immedi-
ately in Eq. �13� that ��1�−�2�� spoils our goal that the states
mimic a Fock basis of bosonic particles. Therefore as candi-
dates for basis states we should consider fermionic states,

��1↑ ¯ �n↓� =
1

�n ! �N

n
� exp�i	��1↑ ¯ �n↓�

� �↑��1↑� ¯ �↓��n↓���111� �14�

for which we cannot get contributions of the type in Eq. �13�
because the phase part does not allow two �or more� quasi-
particles to coincide. �Eq. �14� represents a fermionic state
for � quasiparticles because of the phase part introduced in
Eq. �9� which is antisymmetric under the exchange of �’s.�
Therefore we should consider fermionic states in Eq. �14�
because of the previously found nondesirable terms in the
bosonic case �we are looking for quasiparticles and their ba-
sis states that would have features of the Fock space basis�:
the terms like the one with ��1�−�2�� in Eq. �13� lead to the
absence of orthogonality of these states, which we would
like to represent coordinate basis states in the bosonic case
and that can be mended by taking fermions—then these
terms are absent. By a similar analysis which lead to Eq.
�13�, considering various possibilities for delta function con-
tributions of density operators we can find that the leading
most singular and coherent behavior of the states defined in
Eq. �14� is

��1↑� ,�2↑� ¯ �n↓� ��1↑,�2↑ ¯ �n↓� → 2��1↑� − �1↑�

�2��2↑� − �2↑� ¯ 2��n↓� − �n↓� − 2��1↑� − �2↑�

�2��2↑� − �1↑� ¯ 2��n↓� − �n↓� + ¯ . �15�

The rest of contribution constitute incoherent phase factors
with fewer number ��n� of delta functions but of the same
kind as in the leading behavior. We cannot prove that the
states make exactly a Fock space of neutral fermionic quasi-
particles, i.e., we do not have an exact equality in Eq. �15�,
but they stand fairly close to that status. In other words we
do not have the exact equality in Eq. �15�, i.e., equality to
delta functions only �appropriately antisymmetrized�, but we
have in addition some finite contributions which cannot
change the fact that the overlap is singular—at its maximum
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when ��’s and �’s coincide. Therefore quasiparticles are not
pointlike fermionic quasiparticles �one certainly cannot ex-
pect that from quasiparticles in a strongly correlated system�;
they are extended, but clearly the overlap has the singular
contribution of antisymmetrized delta functions which points
out that we are fairly �to a good extent� close to the fermionic
Fock basis description. Even in the Laughlin case we cannot
prove the exact LLL delta function overlaps of coherent
states of quasiholes. The quasiparticles are neutral because in
the construction of the states there is no net magnetic flux
through the system. See Eq. �14� and the definition of the
phase factor in Eq. �9� with Eq. �8�.

Now that we know basis states just by looking at Eq. �9�
we can read out the GSWF in the dual picture in terms of
neutral fermions,

�dual��� =
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�Fs��↓� .

�16�

This is a wave function of a 2D Coulomb fermionic plasma.
In the literature 2D Coulomb fermionic plasma with same
charge particles is fairly known and explored.22,23 It is a dy-
namical system of fermionic particles in 2D that interact with
the long-range ��−ln�r� interaction. As shown in Ref. 22
the Jastrow factor of the type �i�j�zi−zj�� �� proportional to
the interaction coupling constant�, together with multiplying
Slater determinant of free waves, describes the ground-state
function in the long-distance limit. In our case we have a
generalization of such a system to the one with opposite
charges. Assuming that the concentration of particles is not
large, which is the case of interest to us, we then expect the
dipole configurations of particles that the wave function in
Eq. �16� describes.

B. Discussion

Merons are true elementary vorticity quasiparticles of the
translatory invariant QHB system at least for small distances
between layers as shown in Ref. 4 and carry both charge and
vorticity. Therefore the neutral fermion basis that we de-
scribed can be a complete basis for the ground-state evolu-
tion of the QHB in the nontranslatory invariant case in which
merons by their charges are bound to impurities.

The wave function in Eq. �16� describes the superfluid
state in Fig. 1�a�. It encodes dipole positioning of opposite
vorticity �layer index� neutral fermions. With increasing dis-
tance there are more dipoles of neutral fermions and they are
expected to be less tightly bound as in the description of a
BKT disordering of a 2D system with increasing tempera-
ture. Therefore we do not find quantum fluctuations in this
case. This will be explicitly shown by calculations in the
following section �see also Appendix A�.

In the superfluid phase, with respect to merons, a neutral
fermion dipole should be in essence a superposition of qua-
drupolar combinations of merons—two dipoles which come
in pairs but at arbitrary distance as illustrated in Fig. 2. In
this way, as special configurations of dipoles, neutral fermi-

ons, we expect, constitute the lowest lying states of the
QHB—�pseudo�spin or phonon waves.2,14

If neutral fermions may be considered as eigenstates they
must lie very high in spectrum; like electrons in fractional
quantum Hall states they constitute the physics of �1 but
their wave function Eq. �16� describes a highly correlated
state.

The dual expression of Eq. �16� was derived under as-
sumption of the screening properties in the charge channel of
the particles participating in the plasma analogy based on
�111 state. As the distance is increased there are less of them
and the breakdown of the description in terms of dipoles of
neutral fermions at smaller distances becomes a possibility.
We expect that due to impurities there will be patches �is-
lands� of dissociated neutral fermions.24

IV. QUANTUM FLUCTUATIONS AND QUANTUM
DISORDERING

A. Introduction

The two paradigms-models of superfluid disordering as
applied to our 2+1 dimensional system mean that the time
evolution is such that �1� meron-antimeron pairs are locked
on impurities or �2� created and annihilated at some later
time and therefore making a loop in time. The loops in time
signify the presence of quantum disordering.7 We will dis-
cuss and detect the presence of quantum disordering in the
WFs of class �c� in Fig. 1 by examining how they relate to
and incorporate ordinary �not quantum disordering that in-
volves merons-vortices� quantum fluctuation phonon contri-
bution in this case.6,8 We will find that the WFs of class �a�
in Fig. 1 do not have this contribution.

B. Quantum fluctuations due to phonons and quantum
disordering

The usual14 CS field theory approach8 in the RPA to the
bilayer problem at �=1 �which in the neutral channel reduces
just to the problem of ordinary superfluid with only phonon
description and contribution� finds the following correction
to the �111 state:

�PH = exp�−
1

2	
k

�V−�k�
�E

k
�k

−�−k
− ��111, �17�

where �k
−=�k

↑−�k
↓, V−�k�=

V↑↑�k�−V↑↓�k�
2 , V↑↑= 2�

k , V↑↓= 2�
k exp�

−kd, i.e., V−�k� is the interaction in the neutral channel, �E

FIG. 2. The quadrupolar configurations of merons that make
neutral fermion pair. Compare the same configuration of Laughlin
quasiparticles as a description of “magnetophonon” branch in the
Laughlin case in Ref. 14.
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= �̄
m , where m is the electron mass and �̄ is the uniform total

density. In the small d limit V−�k�=�d and we can expand
the expression �PH as

�PH = �111 − �	
k

c�d

k
�−k

− �k
−��111 + ¯ , �18�

where c is a positive constant. The terms after the first one
represent corrections, in the order of importance, to the �111
ansatz as d increases.

On the other hand the WFs of Fig. 1�c� are more general
as they suggest the form of the correction terms of wider
class than the one used in the expansion �Eq. �18�� with only
exception that the class demands equal number of �k

↑’s and
�k

↓’s because in writing down the classes of Fig. 1 we explic-
itly distinguished ↑’s from ↓’s and fixed the number of ↑’s
and ↓’s.

We can start comparing and relating the first phonon cor-
rection, i.e.,

�	
k

1

k
�−k

↑ �k
↓ �19�

to a wave function of two neutral fermions �↑ from ↓�, i.e.,
density operators as in Eq. �8� but with a pairing between
them as in class Fig. 1�c�.

Without pairing we would have


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�
�↑��1↑��↓��2↓� , �20�

which is identical to zero �no correction� as can be found out
in Appendix A. This is an important result and shows that
there are no quantum fluctuations in the first family of WFs
discussed in Sec. III. Besides this analytical proof, our state-
ment is further corroborated by the fact that the computer-
generated two neutral fermion state also does not exist—see
Ref. 16.

Therefore we continue by considering


 d2�1↑
 d2�2↓
1

��1↑ − �2↓��
�↑��1↑��↓��2↓� , �21�

where �=1 if we take g�z�=� z
z� for the pairing function or

�=2 if g�z�= 1
z� For �=1 the expression in Eq. �20� reduces

to the form of the first phonon contribution in the long-
distance limit with the 1

k singularity �see Appendix A� and
for �=2 this singularity softens to �−ln�klB where lB is the
magnetic length �see Appendix A�. We will consider only
these most weakly pairing cases; the case g�z�= 1

z does not
produce correction as can be seen in Appendix A.

Next we consider more than two density operator con-
structions, i.e., more than two neutral fermions constructions
as in Eq. �8� but instead of the two decoupled Fermi seas we
have a pairing between neutral fermions,

�2
n =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

�Det�g��↑ − �↓��↑��1↑� ¯ �↓��n↓��111�z↑,z↓� ,

=
 d2�1↑¯
 d2�n↓Det� 1

�↑ − �↓
�

�Det���↑ − �↓

�↑
� − �↓

�� � �↑��1↑� ¯ �↓��n↓��111�z↑,z↓� ,

�22�

where in the second expression we used the Cauchy deter-
minant identity, i.e.,

�k�l
��k↑ − �l↑��p�q

��p↓ − �q↓�

�i,j
��i↑ − � j↓�

= Det� 1

�↑ − �↓
�

�23�

and substituted the pairing function that has lead us to the
first phonon correction for two paired neutral fermions. Im-
mediately we can see that the diagonal terms in which pairs
of the two determinants are the same would make further
phononlike corrections, i.e., their superposition with appro-
priate coefficients would lead to

exp�− 	
k

cd

k
�−k

↑ �k
↓��111. �24�

The other nondiagonal terms would lead to more compli-
cated constructions of four and more neutral fermions that
should participate in the description of quantum disordering,
i.e., describe the physics beyond phonon contribution �24�.
Although in some sense we are talking just about a class �a
pool� of wave functions that should describe quantum disor-
dering we can fix general form, at least for small d, of the
superposition that should completely model the ground state
at fixed d

�0 = 	
n=0,2,. . .

�2
ncn. �25�

In the long-distance limit �25� should tend to Eq. �24�. In
other words nondiagonal terms in Eq. �22� should be sub-
leading to the leading behavior in Eq. �24�. That this is true
from the physical point of view we expect that it is enough to
prove the subleading behavior in the case of four neutral
fermions ��2

4� and that can be found in Appendix B. The
proof is based on the smallness of higher-order terms that
may appear inside the brackets in Eq. �24�. This is assumed
in the RPA approach and expected in the small d limit.

Therefore the quantum Hall physics besides g�z�=� z
z�

pairing possibility brings or allows the possibility of g�z�
= 1

z� pairing that introduces nontrivial quantum corrections,
i.e., brings another kind of quantum disordering. The g�z�
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=� z
z� accommodates the usual �on the level of RPA� super-

fluid description in which we may expect that the disordered
phase will break translation symmetry. Indeed, the bosonic
CS field theories that are not based on quantum Hall WFs
give this scenario of the disordered phase as a charge-density
wave.8 It seems, therefore, there are two possible scenarios
for superfluid disordering not in the BKT class for the bilayer
in the translation symmetry invariant case �without impuri-
ties�. In the following we will discuss the second possibility
with g�z�= 1

z� kind of pairing.

C. Weak pairing g(z)È 1
z� case and conformal field theory

considerations

We expect, if the translational symmetry of the ground
state remains unbroken, that also in the case of pairing g�z�
= 1

z� the translatory invariant system smoothly evolves with
the increase in d into the class of wave functions in Fig. 1�d�.
We would like to know more about this class—whether it
represents a distinct phase. If we take the choice g�z�= 1

z� and
examine the final form of the state of Fig. 1�d� when there
are no CBs, we are lead to its following forms:

�2 = Det� 1

zi↑
� − zj↓

� ��
i�j

�zi↑ − zj↑�2�
k�l

�zk↓ − zl↓�2

= Det� 1

zi↑
� − zj↓

� �Det� 1

zk↑ − zl↓
��111, �26�

where to get the last line we used the Cauchy determinant
identity. The neutral part of �2 �not carrying a net flux
through the system as �111 does� that consists of the two
determinants can be viewed as a correlator of vertex opera-
tors of a single nonchiral bosonic field. According to25 con-
formal field theory �CFT� correlators not only describe quan-
tum Hall system WFs but also can be used to find out about
excitation spectrum and connect to its edge and bulk theo-
ries. In this way motivated neutral excitations are vertex op-
erators that correspond to single-valued WF expressions that
multiply �2,

exp�i1	�w,w�� →
�i

�zi↑ − w�21

�i
�zi↓ − w�21

, �27�

exp�i2��w,w�� →
�i

�zi↑ − w�2

�i
�zi↑

� − w��2

�i
�zi↓

� − w��2

�i
�zi↓ − w�2

,

�28�

where 	�w ,w��=	�w�+	�w��, ��w ,w��=	�w�−	�w��, and
	�w� and 	�w�� are holomorphic and antiholomorfic parts of
the bosonic field, respectively. 2 must be 1

2 because of the
requirement of single-valuedness. For detailed explanations
of the bosonic CFT analogies see Appendix C.

If the low-lying spectrum were consisting only of 1= 1
2

and 2= 1
2 quasiparticle excitations our system would be de-

scribed by so-called BF Chern-Simons theory or the theory
of 2D superconductor.26 The mutual statistics of

quasiparticles-quasiparticles and vortices in this theory is
semionic �due to the fact that vortices carry half-flux � h

�2e�c �
quantum� and that this is also the case with our excitations
can be easily checked via CFT correlators—see Appendix C.
Combining the analysis with the charge part ��111� in which
only charge 1 excitations are allowed �half-flux quantum ex-
citations are strongly confined27� we may come to the con-
clusion that the degeneracy of the system GSs on the torus
must be 4 �Refs. 26 and 28� But the expression for the first
kind of excitations �Eq. �27�� allows a real continuum for the
value of 1 exponent including 1=0, and therefore we ex-
pect a compressible �gapless� behavior of the system despite
the incompressibility of the charge channel and seemingly
topological phase behavior in the neutral sector. Nevertheless
we expect that in our case BF CS theory is a part of the
description of the pairing phase in a Lagrangian in which
there is a quadratic nonderivative term in one of the two
gauge fields; this allows a branch of gapless excitations—see
Appendix C for details.

The question may come why we did not do an analysis
with the projection to the LLL. Certainly the analysis is more
involved where “reversed flux part,” i.e., complex conju-
gated determinant becomes an operator that acts on the rest
of wave function. Nevertheless, an analysis of the edge ex-
citation spectrum29 suggests that it cannot conform to any
description of simple free CFT theories, i.e., cannot belong
to a totally incompressible class, and it is very likely that the
system is, as it follows from our unprojected analysis, com-
pressible in the neutral channel. Therefore it is very hard to
distinguish the physics of the states in Figs. 1�c� and 1�d� in
the translatory invariant system that involve pairing of the
type g�z�= 1

z� .
While we were finishing the writing a numerical study �of

homogenous WFs in the translatory invariant case�
appeared30 that agrees with and complements our conclu-
sions on the nature of pairing.

V. CONCLUSIONS

In conclusion, we presented two families of wave func-
tions that describe two possible ways of homogeneous disor-
dering of the quantum Hall superfluid with their detailed
description on the basis of the dual �quasiparticle� picture of
the quantum Hall effect. We also presented detailed analysis
of the disordering in the translation invariant system on the
basis of insights into the pairing function of quasiparticles-
neutral fermions. A class of candidate wave functions was
clearly connected with the formalism that we find in other
�Chern-Simons� theories, and the pairing function g�z�� 1

z�

was extracted as a clear choice that incorporates quantum
disordering and that will describe the system if it does not
transform into a CDW �charge-density wave� inhomoge-
neous solution.
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APPENDIX A

We want to prove


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�
�↑��1↑��↓��2↓� = 0. �A1�

After switching to the Fourier space, �
���=	k�k

 exp�ik��� ,

the left-hand side �l.h.s.� becomes

2�	
k

 d2�

1

�
exp�ik��� �k

↑�−k
↓ . �A2�

The angle part of the integration with the help of the table
integral31



0

�

exp�i� cos xcos�nx = in�Jn��� �A3�

yields


 d2�
1

�
exp�ik���  = 


0

�

dr�i�J1�kr� − i�J1�− kr��

= �− �
i�

k



0

�

dr�dJ0�kr�
dr

+
dJ0�− kr�

dr
�

= i
2�

k
, �A4�

where we used notation �k��=k and in the last line the identity
for the Bessel functions: J0�=−J1. On the other hand


 d2�
1

�
exp�− ik���  = − i

2�

k
, �A5�

and therefore Eq. �A2� can be written as

�	
k
�
 d2�

1

�
exp�ik��� �k

↑�−k
↓ � +
 d2�

1

�
exp�− ik��� �−k

↑ �k
↓

= i2�2	
k

1

�k��
��k

↑�−k
↓ − �−k

↑ �k
↓� = 0 QED. �A6�

Next we want to evaluate


 d2�1↑
 d2�2↓
1

��1↑ − �2↓��
�↑��1↑��↓��2↓� . �A7�

Again this reduces in the Fourier space to

2�	
k

 d2�

1

����
exp�ik��� �k

↑�−k
↓ . �A8�

In the case of �=1 as usual for the real Coulomb interaction
in 2D the integral is


 d2�
1

���
exp�ik�r� = 2�


0

�

drJ0�kr� =
2�

k
. �A9�

In the case of �=2 we have


 d2�
1

���2
exp�ik�r� = 2�


0

�

dr
J0�kr�

r
. �A10�

The integral needs a cutoff at small distances �otherwise di-
verges� which should be included in our effective description
and as usual can be taken to be lB �magnetic length distance�.
Therefore, instead of Eq. �A10� we have

2�

0

�

dr
rJ0�kr�
r2 + lB

2 = 2�K0�lBk� . �A11�

In the small momentum limit we can approximate

K0�z� � − ln� z

2
� + o�z� �A12�

and therefore our first phononlike correction in this case of
pairing is

	
k

�− �ln�klB�k
↑�−k

↓ . �A13�

For the case of pairing g�z�= 1
z we have


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�2�↑��1↑��↓��2↓� , �A14�

which reduces to the solving of the following Fourier trans-
form


 d2�
1

�2exp�ik���  . �A15�

With the help of Eq. �A3� we have for the value of the
integral



0

�

dr
1

r
�− �J2�kr� − �J2�− kr� . �A16�

We may use the table integral31



0

� J��ax�
x�−q dx =

�� 1
2q + 1

2�
2�−qaq−�+1��� − 1

2q + 1
2� �A17�

for −1�Req�Re�− 1
2 to find out that the value of the inte-

gral does not depend on k, i.e.,


 d2�
1

�2exp�ik�r� = − � . �A18�

Therefore the phononlike correction in this case is propor-
tional to

�	
k

�k
↑�k

↓��111 �A19�

and in the real �coordinate� space this becomes


 d2��↑����↓����111 = 	
i,j

 d2�2�� − zi↑�2�� − zj↓��111

= 	
i,j

2�zi↑ − zj↓��111 = 0, �A20�

i.e., no correction at all.
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APPENDIX B

We consider nondiagonal �nonphononlike� corrections
that come from the description of quantum disordering by
the class of WFs in Fig. 1�c� when the pairing is fixed to be
g�z�=� z

z� , i.e., nondiagonal terms of Eq. �22� with n=4. We
want to prove the subleading behavior with respect to the
diagonal terms as the one with �1↑��1, �3↑��3, �2↓��2,
and �4↑��4 in


 d2�1
 d2�3
 d2�2
 d2�4
1

��1 − �2�
1

��3 − �4�

� �↑��1��↑��3��↓��2��↓��4� = �	
k

�2��2

k
�k

↑�−k
↓ �2

�B1�

of the following nondiagonal term


 d2�1
 d2�3
 d2�2
 d2�4
1

��1 − �2�
1

��3 − �4�

����1 − �4�
��1

� − �4
��

��3 − �2�
��3

� − �2
��

�↑��1��↑��3��↓��2��↓��4� .

�B2�

The nondiagonal terms by their forms should describe differ-
ent processes from the phonon contributions, i.e., from those
as ��k1

↑ �−k1

↓ �¯ ��kn/2
↑ �−kn/2

↓ � for arbitrary k’s. In the long-
distance approximation we will argue that the nondiagonal
term �Eq. �B2�� carry less importance that the phonon con-
tribution with the same number of density operators.

Introducing �=�1−�4 , �̃=�3−�2 , �−=�1−�3 and �+
=�1+�3 we can rewrite Eq. �B2� as

	
k1,k3,k̃,k


 d2�
 d2�̃
 d2�−
 d2�+
1

��− + �̃�
1

�� − �−�

�� ��̃

���̃�
exp�i�1k�1exp�i�3k�3

�exp�i�1

2
�� + −

1

2
�� − − �̃��k̃��

�exp�i�1

2
�� + +

1

2
�� − − ���k���k1

↑ �k3

↑ �
k̃

↓
�k

↓. �B3�

The �+ integration brings the constraint k� + k̃� +k�1+k�3=0.
Then the remaining �− integration gives the following con-
tribution:


 d2�−
1

��− + �̃�
1

�� − �−�
exp�i

�� −

2
�k�1 − k�3 − k̃� + k���

= − i
2�

�k� + k�3�

1

� + �̃
�exp�i�̃� �k�3 + k̃�� − exp�− i�� �k�3 + k̃��� ,

�B4�

where we used the constraint. Therefore the contribution is
proportional to

	
k3,k̃,k

1

�k� + k�3�

 d2�
 d2�̃

1

�� + �̃�
� ��̃

���̃�

��exp�i�̃� �k�3 + k̃�� − exp�− i�� �k�3 + k̃���

�exp�− i�̃k̃exp�− i�k�
−k̃−k−k3

↑
�k3

↑ �
k̃

↓
�k

↓. �B5�

In the long-distance limit �k� +k�3�→0 but that does not cancel
the part of the 2D volume in the integration measure like in
the phonon contribution �that would damp the contribution�
but is canceled by the difference of the exponentials in the
same limit in Eq. �B5�. There is only one more factor, i.e.,

1
�+�̃ that can bring the momentum inverse contribution but

this only enforces k� k̃, i.e., ��k
↑�−k

↓ �2 without a significant
coefficient. This will only give the next order contribution
inside the brackets in Eq. �24� which for small d, and as
usual in the RPA approach, we can neglect.

APPENDIX C

We will give a more general view of the CFT analogies of
so-called32 doubled CS theories to which BF CS theory be-
longs. In the work of Freedman et al.32 BF CS theory was
classified as the low-energy theory of the deconfined phase
of Z2 gauge theory. There also SU�2�1�SU�2�1 doubled CS
theory was considered. For the detailed description of these
theories the reader should consult Refs. 26 and 32. Here we
will, by writing down relevant CFT correlators, demonstrate
the analogies between nonchiral-complete CFTs and these
doubled CS theories.

First we will consider SU�2�1�SU�2�1 case. The possible
wave function with coordinates of two species z1↑ , . . . ,zN↓,
for which there are equal number of ↑’s and ↓’s: N↑=N↓ and
N↑+N↓=N, is

� =
�k�l

�zk↑ − zl↑��p�q
�zp↓ − zq↓�

�i,j
�zi↑ − zj↓�

=
�k�l

�zk↑ − zl↑�p�q
�zp↓ − zq↓

�i,j
�zi↑ − zj↓�

�
�k�l

�zk↑
� − zl↑

� �p�q
�zp↓

� − zq↓
�

�i,j
�zi↑

� − zj↓
�

. �C1�

We use the following correlator of vertex operators of a
bosonic field 	:

�exp�i�	�z1,z1
��exp�− i�	�z2,z2

��� =
1

�z1 − z2�2�2 .

�C2�

If �= 1
�2

we can rewrite our wave function as

� = �exp�i�	�z1,z1
��exp�i�	�z2,z2

�� . . . exp�− i�	�zN,zN
� �� ,

�C3�

and define
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	�z,z�� = 	�z� + 	�z�� , �C4�

��z,z�� = 	�z� − 	�z�� . �C5�

Inserting a neutral pair �w1 and w2� of exp�i1	�w ,w�� ver-
tex operators or exp�i2	�w ,w�� vertex operators we can
conclude that these insertions correspond to multiplying the
wave function � �Eq. �C1�� by

exp�i1	�w,w�� →
�i

�zi↑ − w�21�

�i
�zi↓ − w�21�

, �C6�

exp�i2��w,w�� →
�i

�zi↑ − w�2�

�i
�zi↑

� − w��2�

�i
�zi↓

� − w��2�

�i
�zi↓ − w�2�

.

�C7�

�The general formula for the many vertex correlator can be
found, for example, in Ref. 33.� The single-valuedness of the
WFs demands 2= 1

�2
. If we take also 1= 1

�2
=2= then

�exp�i	�w1,w1
��exp�− i	�w2,w2

��

�exp�i��w3,w3
��exp�− i��w4,w4

���

=
1

�w1 − w2�22

1

�w3 − w4�22

�
�w1 − w3�2

�w1
� − w3

��2

�w2 − w4�2

�w2
� − w4

��2

�w1
� − w4

��2

�w1 − w4�2

�w2
� − w3

��2

�w2 − w3�2 ,

�C8�

and the mutual statistics between any of two particles of
different kinds �Eq. �13�, �14�, �23�, and �24�� is fermionic.
To see that, for example, for Eq. �13� pair we send 2 toward
4 and switch w1 and w3 coordinates.

In our case of the quantum Hall bilayer,

�� =
�k�l

�zk↑ − zl↑�2�p�q
�zp↓ − zq↓�2

�i,j
�zi↑ − zj↓�2

= Det� 1

zi↑
� − zj↓

� �Det� 1

zk↑ − zl↓
� , �C9�

The same analysis as above will fix �=1 and = 1
2 so that in

this case the mutual statistics is semionic just as it should be
in the BF CS field theory.

The BF CS theory of a 2D superconductor is26

1

�
����b���a� − a�j� − b� j̃�, �C10�

where a� and b�, �=0,1 ,2 are gauge fields; the first term is
the CS term and j� and j̃�, �=0,1 ,2 represent quasiparticle
and vortex density currents. The Lagrangian encodes in the 1

�
coefficient mutual semionic statistics between the two exci-
tations in 2D superconductor—any time quasiparticle en-
circles vortex it gets the Bohm-Aharonov phase � because
vortex corresponds to the half-flux quantum excitation in the
paired system. Higher order in derivatives, i.e., Maxwell
terms ����a�2 and ����b�2 are present in the description
of the ordinary �s wave� gapped 2D superconductor and can
describe the plasmon modes that are gapped—see Ref. 26. In
our case, because from CFT analogies �Eqs. �C6� and �C7��
we find that 1 can be continuous and correspond to a branch
of gapless excitations, we expect a quadratic in one of the
gauge fields, without derivatives, term to describe such a
behavior. For example, if we add a term quadratic in b �b�b�

with the ���a�2 Maxwell term present� our classical equa-
tions of motion will be: �a=0 and ��b=0. They describe
gapless behavior �Goldstone mode� in one gauge field and
associated quasiparticle description, and incompressible be-
havior in the other.

�The SU�2�1�SU�2�1 theory can be described by the fol-
lowing Lagrangian

1

2�
����b���a� − a�j� − b� j̃�, �C11�

and we see explicitly mutual fermionic statistics.�
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Fractional quantum Hall state at �= 1
4 in a wide quantum well
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We investigate, with the help of Monte Carlo and exact-diagonalization calculations in the spherical geom-
etry, several compressible and incompressible candidate wave functions for the recently observed quantum
Hall state at the filling factor �=1 /4 in a wide quantum well. The quantum well is modeled as a two-
component system by retaining its two lowest subbands. We make a direct connection with the phenomeno-
logical effective-bilayer model, which is commonly used in the description of a wide quantum well and we
compare our findings with the established results at �=1 /2 in the lowest Landau level. At �=1 /4, the overlap
calculations for the Halperin �5,5,3� and �7,7,1� states, the generalized Haldane-Rezayi state and the Moore-
Read Pfaffian, suggest that the incompressible state is likely to be realized in the interplay between the
Halperin �5,5,3� state and the Moore-Read Pfaffian. Our numerics show the latter to be very susceptible to
changes in the interaction coefficients, thus indicating that the observed state is of multicomponent nature.

DOI: 10.1103/PhysRevB.79.245325 PACS number�s�: 73.43.Cd, 73.21.Fg, 71.10.Pm

I. INTRODUCTION

Advances in fabrication of high-quality GaAs semicon-
ductor systems have led to an ever growing collection of the
observed incompressible fractional quantum Hall states in a
variety of settings.1 These states occur at particular ratios
between the number of electrons N and the number of mag-
netic flux quanta N� that pierce the system in the direction
perpendicular to the sample. This commensurability can be
expressed as the filling factor �=N /N�= p /q in terms of in-
tegers p , q, which is the single most important quantity that
characterizes the quantum Hall state.

In a thin layer, q usually turns out to be an odd integer, the
fact which had its pioneering explanation in terms of the
Laughlin wave function2 for the case of p=1, q
=3,5 ,7 , . . . and its subsequent generalizations in terms of
composite fermions3 �CFs�, applicable to general integers
p ,q as long as q is odd, and hierarchy theory.4 However, a
state with an even denominator has also been observed5 but
in the first excited Landau level �LL�. One cannot account
for it in the usual Laughlin/composite fermion approach and
the idea of pairing has commonly been invoked to explain
the origin of this fraction.6,7 The simplest realization of pair-
ing between spin-polarized electrons is the so-called Pfaffian
defined by the Moore-Read wave function7 and supporting
excitations with non-Abelian statistics.8

The possibility of an extra degree of freedom lifts the
requirement of Fermi antisymmetry and hence gives another
route toward realizing even denominator fractions. The addi-
tional degree of freedom can be the ordinary spin or else a
“pseudospin” in case of a wide quantum well, where the two
lowest electronic subbands correspond to ↑ , ↓. If the sample
is etched in such a way to create a barrier in the middle, thus
supressing tunneling between the two “sides,” one can think
of it as a bilayer with ↑ , ↓ denoting the left and right layers
where electrons can be localized. Incompressible quantum
Hall states for such systems have been theoretically predicted

in Ref. 9 and experimentally confirmed for cases of bilayer at
filling factor �=1 and �=1 /2.10,11 Later on, essentially the
same quantum Hall state at �=1 /2 was observed in a sample
which had the geometry of a single wide well.12 It was ar-
gued, on the basis of a self-consistent Hartree-Fock approxi-
mation, that in a wide well the electrons �due to their mutual
repulsion� reorganize themselves so as to form an effective
bilayer distribution of charge. Hence, an equivalence be-
tween the two very different samples was claimed and theo-
retical works set out to analyze the problem from this
premise.13,14

On the basis of the quantum mechanical overlap with the
ground state obtained in exact diagonalization �ED�, includ-
ing a realistic bilayer confinement potential, Ref. 13 estab-
lished that the ground state is well described by the so-called
�3,3,1� Halperin wave function.15 This wave function distin-
guishes between two kinds of electrons and the fact that it
describes the system is what we mean by the system being
“multicomponent.” Experimental work gave further insight
into the nature of the multicomponent state at �=1 /2 and
strengthened the belief that the �3,3,1� wave function is a
correct physical description.12 Namely, the behavior of the
excitation gap as a function of tunneling amplitude �SAS �i.e.,
the splitting between the two lowest subbands� was found to
have upward cusp at the intermediate value of �SAS and the
state was quickly destroyed by the application of electro-
static bias �charge imbalance�.12 In Ref. 14, a numerical
study was able to reproduce the observed upward cusp in the
activation gap by diagonalizing the bilayer Hamiltonian with
explicit interlayer tunneling.

A recent experimental paper16 reports the observation of
the �=1 /4 quantum Hall state in a wide quantum well. The
state is fragile and almost indiscernible when only a perpen-
dicular magnetic field is applied �although one could expect
that with yet higher sample qualities, a small plateau would
be developed already at that point�. However, when the mag-
netic field is tilted, there is a clear dip in the value of longi-
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tudinal resistance Rxx, signifying the presence of an incom-
pressible state.

In this paper we analyze the complex interplay between
the single- and multicomponent nature of the ground state at
�=1 /4 in a wide quantum well, in comparison with the
ground state at �=1 /2. Contrary to previous studies,13,14 we
do not make the ad hoc assumption that the wide quantum
well may be described as an effective bilayer. Instead, we
consider the two lowest electronic subbands of the quantum
well, which is modeled by the infinite square well for the
sake of convenience but cross-checked with other confine-
ment models. The energy splitting between these two sub-
bands, the associated wave functions of which are symmetric
and antisymmetric, respectively, in the z direction is given by
�SAS �occasionally referred to as the tunneling amplitude�.
Due to the low filling factor ��=1 /4�, the power of the ED
method will be rather limited and other complementary ap-
proaches may be needed to fully explain the experimental
findings.

The paper is organized as follows. Section II is devoted to
the single-component candidate for �=1 /4 and we study its
overlap with the exact Coulomb ground state within various
confinement models. In Sec. III, we define the multicompo-
nent wave functions expected to be relevant at this filling
factor. The two likely candidates, the Halperin �5,5,3� and
�7,7,1� states, are investigated within a simple bilayer model
without tunneling. The two-subband model of the quantum
well is introduced and described in Sec. IV. Our main results
of ED calculations in the spherical geometry are presented in
Sec. V. To extend the reach of our numerics, we furthermore
deploy Monte Carlo simulations of the trial wave functions
identified beforehand to analyze their energetic competition.
We summarize with our view on the nature of the state at
�=1 /4 in Sec. VI.

II. ONE COMPONENT STATE

A. Pfaffian at �=1 Õ4

There is a natural candidate for the fully polarized quan-
tum Hall state at �=1 /4—it is the generalized Moore-Read
Pfaffian,8

�Pf�z1, . . . ,zN� = Pf� 1

zi − zj
��

i�j

�zi − zj�4, �1�

expressed in terms of the complex coordinate of the electron
in the plane where zj =xj + iyj. The object Pf is defined as

Pf Mij =
1

2N/2�N/2�! �
��SN

sgn ��
k=1

N/2

M��2k−1���2k�,

acting upon the antisymmetric N�N matrix Mij and SN is a
group of permutations of N objects. Pf renders the wave
function totally antisymmetric and encodes the same kind of
correlations as in the more familiar �=5 /2 case.7 In the
spherical geometry4,17 many-body states are characterized by
the number of electrons N, the number of flux quanta N�

generated by a magnetic monopole placed in the center of
the sphere and extending radially through its surface, and an

additional topological number which is the shift. For the
Pfaffian in Eq. �1�, the three numbers are related by the for-
mula N�=4N−5. �Pf is a zero-energy eigenstate of a certain
three-body Hamiltonian8 but in our calculations it was gen-
erated from its root configuration via the squeezing
technique.18 On the other hand, the Coulomb �two-body�
Hamiltonian commutes with the angular momentum operator
L because of rotational invariance and, by Wigner-Eckart
theorem, the interaction is parametrized by discrete set of
numbers VL known as the Haldane pseudopotentials.4 The
motion of electrons is therefore fully described in terms of
the in-plane �spherical� coordinates � , � and the use of dif-
ferent confinement models in the �perpendicular� z direction
�neglecting the in-plane magnetic field� will only modify the
values of pseudopotentials.

B. Finite thickness models

Most of the candidate wave functions for quantum Hall
fractions have been extensively studied via numerical tech-
niques such as ED or Monte Carlo. For the sake of conve-
nience but also due to the intrinsic ambiguity which stems
from the fact that in a strongly correlated system many input
parameters �e.g., the precise form of the interaction� are un-
known, it is natural to start off from the limit of infinitely
thin layer of electrons interacting via Coulomb force and
hope that the inclusion of, e.g., realistic confinement and
sample thickness will have small, perturbative corrections.
There have been different proposals to account for the finite
thickness of the sample in the perpendicular direction but the
one that is straightforward and most natural from the point of
view of ED is the Zhang–Das Sarma �ZDS� model19 which is
simply given by substituting the interaction

1

r
→

1
�r2 + �w/2�2

�2�

�we will always denote by w the width of the sample and the
energy is always expressed in units of e2 /	lB, where the
magnetic length is lB=�
c /eB is given in terms of the per-
pendicular magnetic field B�. Qualitatively, this substitution
softens the interaction19 and was studied extensively �to-
gether with other confinement models, some of which we
will introduce below� in Ref. 20, where it was advertised to
significantly stabilize the Moore-Read Pfaffian at �=1 /2 �the
effect being most pronounced in the second LL� but �in most
cases� decrease the overlap somewhat for the Laughlin states
at �=1 /3 and 1/5. In Ref. 21 it was noticed that this kind of
interaction can lead to an instability of the composite fer-
mion sea, which is believed to describe the compressible
state at �=1 /2 in the lowest LL, toward the paired state
described by the Pfaffian. Indeed, the CF Fermi liquid can be
regarded as a special member of the general class of paired
CF wave functions,22 of which it represents the limit of van-
ishing gap.

Although the ZDS model �2� has a very simple form,
there is no physical wave function that corresponds to this
confinement potential in the z direction. Other popular
choices for the confinement in the z direction include the
infinite square well �ISQW� and Fang-Howard �FH�, which
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are presumably more realistic than ZDS because they are
defined by the actual wave functions of simple model poten-
tials for the quantum well, given by

�ISQW�z� =� 2

w
sin��z

w
� , �3�

�FH�z� =� 27

2w3ze−3z/2w, �4�

respectively.

C. Overlaps

We have performed ED calculations for various confine-
ment models �Eqs. �2�–�4�	 and all system sizes N
=6,8 ,10,12 accessible at present. In Fig. 1 we present the
overlap 
��Pf 
�exact�
 between the exact Coulomb ground
state at �=1 /4 and �Pf, finite width being modeled by the
ZDS ansatz �Eq. �2�	. The size of the Hilbert space at N
=12 is noteworthy: the dimension of the Lz=0 sector is
218 635 791.

It appears that the overlap of the Pfaffian state is rather
high for large values of the width �even if it is negligible for
small ws�. These values could likely be increased further by
considering general pairing wave functions.22 However,
these overlaps alone cannot be taken as solid evidence for a
pairing nature of the �=1 /4 for two reasons. First, for N
=6 and 12 there is the aliasing problem with composite fer-
mion states: Jain states with different physical properties
�e.g., Abelian instead of non-Abelian statistics� occur at the
same values of N and N� on the sphere �because of finite
system size�. High overlap for the aliased states may there-
fore come from other incompressible states different from
the Pfaffian. Second, for the nonaliased states at N=8 and 10,
there appears to be a critical value of the width at which the
overlap as a function of w suffers a sharp jump. By analyzing
the entire low energy spectrum on the sphere as a function of
width, we have established that the �neutral� gap collapses at
the critical point of w / lB. Therefore, in order to get to the
Pfaffian phase, one must go through a �first-order� phase
transition. Before the transition, the ground state is obtained

in the L�0 sector of the Hilbert space and the overlap with
the Pfaffian �which resides in L=0 sector� remains zero due
to the difference in symmetry.

The lack of adiabatic continuity and the aliasing problem
cast some doubt on the Pfaffian state as a good candidate for
�=1 /4 in the lowest LL. We have also checked using other
confinement models �Eqs. �3� and �4�	 but in these cases for
N=8 and 10 the overlap remains zero for any value of w / lB.
Thus our ED results do not yield a definite answer with
respect to the relevance of �Pf in the single layer at �=1 /4.

We would like to stress the qualitative difference in our
results obtained by using ZDS versus other confinement
models which appears, to the best of our knowledge, to be
the first such case in the literature. The smaller overall en-
ergy scale �and the smaller gap as well� is very likely to be at
the origin of this discrepancy. We note in passing that, con-
trary to the finite-width models which change all pseudopo-
tentials at once, one may start from the pure Coulomb inter-
action and vary just a few strongest pseudopotentials.23 We
have tried varying both V1 and V3 but this procedure does not
stabilize the Pfaffian phase in any finite region of the param-
eter space for N=8.

III. TWO-COMPONENT STATES

Soon after Laughlin’s wave function describing the in-
compressible state at �=1 /3 when the electron spins are
fully polarized, Halperin15 proposed a class of generalized
wave functions defined as

�mm�n�z1
↑, . . . ,zN↑

↑ ,z1
↓, . . . ,zN↓

↓ �

= �
i�j

N↑

�zi
↑ − zj

↑�m�
k�l

N↓

�zk
↓ − zl

↓�m��
s

N↑

�
t

N↓

�zs
↑ − zt

↓�n, �5�

where the electrons are distributed over two components �la-
beled by ↑ , ↓�. The exponents m , m� denote the “intracom-
ponent” correlations originating from the basic Laughlin-
Jastrow building blocks within each component, whereas n
describes “intercomponent” correlations �we have omitted
the ubiquitous Gaussian factors and implicitly assume that
there is a spinor part to this wave function as well as an
overall antisymmetrization between ↑ and ↓�. In order for
these wave functions to be eligible candidates for the ground
state of the system, one must enforce an additional require-
ment that they be eigenstates of the Casimir operator of the
SU�2� group, i.e., the total spin S2, as long as the interaction
is symmetric with respect to intracomponent and intercom-
ponent �e.g., the usual case of electrons with spin�. However,
apart from electrons with spin, the wave functions �Eq. �5�	
have also been used in bilayer systems where this symmetry
is broken as soon as the layer separation is nonzero. In this
case, the wave functions �Eq. �5�	 need not be eigenstates of
the total spin. There have been generalizations of these wave
functions in the physics of bilayer systems at total filling
factor24–26 �=1 and to more than two components,27 where
further constraints on the possible values of m , m� , n were
derived within the plasma analogy.28 In a two-component
case, these turn out to be the intuitive requirement that intra-
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FIG. 1. �Color online� Overlap 
��Pf 
�exact�
 between the exact
Coulomb state for finite width �ZDS model� and the Pfaffian at
�=1 /4.
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component interactions are stronger than intercomponent in-
teractions: m , m�n. For the particular case of two compo-
nents and m=m�=n+2 �which includes �331 and �553�, the
Halperin wave function �Eq. �5�	 can be analytically cast into
a paired form26,29 via Cauchy determinant identity �up to the
unimportant phase factor�,

�i�j

N↑ �zi
↑ − zj

↑��k�l

N↓ �zk
↓ − zl

↓�

�s

N↑ �t

N↓ �zs
↑ − zt

↓�
= det 1

zi
↑ − zj

↓� ,

where the pairing function is given by det� 1
zi
↑−zj

↓ 	. In the case
of the 111 state, this pairing nature was recently exploited to
make a connection to paired composite fermion states and to
construct wave functions interpolating between these two
regimes.26 Halperin wave functions are the exact zero-energy
eigenstates of the two-body Hamiltonian

H = �
i�j
�

L=0

m−1

VL
↑↑Pij

↑↑�N� − L� + �
L=0

m�−1

VL
↓↓Pij

↓↓�N� − L��
+ �

i,j
�
L=0

n−1

VL
↑↓Pij

↑↓�N� − L� , �6�

where Pij
����L� projects onto the state with angular momen-

tum L of particles i and j with respective �pseudo�spins �
and ��. Besides offering great convenience for handling Hal-
perin wave functions �Eq. �5�	 in ED, Eq. �6� enabled count-
ing of the number of excited quasihole states and reaffirming
the idea that the states described by Eq. �5� possess Abelian
statistics.8

At the filling factor �=1 /4, there are three wave functions
of form �5� that meet the necessary physical requirements,
�553��5,5 ,3�, �771��7,7 ,1�, and �5131��5,13,1�. None
of them is an eigenstate of S2, so they are more adapted to
the case of a bilayer than that of real spin. In Fig. 2 we
present the basic overlap characterization of the first two
wave functions in a simple bilayer model defined by the
interaction V↑↑�r�=V↓↓�r�=1 /r , V↑↓�r�=1 /�r2+d2 �where d
being the distance between the layers�.30 �5,5,3� displays a
familiar maximum in the overlap for small distance between
the layers. �7,7,1� was dismissed in Ref. 16 arguing that it
would more likely lead to two coupled Wigner crystals than

an incompressible liquid. Our diagonalization scheme is not
adapted to address states with broken translation symmetry,
so we do not see an a priori reason to reject this state. The
results in Fig. 2 are for N=8 particles, they are fully consis-
tent with those of smaller N but direct comparison between
�5,5,3� and �7,7,1� is not possible because they are character-
ized by different shifts �−5 and −7, respectively�.28 We will
address this issue below by extrapolating to the thermody-
namic limit the respective trial energies from Monte Carlo
simulations for both of these states.

The last possibility, �5,13,1�, is a peculiar one because it
can only occur in the case of a strong density imbalance.
Such an imbalance would lead to an increase in the charging
energy but if one of the coupled states is a prominent quan-
tum Hall state, the gain in correlation energy can outweigh
the price of charge imbalance, as it has been experimentally
verified.31 However, in the present case, our numerical cal-
culations confirmed that this candidate can be discarded be-
cause it takes unrealistically high values of the sample width
for this wave function to have any numerical relevance at all.

Given the low filling factor �=1 /4 we are studying, one
must also consider the possibility of nearby compressible
states that can intervene for some values of the external pa-
rameters. Apart from the obvious metallic state similar to the
Fermi-liquidlike state proposed by Rezayi and Read,32 there
is in principle also the Haldane-Rezayi �HR� state,6,8 which
is defined by

�HR��zi
↑,zi

↓�� = det 1

�zi
↑ − zj

↓�2��
i�j

N

�zi − zj�4.

The last term is a global Laughlin-Jastrow factor for all par-
ticles regardless of their spin. �HR is the zero energy eigen-
state of the interaction parametrized by the set of pseudopo-
tentials VL= �1,1 ,0 ,1 ,0 , . . .� and occurs at the shift of −6. It
is also a spin singlet6 and compressible on the basis of its
nonunitary parent conformal field theory.8,33 However, its
edge theory33 is closely related to that of the Abelian �5,5,3�
state, which suggests that the HR state may be in the vicinity
of the incompressible state and nonetheless affect the physi-
cal properties of the system. Recently there have been pro-
posals that compressible states can be molded into incom-
pressible ones.34

IV. QUANTUM-WELL MODEL

So far we have discussed the stability of the one-
component Pfaffian state in different finite-width models
�Sec. II� and two-component states in a bilayer model where
each layer is considered as an infinitely narrow quantum well
�Sec. III�. In this section, we consider an infinite square well
of width w in the direction z� �0,w	. The electronic motion
in the z direction will then be quantized, yielding an elec-
tronic subband structure.

A. Two-subband approximation

Instead of a full description with all the electronic sub-
bands, we only consider the two lowest subbands and iden-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

O
ve

rla
p

d/lB

(5,5,3)
(7,7,1)

FIG. 2. �Color online� Overlap between the exact bilayer state
with the �5,5,3� and �7,7,1� states for N=8 particles.
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tify them with the two pseudospin states, �↑,↓
=�↑,↓�z�YN�/2,N�/2,m�� ,��, where

�↑�z� =� 2

w
sin��z

w
� , �7�

�↓�z� =� 2

w
sin�2�z

w
� , �8�

and the Ys represent monopole spherical harmonics with
−N� /2�m�N� /2 �we assume that the states are entirely
within the lowest LL�. We refer to states �7� and �8� as sym-
metric and antisymmetric, respectively, because of their re-
flection symmetry with respect to the center of the well. If
their energy difference is denoted by �SAS, the corresponding
second quantized Hamiltonian is given by35

H = −
�SAS

2 �
m

�cm↑
† cm↑ − cm↓

† cm↓�

+
1

2�
�m�

�
���

Vm1,m2,m3,m4

�1�2�3�4 cm1�1

† cm2�2

† cm4�4
cm3�3

, �9�

where cm�
�†� annihilates �creates� an electron in the state m

with pseudospin �.
The matrix elements Vm1,m2,m3,m4

�1,�2,�3,�4 can be straightforwardly
evaluated from the Haldane pseudopotentials for the result-
ing in-plane interaction

V2D
�1,�2,�3,�4�r�1 − r�2�

=
e2

	lB
� dz1� dz2

��1

� �z1���2

� �z2���3
�z1���4

�z2�

��r�1 − r�2�2 + �z1 − z2�2
, �10�

where the position variables are expressed in units of lB such
that the integral is dimensionless.

In this paper we do not make an attempt to quantitatively
model the experiment of Ref. 16 but we are interested in the
possible phases that may occur and the transitions between
them. Therefore, we expect the model described by Hamil-
tonian �9� to be qualitatively correct and in agreement with
other confinement models that assume the lowest subband to
be symmetric and the first excited one to have a node in the
center �z=w /2�. Any difference of the confining potential
away from the infinite square well will modify the energy
eigenvalues and the associated wave functions ���z�. How-
ever, it is expected that the energies are more strongly af-
fected than the wave functions. In particular, the nodal struc-
ture of the wave functions is robust, such that the two lowest
eigenstates of the infinite well faithfully represent the under-
lying features. However, we will allow for the general values
of the level splitting �SAS to account for the variations in the
eigenenergies.

B. Connection between the quantum-well model and the
bilayer Hamiltonian

From a more general point of view, the quantum-well
model exposed above is a two-component model such as the
bilayer model, which has been used in the discussion of the

wide quantum well.12 Indeed, the wide quantum well allows
the electrons to reduce their mutual Coulomb repulsion by
exploring more efficiently the z direction and it has been
argued that due to this effect, a spontaneous bilayer may be
formed, under appropriate conditions, in a wide quantum
well.12,13 Here, a connection is made between both two-
component models, on the basis of Hamiltonian �9�. The in-
termediate steps in the derivation of the effective model may
be found in the Appendix.

Hamiltonian �9� may be rewritten in terms of the density
and spin-density operators projected to a single Landau level.
The Fourier components of the projected density operator of
pseudospin-� electrons read

�̄��q� = �
m,m�

�m
e−iq·R
m��cm�
† cm��,

in terms of the two-dimensional �2D� wave vector q and the
guiding-center operator R, the latter acting on the states la-
beled by the quantum numbers m. It is furthermore useful to
define the total �projected� density operator

�̄�q� = �̄↑�q� + �̄↓�q� �11�

and the projected pseudospin density operators,

S̄��q� = �
m,m�

�m
e−iq·R
m��cm�
†

��,��
�

2
cm���, �12�

where ��,��
� are the usual 2�2 Pauli matrices with �

=x ,y ,z.
In terms of the projected �pseudospin� density operators,

Hamiltonian �9� approximately reads as

H �
1

2�
q

VSU�2��q��̄�− q��̄�q� + 2�
q

Vsb
x �q�S̄x�− q�S̄x�q�

− �̃SASS̄z�q = 0� , �13�

where the SU�2�-symmetric interaction potential VSU�2��q�
and the symmetry-breaking potential Vsb

x �q� are linear com-
binations of the Fourier-transformed potentials defined in Eq.
�10�. Their precise form is given in the Appendix by Eqs.
�A2� and �A5�, respectively. Hamiltonian �13� neglects a par-

ticular term �S̄z�−q�S̄z�q�, which turns out to constitute the
lowest energy scale in the interaction Hamiltonian �9� �see
Eq. �A9� in the Appendix	.

Furthermore,

�̃SAS = �SAS − ��
e2

	lB

w

lB
�14�

is the effective subband gap. The numerical prefactor � de-
pends on the precise nature of the considered confinement
potential and, as shown in the Appendix, expression �14� is
derived within a mean-field approximation of a particular
term in Hamiltonian �9�. Expression �14� is easy to under-
stand; whereas the subband gap �SAS tends to polarize the
system in the ↑ state, namely, in narrow samples, the second
term in Eq. �14� indicates that the interactions are weaker in
the ↓ subband. From the interaction point of view, it is there-
fore energetically favorable to populate the first excited sub-
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band. This effect becomes more pronounced in larger quan-
tum wells. Notice furthermore that this argument also
delimits the regime of validity of the two-subband approxi-
mation of the wide quantum well; when the term
���e2 /	lB�� �w / lB� becomes much larger than the bare sub-
band gap �SAS, the electrons may even populate higher sub-
bands, which are neglected in the present model and the
system eventually crosses over into a three-dimensional re-
gime.

Notice that Hamiltonian �13� has the same form as the
Hamiltonian which describes a bilayer quantum Hall
system,36 up to a rotation from the z to x axis. In this rotated
reference frame, one may define the intralayer and interlayer
interactions as

VA�q� = VSU�2��q� + Vsb
x �q� =

1

4
�V2D

↑↑↑↑�q� + V2D
↓↓↓↓�q�

+ 2V2D
↑↓↑↓�q�	 + V2D

↑↑↓↓�q� �15�

and

VE�q� = VSU�2��q� − Vsb
x �q� =

1

4
�V2D

↑↑↑↑�q� + V2D
↓↓↓↓�q�

+ 2V2D
↑↓↑↓�q�	 − V2D

↑↑↓↓�q� . �16�

As for the case of the true bilayer, the thus defined intralayer
interaction is stronger than the interlayer interaction, for all
values of q.

Since our ED calculations employ Hamiltonian �9�, in or-
der to compare the numerical results with the Halperin states
�Eq. �5�	 which are the native eigenstates of true bilayer
Hamiltonian �6�, we can apply the mapping between the two
models described above in a reverse fashion. As Halperin
wave functions are commonly labeled by the single particle
states 
↑ � , 
↓ � �which are the eigenstates of Sz� and defined
by interaction potentials �VA ,VE�, we can imagine a linear
transformation �rotation from z to x� that transforms them
into �unnormalized� symmetric 
+�= 
↑ �+ 
↓ � and antisym-
metric 
−�= 
↑ �− 
↓ � combinations. Then, by inverting the
Eqs. �15� and �16�, we obtain the set of interaction potentials
that generate Halperin states �m ,m� ,n� in a quantum-well
description. In what follows, Halperin states �5� are under-
stood to be indexed by 
+� , 
−� instead of the usual notation

↑ � , 
↓ �, unless explicitly stated otherwise.

C. Energetics of trial wave functions

To extend the reach of our calculations to system sizes
larger than those which can be treated in ED, we set up
Monte Carlo simulations of the trial states which have
emerged as good candidates for the ground state. The general
strategy of this approach is to obtain an estimate of the en-
ergy in the thermodynamic limit for the different trial states
based on a scaling with system size of their energies.

As detailed in Sec. IV B above, we expect formation of
two-component wave functions where Sx is a good quantum
number, such that the Halperin wave functions are expressed
in terms of the coordinates of electrons in the 
+� and 
−�
states, and lower well, indexed below by �. We consider

cases with equal population of electrons in these two bands
or full population of the lowest subband in the ISQW for the
single-component cases.

In order to calculate efficiently the interaction of electrons
in a well of finite width using Monte Carlo simulations, we
replace the interaction �Eq. �10�	 with an effective potential
that reproduces all pseudopotential coefficients of the origi-
nal potential V2D. Many such potentials can be constructed.
Here, we use an interaction of the form proposed in Ref. 37,
built from simple polynomials38

Veff
����r� = �

k=−1

Nmax
���

ck
���rk. �17�

The pseudopotentials of the monomials rn can be evaluated
analytically �generalizing Ref. 39�. Choosing ck to match the
pseudopotential coefficients of the interaction �Eq. �10�	 be-
comes a simple linear problem. Crucially, we allow for the
coefficient of the Coulomb term c−1 to be varied, also. The
number of terms is chosen equal to the minimal number
required to match the relevant pseudopotentials �odd pseudo-
potentials V2m+1 for intra�pseudo�spin interactions and all
N�+1 terms, otherwise�.

It is habitual in the literature to introduce a neutralizing
background, in order to highlight the correlation energy as-
sociated with a wave function. We use a background Ebg��	
that matches the distribution 
��z�
2 of electrons in their sub-
bands, in order to study the correlation energy of the differ-
ent states. However, to establish a final comparison between
the different wave functions, a unique convention for the
background is required and we adopt the background of the
single layer configuration as a reference point Eref=Ebg��↑	.

Extrapolation to the thermodynamic limit is undertaken as
two separate steps. The correlation energy is obtained by
linear scaling over the inverse system size N−1, using the
habitual rescaling of the magnetic length
lB� = �N / ��N��	1/2lB.40 For the two-component states, the dif-
ference in background energy Eref−��Ebg

� ����	 is extrapo-
lated separately and added to the correlation energy.

V. COMPETING PHASES IN THE QUANTUM-WELL
MODEL

In order to justify the model of the quantum well, in this
section we present the ED study of Hamiltonian �9� and ana-
lyze the energetics of the relevant trial wave functions in
Monte Carlo simulations. We briefly revisit the problem of
�=1 /2 extending the results of Refs. 12 and 14 �Sec. V A�
and then present results pertaining to �=1 /4 �Sec. V B�.

A. �=1 Õ2 in a quantum well

At this filling factor the competing phases we consider
here are the �3,3,1� Halperin state, the Moore-Read Pfaffian,
and the HR state. Reference 14 demonstrated a competition
between the multicomponent �3,3,1� state and the fully po-
larized single-component Moore-Read Pfaffian. In the region
of small tunneling, the ground state shows high overlap with
the Halperin state; as the tunneling is increased, the Halperin
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state is destroyed and the Pfaffian takes over. The point of
crossover between the two is related to the upward cusp in
the activation gap.14

Figure 3 shows our ED results for eight particles in the
quantum well at the filling factor �=1 /2. Figures 3�a�–3�c�
represent the overlap between the exact ground state and the
�3,3,1�, the Pfaffian, and the HR states, respectively, as a
function of the well width w / lB and the bare subband gap
�SAS. In general, the latter is a monotonically decreasing
function of the well width. Again, we choose w and �SAS as
independent parameters of the model. Furthermore, we plot
the quantity denoted by �Sz�, the expectation value of the

Sz= S̄z�q=0� component of the pseudospin which has the
meaning of the “order parameter” �Fig. 3�d�	. One notices
that �Sz� continuously crosses over from a full polarization in
the ↑ subband at low values of w / lB and a large gap �SAS to
a polarization in the ↓ subband for larger quantum wells and
small gaps �SAS. As it is discussed in the previous section,
the interactions in a wider quantum well favor a population
of the first excited electronic subband ↓ because of the node
in the wave function in the z direction and, therefore, de-
crease the effective subband gap. Indeed, Eq. �14� indicates

that the crossover line from positive to negative �̃SAS is char-
acterized by a border that is linear in w / lB. This behavior is
also apparent in Fig. 3�d�. Notice, however, that for large

negative polarizations �large negative �̃SAS�, the two-subband
approximation is no longer valid and the occupation of even
higher electronic subbands must be taken into account, as
already mentioned in Sec. IV B.

Note, furthermore, that we have defined our �3,3,1� state
to be an eigenstate of the Sx operator in the terminology of
the true bilayer and not the usual Sz operator �naively defin-
ing the Halperin state to be the eigenstate of Sz does not give
any appreciable overlap with the exact ground state�. There

is a simple reason why this needs to be done: because the
states of the quantum well possess nodal structure �Eq. �7�	,
the true bilayer states �like the Halperin states� need to be
rotated first from the z to x direction, in order to match this
symmetric/antisymmetric property, before direct comparison
can be made.

With this convention, the �3,3,1� state has its largest over-
lap ��0.95� with the exact ground state in the vicinity of the
crossover line �Sz�=0. However, the overlap remains quite
large even in regions beyond this line, where the polarization
becomes nonzero �Fig. 3�a�	, in agreement with Ref. 12. This
behavior may have two different origins. First, one notices
that Sz is not a good quantum number if the SU�2�
symmetry-breaking terms of Hamiltonian �13� in the x direc-
tion are taken into account. Especially in the vicinity of the
crossover line �̃SAS�0, the symmetry breaking is governed
by these terms in the x direction and S̄x�q=0�, which does
not commute with Sz, is expected to be a good quantum
number. An alternative origin of the large overlap with the
�3,3,1� state even in regions with �Sz��0 may be a possible
admixture ��5%� of states to the ground state that are or-
thogonal the �3,3,1� and possess a finite polarization in the z
direction.

The largest values of the overlap between the compress-
ible HR state and the exact ground state are also found in the
vicinity of the crossover line from positive to negative �̃SAS,
though at extremely large values of w / lB. Notice that the
overlap �0.64 for w / lB=10.0� is generally much lower than
for the �3,3,1� state. At large values of the bare subband gap
�SAS �and narrow quantum wells�, the system becomes po-
larized in the ↑ subband and the ground state crosses over
smoothly from the �3,3,1� state to the spin-polarized Pfaffian
�overlap of �0.92�. However, the increase in �SAS, some-
what counterintuitively, does not immediately destroy the
Halperin state but at first even increases the overlap.

Finally, Fig. 4 shows the results of our Monte Carlo study
of the energies of the �3,3,1� and Pfaffian states. The corre-
lation energies of both states were obtained from the finite
size scaling of systems with N=6–18 electrons as described
above in Sec. IV C. All data were obtained in Monte Carlo
simulations with 107 samples. The uncertainty in the energy
of the two-component states was obtained as the difference
between linear and quadratic extrapolation of the background
energies �Fig. 4�, as this was larger than the bare numerical
errors of the simulation. The energetic competition of these
two phases qualitatively recovers the picture gained from
studying the overlaps with the exact ground state. Again,
some finite amount of tunneling is required for the single-
component-paired state to outcompete the Halperin state. As
shown in Fig. 4, the critical tunneling value �SAS

c above
which the Pfaffian state is energetically favored has a similar
upturning shape as the boundary of large overlaps for the
Pfaffian state in Fig. 3. However, there are some quantitative
differences at small w, where the thermodynamic values in-
dicate that polarization occurs at smaller values of the tun-
neling.

B. �=1 Õ4 in a quantum well

We proceed with analyzing the quantum well at �=1 /4
�Figs. 5–8�. Because of the rapid increase in size of the Hil-
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FIG. 3. �Color online� Overlap between the exact Coulomb state
of the quantum well for N=8 particles at �=1 /2 with �a� the Hal-
perin �3,3,1� state, �b� the Pfaffian, and �c� the HR states. The ex-
pectation value of the Sz component of the pseudospin is plotted
in �d�.
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bert space, there are only two system sizes accessible in ED
at this filling factor: N=6 and 8. The dimension of the Lz
=0 sector of the Hilbert space of the latter, taking into ac-
count discrete Lz→−Lz symmetry, is on the order of 13 mil-
lion, thus making N=6 the only case amenable to study in
great detail. However, for N=6 we also must keep in mind
the aliasing problem that occurs for �5,5,3� and the Pfaffian
�there is no such problem for the HR state�. We will present
results for both particle numbers because of the important

differences between them. In view of the comments in Sec.
III, we note that the overlap with the �7,7,1� state is negli-
gible in the range of widths w / lB�10.0 and therefore we
will exclude it from the present discussion of ED results.
Note that, similarly to the �3,3,1� state in Sec. V A, the
�5,5,3� state hereinafter is defined as an eigenstate of the Sx
operator �if defined as an eigenstate of Sz, the overlap with
the exact ground state is negligible�.

In Fig. 5 we plot the overlap between the ground state of
the quantum well for N=6 particles at �=1 /4 and the Halp-
erin �5,5,3� state �a�, the Pfaffian �b� and the HR state �c�,
accompanied by the expectation value of the Sz component
of the pseudospin. These results are reminiscent of �=1 /2
�Fig. 3�; however, due to the smaller energy scale and the
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FIG. 5. �Color online� Overlap between the exact Coulomb state
of the quantum well for N=6 particles at �=1 /4 with �a� the Hal-
perin �5,5,3� state, �b� the Pfaffian, and �c� the HR states. The ex-
pectation value of the Sz component of the pseudospin is plotted
in �d�.
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gap, it is much easier to polarize the system at �=1 /4. For
intermediate values of the width and small tunneling, the
maximum overlap with the Halperin �5,5,3� state is high
�0.96� but the region that would correspond to this phase is
quite narrow in comparison to that of �3,3,1�. On the other
hand, the Pfaffian phase is much more extended. Given the
intrinsic tunneling12 of the samples, which is on the order of
�SAS / �e2 /	lB��0.1, it seems more likely that the system will
be found in this phase than the �5,5,3�.

The small island where the overlap abruptly goes to zero
for large w / lB is due to the ground state belonging to a sector
with L�0—this can be due to the admixture of compressible
physics at large widths. The HR state appears to be present in
the transition region between one-component and two-
component phases, its overlap steadily increasing with w and
peaking at 0.7 for w / lB=6.0. Because of the fact that the HR
state occurs at a different shift on the sphere, we stress that
the overlap presented here does not constitute a proof that it
is an intermediary phase �moreover, the overlap drops rap-
idly when larger systems are considered, see Fig. 7�.

In Fig. 6 we plot the same quantities for the system of
N=8 particles which is expected to display weaker finite-size
effects and does not suffer from the aliasing problem. The
�5,5,3� state is found in a sizable parameter range but the
maximum overlap is moderate compared to the case previ-
ously studied �0.74 for w / lB=4.5�. While the HR state gen-
erally has a small overlap �not exceeding 0.2� and the evo-
lution of �Sz� remains smooth, the striking difference in
comparison with the N=6 results �Fig. 5� is the Pfaffian
phase. Although it similarly develops with the increase in
�SAS, once the system reaches full polarization, the phase is
destroyed.

To shed more light on how this occurs, it is useful to look
at the “cross section” of Fig. 6 for a fixed value of the width

w / lB=10.5, chosen to represent the region where the Pfaffian
phase is most clearly pronounced �Fig. 7�. Although the
Pfaffian overlap peaks in the region where �5,5,3� starts to
drop, very abruptly both overlaps fall to zero, and the ground
state is no longer rotationally invariant. The fact that L�0 is
a hallmark of compressibility. Precisely at the transition
point, a small kink is now visible in �Sz�. The origin of this
kink or the reason why the ground state is obtained in L
�0 sector is not entirely clear at present. However, the zero
overlap with the Pfaffian beyond �SAS / �e2 /	lB�=0.1 �where
the ground state reduces to a spinless case� agrees with our
results of Sec. II. Notice that a compressible ground state
with L�0 may also indicate a phase with modulated charge
density, such as the Wigner crystal. Indeed, an insulating
behavior, as one would expect for an electron crystal, has
been found at filling factors slightly above �=1 /5.41 Such a
state is not captured in the present ED calculations on the
sphere and the question whether a Wigner crystal is the true
ground state at large values of �SAS in a wide quantum well
is beyond the scope of the present paper.

We refer to Monte Carlo simulations �Fig. 8� to obtain
additional information about the candidate incompressible
states from larger model systems. We include systems with
N=6–16 electrons in the finite size scaling for the ground-
state energies, again using 107 Monte Carlo samples, and
taking errors as the difference between linear and quadratic
extrapolation of the background energies. The results of this
study are summarized in Fig. 8, where we compare the Pfaff-
ian to the �5,5,3� and �7,7,1� Halperin wave functions. Again,
a two-component state is always preferred in the absence of
tunneling. At the layer separations shown, this is �5,5,3� as
shown in Fig. 8�a�. These data also confirm that the �7,7,1�
state becomes relevant only at large well width w�10lB. In
Fig. 8�b�, we display the value of tunneling �SAS

c required to
polarize the system into the paired Pfaffian phase. This fea-
ture of the energetic competition of �5,5,3� and the Pfaffian is
very close to the results obtained in ED for N=6 both quali-
tatively and quantitatively: the shape of �SAS

c �w� is nearly
linear and reproduces the location where the overlaps with
the exact ground state cross over between the two trial states,
as was shown in Fig. 5. The splitting �SAS required for the
Pfaffian to be the ground state is significant and probably
larger than the splitting in the experiments of Luhman et
al.,16 which can be estimated to about �SAS�0.069e2 /	lB at
the sample width w�10lB and their baseline electron den-
sity.

This similarity between the energetics in the thermody-
namic limit and the exact spectrum for N=6 particles may be
circumstantial. However, there is another indication that the
very different behavior at N=8 might be exceptional. In Fig.
8�c�, we show the correlation energies of the Pfaffian state
for different system sizes N and well widths w. This repre-
sentation reveals the case of N=8 as having particularly high
energy. This may be a finite-size effect that can be explained
in the composite fermion picture. The Pfaffian wave function
can be expressed as a paired state of 4CF feeling one quan-
tum of negative effective flux.22,42 The shell structure of
these composite fermions on the sphere yields filled shell
states for N=6 and 12, whereas for N=8 two CFs remain in
the highest, partially filled shell. In this configuration, CFs

0 2 4 6 8 10
w [ lB ]

-0.35

-0.3

-0.25

-0.2

E
co

rr
[e

2 /ε
l B

]

Pfaffian
(5,5,3)-state
(7,7,1)-state

0 2 4 6 8 10
w [ lB ]

0
0.

04
0.

08
0.

12

E
ne

rg
ie

s
[e

2 /ε
l B

] E771-E553

∆SAS
c

[Pf]

6 8 10 12 14
N

-0
.2

8
-0

.2
7

-0
.2

6
-0

.2
5

E
co

rr
[e

2 /ε
l 0’

]

w=3.5
w=4
w=4.5

(a)

(b)

(c)
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are susceptible to follow Hund’s rule by maximizing their
angular momentum and breaking rotational invariance.

For N=8 and 10, Hund’s rule predicts an angular momen-
tum of L=4, which is indeed found in ED. This gives us
confidence that the system is still described by liquidlike
composite fermion physics at large �SAS. We therefore con-
sider the competition between a Hund’s rule state and the
paired Pfaffian state. For a similar situation with weak pair-
ing in a �=1 /2+1 /2 bilayer system at large layer separation,
it was argued22 that for larger systems, the shell-filling ef-
fects and Hund’s rule should become less important whereas
the pairing effects will remain the same strength, as only
��N benefit from Hund’s rule, whereas all ��N� particles
within some gap energy of the Fermi surface contribute to
pairing.

Although the above argument speaks in favor of the pos-
sibility for a paired Pfaffian state to be realized at �=1 /4 for
large tunneling gap �SAS, we insist on the variational charac-
ter of the Monte Carlo calculations. In these calculations, we
have indeed considered several competing candidate wave
functions for a liquid ground state at this filling factor. How-
ever, this analysis may not eliminate the possibility that a
compressible state, such as that seen in ED, or even other
incompressible phases may indeed be singled out as a true
ground state of the system.

Finally, we would like to point out that in ED it is pos-
sible to calculate the quantity that we refer to as the “charge
gap,”

�E = EN,N�+1 + EN,N�−1 − 2EN,N�
, �18�

where EN,N�
is the ground-state energy for a given number of

particles N and number of flux quanta N�. This quantity
probes the response of the system to the introduction of
quasiparticles/quasiholes on top of the ground state and its
dependence on �SAS has been used to delineate between the
one-component and two-component phases.14 With the ap-
propriate finite-size corrections, Eq. �18� should correspond
to the experimentally measurable “activation” gap12 that
governs the temperature scaling of longitudinal resistance
Rxx�exp�−�E /2T�. For states that undergo a typical one-
component to two-component transition, such as the one at
�=2 /3 �for small tunneling, it is the state of two-decoupled
Laughlin liquids, �=1 /3+1 /3, which develops into a single-
component 2/3 state for large tunneling amplitudes43�, the
charge gap �Eq. �18�	 displays a minimum as a function of
�SAS in the center of the transition region.12 On the other
hand, for �=1 /2 where the tunneling-driven transition con-
nects the �3,3,1� state and the Pfaffian, the charge gap �Eq.
�18�	 shows an upward cusp. Our calculations of the charge
gap �Eq. �18�	 in the case of �=1 /4 indicate that this quan-
tity is a less robust way to characterize the nature of the
ground state than the calculation of the overlaps with trial
wave functions. While for N=6 particles at �=1 /4 the
charge gap displays a minimum as a function of �SAS, there
is a very weak dependence of �E on �SAS when a larger
system of N=8 particles is considered. Thus finite-size ef-
fects are too strong in order to extract useful information
from Eq. �18� in small systems that can be treated by ED.

VI. CONCLUSION

In this paper we have presented a systematic study of
several candidates for the ground-state wave function at the
recently observed16 fraction �=1 /4. Assuming that the
�pseudo�spin plays no role, i.e., in a one-component picture,
the generalized Moore-Read Pfaffian state �1� shows high
overlap for the values of the sample width which are on the
order of those in the experiment of Ref. 16 but only if the
confinement in the perpendicular direction is modeled by
ZDS model �2�. For other confinement models �Eqs. �3� and
�4�	 it was not possible to reproduce such high values of the
overlap. We believe that this inconsistency means that the
high overlap must be due to a special softening of the
pseudopotentials that occurs as a pathology of ZDS model
but does not appear in other �more realistic� confinement
models.

Therefore, the existence of a fractional quantum Hall state
at �=1 /4 is necessarily linked to the specific features of the
quantum well used in Ref. 16 that enable the multicompo-
nent physics to manifest itself. Additional degrees of free-
dom in our theoretical study are conveniently taken into ac-
count within the quantum-well model, which is the simplest
model that can naturally interpolate between a single layer
and bilayer charge distribution as the parameters w and �SAS
are varied. This two-parameter model is related to the previ-
ous studies14 of the true bilayer with tunneling at �=1 /2
�which had to assume at least three independent parameters�
by reproducing the same physical picture of the crossover
between the �3,3,1� state and the Pfaffian.

At the filling factor �=1 /4, we have not been able to
produce clear cut evidence for the expected crossover be-
tween the �5,5,3� state and the Pfaffian in ED due to the
strong finite-size effects in case of the latter. We have shown
that the �5,5,3� state is indeed present for a range of widths
and small tunneling gaps �SAS but its maximum overlap is
not as high as that of the �3,3,1� state. ED cannot delimit the
range of parameters for the Pfaffian phase due to the differ-
ence in the results for the two available system sizes, N=6
and 8, and the effect of compressible physics which is diffi-
cult to treat within the spherical geometry. However, our
Monte Carlo simulations go some way toward clarifying the
situation. The correlation energies of the Pfaffian state reveal
N=8 as a particularly unfavorable system size. We can ex-
plain this from the finite-size effect in terms of filling shells
of CF orbitals on the sphere. The competing L�0 states at
N=8, as well as N=10, seem to be related to Hund’s rule for
CFs. However, the competition between Hund’s rule and
pairing is likely favorable for the paired state in the thermo-
dynamic limit. In addition, projecting from the two-
component model onto the fully polarized �spinless� case, on
the other hand, can be seen as analogous to the scenario of
LL mixing,44 which may provide another mechanism to sta-
bilize the Pfaffian state via generating three-body terms in
the effective interaction. Such effects are beyond the scope
of the present paper. By analyzing the competition between
the paired single component and the Halperin states from
their variational wave functions, we find, in the Monte Carlo
simulations, that the tunneling gap �SAS

c required to form a
single-component state roughly behaves linearly as 1.0
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� �w / lB��10−2e2 /	lB. Although the tunneling splitting indi-
cated for the experiment described in Ref. 16 is not far below
the transition between the Pfaffian and �5,5,3�, our numerics
still show it safely in the two-component regime of the
�5,5,3� wave function.

Although we believe that our quantum-well model takes
properly into account the effects of finite thickness, we have
entirely neglected the effect of the in-plane magnetic field
which may nevertheless prove essential in order to stabilize
the incompressible state at �=1 /4. The existing experimental
work45 on the �=2 /3 state witnessed that the introduction of
an in-plane magnetic field may lead to a strengthening of the
minimum in Rxx, thus inducing the same one-component to
two-component transition as by varying �SAS. Similar
strengthening occurs for �=1 /2 if the tilt is not too large.45

Therefore, the application of the in-plane field may be a
likely reason to further stabilize the �5,5,3� state at �=1 /4 if
the symmetric-antisymmetric gap �SAS is sufficiently small.
However, Ref. 16 also pointed out the difference between
�=1 /2 state and �=1 /4 state: when the electron density is
increased, the former displays a deeper minimum in Rxx
while the latter remains largely unaffected. This difference
suggests that in the case of �=1 /4 the quantum-well ground
state may be effectively fully polarized and in the class of the
Pfaffian rather than the two-component �5,5,3� state.

In order to answer without ambiguity which of the two
possibilities is actually realized in the quantum well under
the experimental conditions of Ref. 16, it would be useful to
know the dependence of the activation gap as a function of
�SAS and also as a function of transferred charge from the
front to the back of the quantum well using a gate biasing.
These results would help to discriminate between the one-
component and two-component nature of the ground state.

ACKNOWLEDGMENTS

This work was funded by the Agence Nationale de la
Recherche under Grant No. ANR-JCJC-0003-01. Z.P. was
supported by the European Commission through Marie Curie
Foundation Contract No. MEST CT 2004-51-4307 and Cen-
ter of Excellence under Grant No. CX-CMCS. M.V.M. was
supported by the Serbian Ministry of Science under Grant
No. 141035. G.M. would like to thank Steven Simon for
stimulating discussions.

APPENDIX: EFFECTIVE BILAYER DESCRIPTION OF
THE WIDE QUANTUM WELL

As in Sec. IV, we consider the quantum well to be sym-
metric around w /2, i.e., the lowest subband �↑ � state is sym-
metric and the first excited one �↓ � is antisymmetric. Fur-
thermore, we consider, in this section, the electrons to be in
the 2D plane, for illustration reasons, although the conclu-
sions remain valid also in the spherical geometry. In this
Appendix, we yield the derivation of the effective bilayer
description of the wide quantum well.

The interaction part of Hamiltonian �9� consists of a
density-density interaction and terms beyond, which may be
described as a spin-spin interaction. Indeed, the density-

density part consists of the effective interactions �Eq. �10�	
V2D

↑↑↑↑, V2D
↓↓↓↓, and V2D

↑↓↑↓=V2D
↓↑↓↑. Notice that the interactions in

the first excited subband �↓ � are generally weaker than in the
lowest one �↑ � because the wave function �Eq. �8�	 �↓�z�
possesses a node at w /2, in the center of the well, i.e.,
V2D

↑↑↑↑�V2D
↓↓↓↓. With the help of the �spin� density operators

�Eqs. �11� and �12�	, the density-density part of the interac-
tion Hamiltonian reads as

H =
1

2�
q

VSU�2��q��̄�− q��̄�q� + 2�
q

Vsb
z �q�S̄z�− q�S̄z�q�

+ �
q

VB
z �q��̄�− q�S̄z�q� �A1�

in terms of the SU�2�-symmetric interaction

VSU�2��q� =
1

4
�V2D

↑↑↑↑�q� + V2D
↓↓↓↓�q� + 2V2D

↑↓↑↓�q�	 �A2�

and the SU�2�-symmetry breaking interaction terms

Vsb
z �q� =

1

4
�V2D

↑↑↑↑�q� + V2D
↓↓↓↓�q� − 2V2D

↑↓↑↓�q�	 �A3�

and

VB
z �q� =

1

2
�V2D

↑↑↑↑�q� − V2D
↓↓↓↓�q�	 . �A4�

The remaining 12 interaction terms, which may not be
treated as density-density interactions, fall into two different
classes; the eight terms with three equal spin orientations �
and one opposite −� are zero due to the antisymmetry of the
integrand in Eq. �10�. The remaining four interaction terms
with two ↑ spins and two ↓ spins are all equal due to the
symmetry of the quantum well around w /2,

Vsb
x � V2D

↑↑↓↓ = V2D
↓↓↑↑ = V2D

↑↓↓↑ = V2D
↓↑↑↓. �A5�

They yield the term

Hsb
z = 2�

q
Vsb

x �q�S̄x�− q�S̄x�q� , �A6�

which needs to be added to the interaction Hamiltonian �A1�,
as well as the term

HSAS = − �SASS̄z�q = 0� , �A7�

which accounts for the electronic subband gap between the ↑
and the ↓ levels.

Collecting all terms, Hamiltonian �9� thus becomes

H =
1

2�
q

VSU�2��q��̄�− q��̄�q� + 2�
q

Vsb
x �q�S̄x�− q�S̄x�q�

+ 2�
q

Vsb
z �q�S̄z�− q�S̄z�q� + �

q
VB

z �q��̄�− q�S̄z�q�

− �SASS̄z�q = 0� . �A8�

Several comments are to be made with respect to this result.
First, we have checked that for the infinite-square-well
model as well as for a model with a parabolic confinement
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potential there is a natural hierarchy of the energy scales in
Hamiltonian �A8�,

VSU�2� � Vsb
x � VB

z � Vsb
z . �A9�

This hierarchy is valid both for the interaction potentials in
Fourier space as for the pseudopotentials.

Whereas the first term of the Hamiltonian describes the
SU�2�-symmetric interaction, the second and the third one
break this SU�2� symmetry. Because Vsb

x �q��Vsb
z �q��0 for

all values of q, states with no polarization in the x and z
directions are favored, with �Sx�=0 and �Sz�=0, respectively.
Due to the hierarchy �Eq. �A9�	 of energy scales, a depolar-
ization in the x direction is more relevant than that in the z
direction. These terms are similar to those one encounters in
the case of a bilayer quantum Hall system, where due to the
finite layer separation a polarization of the layer isospin in
the z direction costs capacitive energy.36

The fourth term of Hamiltonian �A8� is due to the stron-
ger electron-electron repulsion in the lowest electronic sub-
band as compared to the first excited one, where the wave
function possesses a node at z=w /2. In order to visualize its
effect, one may treat the density, which we consider to be
homogeneous in an incompressible state, on the mean-field
level, ��̄�q��=��q,0, in which case the fourth term of Eq.
�A8� becomes �VB

z �q=0�S̄z�q=0� and, thus, has the same
form as the subband-gap term �Eq. �A7�	. It therefore renor-
malizes the energy gap between the lowest and the first ex-
cited electronic subbands, and it is natural to define the ef-
fective subband gap as

�SAS → �̃SAS = �SAS − �VB
z �q = 0� = �SAS − ��

e2

	lB

w

lB
,

�A10�

where � is a numerical prefactor that depends on the precise
nature of the well model.
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We analyze transitions between quantum Hall ground states at prominent filling factors � in the spherical
geometry by tuning the width parameter of the Zhang-Das Sarma interaction potential. We find that incom-
pressible ground states evolve adiabatically under this tuning, whereas the compressible ones are driven
through a first-order phase transition. Overlap calculations show that the resulting phase is increasingly well
described by appropriate analytic model wave functions �Laughlin, Moore-Read, Read-Rezayi�. This
scenario is shared by both odd ��=1 /3,1 /5,3 /5,7 /3,11 /5,13 /5� and even denominator states
��=1 /2,1 /4,5 /2,9 /4�. In particular, the Fermi-liquid-like state at �=1 /2 gives way, at large enough value of
the width parameter, to an incompressible state identified as the Moore-Read Pfaffian on the basis of its
entanglement spectrum.

DOI: 10.1103/PhysRevB.80.201303 PACS number�s�: 73.43.Cd, 73.21.Fg, 71.10.Pm

We address in this work, via large-scale exact diagonal-
ization �ED� calculations on finite spheres, the important and
interesting question of how to tune various fractional quan-
tum Hall �FQH� ground states between ungapped compress-
ible and gapped incompressible phases by continuously vary-
ing the effective electron-electron interaction. Such
numerical studies have been a standard theoretical tool in
FQH physics since the beginning1 because of the nonpertur-
bative nature of the FQH ground states. In the current work,
which is complementary to the pseudopotential description
of quantum phase transitions �QPTs� in quantum Hall sys-
tems as pioneered by Morf2 and Haldane,3 we report that a
simple single-parameter parametrization of the effective in-
teraction through the so-called Zhang–Das Sarma �ZDS�
model4 provides a flexible and powerful method of studying
QPTs between compressible and incompressible phases at
both even and odd-denominator FQH states. We will show
that ZDS interaction possesses a rich structure that can drive
the FQH system from parameter regions where it appears to
be compressible �manifested by the ground state that breaks
rotational invariance, i.e., the value of angular momentum
L�0� toward the incompressible region where the ground
state is rotationally invariant �L=0�, along with the corre-
sponding overlap with the trial states like Laughlin1 or paired
states �Moore-Read Pfaffian,5 Read-Rezayi,6 etc.� jumping to
a value close to unity and an energy gap opening up in the
excitation spectrum. In agreement with the experimental
phenomenology, we find that the well-known �small� odd-
denominator incompressible FQH states �e.g., 1/3, 1/5, 7/3,
and 11/5� are robust and usually do not manifest any
interaction-tuned QPT whereas the more fragile, even de-
nominator �e.g., 1/2, 1/4, 5/2, and 9/4� FQH states typically
exhibit characteristic QPT from a compressible to an incom-
pressible phase as the Coulomb interaction is softened by
increasing the ZDS tuning parameter.

Our calculations are performed in the spherical geometry
introduced and described in detail by Haldane;3 here, we
make only a few essential comments. We consider spin to be
fully polarized and use the ZDS model interaction which was

originally proposed to study the finite-thickness effect of the
quasi-two-dimensional �2D� layer,4 but in our analysis, the
thickness parameter w �expressed in units of the rescaled
magnetic length, lB� enters simply as the tuning parameter
for the Hamiltonian,

VZDS�r� =
1

�r2 + w2
. �1�

We emphasize that ZDS interaction �1� appears to have
the same qualitative pseudopotential decomposition as the
realistic models �e.g., the Fang-Howard, infinite square well,
etc.�, as has recently been shown in details in Ref. 7. How-
ever, it was also observed in Ref. 8 that realistic confinement
models do not always reproduce the QPTs induced by the
ZDS interaction, suggesting there may be subtle quantitative
differences between ZDS and alternative confinement mod-
els which are important in the vicinity of a QPT. In this
Rapid Communication we focus on the ZDS model in carry-
ing out our ED studies since a single parameter enables us to
study FQH QPTs in a compact manner. In order to establish
the connection with the experiments, we should mention that
w in the ZDS model corresponds roughly to the root-mean-
square fluctuation in the electron coordinate in the transverse
direction.7

With this choice of the interaction, we use the overlap
between the exact, numerically diagonalized finite system,
and a candidate analytical wave function �e.g., the Laughlin
or the Moore-Read wave function� to determine the tentative
quantum phase of the system, i.e., if the overlap is “large”
�“small”�, the system is supposed to be in the candidate state
�or not�. We calculate the overlap as a continuous function of
the varying Hamiltonian which is being tuned by w. All the
model wave functions studied in this Rapid Communication
are Jack polynomials that have squeezable configurations9

which can be efficiently generated and compared with the
exact ground state. Note that each FQH state on a finite
sphere at the filling factor � is characterized, beside the num-
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ber of electrons N and the number of flux quanta N�, also by
a topological invariant � called shift, defined by N�=�−1N
+�. In the thermodynamic limit of an infinite plane, the shift
plays no role, but for a finite sphere it is a crucial aspect of
the ED technique3 as it can lead to an “aliasing”10 problem:
at a fixed choice of �N� ,N�, more than one quantum Hall
state �having different �, � and, therefore, different physical
properties� may be realized. To avoid such loss of uniqueness
for finite sphere ED, we disregard the aliased states from our
considerations. Notwithstanding the aliasing problem, the
system sizes we analyze are the largest that can be presently
handled in ED studies.

We begin with the Laughlin fractions �=1 /3 and �=1 /5
in the lowest Landau level �LLL� and in the first-excited
Landau level ��=2+1 /3,2+1 /5� �Figs. 1 and 2�. In agree-
ment with previous studies,7 in the LLL we find that the ZDS
potential leads to the monotonous decrease in the overlap
with the Laughlin wave function with increasing the thick-
ness parameter w.

In the second Landau level �SLL� and for zero thickness
�Figs. 1 and 2 inset� one first notices that the Laughlin 1/5
wave function appears to be a better candidate than the one
for 1/3. Furthermore, certain particle numbers yield zero
overlap for �=7 /3 �for N=5 particles, the ground state is

obtained in L=2 sector; therefore, the overlap with the
Laughlin wave function is zero due to the difference in sym-
metry�. Things change once the ZDS potential is turned on:
the states which are homogeneous �L=0� increase their over-
lap, while the finite-size artifact N=5 undergoes a QPT turn-
ing into an L=0 state just under w� lB.

It will be shown in what follows that the induced QPT for
N=5, �=7 /3 is not an exceptional case.11 Even denominator
fractions, such as �=5 /2 which is believed to be the Moore-
Read Pfaffian5 or the recently discovered �=1 /4,12 and vari-
ous paired states of the Read-Rezayi sequence6 such as
�=12 /5,13 /5, attract considerable attention because of their
unusual ground states and the exotic spectrum of excitations
that may be utilized in topological quantum computation.13

While their realization in the SLL seems a likely possibility,
there has been little expectation to observe them in the con-
ditions of the LLL �see however Ref. 14.�. In particular, at
the thin single layer �=1 /2 in the LLL only the compress-
ible, Fermi-liquid-like state has been observed. In Fig. 3 we
show the overlap results of finite-size calculations on
�=1 /2 in the LLL and �=5 /2 in the SLL with ZDS
interaction.

At �=1 /2 a QPT is induced by increasing the parameter
w. Certain particle numbers yield good overlap already for
zero thickness and their overlap will improve as w increases.
Other particle numbers produce ground states with well-
defined values of L�0 that undergo a QPT at a critical value
of the thickness. For �=5 /2, the Coulomb ground state for
zero thickness is already reasonably well approximated15,16

by the Moore-Read Pfaffian and the effect of ZDS interac-
tion is only to increase the overlap in a smooth way. How-
ever, the increase is substantial—up to 20% for the largest
system amenable to ED. This adiabatic continuity of the
Moore-Read description for the SLL �=5 /2 has been dis-
cussed in Ref. 16 and recently at great length by Storni
et al.17

The nonzero values of L that appear at �=1 /2 in the LLL
can be fully understood from the CF theory.18 Indeed, former
work hinted at the possibility of p-wave paired CF state as a
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result of CF sea being perturbed by ZDS interaction.19 How-
ever, in Ref. 19 only the variational energies of trial states
were compared. In Fig. 4 we will show that one can establish
a connection between the ZDS-induced QPT and the Pfaffian
and CF sea states in the LLL at �=1 /2.

Because the CF sea state and the Moore-Read Pfaffian
occur at different shifts on the sphere �−2 and −3, respec-
tively�, one cannot simultaneously study their evolution with
w. However, by analyzing the excitations of CF sea occur-
ring at the Pfaffian shift, one can show �using Hund’s rule�
that the L values obtained in ED at the Pfaffian shift �Fig. 3�
are indeed those stemming from the CF sea excitations.
Moreover, assuming that the Coulomb ground state in the
LLL for zero thickness is exceedingly well approximated by
Rezayi-Read wave function,20 we define the CF sea state for
our purposes as the interacting Coulomb ground state for
zero thickness and study its overlap with the w�0 ground
states �Fig. 4�. CF theory tells us that �at the shift of −2� the
L=0 configurations are obtained when the CF shells are
completely filled, i.e., for N=n2 , n=1,2 ,3 , . . . These con-
figurations are particularly robust and adding/subtracting
electrons from them �	N=N−n2= 
1, 
2, . . .� creates a
configuration that is destroyed at some critical value of the
width which depends on how far away the system is from the
filled shell. Obviously, there is ambiguity in defining pre-
cisely the critical width where the CF sea is destroyed, but
this argument nonetheless provides further support for the
claim that the ZDS-induced compressible-incompressible
transition indeed proceeds via destruction of CF sea toward
the Moore-Read Pfaffian. Transition of the same kind can be
relevant for the multicomponent candidates21 at �=3 /8. We
emphasize that the possible finite-width-induced LLL �
=1 /2 FQH state that we find arising out of the destabiliza-
tion of the CF sea, even if it exists, is likely to be extremely
fragile with a neutral excitation gap smaller than
0.03e2 /�lB.17 However, numerically extrapolated gap is gen-
erally known to be difficult to relate to the experimental
value,22 and in our data we cannot rule out the possibility
that it goes to zero in thermodynamic limit.

Another way to look at the QPT toward the Moore-Read
Pfaffian is to analyze the entanglement spectrum proposed in
Ref. 23. This is a powerful way to identify topological order
in the given ground-state wave function and establish a direct
connection with the underlying CFT that produces the given
ground state as its correlator and thus offering more informa-
tion than the simple overlap calculation.24 In Fig. 5 we show
the change in the entanglement spectrum for N=18 particles
at �=1 /2 in the LLL, before and after QPT. For w� lB, there
is no visible CFT branch in the entanglement spectrum—the
generic Coulomb part dominates—leading to a likely com-
pressible ground state. After the QPT, a CFT branch sepa-
rates from the Coulomb part of the spectrum and the level
counting begins to match the first few Virasoro levels of the
Ising CFT. This is additional evidence in favor of the possi-
bility of a finite-width-induced QPT to an incompressible
half-filled single-layer LLL FQH state.

We have also examined the effect of ZDS potential on
other even denominator and paired states. In the LLL, a QPT
is induced for �=1 /4 �Ref. 8� around w�3–5lB and for
Read-Rezayi �=3 /5 state around w�4lB. In the SLL, a
�=9 /4 state is similarly stabilized when ZDS parameter is
around w�3lB.

Our work establishes that the continuous tuning of the
interaction through the ZDS Hamiltonian enables a direct
study of FQH quantum phase transitions showing that the
usual odd-denominator states are robust in both the LLL and
the SLL, whereas the fragile even denominator FQH states
are stable only in a regime of the interaction strength where
the bare electron-electron interaction is considerably softer
than the pure 2D Coulomb interaction. We find that the ZDS
interaction allows for the existence of non-Abelian incom-
pressible FQH states even at unusual even fractions such as
1/2, 1/4, and 9/4, raising the intriguing possibility that such
exotic non-Abelian states may indeed exist if one can suffi-
ciently soften the interaction along the ZDS prescription.
Whether this can be physically achieved in 2D semiconduc-
tor systems remains an interesting open question and may
require some “reverse engineering” of the quasi-2D samples
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to achieve a suitable density profile using the fact that the
width parameter in the ZDS model corresponds roughly to
the variance of the electron position in the transverse direc-
tion.
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We study the transition induced by tunneling from the two-component 332 Halperin’s state to the one-
component Jain’s state at the filling factor �=2 /5. In exact diagonalizations of small systems two possibilities
for the transition are found: �a� avoided level crossing, and �b� level crossing, i.e., first-order transition in the
case of Coulomb interaction and short range interaction, respectively. An effective bosonic model with p-wave
pairing for the transition is proposed. The relevance of the Gaffnian state for the transition is discussed as well
as possible consequences of our model on the effective description of the Jain’s state.
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I. INTRODUCTION

Topological phases of matter1 find their concrete realiza-
tions in quantum Hall physics within the systems of two-
dimensional �2D� electrons in high-magnetic fields. They are
characterized by a gap to all excitations and by degeneracy
of the ground state on higher genus surfaces. By changing a
parameter of the electronic system, we may induce a quan-
tum phase transition from one topological phase to the other.
Due to their nature and discrete characterization, we expect
that the system gap closes at the transition between topologi-
cal phases that differ in the topological invariants, i.e., the
numbers that characterize them.

The fractional quantum Hall �FQH� states can be charac-
terized by the filling factor � i.e. particular ratio between the
density of electrons and the strength of the magnetic field at
which they appear. In spin-polarized systems, a successful
explanation of various FQH states at different filling factors
is given by Jain’s states.2 On the other hand, for the same
filling factors we may have states with two or more different
species i.e. the Halperin states.3 Usually for a given filling
factor described by the Jain’s state, the corresponding Halp-
erin state has the same vacuum degeneracy but some other
characteristic numbers may differ. By applying tunneling to a
two-component Halperin state we may transform this state
into the one-component �spin-polarized� Jain’s state. Tunnel-
ing as a perturbation that drives the transition from the two-
component to a one-component FQH system was studied
previously by analytical4,5 and numerical6 means.

In this paper we study the transition from Halperin’s two-
component 332 state to the one-component Jain state at the
filling factor �=2 /5 via tunneling. The interest is threefold:
we would like to find out �a� about the nature of quantum
phase transitions between topological phases which are simi-
lar �332 and Jain’s state have the same ground state
degeneracy7–9 but different shift10,11�, �b� we would like to
find if Gaffnian12 can be characterized as a critical state in
these circumstances when the gap closes, and �c� we explore
possible consequences for the effective description of the
Jain state due to a better understanding of the transition. In
Sec.II, we define the electronic system that we consider. Sec-
tion III contains the results of the exact diagonalization stud-

ies of the transition. In Sec.IV, we introduce an effective
bosonic model of the system and the transition induced by
tunneling. Section V is devoted to conclusions.

II. SYSTEM UNDER CONSIDERATION

We consider the quantum Hall bilayer in the presence of
the vector potential A that describes a strong magnetic field,
Bẑ=��A, perpendicular to both layers. In the rotationally
symmetric gauge, the lowest Landau level �LLL� eigenstates
of an electron with the coordinate z=x+ iy in the plane and
localized in the layer �� �↑ ,↓� are given by

zm exp�− �z�2/4lB
2���, m = 0, . . . ,N� − 1, �1�

where �� is the usual spinor wave function and the unit of
length is given by the magnetic length, lB=��c /eB. The
number of flux quanta, N�, denotes the number of available
states in the LLL. In the thermodynamic limit, the ratio of
the number of electrons Ne and the number of flux quanta N�

defines the filling factor �=Ne /N� and we focus on the par-
ticular case �=2 /5.

The many-body interacting system of electrons is defined
by the following Lagrangian density in the second quantized
formulation:

L = �
�
���

†���� − ��
† ��r + eA�2

2m
�� − ��

† 	SAS

2
�−�

+
1

2
	 dr�
��r�Vc

intra�r − r��
��r��

+
1

2
	 dr�
��r�Vc

inter�r − r��
−��r��
 , �2�

where �� is the electron field which carries the pseudospin
�layer� index and 	SAS denotes the tunneling term. The inter-
action is defined by

Vc
intra�r� =

e2

�r
�3�

and in general Vc
inter is different. When we model a quantum

Hall bilayer,
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Vc
inter�r� =

e2

��r2 + d2
, �4�

d has the meaning of the distance between two layers of
two-dimensional gases and it is of the order of lB. In the
Lagrangian density Eq. �2� and the remainder of this paper
we set �=c= lB=1. Significant insight into the physics de-
scribed by the Lagrangian Eq. �2� can be obtained using
first-quantized trial wave functions for its ground states.13 In
the remainder of this section we list several candidate wave
functions that are expected to describe the ground state of
Eq. �2� in different limits of 	SAS and d. Trial wave functions
in the LLL are analytic in z variables and we will omit the
omnipresent Gaussian factor for each electron as the one in
Eq. �1�.

In the small tunneling regime, the FQH system at �
=2 /5 is two component, described by the 332 Halperin state
for two distinguishable species of electrons, zi� ;�= ↑ , ↓ ; i
=1, . . . ,Ne /2

�332 = �
i�j

�zi↑ − zj↑�3�
k�l

�zk↓ − zl↓�3�
p,q

�zp↑ − zq↓�2. �5�

Due to the fact that the correlation exponents between elec-
trons of the same layer are bigger than those between elec-
trons of the opposite layers, we expect the wave function Eq.
�5� to be more appropriate for non-zero d, e.g., in the range
d� lB. However, as it possesses the necessary symmetry
properties,11 it can be a candidate also for d=0. The proper-
ties of the wave function Eq. �5� were numerically verified in
Ref. 14.

As the tunneling strength 	SAS is increased, the electrons
find it energetically favorable to be in the superposition of
two layers, ↑+↓, and the system loses its two-component
character. The effective single-component state is character-
ized by full polarization in the x-direction. At �=2 /5 in the
LLL, a compelling candidate for the polarized state is Jain’s
composite fermion �CF� state:2

�Jain = PLLL��
i�j

�zi − zj�2 · 2��z��
 , �6�

where PLLL is a projector to the LLL and 2 represents the
Slater determinant of two filled pseudo-Landau levels of
CFs.2 Note that a single index suffices to label the electron
coordinates as the pseudospin index is implicitly assumed to
be ↑+↓.

Recent work12 has introduced an alternative candidate for
the polarized state at the filling factor �=2 /5, the so-called
Gaffnian state:

�Gaff = A�332 perm� 1

z↑ − z↓
�� . �7�

In the notation of Eq. �7� one can think of the Gaffnian
originating from the two-component 332 state with the addi-
tional pairing represented by the permanent, a determinant
with plus signs.15,16 The two-component state is made single-
component under the action of the antisymmetrizer A be-
tween ↑ and ↓ electron coordinates. Gaffnian Eq. �7� has
generated a surge of interest because in finite size �spherical�

exact diagonalization it shows high overlaps with the Cou-
lomb ground state, comparable to those of Jain’s state, yet
the topological properties of the two states are very
different.12 Moreover, the strong evidence for Gaffnian in
numerical calculations is puzzling in view of the fact that it
is a correlator of a nonunitary conformal field theory and,
hence, not expected to describe a stable phase.17 In the
spherical geometry, Jain’s state and the Gaffnian can only be
distinguished by their excitation spectrum18 or by using ad-
vanced tools such as the entanglement spectrum.19

Since the antisymmetrizer A can, to some extent, be mim-
icked by the tunneling term,20 and since the Gaffnian incor-
portates the pairing defined by the permanent, there is an
additional natural candidate which we refer to as the perma-
nent state,

�perm = �332 perm� 1

z↑ − z↓

 . �8�

This state distinguishes between ↑ and ↓ electrons, hence it is
expected in the limit of intermediate tunneling 	SAS before a
full x polarization has been achieved. Like the Gaffnian, the
state Eq. �8� is related to a nonunitary conformal field
theory21 and one may expect that it plays a role of the critical
state in the transition region before full x polarization.

In the following section, we study numerically the transi-
tions between two-component and one-component states at
the filling factor �=2 /5 via tunneling 	SAS. We use the exact
diagonalization in the spherical and torus geometries to gain
complete insight into topological properties of the different
competing trial states introduced here.

III. EXACT DIAGONALIZATIONS

We consider the transition from the 332 �two-component�
Halperin state to the one-component state at �=2 /5 via tun-
neling. The one-component state is identified below as Jain’s
�Abelian� state Eq. �6�, though it is not at the same shift on
the sphere as the 332 state.10,11 The shift �=Ne /�−N� is a
topological number1,17 and defined through a relation be-
tween Ne and N� that is necessary for the appearance of a
particular FQH state on the sphere. For example, in case of
the 332 state �=3, whereas for the states in Eqs. �6�–�8� �
=4. This mismatch is an unfortunate feature of the spherical
geometry which prevents the direct study of the transition.
However, all of the mentioned states describe the filling �
=2 /5 and therefore occur in the same Hilbert space under the
periodic boundary conditions where the shift is trivially
zero.11,22 By that, the phases in the torus geometry do not
“loose� the topological number connected with the shift on
the sphere, this number that reflects the orbital spin can be
characterized by the Hall viscosity of the system.17 Thus, in
the torus geometry we can study the transitions in a direct
manner. As we mention below, another advantage of the
torus geometry is the specific ground-state degeneracy which
can be used as a fingerprint of a phase. The physical results
derived from the two geometries, however, ought to agree for
large enough systems. Our numerical studies are restricted to
a small number of electrons because the tunneling does not
conserve particle number in each layer. Since, we anticipate
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incompressible states for most of the range of 	SAS, small
system sizes are nonetheless expected to be relevant as usual
in the context of quantum Hall effect.11

A. Sphere

In the spherical geometry, Coulomb or any interaction
that depends on the distance between two electrons is param-
eterized by a discrete series of the so-called pseudopotentials
in the LLL.11 Each pseudopotential is an eigenvalue of
the interaction strength corresponding to the state of definite
relative angular momentum �l� of two electrons. Therefore a
series of pseudopotentials �Vl � l=0,1 , . . .� completely speci-
fies the interaction in the LLL. Model pseudopotentials
define an interaction in the LLL for which the analytic
functions of some simple fractional quantum Hall states
are the densest zero energy eigenstates. This is the case
for the 332 state when Vintra= �0,V1

a ,0 ,0 , . . .� and Vinter

= �V0 ,V1
e ,0 ,0 , . . .�. There is some freedom in choosing

V0 ,V1
a,b apart from the requirement that they should all be

positive and we set them to unity. Values of V0 ,V1
a,b control

the gap for the 332 state and thereby affect the critical value
for the tunneling 	SAS in the following discussion, but our
main conclusions remain unaffected by this choice. In the
case of the Jain state we do not have a pseudopotential for-
mulation �a useful ansatz12 that does not lead to a unique
zero-energy eigenstate is �0,V1 ,0 ,0 , . . .��.

In Fig. 1, we present our results for the case of the bilayer
Coulomb interaction on the sphere with the bilayer distance
d equal to lB. Overlaps of the exact state with the 332 state
and the Gaffnian are calculated as a function of tunneling
	SAS. Separate diagonalizations have been performed be-
cause the two trial states, 332 and Gaffnian, occur in slightly
different Hilbert spaces due to the mismatch in shift ��=3
and �=4, respectively�. Following the rapid destruction of
the 332 state with the increase of 	SAS, the overlap with the
Gaffnian state rises to the high value known from earlier
studies in a single-layer model.12,19 This occurs at the point

when the system is almost fully x polarized. Consequently,
the overlap with the Jain state for large 	SAS is also high and
virtually indistinguishable from that of the Gaffnian on the
scale of this figure.

B. Torus

In the torus geometry, Figs. 2–6, trial states which de-
scribe the same filling factor �= p /q can be directly com-
pared because the shift is zero. What is then characteristic of
the Abelian states such as the 332 and Jain’s state, is that on
the torus they only posses the ground state degeneracy due to
the motion of the center of mass of the system, equal to q.7

This is a trivial degeneracy and we will mode out its pres-
ence in the data. In the case of Gaffnian the degeneracy of
the ground state is expected12,23 to be doubled with respect to
the trivial one, i.e., equal to 2�5=10. In the literature there
is no consensus that Gaffnian is a gapless state,12,18 but if we
can establish that the nature of the lowest lying states is as
expected for the Gaffnian, we could nonetheless claim its
presence at the transition from the 332 to the Jain’s state.

In Fig. 2, we plot the low energy spectrum of the 332
short-range Hamiltonian �Sec. III A� on the torus for N
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=8 electrons and close to the square unit cell �aspect ratio
a /b=0.97�. We observe the 332 state, distinctly marked by
its zero energy, which remains unaffected by 	SAS until level
crossing is induced with the excited polarized state. We also
calculate the mean value of the Sx projection of pseudo-spin
which plays the role of the “order parameter” and has previ-
ously been used to detect the transition between quantum
Hall phases.24–26 The state characterized by �Sx�=N /2 that
becomes the ground state for large tunneling develops into a
Jain CF state, Eq. �6�. This is expected because the original
system defined in terms of Vc

intra�r� ,Vc
inter�r� �3, 4�, in the

limit of very large tunneling becomes an effective one-
component model with the modified interaction �Vc

intra�r�
+Vc

inter�r�� /2.20 For the short-range 332 Hamiltonian, this is
simply a V1 pseudopotential which yields a good approxima-
tion to Jain’s state.12 Furthermore, as we vary the aspect ratio
of the torus, we find the following thin torus configura-
tion…01001…, which is that of the Jain state.27

Coulomb interaction shows stronger finite size effects that
we exemplify with the spectra for N=6 �Fig. 3� and 8 elec-
trons �Fig. 4�. In these calculations, we tune the aspect ratio
to the same value of a /b=0.97 �slightly away from unity to

avoid accidental geometric degeneracy� and distance be-
tween layers is set to d= lB. The incompressible states for
small and large tunneling in Fig. 3 can be identified as the
332 and the Jain state, with the transition between them oc-
curring for 	SAS

C �0.017e2 /�lB when the levels cross �Fig. 3,
right�, suggestive of the first order transition. As a conse-
quence, the polarization �“order parameter�� N /2− �Sx� expe-
riences a sharp discontinuity at the point of transition �Fig. 3,
left�. We stress that this level crossing occurs for a wide
range of aspect ratios of the torus and not only in the vicinity
of the square unit cell.

On the other hand, for the larger system of Ne=8 elec-
trons interacting with Coulomb interaction, we obtain the
transition that proceeds via level repulsion instead of level
crossing, Fig. 4. We again identify incompressible states for
small and large tunneling as the 332 and the Jain state, with
the transition between them occurring for 	SAS

C

�0.018e2 /�lB. The states can be identified, e.g., with respect
to the Fig. 2 by calculating overlaps. If we denote the ground
state of the short-range and Coulomb Hamiltonian for a
given tunneling 	SAS as �short�	SAS� and �C�	SAS�, respec-
tively, we obtain the following overlap ��332 ��C�	SAS��
���short�	SAS=0� ��C�	SAS=0���0.95. This means that the
Coulomb bilayer ground state is nearly the same as the 332
state, assuming zero tunneling. Also, in the large tunneling
limit, we obtain e.g. ��Jain ��C�	SAS→������short�	SAS
→�� ��C�	SAS→����0.948, i.e. Jain’s state. The quantity
which describes the density of the odd channel, N /2− �Sx�,
characterizes the transition by an approximately linear or
even steplike discontinuity as a function of 	̃SAS=	SAS
−	SAS

C , Fig. 5. In the transition region, an approximate dou-
blet of states with k=0 Haldane pseudomomenta is formed
�Fig. 4�. Although the doublet has the expected quantum
numbers of the Gaffnian,23 the specific root configurations in
the thin torus limit27 cannot be unambiguously identified as
those of the Gaffnian. Both of the members of the doublet
share the following thin torus configuration…01001…,
among other spurious patterns, which is that of the Jain state.
Moreover, the member of the doublet higher in energy has a
lower polarization �Sx� than the ground state. These facts
suggest that the excited k=0 state in the transition region is
a spinful CF state rather than the �polarized� Gaffnian.

For the long-range N=8 Coulomb system on the torus and
the aspect ratio close to 1, the transition between the Jain and
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332 state proceeds as an avoided level crossing or a smooth
crossover without an obvious closing of the gap. The gap is
expected to close in the thermodynamic limit between the
two distinct topological phases, although we are unable to
perform a proper finite-size scaling of the gap due to the
inaccessibility of the N=10 electron system. However, for
the short-range interaction that defines the 332 state as the
zero-energy ground state and for the identical geometry of
the torus �a /b=0.97�, it appears that the gap indeed closes,
Fig. 2. This difference between Figs. 2 and 4 can be attrib-
uted to the symmetry of the interaction. For the short range
interaction used in Fig. 2, V1

inter=V1
intra, hence it does not

break the SU�2� symmetry. In this case, the tunneling part of
the total Hamiltonian, being proportional to Sx component,
commutes with the interaction part and we expect level
crossing which we indeed observe in Fig. 2. The interaction
in the bilayer with d= lB, on the other hand, breaks SU�2�
invariance �Fig. 4�, but we can nevertheless show that the
level crossing persists and can be induced by changing the
aspect ratio of the torus away from unity. In Fig. 6, we show
one such energy spectrum �without the ground state energy
subtraction� when the aspect ratio is equal to 0.5. The level
crossing is induced by deforming the system towards the
crystalline limit, when the Coulomb interaction is increas-
ingly of short range. Note, however, that the states at 	SAS
=0 and 	SAS-large are still 332 and Jain’s, respectively �veri-
fied by the overlaps with the ground state of the short-range
interaction and by their thin torus limit�.

IV. EFFECTIVE BOSONIC MODEL

A. Introduction

High overlaps with the Gaffnian on the sphere around and
after the transition are a motivation for considering the sys-
tem of Chern-Simons �CS� transformed composite
bosons28,29 �↑ and ↓� that pair in the way of p-wave in a
picture of the underlying neutral sector physics. This bosonic
system is, by its very nature, unstable towards the ordinary
Bose condensation, as shown for the first time in Ref. 30,
and, as we will elaborate more, the pairing may be realized
only in its excited states or at a transition point. As we will
discuss in this Section, a simple underlying CS bosonic pic-
ture of the 332 and Jain’s state will be enlarged by p-wave
fluctuations. The fluctuations are expected to play a role near
the transition and in the description of the critical and excited
states, but not in the well-developed phases-the ground states
away from the transition. As we already pointed out in the
preceding section, the high Gaffnian overlaps are not to be
taken as a proof that we have the Gaffnian phase after the
transition, in the thermodynamic limit, but may serve as a
motivation for discussing the role for the Gaffnian as a criti-
cal state. More generally, as the system is closer to the one-
component limit, the theory may inherit the pairing structure
built in the Gaffnian state and this is captured in the perma-
nent state, Eq. �8�. As we mentioned in Sec. II, the connec-
tion between the Gaffnian Eq. �7� and the permanent state �a
p-wave state of bosons� Eq. �8� is the antisymmetrization.
We assume that the operation of antisymmetrization corre-

sponds, in the language of effective theory, to a tunneling
term.20

B. Bosonic model

To begin with, one may perform CS transformations in
the field-theoretical description of the system Eq. �2� that
would leave, in the mean field, ↑ and ↓ bosons that pair in
the way of a p-wave. At �=2 /5, for no tunneling, in the
presence of Coulomb or suitable short range interaction, we
expect that the bilayer �two-component� system is described
by 332 state. We know very well how to define the CS trans-
formation to bosons in these circumstances, for the first time
it was given in Ref. 29. It entails a transformation from elec-
tronic �� fields �in Eq. �2� with 	SAS=0� to bosonic ��

fields:

���r� = U��r����r� , �9�

where

U��r� = exp�− i	 dr� arg�r − r���3
��r�� + 2
−��r���
 ,

�10�

where arg�r−r�� is the angle the vector r−r� forms with the
x axis. In the mean field �when the fluctuations of gauge
fields are neglected� we, in fact, describe a system of ↑ and ↓
bosons that interact. Therefore, we have in the first approxi-
mation two ordinary Bose condensates. By the virtue of the
Anderson-Higgs mechanism i.e. gauge fluctuations, the two
Goldstone modes become gapped and the two gapped
bosonic systems describe the two-component 332 system.

The complication comes when we consider the tunneling
term as an extra perturbation and an extra term in our starting
Hamiltonian for the electrons. The tunneling term is

HT = − ���↑
†�r��↓�r� + �↓

†�r��↑�r�� , �11�

where � denotes the tunneling amplitude in this section. Due
to the CS transformation Eq. �9� this can not be translated
simply into the hopping of bosons because:

��
†�−� = ��

†U�
†U−��−� �12�

and only in the mean-field approximation for which

U�
†U−� � I �13�

�where I is the identity� we have a simple tunneling of
bosons i.e.

HT � − ���↑
†�r��↓�r� + H.c.� . �14�

The necessary assumption in Eq. �13� is 
s=
↑�r�−
↓�r�
�0 i.e. that the fluctuations in density in ↑ pseudospin par-
allel the ones in ↓ or the fluctuations in the pseudospin den-
sity are negligible.

Treating the residual interaction in a mean field manner,
i.e., taking the Hartree-Fock and BCS decomposition, we
come to the following form of the Hamiltonian for the effec-
tive description of ↑ and ↓ bosons around the k=0 point in
the momentum space:
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H = �
k
��

�

eb̂k�
† b̂k� − ��b̂k↑

† b̂k↓ + b̂k↓
† b̂k↑�

+ db̂k↑
† b̂−k↓

† + cb̂−k↓b̂k↑� , �15�

where e=�k−� and d=c� is the p-wave order parameter
function d�kx− iky. The question of mutual statistics �be-
tween ↑ and ↓ electrons and the ensuing composite bosons�
may be raised but we will assume that it is bosonic.

The Bogoliubov equations, ��k ,H�=E�k, where

�k = u↑b̂k↑ + u↓b̂k↓ + v↑b̂−k↑
† + v↓b̂−k↓

† �16�

define the following matrix

�
e − � 0 − c

− � e c 0

0 − d − e �

d 0 � − e
�

for the eigenvalue problem. There are two pairs of eigenval-
ues:

E + �,E − �, and − E + �,− E − � , �17�

where E=�e2−	2 ,	2=dc, with the corresponding unnor-
malized eigenvectors:

�k
+ = �a,− a,1,1�, �k

+ = �a,a,− 1,1� ,and �18�

�k
− = �b,− b,1,1�, �k

− = �b,b,− 1,1� , �19�

where a= e+E
d and b= e−E

d .

C. Bose condensate solution

The last two eigenvalues −E�� and vectors �k
− ,�k

− Eq.
�19� define a pair of solutions in the form of Eq. �16� and
represent well-defined excitations of the system. The ground
state can be expressed as

exp�� 1

b
b̂ke

† b̂−ko
† 
�0� , �20�

where b̂ke= b̂k↑+ b̂k↓ and b̂ko= b̂k↑− b̂k↓. We have for ��0:

− E � � � − � + �k +
	2

2�
� � , �21�

i.e., ordinary noninteracting boson description where the tun-
neling � defines the transition at �=� from the two Bose
condensates to a one Bose condensate �one disappears be-
cause �eff=�−��0 i.e. we have vacuum for these par-
ticles�. The mean field ground state in the k→0 limit is
approximately constant �1 /b�d→0� as it should be for the
effective description of the system with �two-becoming one�
Bose condensates.

This simple system in the presence of a short-ranged in-
teraction, in the channel that changes the sign of the effective
chemical potential, is described in Chapter 11.3 of Ref. 31.
There dspatial=2 was identified as an upper critical dimension.

Therefore we might expect in that case, with an interaction,
that the density of bosons in this channel for ���c=� van-
ishes linearly with �−�=�eff as �→�c.

The quantum Hall system as a whole, together with the
CS fluctuations, may experience a transition with the Bose
condensates becoming gapped via Anderson-Higgs mecha-
nism�s� away from the transition.

This analogy also motivates to consider that a viable com-
posite boson effective description of the �=2 /5 Jain’s state is
with only one composite boson condensate and a Bose
vacuum. This comes as a natural consequence from our
analysis and the multicomponent approach to Jain’s states.16

From the results of the experiments on the edge of FQH
states,32 it is justified to assume an existence of a single
charge mode that stems from a single Bose condensate in an
effective description.

D. Role of the permanent

The transition may be discussed considering also the other
pair of eigenvalues from the eigenvalue problem:

E � � �22�

and the excitations that they define Eq. �18�. It is obvious
from Eq. �21� that they are unstable and may describe ex-
cited states. As particular solutions of the Bogoliubov equa-
tions for the Hamiltonian defined in Eq. �15�, the solutions
described by E�� and their corresponding eigenvectors Eq.
�18� are nonunitary and nonphysical because they are related
to the physical solutions Eq. �19� by the following nonuni-
tary relationships: ��−k

− �†= i�k
+ and ��−k

− �†=−i�k
+ which im-

ply: ���k
+�† ,�k

+�= ���k
+�† ,�k

+�=1. We assume a possibility that
the description of the system is given by H and an additional
term20 �N, i.e., H+�N, where N is the number of particles.
This term is of a purely phenomenological origin; it is de-
signed to regularize the behavior at large � �compare with
Eq. �24��. It can be incorporated in the previous description
by a simple redefinition of e=�k−� into e=�k−�+�. This
yields

E = ���k − � + ��2 − 	2

= �� − ���1 −
�� − ��
�� − ��22�k −

	2

�� − ��2 , �23�

and for large tunneling ��� we have

E � � − � + �k −
1

2

	2

�� − ��
. �24�

The excitations Eq. �22� become E−���k−� and E+�
=�k+2�−�, and we obtain Bose condensation in one chan-
nel and Bose vacuum in the other, as in the case of Sec.
IV C. Here, for ��� we allow the possibility that by this
formalism we can describe an excited state of the system
which is given by the Bogoliubov expression:

exp�� 1

a
b̂ke

† b̂−ko
† 
�0� �25�

and because 1
a = e−E

c , and � 1
a b̂ek

† b̂o−k
† �� 1

a b̂↑k
† b̂↓−k

† we have a
p-wave paired permanent state in the long distance limit.
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This must be an excited state because the excitations Eq. �22�
are unstable for ���

E � � − � − �k −
1

2

	2

�� − ��
. �26�

At the transition �=� we have

E � � i	0�k� , �27�

where 	0 is defined by 	2=	0
2k2. This defines a nonunitary

system with complex values for the excitations E��. If we
neglect the presence of � for a moment, we can describe this
system by a 2+1 dimensional theory for bosons � and � with
the following Hamiltonian:

H = ��x� . �28�

We quantize the system in the following manner:

� = � �exp�− ikx�bk + exp�ikx�ak
†�

� = � �− exp�ikx�bk
† + exp�− ikx�ak� �29�

and this reproduces the spectrum we have for �=0. This
system is closely related to the �−� ghost system in 1+1
dimension or the CFT connected with permanent state21and
more generally Gaffnian12 in its two-component formulation
Eq. �7�. The complete spectrum is reproduced by H=��x�
+�����.

Therefore before reaching the strong tunneling limit and
the incompressible FQH state connected with the single BCS
condensate in this description at �=2 /5 �Jain’s state�, we
may find a state at the transition that evolves from an excited
state. The excited state above the 332 ground state Eq. �25� is
described in the long-distance limit by a permanent times the
Abelian 332 factor, Eq. �8�. We note that the permanent state
carries the maximum pseudospin �S=Ne /2,S2=S�S+1��, be-
cause only such states �with also Sz=0� can be antisymme-
trized completely in the coordinate space and make a polar-
ized electronic wave function just as in the case of the
permanent state and the ensuing Gaffnian wave function. The
332 state, on the other hand, cannot be antisymmetrized,16

because it is a spin-singlet �S=0�. Depending on the ground
state evolution, the polarization of the system ��Sx�� may
either experience a jump across the transition or the ground
state may evolve smoothly into a �↑+↓� polarized state. The
state at the transition in the second case might be Gaffnian—
its description in the BCS formulation is that of a state which
evolves from the permanent under the effect of tunneling
which may mimic the antisymmetrization as in Eq. �7�. But
our analysis above �Eq. �25� with the redefined e and Eq.
�27�� shows that the system at the transition is still unpolar-
ized and cannot describe the Gaffnian.

E. Discussion

According to our numerical results in Figs. 3–5 in the
presence of Coulomb interaction a possible scenario is the
scenario described in the Sec. IV C with effectively one of
the two Bose condensates disappearing with the increase of

tunneling. If we include interactions in the simple bosonic
model they can smooth the transition �compare with results
in Figs. 4 and 5�. In Fig. 5, we see the linear dependence of
the number of odd channel electrons on the tunneling
strength near the transition. In the k→0 limit the density of
the odd channel is equal to the density of the vanishing Bose
condensate. Therefore this linear dependence may stem from
the critical behavior of dilute bosons as described in Ref. 31.
dspatial=2 is the upper critical dimension in this case and we
may expect a logarithmic correction to the linear behavior as
demonstrated in Ref. 33, in the case of a short range inter-
action among bosons. In our case Coulomb interaction may
be driving the fixed point for the short range interactions into
a mean field one with linear behavior. We calculated the
density-density correlator in the transition region, but defi-
nite conclusion about the power of the decay of the correla-
tions could not be drawn because of the finite size effects. A
lower bound for the exponent that governs the decay with the
distance is equal to 2, as expected in the mean field.

Thus the bosonic model with interactions may lead to a
second-order transition with gradually disappearing bosons.
In a more elaborate description one may hope that Gaffnian
will appear as a polarized critical state before the polarized
Jain state. But if the state at the transition is partially polar-
ized, as we find in exact diagonalizations and effective
bosonic model �without repulsive interactions�, even in the
Coulomb case we may expect a first-order transition or a
smooth crossover without Gaffnian.

In the following, we discuss implications of our analysis
for the effective bosonic description of the Jain’s �=2 /5
state. If, due to tunneling, one Bose condensate indeed van-
ishes, the effective description would then comprise only one
Bose condensate and a Bose vacuum. On the other hand any
effective description of quantum Hall states must encompass
the edge physics as the low-energy physics of these states
happens on the edge. In the effective description based on
the usual picture with composite bosons1 of the �=2 /5 frac-
tional quantum Hall edge, both charge and neutral edge
modes of two condensates propagate in the same direction as
relativistic particles and the discrepancy with respect to
experiments,32 which detect only one �charge� mode, has to
be resolved.34 In the effective description based on compos-
ite fermions,35 at �=2 /5 edge only the charge mode is propa-
gating, in agreement with the experiment, but the reason why
the neutral mode does not propagate is not obvious. Here, we
suggest an effective picture of the neutral i.e. multicompo-
nent degrees of freedom of Jain’s state at �=2 /5 via a Bose
vacuum. An edge excitation of the system that involves also
these, multicomponent, degrees of freedom, is accompanied
by a bosonic excitation of a vacuum that propagates, not
relativistically, but according to Schrödinger equation,31

which in an effective description for certain probes can be
neglected with respect to the charge wave propagation along
the edge.

V. CONCLUSIONS

We studied, by numerical and analytical means, the tran-
sition from the two-component to a one-component quantum
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Hall state induced by tunneling at the filling factor �=2 /5.
The transition is studied in the presence of the Coulomb
interactions appropriate for a quantum Hall bilayer and a
model short-ranged interaction appropriate for the 332 Hal-
perin’s state. In exact diagonalizations of small systems two
possibilities for the transition are found: �a� avoided level
crossing, and �b� level crossing, i.e., first-order transition in
the case of the Coulomb interaction and short range interac-
tion, respectively.

With respect to the appearance of the Gaffnian state in the
transition region between 332 and Jain state, we can con-
clude that in finite systems this is only possible for the inter-
action that breaks SU�2� invariance, like the Coulomb bi-
layer interaction. It is an unlikely possibility, however, even
for non-SU�2� invariant interaction, because of the difficulty
in establishing the thin torus limit for the approximate k=0
doublet found for the torus with aspect ratio close to unity-
�Fig. 4�. In other words, on the thin torus we observe only a
“half”12 of the Gaffnian physics that corresponds to Jain’s
state. So long as the interaction is nearly SU�2� invariant, the

transition occurs via level crossing �Figs. 2 and 6� and it is a
first-order transition between the unpolarized and polarized
Abelian states.

Also, to probe the question of p-wave pairing and related
Gaffnian correlations at the transition we introduced an ef-
fective bosonic model. We find that the transition in the pres-
ence of the Coulomb interaction may be viewed as a transi-
tion from two Bose condensates to a Bose condensate and a
Bose vacuum. The outcome, with the Bose vacuum, can
serve as an effective description of the Jain state. In the
simple bosonic picture we find that the state at the transition
does not correspond to the polarized Gaffnian state, in accor-
dance with the exact diagonalizations.
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We examine the possibility of creating the Moore-Read Pfaffian in the lowest Landau level when the
multicomponent Halperin 331 state �believed to describe quantum Hall bilayers and wide quantum wells at the
filling factor �=1 /2� is destroyed by the increase of tunneling. Using exact diagonalization of the bilayer
Hamiltonian with short-range and long-range �Coulomb� interactions in spherical and periodic rectangular
geometries, we establish that tunneling is a perturbation that drives the 331 state into a compressible composite
Fermi liquid, with the possibility for an intermediate critical state that is reminiscent of the Moore-Read
Pfaffian. These results are interpreted in the two-component BCS model for Cauchy pairing with a tunneling
constraint. We comment on the conditions to be imposed on a system with fluctuating density in order to
achieve the stable Pfaffian phase.

DOI: 10.1103/PhysRevB.82.075302 PACS number�s�: 73.43.Cd, 73.21.Fg, 71.10.Pm

I. INTRODUCTION

When electrons are confined to a two-dimensional �2D�
plane and subject to a strong perpendicular magnetic field,
they organize themselves into fascinating strongly correlated
quantum phases. The most prominent examples are the
Laughlin states,1 ��L�=�2k+1��z��, which may be written in
terms of the Laughlin-Jastrow factor �m��z��=�i�j�zi−zj�m,
where zj =xj + iyj denotes the complex coordinate of the jth
electron, m ,k are integers and we have neglected the Gauss-
ian factor ubiquitous in the lowest Landau level �LLL�.
Laughlin states describe the fractional quantum Hall effect
�FQHE� that occurs when the filling factor �=N /N�, which
is defined as the ratio between the number of electrons N and
the number of flux quanta N� threading the 2D system, is a
simple fraction with an odd denominator, �=1 / �2k+1�.2
Laughlin’s construction has been generalized, within the
framework of the composite-fermion �CF� theory,3 to explain
the rich phenomenology of a whole sequence of observed
odd denominator fractions. According to the CF theory, one
understands the FQHE as an integer quantum Hall effect in
an effective magnetic field that vanishes at �=1 /2. As a con-
sequence, CFs then form a compressible CF Fermi liquid
�CFL�,4,6 ��FL�=PLLL det��i�zj�	�2��z��, as seen in the ab-
sence of the Hall plateau in single thin layers at �=1 /2 in the
LLL.5 Here, as before, the characteristic quantum Hall cor-
relations are captured in the Jastrow factor �2��z�� which we
refer to as the charge part of the wave function �as it carries
the flux through the system� and �i�zj� are the single-particle
states �an overall projection PLLL to the LLL may be needed
to yield a proper trial wave function that is analytic in zj.�.

However, some quantized even denominator states exist7

and are usually associated with the first excited Landau level,
where the nature of the effective interaction is believed to
facilitate the pairing between CFs.8 The paradigm of such
paired states is the so-called “Pfaffian” state introduced by
Moore and Read,9 ��Pf�=Pf�1 / �zi−zj�	�2��z��, which ex-
plains the FQHE observed at �=5 /2.7 In addition to the

charge part �2��z��, which fixes the filling factor, we have
also a pairing in the neutral sector described by the object
Pf.9 In contrast to the Laughlin and Jain states with anyonic
excitations satisfying Abelian statistics, the Moore-Read
state represents the simplest paired state of spin-polarized
electrons which supports excitations with non-Abelian
statistics10 of interest in topologically protected quantum
computation.11

If the spin of the electrons is not necessarily frozen out by
the magnetic field, the electrons could find it more favorable
to reorganize themselves into one of the competing Abelian
phases called multicomponent Halperin states.12 In these
states the Hall quantization is a result of internal degrees of
freedom of the electrons �provided by the spin or layer in-
dex�. At half-filling, a two-component candidate is the 331
state, ��331�=�3

intra��z↑���3
intra��z↓���1

inter��z↑ ,z↓��, written as
a straightforward generalization of the Laughlin state to two
species of electrons ↑ and ↓. In order to satisfy the constraint
of the fixed filling factor �=1 /2, apart from the usual
Laughlin-Jastrow factors between the electrons of the same
species ��intra�, one also has to account for the interspecies
correlations through the factor �k

inter��z ,w��=�i,j�zi−wj�k.
Alternatively, using the Cauchy identity13 we can cast the
331 state into the form ��331�=det�1 / �zi,↑−zj,↓�	�2��Z��
which extracts the charge part �2 �Z’s denote all particles
regardless of their spin index� from the neutral part where the
pairing is described in terms of a Cauchy determinant be-
tween ↑ and ↓ particles.14 Numerical calculations15–18 indi-
cate that Halperin’s 331 wave function is likely to be at the
origin of the �=1 /2 FQHE in bilayer quantum Hall
systems19,20 as well as in wide quantum wells.21

In this paper we investigate whether it is possible to create
the Moore-Read Pfaffian in the LLL by converting the two-
component 331 state into a single-component state. Math-
ematically, this is easily achieved by antisymmetrizing the
neutral �Cauchy determinant� part of the ��331� between ↑
and ↓.22,23 However, such a procedure is a very complex
mathematical entity because it creates a state with different
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physical properties �non-Abelian statistics out of the Abe-
lian�, while we are interested in a physical mechanism that
mimics the antisymmetrization in an experimental situation.
We restrict the discussion to the Coulomb bilayer system,
which is a generic two-component system where the “spin”
�= ↑ ,↓ denotes the two layers in which the electrons are
localized. In such a system, it is commonly speculated that
the antisymmetrization mechanism is provided by the tunnel-
ing term 
−�SASSx, which combines the single-particle wave
functions into symmetric �even� and antisymmetric �odd� su-
perpositions, ↑�↓. The tunneling term favors the even su-
perposition �channel� where one expects to find a weakly
paired �Moore-Read� phase. We establish that this route to-
ward the Moore-Read state is complicated by the presence of
the compressible CFL, which is the resulting phase for large
tunneling. Along the way, one may arrive at a critical state
that shares some properties with the Moore-Read Pfaffian,
but we do not find evidence that this state represents a stable
phase. Recent experiments24,25 found even denominator frac-
tions in wide quantum wells in the LLL. The results obtained
within the present bilayer model may be relevant also in the
study of wide quantum wells insofar as the latter can, with
moderate approximations, effectively be described by a bi-
layer Hamiltonian, where the tunneling term mimics the ef-
fective confinement gap between the lowest and the first ex-
cited electronic sublevel.17

The remainder of this paper is organized as follows. In
Sec. II we introduce the BCS model for spinful fermions
with tunneling, first proposed by Read and Green.26 This
model decouples into an even and odd channel, and the tun-
neling term increases the population of the even channel,
where one expects to find the weak pairing �Pfaffian� phase.
However, the increase of tunneling also leads to the effective
weakening of the coupling, which eventually drives the sys-
tem into a CFL phase when the total number of particles is
held fixed. This is the situation we analyze in detail in our
exact-diagonalization calculations in spherical and toroidal
geometries �Sec. III�. These results are discussed in the con-
text of the phase diagram of Ref. 26�see Sec. III C�. We
furthermore introduce a generalized tunneling constraint
which, in the BCS description, leads to a stable weak pairing
�Pfaffian� phase in the even channel when the density of the
of the system is not fixed �Sec. IV�. We present our conclu-
sions in Sec. V.

II. BCS MODEL WITH TUNNELING

At �=1 /2, the CFs experience a zero net magnetic field,5

and if we limit ourselves to the neutral part of ��Pf�, they
may be described within the framework of the effective BCS
model introduced in Ref. 26. We consider the system to be at
zero temperature and neglect fluctuations in the Chern-
Simons gauge field that are related to the charge part of
��Pf�.27 The Hamiltonian which describes the Cauchy pairing
between ↑ and ↓ particles with tunneling �SAS reads

H = �
k
�	̃k�ck↑

† ck↑ + ck↓
† ck↓� + ��kck↑

† c−k↓
† + H.c.�

−
�SAS

2
�ck↑

† ck↓ + ck↓
† ck↑� , �1�

where 	̃k=	k−
, in terms of the putative CF dispersion re-

lation 	k and the chemical potential 
, which is assumed
positive 
�0. Notice that because of the vanishing net mag-
netic field, the 2D wave vector k= �kx ,ky� is again a good
quantum number. The order parameter �k=�0�kx− iky� is
chosen to describe p-wave pairing, and we assume that �k
and 
 are not renormalized by the tunneling.

With the help of the even, ck,e= �ck,↑+ck,↓� /�2, and odd
spin combinations ck,o= �ck,↑−ck,↓� /�2, the Hamiltonian �1�
decouples into an even and odd channel,26 H=He+Ho, where
�the index � denotes the even and odd channel, �=e ,o�

H� = �
k

��	k − 
��ck,�
† ck,� + ��k

�ck,�
† c−k,�

† + H.c.�	 , �2�

in terms of the chemical potentials 
e=
+�SAS /2 and 
o

=
−�SAS /2 for the even and odd channels, respectively.
Furthermore, the even/odd p-wave order parameters read
�k

e =�k /2= ��0 /2��kx− iky� and �k
o =�−k /2=−��0 /2�

�kx− iky�.
For moderate tunnelings, the effective chemical potential


eff of the whole system may be viewed as the weighted sum
of the two channels, 
eff= P
e+ �1− P�
o, where P measures
the population of the even channel �1 /2 P1� and may
have a complicated dependence on �SAS. In particular, for
some values of �SAS we may be below the critical line 
eff

= P�SAS and inside the non-Abelian �Pfaffian� phase. How-
ever, in the limit of large tunneling, the system is dominated
by the even channel and the chemical potential of the whole
system is 
eff=
e because P=1. Remember that the associ-
ated BCS wave function in the even channel reads

��BCS� = �
k

�1 + gkck,e
† c−k,e

† ��vacuum� , �3�

in terms of the pairing function gk
vk /uk

e /�0. One no-
tices then that an increase of the chemical potential 
e con-
trolled by the large value of the tunneling parameter �SAS is
equivalent to a reduction of the order parameter �0. There-
fore the BCS system will eventually be transformed into the
one of the Fermi liquid. We can see this more explicitly by
examining the relevant excitations of the even channel,26

E = ��	k − 
e�2 + �0
2k2, �4�

in the limit of large 
e around k= �k�=0. They become un-
stable and k=0 becomes a point of local maximum. The
minimum is expected to move to �k�=kF, the Fermi
momentum.26 Therefore if �0 does not “renormalize” with
increasing �SAS, the net effect of the strong tunneling �
e

�
� on the Cauchy pairing is to drive the system into a
Fermi liquid. This is not unexpected because one retrieves an
effective one-component system in this limit, where all par-
ticles are “polarized” in the even channel. The Pfaffian phys-
ics may however play a role in the intermediate state before
complete polarization. We revisit the BCS approach in Sec.
IV, with a slightly different perspective in which the antisym-
metrization is imposed, in a functional formalism, with the
help of a Lagrangian multiplier which plays a similar role as
the present tunneling term �SAS.
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As we pointed out earlier, the population of the even
channel P may be a complicated function of tunneling. In the
following section we use exact diagonalization of small finite
systems in order to get a hint of the form of this dependence
P= P��SAS� and determine the nature of possible phases as P
increases from 1/2 to 1.

III. EXACT DIAGONALIZATION

Here we study the full interacting quantum Hall bilayer
Hamiltonian for small finite systems in the presence of
tunneling,16,18

H = − �SASSx + �
i�j,��↑,↓

Vintra�ri� − r j�� + �
i,j

Vinter�ri↑ − r j↓� ,

�5�

where in coordinate representation we have 2Sx
=�dr��↑

†�r��↓�r�+H.c.	, ��
†�r� creates a particle at the po-

sition r in the layer �. We have decomposed the interaction
into terms between electrons belonging to the same layer
�Vintra� and those residing in opposite layers �Vinter�. We con-
sider a short-range interaction, defined as

V331
intra�r� = V1�

2��r�, V331
inter�r� = V0��r� , �6�

which produces the 331 state as the densest and unique zero
energy state when V0, V1 are chosen positive.10,28 We also
consider long-range Coulomb interaction,

VCoul
intra�r� = e2/	r, VCoul

inter�r� = e2/	�r2 + d2, �7�

where d is the distance between layers. We fix the total num-
ber of particles in our calculations to be an even integer and,
unless stated otherwise, take d= lB �lB is the magnetic
length�, which merely sets the range for the distance between
the layers where the Coulomb ground state is supposed to be
fairly well described by the 331 wave function. Confining
the electrons to a compact surface such as the sphere28 or
torus,29 the Hilbert space becomes finite and one may exactly
diagonalize the interacting Hamiltonian �5�.30 The ground
state obtained in this way can be numerically compared with
the trial wave functions ��331� and ��Pf� as a simple scalar
product between vectors in the Hilbert space. In these calcu-
lations ��Pf� is defined in the even basis, i.e., single-particle
states are understood to be even combinations of the original
↑ ,↓ states.

A. Sphere

If we wrap the electron sheet into a sphere and place a
magnetic monopole in the center which generates N� mag-
netic flux quanta perpendicular to the surface, we are left
with a finite basis of single-particle states indexed by
0, . . . ,N�. Translational symmetry in the plane is replaced by
rotational symmetry, which leads to a classification of the
many-body states by the eigenvalues of angular momentum
L and its z-component Lz.

28 The two-body interaction such as
Eqs. �6� and �7� is parametrized by Haldane pseudopotentials

VL
��� which represent the energy of a pair of particles located

in layers �, �� with relative angular momentum L.28 Incom-

pressible quantum Hall states are invariably obtained in the
L=0 sector of the Hilbert space. They are further character-
ized by a topological number called the shift28 �, defined
through the relation N�= 1

�N−�. To specify uniquely the Hil-
bert space corresponding to the given trial state, one needs to
know � to get the correct value for the pair of �N ,N��. Some-
times it is possible to find different values of � ,� that yield
the same �N ,N��—this is called the aliasing problem be-
cause two different trial states get realized in the same Hil-
bert space. We disregard such cases in our calculations.

In Fig. 1 we present results of exact diagonalization on
the sphere for the short-range �331� Hamiltonian �6� and
long-range �Coulomb� Hamiltonian �7�. 331 and Pfaffian
trial states occur at the same value of the shift, thus we are
able to track their evolution as a function of tunneling simul-
taneously. We also use �Sx�, the expectation value of the Sx
operator in the ground state, to monitor the two-component
to one-component transition, whereas �Sz� remains zero
throughout, which is due to the weaker interlayer as com-
pared to the intralayer interaction. Starting from the long-
range Hamiltonian �Fig. 1, left panel�, we see that the 331
state gives way to a Pfaffian-like ground state, with the over-
lap quickly saturating to a value of around 0.92.16,18 The
transition occurs for �SAS�0.1e2 /	lB which agrees well with
the typical experimental value and shows little size depen-
dence when the largest accessible system N=10 is consid-
ered �note that the subsequent N=12 system suffers from the
aliasing problem�. On the other hand, notice that for the
short-range Hamiltonian �Fig. 1, right panel�, the 331 state is
much more robust to perturbation by �SAS: before it reaches
full polarization in the x direction �maximum �Sx��, the over-
lap with both incompressible states drops precipitously be-
yond some critical �SAS which is rather size-sensitive �it also
depends on the values of the parameters one chooses in Eq.
�6�, but the qualitative features of the transition are repro-
duced for many different choices of V0, V1�.

We see nonetheless that the breakdown of a two-
component phase yields a one-component state manifested
by �Sx�→N /2 �this is the limit P→1 from Sec. II�. At the
transition, �Sx� develops a small but visible kink. Focusing
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FIG. 1. �Color online� Overlaps between the exact ground state
of the Coulomb bilayer �left panel� and short range 331 Hamil-
tonian �right panel� with the 331 state �O331� and the Pfaffian �OPf�,
as a function of tunneling �SAS. Also shown on the right axis is the
expectation value of the Sx component of pseudospin �for N=8
system� which characterizes the two-component to one-component
transition.
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on the large-tunneling limit, we find that the nature of the
ground state is effectively that of the single-layer �polarized�
ground state for the symmetric interaction V+�r�= �Vintra�r�
+Vinter�r�	 /2. This intuitive result was directly verified for all
the available system sizes, including very large N=10 system
on both sphere and torus �see Sec. III B�. In view of this, it is
not surprising that the large-tunneling limit of the short-range
Hamiltonian is the compressible CFL: V+ in this case reduces
to the repulsive hard core V1 pseudopotential which has a
tendency to produce the Jain CF state. This is also apparent
in the fact that the ground states for large tunneling are ob-
tained in the angular momentum sectors that agree with the
predictions for the excitations of the CFL yielding overlap of
0.99 with the excited CF sea ground state.

Therefore, the results for the short-range Hamiltonian are
suggestive that we may have a direct 331-CFL transition in
the thermodynamic limit because the transition point seems
to be shifting toward smaller tunnelings as we increase N.
Notice, however, that in contrast to the incompressible 331
and Pfaffian states, which occur at a shift �=3, the CFL has
a shift �=4. On the sphere, the two incompressible states can
thus not be directly compared to the CFL, and the evidence
for the 331-CFL transition is therefore indirect. This problem
is circumvented in ED on the torus presented hereafter in
Sec. III B. In the Coulomb case, on the other hand, we ob-
serve a curious saturation of the ground state overlap with
the Pfaffian. We attribute this feature to the effect of the long
range Coulomb potential on a finite system. One notices that
by adding an asymptotic tail to the “intra” component of the
short-range pseudopotentials VL

intra=VL,331
intra +� /2�L �� non-

zero for L�3�, one progressively increases the critical value
of �SAS for the abrupt drop of the overlaps as �→1 �pure
Coulomb�. In fact, for N=8,10 it is sufficient to consider
only V3

intra to achieve the saturation and push the critical
value of �SAS to infinity.

Results for the Coulomb interaction in the large �SAS limit
�Fig. 1� are similar to those obtained in Ref. 31 where single-
layer Zhang-Das Sarma interaction was used. As long as we
are in the large �SAS limit, V+�r� interaction produces nu-
merically the same effect as the Zhang-Das Sarma interac-
tion. In particular, transition to a Moore-Read Pfaffian will
be induced if the layer separation d is sufficiently large.31 Of
course, these two interactions are different from each other
and the fact that they yield the same phenomenology �phase
transitions as d is varied� only means we are probing a criti-
cal state where even the slightest perturbation away from
pure Coulomb interaction �coupled with the bias of the shift�
is sufficient to generate incompressibility. However, despite
large overlap, the gap remains very small after the transition.
The difference between the two interactions is obvious in
the torus geometry �Sec. III B�. The new result of the present
paper is that we find the Pfaffian signature even in the region
without full polarization �P�1�, as we elaborate in
Sec. III C.

B. Torus

Another way to compactify an infinite plane is to impose
periodic boundary conditions on a unit cell a�b.28,29 This

also produces a finite set of N�=ab /2�lB
2 single-particle

states which are periodic functions under the transformation
of coordinates x→x+a, y→y+b �we assume that there are
no additional phases generated by such a transformation�.
Because of the presence of magnetic field, the many-body
Hamiltonian reduces in the invariant subspace of the mag-
netic translation group29 and the eigenstates are labeled by
the pseudomomentum k, restricted to the Brillouin zone

�2�s /a ,2�t /b� ;s , t=0, . . . , N̄−1, where N̄ is the greatest
common divisor of N, N�. Contrary to the sphere, trial states
on the torus are uniquely specified by their filling factor and
thus we can directly address transitions between the 331
state, the Pfaffian and the CFL. Moreover, states in this ge-
ometry are distinguished by their ground-state degeneracy. If
the filling factor is �= p /q �p ,q having no common divisor�,
there is a generic degeneracy of q which comes from the
center of mass motion29 having no physical importance, so
we implicitly assume it in what follows. Apart from this,
there can be additional degeneracies occurring due to special
point symmetry of the Brillouin zone �trivial� or those that
arise from the multicomponent32 or the non-Abelian nature
of the state.9,10 For the 331 state we expect a quadruplet of
states �up to the center of mass degeneracy� one of which
belongs to the k=0 sector of the Hilbert space and the re-
maining three are located at the corners of the Brillouin zone,

k= �0, N̄ /2� , �N̄ /2,0� , �N̄ /2, N̄ /2�. In contrast to the 331
state, the Moore-Read Pfaffian has only a threefold

degeneracy26 k= �0, N̄ /2� , �N̄ /2,0� , �N̄ /2, N̄ /2�, whereas
compressible states in general do not possess clearly defined
degeneracies �they may appear to have accidental degenera-
cies which are functions of the aspect ratio of the torus a /b,
particle number and any other parameter�. These are the ex-
pectations based on the analytic form of the trial wave func-
tions and their parent conformal field theories,9,33 but they
are also borne out exactly in the numerical diagonalization of
the model Hamiltonians.8,34

In Fig. 2 we show the relevant low energy part of the
spectrum of the Hamiltonians �6� and �7� as a function of
tunneling, measured relative to the ground state �right axis�,
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FIG. 2. �Color online� Low-energy part of the spectrum �relative
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long-range Coulomb Hamiltonian �right panel� for N=8 electrons
on the torus at �=1 /2 and aspect ratio a /b=0.97 as a function of
tunneling �SAS �right axis�. Also shown �left axis� is the overlap
with the phases we identify as the 331 state and the CFL.
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for N=8 electrons and the fixed aspect ratio 0.97 in the vi-
cinity of the square unit cell. We identify the multiplet of
four states that build up the 331 phase, whose exact degen-
eracy for the short-range Hamiltonian and small �SAS �left
panel� is partially lifted in case of the Coulomb interaction
�right panel�. 331 phase is destroyed for sufficiently large
�SAS when the k= �1,1� state �fourfold degenerate� comes
down and eventually forms a gapless branch with �0,4� and
�4,0� members of the 331 multiplet �other excited states not
shown�. We identify the large-tunneling phase as the CFL
phase because exactly the same spectrum is seen in a single
layer with Coulomb interaction and the same aspect ratio.
This transition is quantitatively reflected also in the overlap
with the trial 331 states and CFL as a function of tunneling
�Fig. 2, left axis�. In order to take into account the ground-
state degeneracy, we define overlap on the torus in the fol-
lowing way:

���trial����2 �
1

�Strial�
�

k�Strial

���trial�k����k���2, �8�

where Strial stands for the degenerate subspace expected for
��trial�. This amounts to adding together the overlap squared
for each of the expected members in the ground-state multi-
plet �normalizing the sum by the expected ground-state de-
generacy �Strial� to be 1 at maximum� and the definition is
obviously meaningful only in the case where we had previ-
ously established the correct level ordering in the spectrum.

Upon a closer look at Fig. 2, one notices that the torus
spectra suggest little qualitative difference between the short-
range and the Coulomb Hamiltonian. In particular, we do not
see any indication of the Pfaffian threefold ground-state de-
generacy for large �SAS which could be expected from the
large overlap on the sphere �Fig. 1�. To reconcile these two
results, we again focus on the large-tunneling limit and vary
the aspect ratio of the torus to investigate the possibility of
an emergent Pfaffian phase �Fig. 3�. We assume that in the
large-tunneling limit, we have effectively a single-layer �po-
larized� ground state for the symmetric interaction V+�r�. In
Fig. 3 we show the spectrum of the single-layer system of
N=14 electrons interacting with V+�r� as a function of aspect

ratio and connect the levels that have the quantum numbers
of the Moore-Read Pfaffian. We also include the background
charge correction.35 One notices that, with the exception of a
very narrow range of aspect ratios around 0.4, there is no
evidence of a clear Moore-Read degeneracy. A narrow region
where we see the threefold multiplet of states for N=14 also
exists for N=8, but is obscured by the presence of higher
energy levels in systems of N=10 and 12 electrons. Thus we
conclude that it cannot represent a stable phase, but a possi-
bility remains that it is a critical phase which becomes stron-
ger as one approaches the thermodynamic limit or as one
changes the interaction away from the pure Coulomb.

We note that varying d �at the fixed aspect ratio� does not
lead to any qualitative change in the ground-state degeneracy
as long as V+�r� interaction is used. This is clearly different
from Zhang-Das Sarma interaction which induces level
crossings in the spectrum in such a way that for large d
�typically beyond 4lB�, a Pfaffian degeneracy is seen for big
enough systems,36 with the exception of N=10. This is simi-
lar to the results in the second Landau level,36 as well as the
calculations on the sphere,31 but the prohibitively small gap
suggests that such a state, if it exists, is very fragile.

C. Pfaffian signatures for intermediate tunneling and a
proposal for the phase diagram

We conclude this section with a summary of our exact-
diagonalization results in the two geometries in order to
make a connection with the BCS analysis of Sec. II and
sketch possible paths of the �=1 /2 two component system
with tunneling in the phase diagram of Read and Green,26

see Fig. 4. In Fig. 4, 
 has the meaning of the effective
chemical potential 
eff of the whole system as in Sec. II,
renormalized by �SAS, i.e., 
=
��SAS�. It is assumed that it
can be approximated by the value of the chemical potential
of the dominant even channel, 
eff�
e and the separation
between the Abelian and non-Abelian phases in Fig. 4 is
defined by setting then the value of the chemical potential of
the odd channel to zero, i.e., 
o�
��SAS�−�SAS=0. This
approximation renders necessary taking into account the

-5.52

-5.48

-5.44

-5.4

-5.36

-5.32

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[e

2 /ε
l B

]

Aspect ratio

(7,0)
(0,7)
(7,7)

FIG. 3. �Color online� Spectrum of the N=14 electrons in a
single layer at �=1 /2 interacting with V+�r� �d= lB�, as a function of
aspect ratio. We highlight the states with quantum numbers of the
Moore-Read Pfaffian.

FIG. 4. Possible outcomes of tunneling on a two component
system such as the transition to a Fermi liquid �a� or to a critical
Moore-Read Pfaffian �b1 ,b2�, in the context of phase diagram after
Read and Green �Ref. 26�. Note that the value for 
F
1 /m� is
interaction-dependent due to the renormalized CF mass m� and we
may have different dividing lines 
=
F depending on the kind of
the interaction �Ref. 6�.
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renormalization of the parameters in the BCS Hamiltonian
�1� with tunneling, as in Ref. 26.

On the sphere, we first recall a very large difference in
�SAS

C , the critical value of tunneling required to fully polarize
the system in the x direction, for the two interactions consid-
ered. A much larger value for the short-range 331 Hamil-
tonian suggests that the chemical potential for the even chan-
nel in this case is much more strongly renormalized than for
the long-range Coulomb interaction and therefore such a sys-
tem may assume a phase trajectory labeled �a� in Fig. 4,
directly moving from 331 state through the Abelian phase
and into a CFL.

A question we ask at this point is whether the CFL, a
likely phase at P=1, leaves room for other one-component
states to form as we increase the tunneling. In particular, is
there a possibility for a system to evolve along the trajectory
which terminates at �b1� or touches �b2� the critical line that
separates the Abelian from the non-Abelian phase in Fig. 4?
Such an intermediate phase could possess significant overlap
with the Moore-Read Pfaffian, but it would necessarily have
a small gap and we refer to it as “critical Pfaffian.”

On the sphere, a suitable system to detect the signature of
the critical Pfaffian is the Coulomb N=10 system where the
large-tunneling phase is compressible for d�0.5lB.31 We
therefore fix d=0.4lB and vary �SAS �Fig. 5�. For �SAS=0, we
are still largely in the 331 phase and for large �SAS we are in
the CFL; however, for intermediate tunnelings we see a de-
veloping Pfaffian that establishes in a narrow range around
�SAS=0.04e2 /	lB. Therefore, despite “weaker” incompress-
ibility for small �SAS and full compressibility for large �SAS,
for intermediate tunneling we find evidence for the Pfaffian,
as suggested by the trajectory b2 in Fig. 4�. For larger values
of d, as we remarked in Sec. III A, we observe saturation of
the overlap for Coulomb interaction and the tentative trajec-
tory in that case resembles b1.

The effects of CFL physics are rendered more transparent
in the torus geometry, where we have identified the dominant
phases as 331 and CFL �Fig. 2�, with a direct transition be-
tween the two of them. We choose a value for �SAS
=0.03e2 /	lB which places the system in the center of the
transition region �compare also with Fig. 5� and examine the
spectrum of an N=8 system as a function of aspect ratio for
an emerging Pfaffian degeneracy, Fig. 6. In torus geometry

there is no subtle dependence on d, so we take as before d
= lB. In agreement with the results on sphere, we find a region
of aspect ratios where the correct Pfaffian degeneracy is vis-
ible.

Previous results lend support to the scenario of an inter-
mediate critical phase in a long-range Coulomb system,
which has a small gap �Fig. 6� but possesses large overlap
with the Moore-Read Pfaffian �Fig. 5�. We would like to
stress that all of our conclusions are based on the idealized
bilayer Hamiltonian �5�. As such, it is not clear at present to
what extent they apply to the experiments24,25 where the
electron density-profile differs significantly from an ideal bi-
layer. With respect to theoretical studies, stronger indication
of topological degeneracy is likely to be found in a model
that assumes nonzero thickness of each layer,36 but that
would lead also to a substantial decrease of the gap.37

IV. GENERALIZED TUNNELING CONSTRAINT

In Sec. III we found that in a system with a fixed number
of particles and the tunneling commonly expressed as
−�SASSx, there is only circumstantial evidence for the clear
Pfaffian phase in finite systems that can be studied by ED.
This evidence appears most striking when Coulomb overlaps
in the spherical geometry are considered �Fig. 1�. However,
these overlaps must be interpreted with caution: on the
sphere we can indeed only study the competition between
Pfaffian and an excited CFL state �containing a quasiparticle�
because the ground-state candidates occur at different values
for the shift � as mentioned in Sec. III A. As we have ex-
plained there, the latter state is indeed favored by short-range
interactions. Moreover, even when the ground state is de-
scribed by the Pfaffian state, the energy spectrum is not that
of a typical incompressible state with a gap to all excitations.
Therefore, an explanation for the large Coulomb overlap
with the Pfaffian may be the shift which artificially favors it
over the CFL phase. This interpretation agrees with the re-
sults in the torus geometry, which treats both phases on the
same footing and which suggests that the CFL is the likely
outcome of tunneling on the 331 state. We can give two
general arguments for this. First, strong tunneling has a ten-
dency to polarize the spin in the x-direction, and one there-
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fore crosses over to an effective one-component system that
in the LLL favors the formation of a compressible CFL
phase. Second, we have shown in the BCS approach for the
charge-neutral sector �Sec. II� that tunneling does not only
lower the chemical potential 
o in the odd channel but also
increases that in the even channel, 
e. We argued that this
leads to the insufficiency of the BCS model description,
which then describes a local maximum and the system
crosses over to a CFL.

It is clear that, in addition to tunneling, one also must find
a way to prevent the effective even-channel chemical poten-
tial from becoming too large if the weakly paired phase is to
be established in the system. In this section, we propose a
way to implement this requirement formally via generalized
tunneling constraint. On the level of the BCS model used in
Sec. II, this constraint leads to a stable weak-pairing phase in
the even channel. In the following Sec. IV A we describe a
formal implementation of the constraint in a system of BCS
paired fermions. On the basis of this model, we propose, in
Sec. IV B a system in contact with a reservoir with which it
can exchange particles so that, with the tunneling term in-
cluded, a stable Pfaffian phase can be reached.

A. System with generalized tunneling constraint

Cauchy determinant pairing describes p-wave pairing of ↑
and ↓ particles, and in order to recover the spinless Pfaffian
pairing, we need to “identify” ↑ with ↓. Within a functional
formalism, that amounts to adding a term of the form

��r���↑�r� − �↓�r�	 �9�

to the Langragian density via Grassmannian Lagrange mul-
tiplier ��r�. We will assume instead that we can alternatively
express this via the constraint

��r���↑
†�r� − �↓

†�r�	��↑�r� − �↓�r�	 , �10�

in terms of the bosonic multiplier ��r�. By construction this
constraint affects only the odd channel. Within the mean-
field approximation of a spatially constant multiplier ��r�
=�, one may identify �=�SAS /2, i.e., the effect of the mul-
tiplier is the same as the tunneling term in Sec. II, except for
an overall decrease of the chemical potential, 
→
−�,
which eventually yields a �-independent chemical potential
in the even channel, 
e=
, as mentioned above. Integration
over the Lagrange multiplier projects to �o

†�o=0, where
�o

†= ��↑
†�r�−�↓

†�r�	 /�2 is again the odd spin superposition
written in terms of the fermion fields ���r�, i.e., it leaves us
with no density in the odd channel.

The BCS Hamiltonian including the constraint �Eq. �10�	
has the same form as Eq. �1� except that now 	̃k=	k−
+�,
as a consequence of the above-mentioned shift in the chemi-
cal potential. We can diagonalize it by a Bogoliubov trans-
formation,

�k = u↑ck↑ + u↓ck↓ + v↑c−k↑
† + v↓c−k↓

† . �11�

The equation ��k ,H	=E�k then defines the Bogoliubov–de
Gennes equations and the Hamiltonian is transformed into

the canonical form H=�kE�k�k
†�k+�kE�k�k

†�k+ Ẽ0, where

the eigenvalues �E�k and �E�k are given by

E�k = �	k,1
2 + �0

2k2, with 	k,1 = 	k − 
 ,

E�k = �	k,2
2 + �0

2k2, with 	k,2 = 	k − 
 + 2� , �12�

respectively. The eigenvectors corresponding to E�k and E�k
are, respectively,

�k =
k

2�E�k

�E�k + 	k,1

kx − iky
�ck↑ + ck↓�

+
�0k

2�E�k

1
�E�k + 	k,1

�c−k↑
† + c−k↓

† � ,

�k =
k

2�E�k

�E�k + 	k,2

kx − iky
�ck↑ − ck↓�

−
�0k

2�E�k

1
�E� + 	k,2

�c−k↑
† − c−k↓

† � . �13�

To find the stationary point for the action defined by the
diagonalized BCS Hamiltonian at zero temperature, it is use-
ful to continue � from the real axis to the complex plane C
�see Ref. 38 for details�. The part Ẽ0, through its dependence
on �,

Ẽ0 = − �
k

�0
2k2

2
� 1

E�k + 	k,1
+

1

E�k + 	k,2
� , �14�

determines the stationary point: �Ẽ0 /��=0. Introducing the
notation 
−2�� 
̃�C for the analytically continued chemi-
cal potential in the odd channel, we continue as E�k+	k,2
= �
̃�− 
̃+o�k2�, which gives us the stationary point Re 
̃
→−� or, equivalently, �→+� and we have strong coupling
in the odd channel. For our choice 
�0, we thus obtain
weak coupling in the even channel that has a Pfaffian
description26 in ck↑+ck↓ �even� variables �see the expression
for �k Eq. �13�	. Unlike the situation in Sec. II, with the
same assumption that �0 does not renormalize strongly with
tunneling, the chemical potential of the even channel stays
the same and the even channel can thus be weakly paired.

B. System with fluctuating density

The previous discussion was on the simplified model of
the 331 physics in terms of neutral fermions with an addi-
tional constraint that leads to the Pfaffian, but seems artificial
and hard to implement in an experimental setting. Neverthe-
less it suggests a possible way to achieve the stable Pfaffian
phase. With respect to ordinary tunneling the generalized
constraint can be modeled by strong tunneling and an addi-
tional term in the effective description, �N, where N is the
total number of particles and � tunneling strength as
before.39 The chemical potential �of the whole system� de-
pends on the tunneling and changes as 
−�. Then we have
the following physical picture in mind: as we take ��0 this
decrease of the chemical potential with tunneling will imply
the decrease of the density of the system. On the other hand,
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from the solution of the BCS system with the generalized
constraint, we see that the effective chemical potential of the
even channel stays the same—equal to 
, Eq. �12�. This
means also that the number of particles in the even channel
stays the same, so the effects of the tunneling and the addi-
tional term cancel, but the polarization P increases with tun-
neling. Thus we effectively maintain the same effective pa-
rameter 
 with tunneling, its value will not increase, and we
will be able to achieve the stable Pfaffian phase. To be more
specific and quantitative about the role of fluctuating density
in achieving the Pfaffian, we discuss in the remainder of this
section the necessary dependence of density on tunneling.
We will recover the demand for the decreasing density for
the case of strong tunneling.

Our BCS Hamiltonian, which is also the thermodynamic
potential � at zero temperature, is specific for the fact that
the independent thermodynamic variable, along with volume
and temperature, is the chemical potential 
�, given by 
�

=
−�. Therefore, as we change � �the parameter of the
Hamiltonian�, we also induce a change in the chemical po-
tential �
�=−� and this implies

��

��
=

�Ẽ0

��
= N , �15�

for the particular system. The effective chemical potential,
on the other hand, is in this case


eff = 
P + �
 − 2���1 − P� = 
 + �P − 1�2� . �16�

As before, this relation shows how the chemical potential
renormalizes as a parameter � of the BCS Hamiltonian is
varied. We keep the volume constant and measure N with kF
in the usual ansatz,

N�kF� = �
k,�

→
2 � 2�

�2��2 �
0

kF

dkk = kF
2 /2� , �17�

and Eq. �15� becomes

N�kF� =
�Ẽ0�kF,��

�kF

�kF

��
+

�Ẽ0�kF,��
��

. �18�

Differentiating and converting the sum in Ẽ0 into an integral
over k, we obtain the partial differential equation,

kF
2 = −

�0
2kF

3

2 � 1

E�kF
+ 	kF,1

+
1

E�kF
+ 	kF,2

� �kF

��

+ �
0

kF

dkk3 �0
2

E�k�E�k + 	k,2�
, �19�

from which we can extract the limiting case ���2kF
2 /2m�

when

�N�kF�
��

= − cN�kF� , �20�

with the constant factor c�0, i.e., for large tunneling we
should decrease the density of the system to stay at small 
e

and to stabilize the Pfaffian. We expect this limit to be per-
tinent to the experiments such as Ref. 25 where the com-

pressible state starts to show signs of incompressibility upon
density imbalance. Enforcing the condition �20� is then ex-
pected to lead to strengthening of the paired Pfaffian state, as
summarized in Fig. 7 where the dashed line represents sche-
matically a phase trajectory of the system that evolves under
the generalized tunneling constraint �in the large �SAS limit�.
As Eq. �20� shows, in this case the density of the system
needs to be decreased simultaneously with the increase of
tunneling �SAS. This can be achieved conventionally via the
application of a gate voltage to the evaporated top/bottom
gates as, e.g., in Refs. 25 and 40 or by growing in situ a
n+-GaAs layer that can serve as a gate.41

The main reason why we find it desirable to have an open
system in the experiment is our inability to specify the pa-
rameters of the simplified, effective Read-Green model and
pin-point the optimal density for which the Pfaffian state
would be strong. With a better knowledge of the microscopic
details of the system, one may as well fix a particular density
�which we expect to be small� for a given, not too large,
tunneling strength where the Pfaffian will be stable. How-
ever, an open system would allow a systematic study over a
range of tunneling strengths in which the Pfaffian would
show a characteristic strengthening that would distinguish it
from any other incompressible candidates.

Therefore, in principle, by changing the density of the
system we can achieve a stable Pfaffian phase. We would
like to compare the present discussion which is based on the
simplified model of neutral fermions �mean field in nature
with the simplifying assumption �o=−�e=constant, i.e., in-
dependent of tunneling� with exact diagonalization in the
LLL in the previous section. The arguments presented here
call for an open system with adjustable density which de-
mands also the adjustment of the magnetic field B to achieve
the stable Pfaffian phase. Although doing so will preserve the
filling factor, in general changing the total density may en-
hance the role of LL mixing and thus invalidate the LLL
assumption in the exact diagonalizations. It will also lead to
the renormalization of the parameters of the BCS effective
model not taken into account in Sec. II. Indeed, when low-
ering the total chemical potential via the generalized con-
straint, the density is also decreased. On the other hand the
ratio between interaction strength �e2 / lB� and cyclotron fre-
quency ��c
1 / lB

2� is proportional to 1 /��, from which we

FIG. 7. Generalized tunneling constraint �dashed line� in the
phase diagram of Fig. 4. Note that, as in Fig. 4, 
 denotes the
effective chemical potential equal to the chemical potential of the
even channel in the strong tunneling limit.
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see that the LLL projection is invalidated if the density is
significantly reduced. Therefore to reach and establish the
Pfaffian phase it is likely that LL mixing has to be taken into
account. This has been discussed in the recent literature42,43

as a way to stabilize the Pfaffian phase. Here we seek the
Pfaffian in a two-component setting when a parameter of the
system � is varied, which makes the inclusion of higher LLs
harder. If we remain in the LLL, changing of the density
amounts to simple rescaling of spectra �e2 / lB→ce2 / lB with
c�0�, which cannot induce any significant effect such as the
change in the nature of �quasi�degeneracy of ground states
on the torus. Even if the evidence for a Pfaffian phase is
rather weak for the system sizes studied here, one may hope
that the increase of these sizes will improve the case for such
a state in the LLL as the odd channel may assume the role of
the first excited Landau level before a complete polarization.

V. CONCLUSIONS

We investigated the possibility of creating the Moore-
Read Pfaffian out of the paired two-component 331 state via
tunneling. Exact diagonalization, performed under the con-
straint of LLL projection and fixed total number of particles,
could not detect a stable Pfaffian phase, but a critical one
between 331 and CFL phases. While the short-range interac-
tion is likely to favor a direct transition from the 331 to the
CFL phase, long-range Coulomb interactions leave the pos-

sibility for a Pfaffian-like phase if the parameters of the sys-
tem are tuned in a special way. Based on the connection
between our numerical results and the effective BCS Hamil-
tonian theory of paired states, we argue that one way to
stabilize the Pfaffian state is to change the density �number
of particles� of the system while increasing the tunneling.

Our analysis was restricted to the Coulomb bilayer system
and the tunneling term of the form −�SASSx, which is small
in magnitude and generally difficult to control. Similar con-
siderations apply to the quantum well systems25 where ↑ ,↓
stand for the two lowest electronic subbands and �SAS acts
like a Zeeman energy. In these systems, the analog of the
tunneling term used in our paper can be deployed to create
asymmetric charge distribution in the wide quantum well.25

The interplay of these two kinds of terms, tunneling and
Zeeman, will be addressed in future work.
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We study, with the help of exact-diagonalization calculations, a four-component trial wave function that

may be relevant for the recently observed graphene fractional quantum Hall state at a filling factor �G ¼
1=3. Although it is adiabatically connected to a 1=3 Laughlin state in the upper spin branch, with SU(2)

valley-isospin ferromagnetic ordering and a completely filled lower spin branch, it reveals physical

properties beyond such a state that is the natural ground state for a large Zeeman effect. Most saliently, it

possesses at experimentally relevant values of the Zeeman gap low-energy spin-flip excitations that may

be unveiled in inelastic light-scattering experiments.

DOI: 10.1103/PhysRevLett.105.176802 PACS numbers: 73.43.Nq, 71.10.Pm, 73.20.Qt

The recent observation of the fractional quantum Hall
effect (FQHE) in graphene [1,2] has proven the relevance
of Coulomb interactions in this novel two-dimensional
(2D) electron system, in agreement with theoretical expec-
tations [3–8]. The most pronounced state is the one found
when the ratio �G ¼ nel=nB between the electronic density
nel and that of the flux quanta nB ¼ eB=h is �G ¼ 1=3.
Although this state is reminiscent, at first sight, of the
prominent 1=3 state observed in semiconductor hetero-
structures [9], which is described to great accuracy by
the Laughlin state [10], several questions arise when tak-
ing fully into account the four-component structure of
graphene, due to its fourfold spin-valley degeneracy.
Whereas first numerical approaches [5] considered the
physical spin to be frozen by the Zeeman effect and con-
centrated on the valley-isospin degree of freedom in a two-
component system, a four-component approach [8] seems
to be more appropriate in view of the rather small energy
scale associated with the Zeeman effect �Z, when com-
pared to the leading energy scale of the Coulomb interac-

tion, e2=�lB at the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
. Indeed

for a g factor of 2 [11], one obtains �Z=ðe2=�lBÞ �
0:002

ffiffiffiffiffiffiffiffiffiffi
B½T�p � �, where � is the relative dielectric constant.

A further complication arises in graphene, as compared
to the 2D electron gas in semiconductor heterostructures,
when one considers the definition of the filling factor �G,
which is proportional to the carrier density nel. In gra-
phene, the carrier density vanishes at the Dirac point,
where the spectrum is particle-hole symmetric. In the
presence of a magnetic field, a fourfold degenerate zero-
energy Landau level (LL) is formed that happens to be half
filled when nel ¼ 0 and thus �G ¼ 0—the situation at
�G ¼ 0 is therefore more reminiscent of a filling factor
of � ¼ 2 in a usual four-component quantum Hall system
[8], and the observed FQHE at �G ¼ 1=3 corresponds to a
situation where two of the four spin-valley subbranches are
completely filled and a third one 1=3 filled (� ¼ 2þ 1=3).

As a consequence the observed FQHE is not a simple
Laughlin state with an SU(4)-spin-valley ferromagnetic
ordering, which would arise at �G ¼ �2þ 1=3 (or by
particle-hole symmetry, at �G ¼ 2� 1=3) [6,8]. A natural
candidate for large values of the Zeeman gap would then be

a valley-SU(2)-ferromagnetic Laughlin state �v�SUð2Þ
#;L in

the spin- # branch of the zero-energy LL similar to the
usual 1=3 physics. In this scenario, both states K and K0
are completely filled in the spin- " branch. The small
relative value of the Zeeman gap, however, casts doubt
on such a scenario of complete spin polarization induced
by an external field, without considering a cooperative
effect mediated by the Coulomb interaction.
Here, we analyze the system in the zero-energy LL with

the help of exact-diagonalization (ED) calculations
for relativistic electrons in the spherical geometry with
SU(4) symmetry that interact via the Coulomb interaction
[4,5,8]. We show that already for a very small Zeeman
effect, one may obtain a FQHE at �G ¼ 1=3 in graphene.
This state may be described in terms of a four-component

Halperin wave function �SUð4Þ
2þ1=3 which is adiabatically

connected to the valley-SU(2)-ferromagnetic state in the
upper spin branch. The latter is the natural ground state for
a large Zeeman splitting. Most saliently, in spite of this
adiabatic connection, the low-energy excitations in an
intermediate range of the Zeeman splitting are different
from those of the simple SU(2) Laughlin state. In addition
to the charge-density-wave mode with its characteristic
magnetoroton minimum and the valley-isospin wave
(ISW), which is the Goldstone mode associated with the
spontaneous valley-isospin breaking in the spin- # branch,
we find a low-energy spin-flip mode with a gap that de-
pends linearly on the Zeeman coupling. These modes may
be experimentally accessible in inelastic light-scattering
measurements that have revealed similar modes in conven-
tional quantum Hall systems in GaAs heterostructures
[12,13]. That electrons in graphene reside at the sample
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surface makes this novel 2D electron system even better
adapted to optical measurements than the latter.

In order to describe the FQHE state at �G ¼ 1=3, which
corresponds to a filling factor of � ¼ 2þ 1=3 when
counted from the bottom of the central n ¼ 0 LL, we
investigate the trial four-component wave function

�SUð4Þ
2þ1=3 ¼

Y

�¼K;K0

Y

i<j

ðz#;�i � z#;�j Þ3

�Y

i;j

ðz#;Ki � z#;K
0

j Þ3 Y

�¼K;K0

Y

i<j

ðz";�i � z";�j Þ; (1)

where z�;�j denotes the complex coordinate of the jth

electron in the spin-valley subbranch �, � (� ¼" or # and
� ¼ K or K0). We have omitted a ubiquitous Gaussian
factor in the expression. Notice that, in the absence of
a symmetry-breaking field, the wave function (1) is not a
good trial state because the Coulomb interaction potential
respects the SU(4)-spin-valley symmetry [4,14], whereas
the wave function (1) is not an eigenstate of the SU(4)-
Casimir operators.

This is indeed corroborated by our ED calculations for
N ¼ 17 particles with NB ¼ 6 flux quanta threading the
sphere, the relation between N and NB being NB ¼
ð3=7ÞN � 9=7 for the state (1) [15], which yields the re-
quired filling � ¼ 7=3 in the thermodynamic limit. The
ground state is then found in spin sectors different from
that, 2Sz ¼ 11, expected for the state (1). A simple manner
to stabilize the state (1) is to use appropriate pseudopoten-
tials [16] that break the SU(4)-spin-valley symmetry in the
interaction potential. However, surprisingly, this trial state
becomes the ground state also when the SU(4) symmetry
is broken by an external field—e.g., a very small value of the
Zeeman effect turns out to be sufficient, �1

Z ’ 0:01e2=�lB,
which is a tiny fraction of the leading Coulomb interaction

energy scale e2=�lB � 625ð ffiffiffiffiffiffiffiffiffiffi
B½T�p

=�Þ K. In a typical
experimental situation, the 1=3 state has been found at
a magnetic field of roughly B� 9; . . . ; 12 T [1,2], which
corresponds to a ratio of �Z=ðe2=�lBÞ � 0:006; . . . ; 0:008�
if one usesg� 2 [11]. This value is slightly smaller than our
theoretical estimate if one considers the smallest possible
value of the dielectric constant (� ¼ 1 for freestanding
graphene). However, virtual interband excitations lower
the dielectric constant that becomes �1 ’ 4 for freestanding
graphene in the large-wave-vector limit [17], also in a
strong magnetic field [18], and the precise value of the
dielectric constant in graphene remains an open issue.
Notice that it is even still under debate whether the
Zeeman splitting is indeed the dominant SU(4)-symme-
try-breaking perturbation or whether the valley splitting is
more relevant. Our theory and the conclusions of this Letter,
however, remain valid also in the latter case if one inter-
changes the role of spin and valley isospin and if one
replaces �Z by a ‘‘valley Zeeman effect’’ [19].

The energy spectrum, which we have obtained in ED
calculations, is shown in Fig. 1 as a function of the Zeeman
gap �Z. Above the critical value �1

Z, the ground state is

found in the maximally polarized spin sector that corre-
sponds to the state (1), whereas the excited state with the
lowest energy is in the same spin sector, 2Sz ¼ 11, only
above a second value �2

Z ’ 0:03e2=�lB. For values of the
Zeeman gap �1

Z � �Z � �2
Z, the excited state with lowest

energy is found in the spin sector 2SZ ¼ 9. Above �2
Z,

however, the energy cost of this spin-flip excitation (SF,
see Fig. 2) is larger than the lowest-lying excitation in the
fully polarized sector 2Sz ¼ 11 (C in Fig. 2).
These results suggest that the state (1) may have physi-

cal properties beyond the simple 1=3 Laughlin state in the
spin- # branch, in the form of coherent spin-flip excitations
in an intermediate range of Zeeman gaps. In order to test
this scenario in more detail, we have investigated the two-
component wave function

�SUð2Þ
1þ1=3 ¼

Y

i<j

ðz#i � z#jÞ3
Y

i<j

ðz"i � z"jÞ; (2)

which would be a candidate in a two-component quantum
Hall system, such as a conventional 2D electron gas in a
GaAs heterostructure, at a filling factor � ¼ 1þ 1=3. It is
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FIG. 1 (color online). Energy spectrum for N ¼ 17 electrons
at a filling factor �G ¼ 1=3 (� ¼ 2þ 1=3), as a function of �Z,
obtained from ED calculations of the Coulomb interaction on the
sphere (NB ¼ 6) with implemented SU(4) symmetry. Above
�1

Z ’ 0:01e2=�lB the ground state is found in the maximally
spin-polarized sector (2Sz ¼ 11, red diamonds). The inset shows
a zoom on the region for small values of �Z.

ISW
C

SF

K
K’

K
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FIG. 2. Classification of the excitations of the�SUð4Þ
1=3 state. The

excitations of a one-component Laughlin state are found in the
same spin-valley sector (C), whereas the Goldstone mode due to
the broken SU(2) valley-isospin symmetry in the spin- # branch
is an isospin-wave mode (ISW). In addition to these conven-
tional modes, the four-component state (1) possesses a spin-flip
(SF) mode.
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insofar related to the four-component wave function (1) as
it describes the same physical situation if the valley-isospin
degree of freedom for spin- # electrons is neglected. The
novel wave function (2) therefore does not reveal any
valley-ISW mode (see Fig. 2) that is the Goldstone mode
of the spontaneously broken valley-SU(2) symmetry in
the spin- # branch and that may eventually become gapped
if one takes into account a possible valley splitting. In
contrast to its four-component analogue (1), the two-
component wave function (2) allows for a more detailed
study of different system sizes in ED with an implemented
SU(2) symmetry. Indeed, our ED calculations with an
implemented SU(4) symmetry allowed only for one single
system size (N ¼ 17 particles, only N# ¼ 3 populate the

upper spin branch), in which case the subspace with maxi-
mal spin polarization (2Sz ¼ 11) is of dimension one such
that the overlap with the wave function (1) is trivially 1.

Figure 3(a) shows the energy spectrum for N ¼ 22
particles and NB ¼ 15 flux quanta, in the different spin

sectors, obtained by ED of the SU(2) Coulomb interaction
potential in the lowest LL. The spectrum is in qualitative
agreement with that obtained for the four-component sys-
tem at � ¼ 2þ 1=3 (Fig. 1)—because the wave function
(2) is not an eigenstate of the SU(2)-symmetric Coulomb
potential, it does not describe the ground state at �Z ¼ 0,
where one obtains a threefold degenerate state (with 2Sz ¼
0;�2), but in a compressible sector (L � 0). As for the
four-component case, a small symmetry-breaking Zeeman
gap �1

Z ’ 0:01e2=�lB suffices to stabilize a state with

maximal spin polarization (2Sz ¼ 10 and N# ¼ 6), which
has an overlap of 99% with the wave function (2) [20], and
the lowest-lying excited state in an intermediate range of
the Zeeman gap,�1

Z � �Z � �2
Z ’ 0:08e2=�lB, involves a

spin flip as it is found in the spin sector 2Sz ¼ 8.
It has been argued that, for vanishing Zeeman splitting,

the state at � ¼ 1þ 1=3 should be a spin-singlet
composite-fermion (CF) state with reversed flux attach-
ment [21]. Hund’s rule, according to which the system
chooses a maximally polarized spin inside each energy
level, would then predict an unpolarized state because
� ¼ 2=3 corresponds to a completely filled lowest CF LL
[21], but the same rule favors a completely polarized state
if applied to the original electron coordinates. Our results
indicate that already for a very small Zeeman splitting,
a completely polarized state is favored that satisfies the
electronic instead of the CF version of Hund’s rule. Notice,
however, that a direct numerical comparison between both
states, CF spin singlet and state (2), is problematic in
the spherical geometry because the spin-singlet state has
a different flux-particle-number relation, NB ¼ ð3=4Þ
N � 1, than the polarized state (2), NB ¼ ð3=4ÞN � 3=2.
We find for N ¼ 20 and NB ¼ 14 (results not shown) that
the ground state is indeed a singlet at low Zeeman split-
tings, but it is maximally polarized above a value of
�Z=ðe2=�lBÞ � 0:03, which is on the same order of mag-
nitude as �1

Z.
In order to gain further insight into the nature of the

low-lying excitations, we have calculated the spectrum
[Fig. 3(b)] at an intermediate value of the Zeeman gap,
�Z ¼ 0:05e2=�lB, where spin-flip excitations are expected
to be relevant. The spectrum is now plotted as a function
of the angular momentum in order to make apparent pos-
sible low-energy collective excitations of the incompress-
ible state (2).Within the charge sector with no change in the
spin polarization, one observes in Fig. 3(b) the usual mag-
netoroton branch (red diamonds) [22] which arises from
gapped density-wave excitations [23] and which is a promi-
nent feature of Laughlin-type physics. However, another
mode is apparent in Fig. 3(b) that indicates the presence of
collective excitations beyond the usual one-component
Laughlin state and that is precisely a spin-flip excitation
(blue squares). This mode, which is the lowest-energy
excitation in the low-L regime, is well separated from the
high-energy part of the excitation spectrum, such that it is
likely to be a true collectivemode. Notice that in the large-L
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FIG. 3 (color online). (a) Energy spectrum for N ¼ 22 elec-
trons at a filling factor � ¼ 1þ 1=3, as a function of �Z in the
different spin sectors 2Sz, obtained from ED calculations of the
Coulomb interaction on the sphere (NB ¼ 15) with implemented
SU(2) symmetry. The inset shows a zoom on the region for small
values of �Z. (b) Excitation spectrum at �Z ¼ 0:05e2=�lB, as a
function of the angular momentum L. The energy is measured
with respect to the ground state (at L ¼ 0). The spin-flip mode is
found in the 2Sz ¼ 8 sector (blue squares) and scales linearly in
B, whereas the 2Sz ¼ 10 sector reveals the usual magnetoroton
branch (red diamonds), which scales as

ffiffiffiffi
B

p
with the B field.
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limit, the magnetoroton branch has a lower energy, and one
may thus conjecture that the activation gap, i.e., the energy
to create a well-separated quasi particle-quasihole pair at
large values of L, does not involve a spin-flip excitation but
is governed by one-component Laughlin physics.

The relevance of collective spin-flip excitations in an
intermediate Zeeman-gap range may eventually be tested
experimentally in inelastic light-scattering experiments
that are capable of probing collective excitations at finite
wave vectors [12,13]. Indeed, these experiments probe
characteristic parts of the dispersion relation that show an
enhanced density of states (such as at its minima and
maxima). Because the spin-flip mode in Fig. 3(b) is almost
flat at low angular momenta L that correspond to small
wave vectors, one may expect an enhanced peak in such
inelastic light-scattering measurements, at energies in
the 0:1e2=�lB range (roughly half of the energy of the
magnetoroton minimum, for the particular choice �Z ¼
0:05e2=�lB). As one may see in Fig. 3, the spin-flip exci-
tation scales linearly with the Zeeman gap, such that the
associated peak is expected to scale linearly with the
magnetic field as well, whereas that of the usual magneto-

roton would scale as
ffiffiffiffi
B

p
[see Fig. 3(b)]. The observation of

such a linear B-field dependence of the light-scattering
peak would be clear evidence for the relevance of spin
flip, beyond the properties of the Laughlin liquid, of the
�G ¼ 1=3 state in graphene.

In conclusion, we have shown,within ED calculations for
a four- and a two-component system on the sphere, how a
FQHE can arise in graphene at �G ¼ 1=3 even at very small
values of a spin-valley symmetry-breaking Zeeman field.
Although the leading energy scale is given by the SU(4)-
invariant Coulomb interaction, a small Zeeman gap
�Z=ðe2=�lBÞ � 0:01 is sufficient to fully polarize the elec-
tronic spin and thus to stabilize the state (1) which we have
identified as being responsible for the observed graphene
FQHE [1,2]. In spite of its reminiscence with the Laughlin
state, novel collective excitations that are inherent to the
four-component character of graphene determine the low-
energy spectrum at intermediate values of the Zeeman gap,
�1

Z � �Z � �2
Z, that correspond to the experimental situ-

ation inwhich the FQHEhas been observed. In order to gain
further insight into the nature of these spin-flip excitations,
which may be visible in inelastic light-scattering experi-
ments, we have performed ED calculations in an analogous
two-component quantumHall system at a filling factor � ¼
1þ 1=3 that corresponds to a completely filled spin- " and a
one-third filled spin- # branch. The spin-flip excitation is
well separated from the high-energy part of the energy
spectrum thus indicating its collective nature, in addition
to the usual magnetoroton branch that determines the low-
energy spectrum in the large angular-momentum regime.
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Two-component fractional quantum Hall systems are providing a major motivation for a large section of the
physics community. Here we study two-component fractional quantum Hall systems in spin-polarized half-
filled lowest Landau level �filling factor 1/2� and second Landau level �filling factor 5/2� with exact diagonal-
ization utilizing both the spherical and torus geometries. The two distinct two-component systems we consider
are the true bilayer and effective bilayers �wide-quantum-well�. In each model �bilayer and wide-quantum-
well� we completely take into account interlayer tunneling and charge imbalancing terms. We find that in the
half-filled lowest Landau level, the fractional quantum Hall effect �FQHE� is described by the two-component
Abelian Halperin 331 state which is robust to charge imbalancing. In the half-filled second Landau, we find
that the FQHE is likely described by the non-Abelian Moore-Read Pfaffian state which is also quite robust to
charge imbalancing. Furthermore, we suggest the possibility of experimentally tuning from an Abelian to
non-Abelian FQHE state in the second Landau level and comment on recent experimental studies of FQHE in
wide-quantum-well structures.

DOI: 10.1103/PhysRevB.82.235312 PACS number�s�: 73.43.�f, 71.10.Pm

We theoretically investigate two-component spin-
polarized fractional quantum Hall states in the bilayer half-
filled first and second �first excited� Landau levels �LLs� con-
sidering the effects of both interlayer tunneling and charge
imbalance tunneling using exact diagonalization. The aspect
that is different in this work compared to previous studies1–5

is that we consider interlayer tunneling along with charge
imbalance tunneling. The reason we consider this extra tun-
neling term �charge imbalance�, along with the an interlayer
tunneling term, is because recent experimental efforts6,7 have
achieved bilayer fractional quantum Hall effect �FQHE� sys-
tems where both the interlayer and charge imbalance tunnel-
ing terms can be controlled by varying different system pa-
rameters �such as gate voltages� at a total filling factor of 1/2
�Ref. 8� and a theoretical investigation of the physics of this
system is both timely and important. Furthermore, the basic
effects produced by a charge imbalance term in a theoretical
exact diagonalization context is currently lacking. Before we
delve into our results we provide an introduction, motivation,
and historical perspective of this broad subject.

I. FRACTIONAL QUANTUM HALL EFFECT IN
THE ONE- AND TWO-COMPONENT VARIETY

The FQHE �Refs. 9 and 10� has proved to be the para-
digm for emergent quantum physics for the nearly 30 years
of its existence. It occurs when electrons are confined to a
�quasi-�two-dimensional plane �such as in semiconductor
structures, e.g., GaAs/AlGaAs, with electron densities on the
order of 1010–1011 cm−2� and a strong perpendicular mag-
netic field is applied �usually on the order of tens of tesla,
sometimes up to �40 T�. Phenomenologically, the FQHE
manifests as a quantized plateau in the Hall resistance Rxy
�quantized to parts per billion� and a concomitant vanishing

�or deep minimum that displays activated behavior� of the
longitudinal resistance Rxx. The FQHE is said to occur at
rational fractional filling factor � when the quantized value
of the Hall resistance is Rxy =h / ��e2�, where �=� /�0 �here �
is the electron density and �0=hc /eB is the magnetic flux
quantum and B is the magnetic field strength, hence, � is the
number of electrons per magnetic flux quanta�. The perpen-
dicular magnetic field quantizes the two-dimensional kinetic
energy into Landau levels separated in energy by ��c
=�eB /mc and when the filling factor � is made to be frac-
tional �like it is for the FQHE�, by either adjusting the elec-
tron density and/or magnetic field strength, the kinetic en-
ergy is a constant and completely flat bands obtain. In the
limit that ��c→� �or the extreme quantum limit� the
electron-electron Coulomb interaction is the dominant term
in the Hamiltonian for electrons fractionally filling a LL.

The one-component FQHE in the lowest orbital electronic
Landau level is the most often discussed since it has been
observed in the form of approximately 80 odd-denominator
FQHE states and is well understood.10–14 Essentially, the
FQHE occurs due to the nonperturbative and electron-
electron interaction driven formation of an emergent topo-
logically ordered15 incompressible quantum fluid at certain
filling factors � with nonzero energy gaps. This �bulk� energy
gap, along with some sample disorder, explains the FQHE.11

Recently, the FQHE in half-filled Landau levels has rein-
vigorated the community due to its possible connection to
topological quantum computing, non-Abelian quasiparticles,
and the requisite cutting edge material science advances that
have produced much of this physics and continue to coax
nature into revealing her secrets. In particular, the FQHE at
filling factor 5/2,16 which corresponds to filling factor 1/2 in
the second orbital electronic Landau level, has arguably pro-
duced most of the excitement.
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The denominator of � for the “standard” fractional quan-
tum Hall states is always odd and reflects the fermionic na-
ture of the quasiparticles. At �=1 / �even�, naive, zeroth-
order, theory asserts that no FQHE would be expected. This
is because, at �=1 / �even�, the weakly interacting quasipar-
ticles of the FQHE �composite fermions13,14� experience a
zero effective magnetic field and form a gapless exotic Fermi
sea.17–19 In fact, no FQHE is experimentally observed in one-
component systems at �=1 /2 instead showing signatures of
the exotic Fermi sea20–22 �see Fig. 1�.

The FQHE at �=2+1 /2=5 /2 �the 2 comes from com-
pletely filling the spin-up and spin-down Landau levels� is
particularly interesting and the only known and well-
established violator of the “odd-denominator” rule for the
one-component FQHE. A one-component FQH state with an
even denominator suggests some kind of interaction driven
pairing among the weakly interacting emergent �quasi-
�fermions and does not find a description within the standard
FQHE theory. All FQHE states observed in the second LL
�SLL�, such as 5/2, 7 /3=2+1 /3, 8 /3=2+2 /3, 12 /5=2
+2 /5, etc. �there are about eight FQHE states observed in the
SLL in all� are fragile when compared to the FQHE states in
the lowest LL �LLL�. The 5/2 FQHE is one of the, if not the,
strongest FQHE states in the SLL and yet has a measured
activation gap only about 0.5 K or less. This is despite being
measured in the world’s cleanest two-dimensional electron
gas samples with mobilities over 30�106 cm2 /V s at tem-
peratures of less than 100 mK. Hence, there is a strong
experimental drive to produce cleaner samples and appa-
ratus capable of doing measurements at exceedingly low
temperatures. Most early experimental observations of the

FQHE at 5/2 indicated the state to be one component in
nature.23–30 However, care needs to be taken when making
broad absolute statements and there is some experimental
evidence23,28,31 that puts the one-component interpretation of
the 5/2 FQHE into question, but, the interpretation of these
results is notoriously difficult.32

Recently, the FQHE was observed33 at �=5 /2 in a low
magnetic field where the ratio of the cyclotron energy ��c to
the Coulomb energy e2 /	l �where e is the electron charge, 	
is the dielectric constant of the host semiconductor, and l
=�c� /eB is the characteristic length scale called the mag-
netic length� is near unity or less. In that situation, it is not
clear how the system would be completely spin polarized
and/or would not experience significant Landau-level mix-
ing. Recent experiments34–36 have begun to seriously tackle
these two issues. Not surprisingly, theoretical groups have
enthusiastically taken up the �considerable� challenge of un-
derstanding the role of Landau-level mixing.37–40 That being
said, the FQHE at 5/2 has also been seen41,42 at magnetic
field strengths of more than 10 T. A FQH state at fields that
high is likely to be spin polarized and, hence, one compo-
nent. Adding to the confusion is the fact that all theoretical
work43,44 to date have established that, within a wide range
of parameter space, the electrons are completely spin polar-
ized at �=5 /2. It is extremely difficult theoretically �compu-
tationally� to consider fully spin unpolarized FQHE and until
there is definitive experimental evidence indicating the real
system to be spin unpolarized we will theoretically consider
the electron spin to be absolutely polarized throughout this
work.

Arguably, the reason the FQHE at 5/2 is so fascinating is
its connection to topological quantum computing.45,46 An in-
triguing ansatz called the Moore-Read �MR� Pfaffian �Pf�
�Ref. 47� is thought to describe the FQHE at 5/2 and this
ansatz has non-Abelian quasiparticle and quasihole excita-
tions. It is proposed48 that the world lines of these non-
Abelian excitations can be braided around each other, thus
changing the ground state in the degenerate manifold of
ground states, and certain quantum computing gates can be
achieved. This degenerate manifold of states is separated
from the continuum by an energy gap that is topological in
nature, since it is a FQHE state, thus, any sort of local dis-
turbance to the system, like those caused from typical noise
encountered in an experiment, will not be able to destroy the
state due to its topological origin. Of course, if the distur-
bances are of an energy that is larger than the protective gap
then the above does not hold. Using the non-Abelian quasi-
particles and quasiholes of the MR Pf description of the 5/2
state of the FQHE to achieve quantum computing gates that
are topologically protected �called fault-tolerant topological
quantum computation� is a major research goal.46 �Note that
the non-Abelian quasiparticles that might exist for the FQHE
at 5/2 are so-called Ising anyons and are unable to be used
for universal quantum computation, see Ref. 46 for more
details on this point and how Ising anyons can be augmented
to achieve a version of universal fault-tolerant topological
quantum computation.�

Intuitively, the existence of the Moore-Read Pfaffian can
be understood �see Fig. 1�. Any time a Landau level is half-
filled �not just at �=1 /2 as mentioned above but also at

e- e- e-
e-

e- e-
e- e-e- e-

e-
e- e- e- e- e- e- e-

e- e-e- e-
e- e-

EF

ν=1/2
Composite Fermion Fermi Sea

No FQHE

ν=5/2
Paired Composite Fermions

FQHE

Energy
∆

e- e-+ =
electron even number

of vortices

Composite
Fermion(a)

(b) (c)

FIG. 1. �Color online� �a� A composite fermion is an electron
bound �or attached� to an even number of quantum-mechanical vor-
tices of the many-body wave function, see Refs. 13 and 14. �b� A
compressible Fermi sea of composite fermions forms for a one-
component system at filling factor �=1 /2 in the lowest Landau
level and produces no FQHE since a �composite fermion� Fermi sea
has no energy gap. �c� In the half-filled second Landau level at �
=5 /2 the electron-electron interaction is modified compared to the
electron-electron interaction in the lowest Landau level �see text�
causing the weakly interacting composite fermions to pair into a
spin-polarized p-wave BCS state described by the Moore-Read
Pfaffian wave function. This state, due to the quasiparticle pairing,
has an energy gap and thus exhibits the FQHE.
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�=5 /2=2+1 /2� naive zeroth-order theory tells us that a
�composite fermion� Fermi sea17–19 can form. �Note that in
this discussion we assume that the two completely filled Lan-
dau levels are inert which is the same as assuming that
��c→�.� As is well known, any system of weakly interact-
ing fermionic quasiparticles is unstable to pairing via the
BCS �Refs. 49 and 50� pairing mechanism and, if the quasi-
particles are spin polarized, the simplest pairing is chiral
p-wave symmetry �px+ ipy� �see the work by Read and Green
in Ref. 51 for a discussion of the BCS mean-field description
of the FQHE in a half-filled Landau level.� The resulting
paired state has an energy gap and the FQHE will occur as
long as the system is clean enough and cold enough such and
the Fermi energy lies within the FQHE gap. The Moore-
Read Pfaffian wave function encapsulates this physics.

We briefly note that recently it has been pointed out52,53

that a competing state for the FQHE at �=5 /2 is the so-
called anti-Pfaffian which is the particle-hole conjugate of
the Moore-Read Pfaffian. The anti-Pfaffian is topologically
distinct from the Pfaffian due to the fact that the two have
different edge state behavior which, in principle, makes it
possible to tell the two apart experimentally. We emphasize
that both the Moore-Read Pfaffian and anti-Pfaffian both
support non-Abelian quasihole and quasiparticle excitations
so both could perform as platforms for fault-tolerate topo-
logical quantum computation. Whichever one happens to be
responsible �if either� for the FQHE at �=5 /2 depends on
how, and if, the particle-hole symmetry is broken54 as well as
experimental and material details such as disorder and
Landau-level mixing.37–39 �All results in this work concern-
ing the Pfaffian apply equivalently to the anti-Pfaffian within
the constraints of our approximation scheme since the model
we use does not distinguish between Pfaffian and anti-
Pfaffian. The reason for this is that our Hamiltonian is
particle-hole symmetric since we do not consider any
particle-hole breaking terms such as those that might arise
due to Landau-level mixing. Since the Pfaffian and anti-
Pfaffian are particle-hole conjugates of one another, their
�bulk� physics, the subject of our current work, is identical.�

A natural question is why the FQHE is observed at �
=5 /2= �2+1 /2� and not, so far, at �=1 /2 for one-component
systems. Theoretically, this is due to the physics of the low-
est Landau level being different compared to the physics of
the second Landau level,55–58 i.e., details matter. For the
FQHE at filling factor 5/2, the inert electrons in the lowest
spin-up and spin-down Landau levels partially screen the
electron-electron Coulomb interaction between the electrons
half filling the second Landau level, in fact, the electrons in
the lower Landau level overscreen the Coulomb interaction57

which leads to a slight attraction among the quasiparticles
causing them to form a BCS state, the Moore-Read Pfaffian
state. The difference between the lowest Landau level and
second Landau level can be seen in the form factor that
modifies the Fourier transform of the interaction V�q�. For
electrons in the nth Landau level the Fourier transform of the
interaction is �Ln�q2 /2��2V�q�, where Ln�x� is the Laguerre
polynomial with L0�x�=1 and L1�x�=1−x. Furthermore, the
experimental details of a real quantum well, the single-
electron wave function in the direction perpendicular to the
two-dimensional surface has a finite extent �the so-called fi-

nite thickness of the quasi-two-dimensional electron system
where typical experimental systems have widths ranging
from approximately �20 nm for the thinnest samples to
�60 nm for the wide-quantum-well �WQW� samples�
which produces subtle effects that make the effective inter-
action felt by the electrons in the half-filled second Landau
level even more amenable to forming a non-Abelian Moore-
Read Pfaffian FQHE at �=5 /2. Recently, it has been theo-
retically shown that �within certain approximate models� the
effects of Landau-level mixing37–39 might produce nontrivial
and subtle effects that drive the system to the Pfaffian38 or
the anti-Pfaffian39 state.

We reiterate that experimentally the FQHE at �=1 /2 has
not been observed in one-component systems and theory4,59

suggests that it will not occur for a pure Coulomb interac-
tion. However, one cannot rule out a Moore-Read Pfaffian
FQHE at �=1 /2 if the system parameters are tuned in the
perfect way60–62 or, perhaps, at extremely low temperatures
not currently experimentally accessible.

However, about the same time the experimental observa-
tion of the 5/2 FQHE was realized, the FQHE was also ob-
served by Suen et al.63–65 and Eisenstein et al.66 in the lowest
Landau level at filling factor �=1 /2 in systems that were
later determined by He et al.1–3 to be spin-polarized two-
component systems. It turns out that the FQHE at �=1 /2 in
two-component systems is described by the �Abelian� Halp-
erin 331 two-component wave function.67 The system of
Eisenstein66 was an actual bilayer �two quasi-two-
dimensional systems separated from one another by a tunnel-
ing barrier—typical parameters are quasi-two-dimensional
electron systems of width �20 nm separated from one an-
other by a tunneling barrier of thickness �3–10 nm with
electron densities on the order of 1011 cm−2�, thus, the two
components are the two layers. The FQHE at �=1 /2 in bi-
layers occurs by a two-part process where Laughlin10 states,
at filling factor 1/3, are formed in each layer and the fermi-
ons between layers form pairs. In the experiments by Suen et
al.63–65 the electrons in the wide-quantum-well �a width of
order �70 nm and electron densities of �1011 cm−2� mini-
mize their single-particle energy by reorganizing into effec-
tively two “layers” and, again, the FQHE at �=1 /2 occurs as
described above. Recent observations6,7,68 of �=1 /2 and 1/4
in wide-quantum-wells have rekindled interest in this rich
system.

The discovery and identification of the FQHE at �=1 /2
was an exciting advance in the FQHE because it opened up
the possibility of a fractional quantum Hall state outside
those given in the “standard” theory.10,11,13,14 However, the
Halperin 331 state is closely related to the standard theory
being that it is essentially a pairing of Laughlin states. Sca-
rola and Jain69 further generalized the Halperin 331 state to
pairings of FQHE states belonging to the Jain sequence pro-
ducing states for bilayer systems at filling factors other than
�=1 /2—they also produced partially pseudospin-polarized
states at �=1 /2 that are distinct from the Halperin 331 state.

Along with the recent observations6,7,68 of �=1 /2 and 1/4
in wide-quantum-wells are observations6,7 of bilayer FQHE
at filling factor 1/2 in the lowest Landau level with asymmet-
ric charge distributions—so-called “tilted samples.” A tilted
sample is created by an additional charge gate that produces

FRACTIONAL QUANTUM HALL EFFECTS IN BILAYERS… PHYSICAL REVIEW B 82, 235312 �2010�

235312-3



a charge asymmetry by “pushing” electrons from one side of
the wide-quantum-well to the other. In the simplest approxi-
mation, this asymmetry produces a charge imbalance be-
tween one layer and the other while keeping the total filling
factor � fixed. That is, the individual filing factors in each
layer, �1 and �2, respectively �keeping �1+�2=� fixed� can
be varied between ��1 ,�2�= �� ,0�, to ��1 ,�2�= �� /2,� /2�, to
��1 ,�2�= �0,��.

Of course, care should be taken when considering the
effects of a charge gate that presumably causes charge asym-
metry in a wide-quantum-well. Recently, Scarola et al.70

have used the local-density approximation �LDA� to get a
more realistic handle on exactly what tilting does to the
charge distribution and relative single-electron energy levels
in the quantum well. They went on to analyze the system
with the use of variational wave functions finding that the
recent experimental observation of the FQHE at �=1 /2
by Shabani et al.7 at intermediate charge imbalancing is
likely described by a partially psuedospin-polarized bilayer
state.69,70

The purpose of the present work is to understand the gen-
eral effects of charge imbalancing in the most minimal model
one can consider to describe the bilayer FQHE in an exact
context, that is, using exact diagonalization. Our work com-
pliments recent work70 since we are solving the Hamiltonian
exactly instead of using a combination of LDA and varia-
tional wave functions. As such, we are restricted to only
certain ansatz, namely, the Moore-Read Pfaffian and the Hal-
perin 331 state. We emphasize that our solution is general
and exact.

In Sec. II we present our theoretical model in the form of
a Hamiltonian that can describe either a true bilayer and
effective �wide-quantum-well� bilayer where we consider
both interlayer and charge imbalance tunneling terms. Four
�two plus two� variational states are discussed in Sec. III that
are thought to describe our bilayer and effective bilayer
Hamiltonian. Sections IV and V present our results for the
bilayer and wide-quantum-well model in both the lowest
Landau level �in both the spherical and torus geometry� and
second Landau level �in the spherical geometry�. Finally, in
Sec. VI, we present our conclusions.

II. THEORETICAL MODELS: TRUE BILAYER
AND EFFECTIVE BILAYER

There are two experimental systems in which two-
component FQHE systems can be produced. One of them is
to manufacture a true bilayer system which consists of two
parallel �quasi-�two-dimensional electron systems of width w
separated from one another by a tunneling barrier of thick-
ness d. This system is used extensively by the Eisenstein
group at CalTech66 and is what one generally thinks about
when contemplating a bilayer system. The height of the bar-
rier can be adjusted such that electrons are either localized in
separate layers or delocalized between the two layers, i.e.,
large energetic barrier or small energetic barrier, respectively.
In other words, the symmetric-antisymmetric energy gap,

SAS, can be controlled independently of the individual well
width w and the layer separation d. In this system, an elec-

tron can be in the right �R� or left �L� state, written as �R� or
�L�, respectively. Figure 2 shows a schematic of a bilayer
system consisting of two parallel two-dimensional electron
systems where the electrons in each layer are confined to two
dimensions by a quantum well of width w �both layers have
the same width� and the quantum-well-center to quantum-
well-center separation is d �d�w /2�. A typical density pro-
file of electrons in the right or left layer �	R �R� or 	L �L�� is
also shown in Fig. 2�a�. The ground state of the single-
electron bilayer Hamiltonian is the symmetric state S given
by

�S� =
�R� + �L�

�2
�1�

and the next higher energy state is the antisymmetric state
given by

�AS� =
�R� − �L�

�2
�2�

�assuming no charge imbalance term in the Hamiltonian�.
The two states �S and AS� are separated by an energy differ-
ence 
SAS and their respective �typical� density profiles
�	S �S� and 	AS �AS�� are shown in Fig. 2�b�.

The other way to experimentally create a two-component
FQHE system is to make a single �quasi-�two-dimensional
electron gas of large width, a so-called WQW, as done by the
Shayegan group at Princeton.6,7,63–65 In this case, the electro-
static interaction between the electrons �at the Hartree-Fock
level� compels the system to behave as an effective bilayer.
The electron density for the ground state is maximum �and
symmetric� near the edges of the wide-quantum-well and de-
pleted in the middle. The energy-level diagram and typical
density profiles are similar to those shown in Fig. 3�a�. Note
that in this system, 
SAS is a strong function of the width W
�and electron density� of the wide-quantum-well. This con-
trasts the bilayer system described above where, in principle,
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FIG. 2. �Color online� A bilayer system consisting of two �quasi-
�two-dimensional quantum wells of width w separated from one
another by d �d�w /2�. �a� Typical density profile of an electron
localized in either the right �R� or left �L� layer, respectively. �b�
The ground-state single-particle wave function �the symmetric �S��
state and the next higher energy state �the antisymmetric �AS�� state
separated in energy from one another by the so-called symmetric-
antisymmetric energy gap 
SAS.
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SAS, the individual well width w, and the layer separation d
can all be independently adjusted.

A simplified model for the WQW is due to Papić et al.4

where the ground state of a wide-quantum-well of width
W is taken to be a symmetric state �for example, 	z �S�
�sin��z /W�� and the next excited state an antisymmetric
state �for example, 	z �AS��sin�2�z /W��, both the S and AS
states are written on the interval z� �0,W�. �The coordinates
of the �quasi-�two-dimensional plane will always be denoted
by x and y and the coordinates of the wide-quantum-well
width, bilayer layer separation, or individual quantum-well
thickness will be denoted by z.� The density profiles for the
WQW model are shown in Fig. 3�b�. In this model, one can
transform to the layer basis �right and left layers� by taking
�L�= ��S�+ �AS�� /�2 and �R�= ��S�− �AS�� /�2, cf. Fig. 3.

The Hamiltonian for our two-component model systems
can be written �in the SAS basis� as

H =
1

2 

�mi,i=S,AS�

	m11,m22�V�m33,m44�

�cm11

† cm22

† cm33
cm44

�m1+m2,m3+m4

−

SAS

2 

m

�cmS
† cmS − cmAS

† cmAS�

+

�

2 

m

�cmS
† cmAS + cmAS

† cmS� . �3�

The second to last term �the term with the prefactor 
SAS /2�
controls interlayer tunneling and, in the SAS basis is repre-

sented by the pseudospin operator Ŝz, while the last term
�prefactor 
� /2� controls charge imbalance and is repre-

sented by the pseudospin operator Ŝx. In our convention,
positive 
� drives the electrons into the R layer. Notice that
	m11 ,m22�V�m33 ,m44� is different in the bilayer case
than it is in the WQW case, in general. Namely, in the bilayer
case, the Coulomb matrix element is found by using the
transformations given in Eqs. �1� and �2� and the fact that the
potential energy between two electrons a distance r apart in a
given layer �the right layer, say� of width w is given by the
Zhang-Das Sarma71 potential Vintra�r�=1 /�r2+w2 and the

potential between two electrons in two different layers sepa-
rated by a distance d is given by Vinter�r�=1 /�r2+d2. In the
WQW system the Coulomb matrix element is calculated by
considering the wave functions for the S and AS states �	z �S�
and 	z �AS�� and doing the required integrals.

In the �left/right� layer basis we can write the bilayer
Hamiltonian very simply as

Ĥ = 

i�j

�Vintra��ri − r j�� + Vintra��r̃i − r̃ j�� + Vinter��ri − r̃ j���

− 
SASŜ̃x + 
�Ŝ̃z, �4�

where operators Ỗ with a tilde are written in the layer basis
and coordinates r and r̃ belong to electrons in different lay-
ers. Switching from the layer to the SAS basis is a pseu-
dospin rotation. Note that for d=0 the Hamiltonian is sym-
metric between 
SAS and 
�. Increasing d destroys this
symmetry and it becomes harder to drive the system to be
one component in the layer sense.

In all of our results we use the natural FQHE units:
lengths are given in units of the magnetic length l and ener-
gies are given in units of the Coulomb energy e2 /	l. �Note
that the system we are considering is a rather general two-
component Hamiltonian and when the layer separation is
zero any results we find are applicable to SU�2� symmetric
two-component systems where the constituents interact by a
Coulomb-type interaction—exactly Coulombic for the low-
est Landau level and a slightly modified Coulombic interac-
tion for the second Landau level. For example, when d=0
the Hamiltonian �Eq. �3�� describes spinfull electrons inter-

acting via a Coulomb interaction with both Ŝz and Ŝx terms.�

III. VARIATIONAL WAVE FUNCTIONS: MOORE-READ
PFAFFIAN AND HALPERIN 331

We consider four variational wave functions to describe
our FQH system for half-filled lowest and second Landau
levels ��=1 /2 and �=5 /2, respectively� even though it will
appear at first that we are only considering two. Namely, we
consider the one-component Moore-Read Pf �Ref. 47� and
two-component Halperin 331 �331� wave functions.67 �Note
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FIG. 3. �Color online� �a� A two-component system created by a wide-quantum-well �WQW�. The electrostatic potential generated by the
electrons self-consistently creates an effective bilayer system by pushing the electrons toward the walls of the WQW. Note that �a� is not
identical to Fig. 2�b� even though they are very similar, specifically, 
SAS is a strong function of W and the electron density in WQW systems
as opposed to bilayers. �b� The model of Papić et al. �Ref. 4� which can be transformed into the layer basis shown in �c�.
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that work72–78 has been done on the FQHE at total filling
factor of unity, i.e., �=1 /2+1 /2=1, however, that is not the
case that we study in this work.�

The Moore-Read Pfaffian state is written as

�Pf = Pf 1

zi,a − zj,a
��

i�j

N

�zi,a − zj,a�2, �5�

where zi,a=xi,a− iyi,a is the position of the ith electron in
complex coordinates with a labeling its state, i.e., a=S, AS,
R, or L. The origin of this wave function can be understood
at an intuitive level. If one writes down an ansatz wave func-
tion to describe a BCS paired state of composite fermions in
a half-filled Landau level then one arrives at a wave function
of the Pfaffian form,79 i.e.,

Pf�g�rij���
i�j

�zi − zj�2 = A�g�r12�g�r34� ¯ g�rN−1,N��

��
i�j

�zi − zj�2, �6�

where g��ri−r j�� is the real-space pairing amplitude for a pair
of electrons located at position ri and r j, �i�j�zi−zj�2 binds
two quantum-mechanical vortices of the many-body wave
function to each electron �the composite fermion transforma-
tion and fixes the filling factor in a Landau level to 1/2�. A is
the antisymmetrization operator.

Despite the intuitive picture that goes along with the
Moore-Read Pfaffian wave function it was originally derived
using conformal field theory and, as such, the Pf has a low-
energy effective conformal field theory description, cf. Refs.
47, 51, and 80. It is within this conformal field theory that
the understanding of the non-Abelian nature of the quasipar-
ticle excitations was first illuminated. However, whether or
not the Pf has anything to do with the physics of the
FQHE at 5/2 has depended crucially on numerical calcula-
tions and comparisons with the results of exact
diagonalization.43,44,59–62,81 As mentioned above, the details
matter greatly in determining the physics of the FQHE at 5/2,
such as, finite thickness effects,60,61 the competition between
FQHE states and non-FQHE striped phases81 and the com-
pressible �composite fermion� Fermi sea17,18 �as mentioned,
the latter occurs in the lowest Landau level at �=1 /2 while
the former occurs in the second Landau level at �=5 /2�, the
effects of Landau-level mixing,37–39 etc. Note that most of
the numerical studies mentioned above do not treat the �
=5 /2 problem in full complexity, i.e., with the lowest Lan-
dau level filled with two spin species and one Landau level
half filled. Instead, because of computational simplicity, one
considers a half-filled lowest Landau level �usually without
spin� with an effective interaction that contains the form fac-
tors of the first excited Landau level, the appropriate Haldane
pseudopotentials.82 This is what we mean by �=5 /2 in an
exact diagonalization context.

Thus, it should be clear that any effective conformal field
theory �or effective BCS mean-field Hamiltonian51� written
down to describe the physics at 5/2 is only as good as its
physical predictions and agreement with experiments and its
agreement with numerical calculations. This is because the
entire reason for the existence of the FQHE at all filling

factors is due to nonperturbative physics arising from the
strongly interacting electrons interacting with a Coulomb in-
teraction modified by the details of which Landau level is
fractionally filled by electrons, the thickness the quantum
well, the amount of Landau-level mixing that is taking place,
etc. Hence, any mean-field theory that throws away all these
details at the first step cannot explain, for example, why the
FQHE occurs at �=5 /2 and not �=1 /2 �or for that matter, at
9/2 or 13/2� without the aid of both numerical calculations
and, most importantly, experiments. In the end, whether a
particular candidate wave function, e.g., Moore-Read Pfaff-
ian or Laughlin or Halperin 331 or composite fermion states,
etc., describes a real FQHE at some filling factor is an ener-
getic question delicately depending on competing states
where all the details of the microscopic Hamiltonian may
eventually matter, and therefore, extreme caution is neces-
sary in identifying experimental FQHE states with candidate
incompressible wave functions, particularly in higher LLs
and/or multicomponent systems where various competing
states are, in general, more viable.

The Halperin �two-component� 331 wave function is writ-
ten as

�331 = �
i�j

N/2

�zi,1 − zj,1�3�
i�j

N/2

�zi,2 − zj,2�3�
i,j

N

�zi,1 − zj,2� , �7�

e- e-e- e- e- e-

ΨPf (SAS-basis)ΨPf (layer-basis)
left layer right layer

(a) (b)

L R

e- e-

e-

e-

Ψ331 (SAS-basis)Ψ331 (layer-basis)

(c) (d)

L R

FIG. 4. �Color online� The Moore-Read Pfaffian wave function
written in the �a� layer and �b� SAS basis where the p-wave pairing
in the former is between Composite fermions in the right �or left�
layer and the p-wave pairing in the SAS basis is between electrons
in the S state. The Halperin 331 state is shown in �c� the layer basis
and �d� the SAS basis where in the layer-basis the 331 state pairs
composite fermions between layers and in the SAS basis it pairs
composite fermions in the S and AS states.
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where the subscript 1 �or 2� on zi,1 labels the quantum num-
ber of the electron. This quantum number could describe spin
�up or down�, layer �R or L�, subband �S or AS�. Note that in
our work, we consider the bilayer situation so the subscript
will either denote the layer or the symmetric or antisymmet-
ric state depending on in which basis we choose to work.
Intuitively, the origin of this wave function is that, in a bi-
layer system in a half-filled Landau level, the electrons form
�=1 /3 Laughlin states10 ��i�j

N �zi−zj�3� among each electron
component and then pair among different components
�simple Jastrow factor �i,j

N �zi,1−zj,2��. �Note that we always
drop the Gaussian factors ��exp�−
i�zi,a�2�� that are always
present when writing wave functions describing electrons en-
tirely in �or projected into� the lowest Landau level, in fact,
the Gaussian is often considered to be part of the measure so
one is technically not “dropping” anything at all.�

It is important to realize that the Moore-Read Pfaffian is a
one-component state that can be one component in both the
SAS-basis sense or in the layer-basis sense, see Figs. 4�a� and
4�b�. That is, the Pf wave function either describes pairing
among one-component electrons in the R layer or L layer
�the layer basis� or pairing among one-component electrons
in the symmetric �S� state �the SAS basis�. The former is the
Pfaffian state that has its origin in the single-layer FQHE
while the latter is the Pfaffian understood as the even �sym-
metric� channel of the BCS description by Read and Green.51

�We choose our charge imbalancing term to drive the elec-
trons into the right layer, however, we could have equiva-
lently chosen the charge imbalance term to drive the elec-
trons into the left layer.� Thus, there are actually two Moore-
Read Pfaffian states to consider when both tunneling terms
�
SAS and 
�� are nonzero �or three if we allow the sign of

� to change�. When the system is SU�2� symmetric, i.e.,
when the layer separation is zero, the two different states are
simply related via a rotation in pseudospin space.

The Halperin 331 state can also be two component in two
ways: it can describe pairing of electrons in the R and L
layers �the layer basis� or it can describe pairing of electrons
in the S and AS states �the SAS basis�, see Figs. 4�c� and
4�d�. Hence, there are two Halperin 331 states to consider
when both tunneling terms are finite. Note, however, that the
Halperin 331 state, as usually understood, is defined in the
layer basis. Again, in the SU�2� situation, these two 331
states are related via a pseudospin rotation.

Thus, instead of dealing with two variational wave func-
tions �Pf and 331� we are dealing with four—two Pfs and
two 331s. Even though the two pairs of wave functions are
related via a pseudospin rotation, when the SU�2� symmetry
is broken this is no longer the case and the determination of
which state describes the physics is nontrivial.

In our calculations we utilize the spherical geometry82

where the electrons are confined to the surface of a sphere of
radius �N� /2 and a radial magnetic field �perpendicular to
the surface� is produced by a magnetic monopole of strength
N� /2 placed at the center. �We briefly consider the torus
geometry below.� The total magnetic flux piercing the sur-
face is N� and is either an integer or half integer according to
Dirac.83 The filling factor �in the partially filled Landau
level� is given by limN→� N /N� for N electrons. In our case,
we are considering the Moore-Read Pfaffian and Halperin

331 states which describe a half-filled Landau level, thus, the
relationship between N and N� for a finite spherical system is
N�=2N−3, where “−3” is known as the “shift” and is a
consequence of the compact spherical geometry and, thus, of
topological origin and used to identify the universality class
of the topological order for which the particular ansatz be-
longs. Due to computational constraints we consider N=8
and N�=13 �the N=6 particle system is aliased with a 2/3
filled Landau level and, thus, produces ambiguous results
and the N=10 electron system is too big to consider while
adequately exploring the large parameter space inherent
when tackling a two-component Hamiltonian with both in-
terlayer and charge imbalancing tunneling�. In the spherical
geometry, possible FQHE states are uniform states with total
angular momentum L=0. In this work we consider the over-
lap between the exact ground state of the model Hamiltonian
and the four variational states: �1� Pf in the SAS basis, �2� Pf
in the layer basis, �3� 331 in the SAS basis, and �4� 331 in the
layer basis.

IV. RESULTS: LOWEST LANDAU LEVEL

We first present our results for the lowest Landau level
where we consider �i� the wave-function overlap between the
four variational states �Pf in the layer and SAS basis and the
331 in the layer and SAS basis� and the exact ground state of
the Hamiltonian—note that since all the variational states
describe the FQHE they have L=0 and so if the exact ground
state of the Hamiltonian does not also have total angular
momentum L=0 the overlaps will be trivially zero since they
are then of different symmetry. �ii� The pseudospin expecta-
tion values of the exact ground state, which is more descrip-
tively referred to as the expectation value of �NS−NAS� /2 or
�NR−NL� /2 where NS, NAS, NR, and NL are the expectation
values of the number of electrons in the symmetric state, the
antisymmetric state, the right layer, and the left layer, respec-

tively. Alternatively, this is simply 	Ŝz� and 	Ŝx� in the SAS
basis but we prefer to use the more physical �NS−NAS� /2 and
�NR−NL� /2 since this does not depend on the basis in which
we choose to write the Hamiltonian. �iii� The FQHE energy
gap which is defined here as the energy difference between
the L=0 ground state and the first excited state �this is often
times referred to as the “neutral gap” but we will call it the
FQHE gap throughout this work� and, lastly, �iv� we inves-
tigate the energy spectra in the torus geometry. We show all
of these quantities from a variety of vantage points to give
the clearest picture of the physics since things can get com-
plicated rather quickly with so many parameters in the
Hamiltonian, namely, layer separation d or WQW width W,
SAS energy gap 
SAS, and the charge imbalancing gap 
�.

A. Bilayer

We first present our results for the bilayer Hamiltonian.
Figure 5�a� shows the overlap between the Moore-Read
Pfaffian and the exact ground state in the layer basis �left
column� and SAS basis �right column� as a function of 
SAS
and 
� for values of layer separation d ranging from d
=0.05 to 6. For the layer basis �left column�, it is clear that
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increasing 
SAS does not drive the system into the Pf phase,
i.e., it does not increase the overlap between the layer-basis
Pf with the exact ground state. However, increasing the
charge imbalance 
� does drive the system into the Pf phase.
For increasing values of d it takes a larger value of 
� to
produce a ground state with a high overlap with the layer-
basis Pf. This behavior is easy to understand. Nonzero 
�
makes the system one component in the layer sense and thus
a layer-basis Pf wave function �which is a one-component

wave function� has a large overlap. It is also understandable
that finite layer separation d would make it harder to polarize
the electrons in the layer sense, i.e., the electrons prefer to
remain two component so they can take advantage of the
reduction in potential energy between electrons in neighbor-
ing layers �the interaction is 1 /�r2+d2 as opposed to 1 /r for
electrons in the same layer�.

The overlap between the exact ground state and the
Moore-Read Pfaffian in the SAS basis shows essentially the
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FIG. 5. �Color online� Lowest Landau level: �a� wave-function overlap between the exact ground state of the bilayer Hamiltonian and the
Moore-Read Pfaffian written in the layer basis �left column� and the SAS basis �right column� shown as a function of interlayer tunneling

SAS and charge imbalance 
� for different values of layer separation d and zero individual layer thickness w=0. �b� Same as �a� but for the
Halperin 331 wave function. �c� Pseudospin expectation value or, more physically, the expectation value of �NR−NL� /2 �left column� and
�NS−NAS� /2 �right column� as a function of 
SAS and 
�. �d� shows the FQHE �neutral� energy gap for the exact bilayer Hamiltonian.
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opposite behavior. This time, nonzero 
SAS drives the system
to be one component. Notice that for the smallest value of
layer separation d=0.05 the system is nearly SU�2� symmet-
ric and the two bases �layer and SAS� are �nearly� pseudospin
rotations of each other. The figure is deceptive because
the scale on the two axes is different but the two figures
are essentially identical upon reflection across the 
SAS=
�
line. This symmetry is quite obviously destroyed upon in-
creasing d.

A naive look at Fig. 5�a� would lead to a conclusion that
we have found the Pfaffian state in some regions of 
SAS
−
� phase diagram. The reader may wonder how robust
these conclusions are with increasing system size. Although
we are unable to calculate the full phase diagram for N=10
electrons, we can gain insight into the limiting cases when
either 
� or 
SAS is very large. If we work in the layer basis
and 
� is very large, we recover the single-layer physics; for
our system of N=8 electrons, it turns out62 that the ground
state for the lowest Landau-level Coulomb interaction is al-
ready in the universality class of Moore-Read Pfaffian. How-
ever, this no longer holds for larger systems such as N=10
and N=12, leading to the conclusion that high overlaps with
the Pfaffian in the layer basis in Fig. 5�a� are a finite-size
effect for �=1 /2. On the other hand, if we work in the SAS
basis and increase 
SAS, all the electrons will occupy the
symmetric subband. This is again a one-component system
but with the interaction slightly softened with respect to pure
Coulomb.84 It is known62 that softening the Coulomb inter-

action via various finite-width corrections can lead to a phase
transition between compressible and incompressible �non-
Abelian� states but this also leads to a significant reduction in
the gap �as we show below�. Therefore, the Pfaffian which is
seen in our data for SAS basis is also not a typical incom-
pressible state but rather a “critical” state with some Pfaffian
correlations and a small gap. In the remainder of this section,
we will nonetheless, for the sake of brevity, refer to the one-
component phase �fully polarized by either 
SAS or 
�� as
described by the appropriate basis “Pfaffian” state, caution-
ing the reader that such a designation most likely does not
survive in the thermodynamic limit.

Next we consider the overlap between the exact ground
state and the Halperin 331 state in the layer basis �left col-
umn� and SAS basis �right column� in Fig. 5�b�. For the
SAS-basis 331 state the overlap is very small for all values of

SAS, 
�, or layer separation d. On the other hand, the over-
lap with the layer-basis 331 state is nonzero for moderate
values of 
SAS and for 1�d�4 the overlap is large and,
despite the fact that nonzero 
� eventually destroys the 331,
it is robust to charge imbalancing.

In Figs. 6 and 7 we show a clearer view of the overlaps.
In particular, for d=0 when the system is SU�2� symmetric it
is obvious in Figs. 6 and 7 that the layer basis and SAS basis
are merely pseudospin rotations of one another. Furthermore,
it is clear that for d=0 there is no region in phase space were
the Halperin 331 wave function �in either basis� is a good
description and only upon increasing d away from zero do
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FIG. 6. �Color online� Lowest Landau level: wave-function
overlap between the Moore-Read Pfaffian wave function in the
layer basis �top panel� and the SAS basis �lower panel� and the exact
ground state for �a� d=0, �b� d=1, �c� d=2, and �d� d=5.
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FIG. 7. �Color online� Lowest Landau level: wave-function
overlap between the Halperin 331 wave function in the layer basis
�top panel� and the SAS basis �lower panel� and the exact ground
state for �a� d=0, �b� d=1, �c� d=2, and �d� d=5.
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we see any sort of reasonably sized overlaps when increasing

SAS �though it should be noted that for d=1 and 2 the over-
lap with 331 is sizable for small values of both 
SAS and 
��.
For the half-filled Landau level at d=0, theoretically, the
system is known to be spin polarized,43,44 or one component,
so it is not surprising that a two-component wave function
such as the Halperin 331 state would not be a good descrip-
tion and, therefore, have a small overlap with the exact
ground state. Note also that the one-component Moore-Read
Pfaffian is also not a good description for the d=0 case since,
in the lowest Landau level, the ground state is most likely a
non-FQHE �composite fermion� Fermi sea.19,81

Generally, on the example of our N=8 system we can
conclude that �i� when the system is largely two component
in nature then the overlap between the exact ground state and
the Halperin 331 state is large, and �ii� when the system is
largely one component in nature the overlap between the
exact ground state and the Pf is large. This is more clearly
shown in Fig. 5�c� where in the left and right columns we
show the expectation value of �NR−NL� /2 and �NS−NAS� /2,
respectively. When the system is largely one component, ei-
ther in the layer sense or SAS sense, the system concomi-
tantly has a sizable overlap with the one-component Pf state

and when the system is largely two component the overlap
with the Halperin 331 state is large. Again, Fig. 8 shows the
pseudospin expectation values clearer for a few specific ex-
amples of layer separation d, note again how nonzero d de-
stroys the symmetry between the layer and SAS basis ob-
tained when d=0 and the system is SU�2� symmetric. We
emphasize that the first conclusion �i� is not affected by
finite-size effects whereas the conclusion �ii� likely holds
only for a few special systems such as N=8 and it may be a
finite-size artifact.

In Fig. 9 we show a schematic that encapsulates broad
features of the bilayer model �and WQW model� for small
layer separation d �small WQW width W�. For large 
SAS and
small 
� the system is one component in the SAS basis and
for large 
� and small 
SAS the system is one component in
the layer basis. When, both tunneling strengths approach
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FIG. 8. �Color online� Lowest Landau level: �pseudospin� ex-
pectation value of the exact ground state of �NR−NL� /2 �top panel�
and �NS−NAS� /2 �lower panel� for �a� d=0, �b� d=1, �c� d=2, and
�d� d=5. Note that these figures �especially for d=0� are qualita-
tively similar to our cartoon schematic in Fig. 9 since the psue-
dospin expectation value essentially describes the one- or two-
component nature of the ground state. Also, finite d breaks the
SU�2� symmetry of reflection across the 
SAS=
� line assumed in
Fig. 9.
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FIG. 10. �Color online� Lowest Landau level: FQHE energy gap
for �a� d=0, �b� d=1, �c� d=2, and �d� d=5.
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FIG. 9. �Color online� By varying either 
SAS or 
� the system
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zero, the system is two component in the layer basis, the SAS
basis, or both. The diagram would be topologically similar
for nonzero �and even large� values of layer separation d and
WQW width W. The only difference is that the diagram
would not be symmetric between 
SAS and 
� since the sys-
tem is not SU�2� symmetric.

Lastly, in Fig. 5�d� we show the FQHE energy gap. For
d�1 the FQHE energy gap is relatively constant as 
SAS and

� vary. When d is increased past approximately d�2 the
FQHE gap shows interesting features as a function of the
strength of the two tunneling terms. Somewhat surprisingly,
the FQHE gap obtains a maximum for nonzero 
SAS and

finite d �this is related to similar results found recently in
Ref. 5 where the FQHE gap is maximum on the “ridge” as a
function of 
SAS and separation d for zero charge imbalance

��. This ridge basically separates the regions in the quan-
tum phase diagram where the system is either in the Pf or
331 phase. Figure 10 is a more detailed depiction of the
FQHE energy gap.

Before moving on to results for the second Landau level
we show essentially the same results as Figs. 5�a�–5�d� but as
a function of 
SAS and layer separation d for several values
of 
� in Figs. 11�a�–11�d�. This presentation is to more eas-
ily compare with previous bilayer works4,5 where the data
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FIG. 11. �Color online� Lowest Landau level: same as Fig. 5 except that all plots are shown as a function of interlayer tunneling 
SAS and
layer separation d for a number of different charge imbalances 
� and zero individual layer thickness w=0.
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was presented this way. When considering the overlap be-
tween the exact ground state and the Pf we see that increas-
ing imbalance �increasing 
�� eventually produces a high
overlap for small values of d in the layer basis. In the SAS
basis, charge imbalance pushes the maximum overlap to
larger values of 
SAS and slightly larger values of d while
generally decreasing the overlap along the way. For the over-
lap with the Halperin 331 wave function it is clear that there
is no region in parameter space that produces a sizable over-
lap in the SAS basis. For the layer-basis 331, the overlap is
large for moderate layer separation �d�1–2� and 
SAS. The
position of the maximum overlap is relatively constant as a
function of 
� until 
��0.1 when the maximum overlap
shifts to higher values of d and decreases markedly in mag-
nitude. The expectation values of the pseudospin operators
�Fig. 11�c�� mirrors the results of the overlap calculations.

For the FQHE gap shown in Fig. 11�d� we see the familiar
picture found in Ref. 5. We first reiterate that result. For

�=0, the FQHE gap is largest along a ridge in 
SAS-d space
and the overlap between the SAS-basis Halperin 331 state is
largest in the region of phase space where the system is two
component and the overlap between the SAS-basis Pf state is
largest in the region of phase space where the system is
largely one component. The FQHE gap ridge seems to func-
tion as the phase boundary between the two states in the
quantum phase diagram, however, the maximum FQHE gap
is slightly on the Halperin 331 side of the phase diagram and
the experimentally observed63–66 FQHE at �=1 /2 is of that
nature. This is strongly thought to be the case because of
recent work by Storni et al.59 that showed that in the lowest
Landau level the FQHE gap for one-component systems van-
ishes in the thermodynamic limit—even though it is nonzero
in our finite-size calculation. Thus, our nonzero gap in the Pf
region of the phase diagram for the lowest Landau level is
most likely a finite-size effect.

For nonzero 
� the above picture changes. The ridge is
weakened and a maximum in the FQHE gap starts to appear
for large 
SAS and large d until eventually weakening further.
In the large 
� limit we see a SAS-basis Pf state for large

SAS and nonzero d and a layer-basis Pf for moderate 
SAS
and very small d. However, we caution that the FQHE gap is
globally weakened upon inclusion of 
� and taking into ac-
count recent results,59 an experimental system would most
likely not exhibit the FQHE in that region of parameter
space.

To summarize our results from the calculations on the
sphere in the lowest Landau level, we find a robust layer-
basis 331 state that has high overlap with the exact ground
state and dominant gap in the phase diagram. Furthermore,
we find a one-component state that has some properties
of the Moore-Read Pfaffian but it is likely to show up
as a compressible state in experiments. These conclusions
are in agreement with the results of Ref. 84 �and consistent
with Ref. 59� where transitions between 331 state, Pfaffian
and composite fermion Fermi sea were studied in a bilayer
model with tunneling 
SAS �in the layer basis� using exact
diagonalization and effective mean-field BCS theory of
Read-Green.51 There it was found that the increase of inter-
layer tunneling converts the 331 state into a composite fer-
mion Fermi sea because the effective chemical potential of

“even”-channel electrons becomes very large. Similar analy-
sis is expected to apply when 
� is large and the system is
viewed in SAS basis.

B. Wide-quantum-well

We now turn to the WQW model which largely mirrors
the results presented for the bilayer model. However, there
are some differences between the two models which we
point out below. An obvious difference between the bilayer
and the WQW model is that the parameters W and 
SAS
in the latter case are not independent. If we assume that
the depth of the well constitutes the largest energy scale and
the WQW can be considered an infinite well, we have

SAS / �e2 /	l�=3�2�2	 / �2me2l�� �l /W�2. For the typical ex-
perimental fields B�15 T and W / l�4, we obtain 
SAS
�0.1e2 /	l. However, in each sample, 
SAS is expected to be
renormalized and in what follows we regard it as a free pa-
rameter in exploring the phase diagram.

Figure 12 shows the overlap between the Moore-Read
Pfaffian wave function �in both the SAS basis and the layer
basis� and the exact ground state of the WQW model as a
function of 
SAS and 
� for a few values of the WQW width
W. This figure should be compared with Fig. 6 for the bilayer
model. Qualitatively, the two models produce very similar
results. Of course, a layer separation of d in the bilayer
model is not equivalent to the WQW width W and any simi-
larities between the two at d�W is coincidental. However,
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FIG. 12. �Color online� Lowest Landau level: wave-function
overlap between the Moore-Read Pfaffian wave function in the
layer basis �top panel� and the SAS basis �lower panel� and the exact
ground state for the WQW for �a� W=0.4, �b� W=2, �c� W=4, and
�d� W=5.
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the behavior for the bilayer model as d increases is the same
as the behavior for the WQW model as W increases. That is,
for small W=0.4, the overlap between the exact ground state
and the one-component Pf in the layer basis becomes large
when 
� is increased since the system is being driven to be
more one component in the layer sense. When 
SAS is in-
creased, the overlap between the exact ground state and the
Pf in the SAS basis becomes large since the system is being
driven to be one component in the SAS basis.

Note, however, that for W=0.4 �Fig. 12�a�� the system is
not as symmetric upon 
SAS↔
� as it was for the d=0
bilayer model case where the model was actually SU�2� sym-
metric. This is because the WQW model is not SU�2� sym-
metric for small W because even as W becomes very small
the Coulomb energy between electrons in the S and AS states
is never equal, i.e., the AS state always has a node and there-
fore higher kinetic energy. That being said, the models pro-
duce very similar results.

In Fig. 13 we show the overlap between the exact ground
state of the WQW model and the Halperin 331 state. This
time, as opposed to Fig. 7 we only show the overlap with the
331 state written in the layer basis since, as we learned pre-
viously by studying the bilayer model results, and by con-
firming this with the WQW model, the overlap between the
ground state of the WQW model and the SAS-basis 331 state
is always nearly zero, hence, we do not bother to show these
results explicitly. For the layer-basis 331, however, we again
see qualitatively similar behavior compared to the bilayer
model. For small W the overlap with the 331 state is very
small and it can be increased by increasing W. One interest-
ing difference between the results of the two models is that
for W=5 the maximum overlap with 331 has a maximum for
nonzero 
SAS for the WQW model. Furthermore, nonzero
charge imbalance 
� eventually destroys the Halperin 331
state by driving the system to be one component, however,
the 331 state is robust to charge imbalancing.

Similar to the bilayer model, the pseudospin expectation
value for the WQW model in Fig. 14 mirrors the behavior of
the overlaps. When the system is largely one component,
either in the layer or SAS basis �large value of �NR−NL� /2 or
�NS−NAS� /2, respectively�, the overlap with the appropriate
basis Pf state is large. When the system is two component the
overlap with the 331 is large. In investigating the pseudospin
expectation value for the WQW model we see the most se-
rious discrepancy between the two models, this effect was
also seen previously in Ref. 4. For W�2, and relatively
small values of 
SAS, the ground has a negative value of
�NS−NAS� /2. This means that the electrons occupy the AS
state compared to the S state. If we recall the overlap be-
tween the exact ground state and the Moore-Read Pfaffian
in the SAS basis �lower panel of Fig. 12� the overlap is large
for large 
SAS and this behavior mirrors the large value of
�NS−NAS� /2 shown in the lower panel of Fig. 14. However,
the one-component Moore-Read Pfaffian we consider pairs
electrons in the S state �shown schematically in Fig. 4�b��.
We have not checked the overlap with the one-component Pf
written such that the pairing occurs between electrons in the
AS state, thus, adding another version of the Pf. By examin-
ing the value of �NS−NAS� /2 for W�2 in the small 
SAS
region of phase space we would expect a reasonable value of
the overlap with a one-component Pf pairing electrons in the
AS state.

The WQW model is more general than the usual bilayer
model and the latter can be derived from it �see Sec. IVB of
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FIG. 13. �Color online� Lowest Landau level: wave-function
overlap between the Halperin 331 wave function in the layer basis
and the exact ground state for the WQW for �a� W=0.4, �b� W=2,
�c� W=4, and �d� W=5.
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FIG. 14. �Color online� Lowest Landau level: �pseudospin� ex-
pectation value of the exact ground state �for the WQW model� of
�NR−NL� /2 �top panel� and �NS−NAS� /2 �lower panel� for �a� W
=0.4, �b� W=2, �c� W=4, and �d� W=5. Note that the WQW model
always breaks SU�2� symmetry even for small W.
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Ref. 4 for a detailed discussion�. However, if the well width
W becomes very large, it is unjustified to restrict the model
to only the lowest two subbands �and the inclusion of higher
subbands cannot be treated exactly because of the computa-
tional complexity�. On the other hand, as we map the WQW
Hamiltonian to an effective bilayer, we find that the effective

bilayer distance d̃ saturates for large W. To see this, we can
calculate the Haldane pseudopotentials Vm

1234, where m is
the relative angular moment of the two electrons and 
=S ,AS. If we denote by F1234�r� the effective interaction
in the plane, we have

F1234�r� = �
0

W

dz1�
0

W

dz2	r�1��z1�	r�2��z2�

�
1

�r2 + �z1 − z2�2
	r�3��z1�	r�4��z2� .

�8�

The Haldane pseudopotentials for the effective interaction,
written on the disk for simplicity �for the lowest Landau
level�, are

Vm
1234 =� d2k

�2��2e−k2Lm�k2�Fk
1234,

where Lm is the Laguerre polynomial and the Fourier trans-
form Fk

1234 can be evaluated analytically. Furthermore,
we can construct linear combinations4 of Vm

1234 to get the
effective bilayer pseudopotentials, Vm

intra and Vm
inter. We plot

the ratios of the few strongest Vm
intra and Vm

inter in Fig. 15 as a
function of W. Notice that the limits saturate for large W,
indicating that the interlayer repulsion decreases very slowly
with respect to intrarepulsion for larger W, thus suggesting
that the model becomes unrealistic in this regime. Also no-
tice that the pseudopotentials involving a node in the z-wave
function �the AS single-particle wave function has one node�

can be smaller in absolute value than those without a node,
indicating a possibility for some W to have a depopulation of
the lowest subband and negative polarization �NS−NAS�, as
seen in the data.

Figure 16 shows the FQHE energy gap for the WQW
model for 
�=0 and 
�=0.1, respectively. For 
�=0, we
see similar behavior to the results of the bilayer model and
shown previously,5 i.e., Fig. 11�d� for 
�=0. Of course,
there are quantitative differences between the two models but
the FQHE energy gap still shows a prominent ridge as a
function of 
SAS and W. The ridge marks the transition line
between the 331 and the Pfaffian or perhaps compressible
states. Also, note that the maximum FQHE gap �the ridge� is
slightly on the Halperin 331 side of the quantum phase dia-
gram if the phase boundary is taken to be the place at which
the 331 overlap is larger than the Pfaffian overlap, i.e., the
331 phase is the region where the Halperin 331 overlap is
larger than the Pfaffian and vice versa, cf. Figs. 16�a� and
16�b�. When the charge imbalancing term is increased to

�=0.1 the FQHE gap is markedly reduced, as it was in the
bilayer model. Again, as for 
�=0 the maximum gap is in
the Halperin 331 part of the phase diagram. Interestingly,
there appear to be two ridges forming for the 
�=0.1 situa-
tion in the FQHE gap and both ridge maxima are mirrored
peaks in the 331 overlap, although, note that the overlaps
�both 331 and Pf� for the 
�=0.1 situation are never very
large and in a real experimental system the phase would most
likely have been taken over by some other competing phase
by the time the charge imbalancing strength reaches 
�
=0.1, namely, a striped phase or, perhaps, a �composite fer-
mion� Fermi sea.
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FIG. 15. �Color online� Ratio of the few strongest, interlayer
and intralayer �bilayer� pseudopotentials Vm

inter /Vm
intra derived using

the WQW model �Ref. 4� as a function of width W. Note the satu-
ration of the ratios for large widths W, illustrating the limit of va-
lidity of the WQW to describe bilayers.
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FIG. 16. �Color online� Lowest Landau level: FQHE energy gap
for the WQW model as a function of W and 
SAS with �c� 
�=0
�left column� and �d� 
�=0.1 �right column�. Also shown is the
overlap between the SAS-basis Moore-Read Pfaffian �top panel� and
the layer-basis Halperin 331 �bottom panel� wave functions and the
exact ground state for �a� 
�=0 and �b� 
�=0.1.
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Torus geometry

In this section we consider the wide-quantum-well model
in the torus geometry85–87 which has one distinct advantage
to the spherical geometry �of course, at the cost of other
disadvantages�. Recall in the spherical geometry, the filling
factor is defined as limN→� N /N� and the relationship be-
tween N and N� for the Moore-Read Pfaffian and Halperin
331 is N�=2N−3, where the “−3” is called the “shift” and is
a consequence of the curvature of a spherical surface. Other
competing phases for a half-filled Landau level, such as a
�composite fermion� Fermi sea, have a different shift and
comparing different states on an equal footing requires great
care and extrapolation to the thermodynamic limit. However,
on the torus, the filling factor is uniquely defined as simply
N /N� and, therefore, different states can be directly com-
pared for finite-size systems, of course, this does not mean a
conclusion made for a finite-sized system will maintain as
the thermodynamic limit is approached. �We note that it
makes no sense to consider overlaps extrapolated to the ther-
modynamic limit since they trivially vanish.�

The torus geometry is generally defined using a domain
with sides of length a and b with a�b. The aspect ratio of
the toroidal system is �=a /b. The magnetic field does not
allow the use of the usual translation operators but many-
body states can be found87 using the so-called magnetic
translation operators with conserved pseudomomenta
�Kx ,Ky�. The pseudomomenta belong to a Brillouin zone
with �Kx=2�s /a , Ky =2�t /b� with s , t=0, . . . ,N0−1 with
N0 being the greatest common divider of N and N�.

Different FQHE states on the torus can be distinguished
by their ground-state �topological� degeneracy. Generically,
for a Landau-level filling factor of p /q there is always a
center-of-mass degeneracy equal to q which is invariant to
the form of the Hamiltonian and, thus, of no physical
significance—we shall ignore it. Also there can be additional
degeneracies that occur at special points in the Brillouin
zone, such as at certain points in a hexagonal Brillouin zone,
and we will consider these trivial. Finally, there can be de-
generacies that are related to the specific topological nature
of certain ground states and, therefore, nontrivial. For the
two-component �Abelian� Halperin 331 state88 we expect a
quadruplet of states �up to the center-of-mass degeneracy,
which in our case is 2� one of which belongs in the
�Kx ,Ky�= �0,0� sector and the remaining three are at the
Brillouin-zone corners �Kx ,Ky�= �0,N0 /2�, �N0 /2,0�, and
�N0 /2,N0 /2�. The non-Abelian Moore-Read Pfaffian47,89 �or
equally the non-Abelian anti-Pfaffian52,53� has only a three-
fold degeneracy51 of �Kx ,Ky�= �0,N0 /2�, �N0 /2,0�, and
�N0 /2,N0 /2�, i.e., the �Kx ,Ky�= �0,0� state is missing for
even numbers of particles that we consider. Compressible
states, such as the �composite fermion� Fermi sea, generally
do not have clearly defined degeneracies, they may have
accidental degeneracies that are strong functions of the as-
pect ratio �, particle number N, or other Hamiltonian param-
eters. The exact degeneracies are expectations based on the
�analytic� form of the variational ansatz wave functions and
their respective conformal field theories.47,80 The ground
state�s� of an actual Hamiltonian will not display exact
degeneracies40,60,61,81 �perhaps they do in the thermodynamic

limit?� but the ground state�s� should qualitatively show the
ground-state topological degeneracy corresponding to the
variational ansatz if they are to be thought of as being in that
“phase.” �We note that for a two-body Hamiltonian, such as
the Coulomb interaction, in the absence of any particle-hole
symmetry breaking terms the topological degeneracy of the
ground state, if it were in the Moore-Read Pfaffian phase,
would have a sixfold degeneracy �3+3=6� in the thermody-
namic limit because, without particle-hole symmetry break-
ing terms, the Moore-Read Pfaffian and anti-Pfaffian are ex-
actly degenerate. However, in a finite-sized system these two
states are mixed leaving only a quasithreefold degeneracy.�
Many states are sensitive to changes in � while others are
not. One should really investigate the properties of the sys-
tem with regard to changes in �, however, in the present case,
a somewhat involved analytical calculation regarding the
“background” charge is needed, and so we focus here on a
fixed aspect ration of �=0.97.

All results on the torus correspond to a system of N=8
electrons in the half-filled lowest Landau level, �=1 /2. Fig-
ure 17�a� shows the energy spectrum of the low-lying states
for the WQW model in the absence of any tunneling terms,
i.e., 
SAS=
�=0, as a function of the WQW width W. For
each W, the lowest-lying energies are plotted relative to the
ground state and shape and color coded to emphasize which
states belong to which pseudomomenta sectors expected
when considering the two-component Halperin 331 and one-
component Moore-Read Pfaffian wave functions. Namely,
we track the pseudomomenta sectors �Kx ,Ky�= �0,4�, �4,0�,
and �4,4� for the Pf with the addition of �Kx ,Ky�= �0,0� for
the 331 state. For large widths W�4.5, the spectrum is char-
acterized by a large energy gap separating a high-energy
�quasi-�continuum of states from a low energy, nearly degen-
erate manifold of states at the pseudomomenta corresponding
to the 331 state. As the width is decreased toward zero the
�Kx ,Ky�= �0,0� state that specifies the Halperin 331 state
from the Moore-Read Pfaffian state goes up in energy join-
ing the continuum. However, the �Kx ,Ky�= �0,4� and �4,0�
states of the Moore-Read Pfaffian also rise in energy into the
continuum while at the same time a few states from the con-
tinuum drop down in energy mixing with states belonging to
the 331 or Pf states. Finally, at very small W�1 there is a
single ground state of �Kx ,Ky�= �4,4� and a large energy gap.
However, there is no threefold degeneracy characteristic of
the Moore-Read Pfaffian state present.

In Fig. 17�b� we fix W=6.5 and 
�=0 and vary the inter-
layer tunneling strength 
SAS. For small 
SAS=0 we are
clearly in the Halperin 331 part of the phase diagram since
the spectra has a quasifourfold degeneracy characteristic of
the 331 phase separated from the continuum by a large en-
ergy gap. Upon increasing 
SAS in an attempt to drive the
system into the Moore-Read Pfaffian phase we see that while
the �Kx ,Ky�= �0,0� state of the 331 phase rise in energy and
joins the continuum, the �Kx ,Ky�= �4,4� state of the Pfaffian
phase goes with it and a state from the high-energy con-
tinuum drops down into a quasithreefold degeneracy. How-
ever, this quasithreefold degeneracy does not contain the
right pseudomomenta to describe the non-Abelian Moore-
Read Pfaffian phase.

Lastly, in Fig. 17�c� we again set W=6.5 but now fix

SAS=0 and vary the charge imbalance 
�. As before, for
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small 
� we see a clear signature of the Halperin 331 phase.
However, as 
� is increased the energy gap essentially col-
lapses giving way to a phase that would most likely not
exhibit the FQHE.

These conclusions corroborate our previous work using
the spherical geometry and agree with the previous study84

of bilayer model on the torus for �=1 /2. Namely, the Halp-
erin 331 state is a good ansatz for the FQHE in the right
parameter regions for bilayer and WQW systems. However,
when the system is driven to be one component in the hopes
of producing a FQHE described by the Moore-Read Pfaffian
state the Hamiltonian details and Haldane pseudopotential82

values are such that the Moore-Read Pfaffian phase loses out
to a different, most likely, non-FQHE state such as a striped
phase or �composite fermion� Fermi sea.

V. RESULTS: SECOND LANDAU LEVEL

In this section we present results of our calculations for
the second Landau level, that is, bilayer FQHE at �=5 /2.

�Work90 has been done considering bilayer FQHE where the
total filling factor is �=5 /2+5 /2=5 but it is unrelated to our
work.� We are neglecting Landau-level mixing and consider-
ing the electrons occupying the second Landau level to be
spin polarized. Operationally, we have projected the half-
filled electrons in the second Landau level into the lowest
Landau level using the Haldane pseudopotentials.82 These
effective pseudopotentials take into account the effective
Coulomb interaction that occurs between the electrons in the
SLL due to the different form of the single-particle wave
functions compared to those in the LLL, the electrons in the
LLL are taken to be inert, cf. discussion in Sec. I. We will
not detail the procedure of using Haldane pseudopotentials in
the FQHE as this procedure has been given in many
places.13,82 Also, we �Peterson and Das Sarma5� have re-
cently studied the FQHE in the SLL without the presence of
a charge imbalancing term and will compare our results here
extensively with the ones given previously.

Before we tackle the results for the second Landau level
we briefly note that bilayer systems in higher Landau levels
are quite subtle and nontrivial and actually provide some
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FIG. 17. �Color online� Lowest Landau level: energy spectra �given as the energy 
E with respect to the ground state� for different
pseudomomenta �the different levels� with �a� 
SAS=
�=0 as a function of WQW width W, �b� W=6.5 and 
�=0 as a function of 
SAS, and
�c� W=6.5 and 
SAS=0 when the imbalance 
� is increased from zero. The pseudomomenta corresponding to the Halperin 331 state and
Moore-Read Pfaffian state ��Kx ,Ky�= �0,0� �solid red circle�, �0,4� �solid blue square�, �4,0� �solid green diamond�, and �4,4� �orange star�
and �Kx ,Ky�= �0,4�, �4,0�, and �4,4�, respectively. The black dashes correspond to states with pseudomomenta not belonging to either the 331
or Pf states.
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conceptual difficulty. As recently discussed in Ref. 5, it is not
obvious what happens to the electrons in the lowest spin-up
and spin-down Landau levels when driving a one-component
system at �=5 /2 to a two-component �bilayer� system at
total filling �=5 /2. For this work, however, we take the con-
ceptually well-defined and straightforward solution:5 we as-
sume full spin polarization, hence the system is essentially
spinless with each Landau level having only one spin index.
Then the �=5 /2 �balanced� two-component system is
equivalent to one where each layer has 1+1 /4 filling with
the lowest spin Landau level being completely full and the
second Landau level being 1/4 full. In this way, the incom-
pressible FQHE states �Halperin 331 or Moore-Read Pfaff-
ian� form completely in the second Landau level. This “so-
lution” provides a completely well-defined mathematical
problem. Of course, the real physical system, i.e., bilayer

FQHE systems in higher Landau levels, could be more com-
plicated and produce rich physics. In fact, theoretically, the
full solution is out of reach for any conceivable computer—
the Hilbert space is too vast when including many �or at least
three� Landau levels, spin up and spin down, and layer index.
Thus, theoretical and experimental efforts in studying bilayer
FQHE systems in higher Landau levels is likely a fertile
ground for new discoveries.

A. Bilayer

In Fig. 18 we show overlaps between the exact ground
state and the layer-basis and SAS-basis Pf and 331 wave
functions, pseudospin expectation values, and the FQHE gap
for the second Landau level. The difference between the LLL
and the SLL are subtle but important.
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FIG. 18. �Color online� Sec-
ond Landau level: �a� wave-
function overlap between the ex-
act ground state of the bilayer
Hamiltonian and the Moore-Read
Pfaffian written in the layer basis
�left column� and the SAS basis
�right column� shown as a func-
tion of interlayer tunneling 
SAS

and charge imbalance 
� for dif-
ferent values of layer separation d
and zero individual layer thick-
ness w=0. �b� Same as �a� but for
the Halperin 331 wave function.
�c� Pseudospin expectation value
or, more physically, the expecta-
tion value of �NR−NL� /2 �left col-
umn� and �NS−NAS� /2 �right col-
umn� as a function of 
SAS and

�. �d� The FQHE energy gap for
the exact bilayer Hamiltonian.
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First we focus on the overlaps between the Pf and 331
states and the exact ground state in both the layer and SAS
bases, cf. Figs. 18�a� and 18�b�. The main difference between
the results in the LLL and the SLL is that, as has been shown
previously5,60,61 for the case of zero charge imbalance 
�
=0, the overlap between the exact state and the Pf state�s� is
higher in the SLL than it is in the LLL. In the SLL, the
Pfaffian overlap is approximately �0.97 at its largest while
in the LLL it is approximately �0.9 at its largest. This can be
seen in Fig. 19 where, compared to the results of the LLL, in
Fig. 19 where, compared to the results of the LLL, the over-
lap with the Pf state is higher in the SLL. �Again, for d=0
the system is SU�2� symmetric and the layer-basis and
SAS-basis results are related via a pseudospin rotation.�
We note that by increasing the width of the individual quan-
tum well w, the Moore-Read Pfaffian overlap can be in-
creased to nearly unity.5,60,61 This is a consequence of the
differences between the Haldane pseudopotentials corre-
sponding to the LLL versus those of the SLL with the SLL
pseudopotentials being more amenable to pairing into a
p-wave paired BCS state �of composite fermions�, i.e., the
Moore-Read Pfaffian.43,57,60,61,81,91

There is another striking difference between the results
in the LLL versus the SLL when considering the overlap
between the Halperin 331 state. In the LLL, the 331 state
provides a very good description of the FQHE for two-
component systems when the separation d �or wide-well
width W for the wide-quantum-well� and the tunneling

strengths are appropriate, this is evident by the value high
value of the overlap that is obtained ��0.99�. In the SLL, the
qualitative behavior of the overlap as the system parameters
are varied is similar to the LLL but the overlap does not
obtain as high a value �only �0.8 for d�1 and 
SAS=
�
=0�. This, again, can be seen in Fig. 20.

Looking at the pseudospin expectation value �NS
−NAS� /2 and �NR−NL� /2 in Fig. 18�c� �as well as Fig. 21�
we see very little difference between the lowest and second
Landau levels. In fact, visually it is difficult distinguishing
the two.

Lastly, we consider the FQHE gap �Figs. 18�d� and 22�,
which does display some behavior that is qualitatively differ-
ent from that of the LLL. This qualitatively different behav-
ior manifests itself for values of layer separation d�2. In
this region of parameter space we see that for increasing
values of 
� the FQHE gap has a maximum for a wide range
of 
SAS. This is in stark contrast to the FQHE gap in the LLL
�cf. Fig. 5�d�� where the gap shows some indication of in-
creasing for increasing 
� but not to a maximum.

Figure 23 shows the overlaps, pseudospin expectation val-
ues, and FQHE gap as a function of layer separation d and
tunneling strength 
SAS for several values of charge imbal-
ance tunneling strength 
�. Qualitatively, the overlaps �Figs.
23�a� and 23�b�� are similar in the SLL and LLL. However,
comparing them side by side, the overlap with the Halperin
331 state achieves a higher value in the LLL than it does in
the SLL. The opposite is true for the overlap with the Moore-
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FIG. 19. �Color online� Second Landau level: wave-function
overlap between the Moore-Read Pfaffian wave function in the
layer basis �top panel� and the SAS basis �lower panel� and the exact
ground state for �a� d=0, �b� d=1, �c� d=2, and �d� d=4.
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FIG. 20. �Color online� Second Landau level: wave-function
overlap between the Halperin 331 wave function in the layer basis
�top panel� and the SAS basis �lower panel� and the exact ground
state for �a� d=0, �b� d=1, �c� d=2, and �d� d=4.
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Read Pfaffian state where the overlap achieves a higher value
in the SLL than it does in the LLL. These differences are
manifest even while the pseudospin expectation values �Fig.
23�c�� in the SLL, compared to the LLL, cannot visually be
distinguished. Thus, while the values of the Haldane pseudo-
potentials in the SLL are not different enough from the LLL
to change pseudospin expectation values, i.e., the system is

one component or two component at almost exactly the same
place in parameter space in both the LLL and SLL, the dif-
ferences are enough to change the character of the overlaps
and the FQHE energy gap.

Figure 23�d� shows the FQHE energy gap, and again,
there is a marked difference between the result in the LLL
versus SLL. Similar to the higher overlap value between the
exact ground state and the Moore-Read Pfaffian state in the
SLL, the FQHE energy gap has a maximum in the Pf region
of the approximate quantum phase diagram especially along
the 
SAS axis for small d. �The opposite is true in the LLL–
the FQHE energy gap is largest in the Halperin 331 region of
the quantum phase diagram.� We see this behavior also in the
wide-quantum-well results.

B. Wide-quantum-well

In Fig. 24 we plot the overlap between the exact ground
state of the WQW model and the Moore-Read Pfaffian wave
function written in the layer basis �top panel� and SAS basis
�lower panel�. This figure is, of course, similar to, and should
be compared to, Fig. 19 showing the same thing for the
bilayer model. Qualitatively, the same behavior is manifest in
the two models. As the WQW width W is increased it takes a
larger and larger tunneling strength to increase the overlap
with the Pf.

The overlap between the ground state and the Halperin
331 state is shown in Fig. 25. Again, we only show the
overlap with the Halperin 331 state written in the layer-basis
since the overlap with the SAS-basis 331 state is almost zero
throughout parameter space. The results are qualitatively
similar to those of the bilayer model. However, for W=2
�Fig. 25�b�� there is a slight maximum in the overlap as 
SAS
is increased from zero at 
SAS�0.03. This is an interesting
result that is harder to understand, increasing 
SAS drives the
system to be one component and one would surmise that
increasing this parameter would lower the overlap with the
331 state monotonically. For W=4 we see that two peaks in
the overlap appear; one for small values of 
SAS and another
for a larger value with a strong minimum in between; behav-
ior is particular to the WQW model. Similar to the lowest
Landau level, the expectation value of �NS−NAS� /2 for W
�2 is negative for small 
SAS and 
�. In fact, this negative
value means that the system prefers to have more electrons in
the AS state than the S state. However, the system is still
more one component in those regions, such as the region in
Fig. 26�b� along the 
�=0 axis near 
SAS�0.3, which cor-
respond to a maximum in the overlap with the 331 state. At
any rate, this behavior marks a qualitative difference be-
tween the bilayer and WQW models.

Lastly, we show the FQHE energy gap for 
�=0 in Fig.
27�b� along with the overlap between the SAS-basis Moore-
Read Pfaffian state �top panel of Fig. 27�a�� and the layer-
basis Halperin 331 state �bottom panel of Fig. 27�a��, respec-
tively. When the FQHE energy gap is nonzero and the
system therefore would be expected to exhibit the FQHE, the
overlap with the Pfaffian state is large. On the other hand, in
the region of parameter space where the FQHE energy gap is
small, the Halperin 331 state has a larger overlap. Thus, in-
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FIG. 21. �Color online� Second Landau level: �pseudospin� ex-
pectation value of the exact ground state of �NR−NL� /2 �top panel�
and �NS−NAS� /2 �lower panel� for �a� d=0, �b� d=1, �c� d=2, and
�d� d=4.
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FIG. 22. �Color online� Second Landau level: FQHE energy gap
for �a� d=0, �b� d=1, �c� d=2, and �d� d=4.
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dependent of our model of choice, the details of the electron-
electron interaction in the second Landau level, compared to
the lowest Landau level, make a profound difference. In the
second Landau level the Pfaffian wave function is a good
description of the physics when the system is largely one
component. In the lowest Landau level, the Halperin 331 is a
good description of the physics when the system is largely
two component.

Note that there is a peak in the FQHE energy gap for W
�2 and 
SAS�0 which is well within the Halperin 331 part
of the approximate quantum phase diagram. Even though the
overlap with the 331 state is small in that region of parameter
space it could correspond to a two-component Abelian

FQHE for bilayer systems in the second Landau level at total
�=5 /2 that is in the same universality class as the Halperin
331 state.

VI. CONCLUSIONS

In conclusion, we have investigated the FQHE in two-
component systems for the half-filled lowest and second
Landau levels ��=1 /2 and �=5 /2, respectively� as a func-
tion of both tunneling strengths; interlayer tunneling and
charge imbalancing. This work was motivated by the recent
experimental systems investigated in Refs. 6 and 7.
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FIG. 23. �Color online� Second Landau level: same as Fig. 18 except that all plots are shown as a function of interlayer tunneling 
SAS

and layer separation d for a number of different charge imbalances 
� and zero individual layer thickness w=0.
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Our main results are as follows: �i� the FQHE at �=1 /2 is
described by the �Abelian� Halperin 331 two-component
state which is robust to charge imbalance tunneling. When
the system is driven into the one-component region of pa-
rameter space, we find that the �non-Abelian� Moore-Read
Pfaffian state is most likely beaten out by other competing
non-FQHE phases �cf. striped phase or �composite fermion�
Fermi sea�. The reason we suspect this is because even
though the overlap between the exact ground state and the Pf
�in the SAS or layer basis, depending on the region of param-
eter space, i.e., whether 
SAS is large and 
� is small or vice
versa� is large, the FQHE energy gap has a peak that is
�slightly� on the Halperin 331 side of the approximate quan-
tum phase diagram, where the quantum phase diagram deter-
mination is described in Sec. IV. This result, along with re-
cent numerical calculations by Storni et al.59 �as well as
Refs. 62 and 84�, leads us to conclude that the one-
component �=1 /2 is likely to be a non-FQHE striped phase
or �composite fermion� Fermi sea. In the effective BCS de-
scription, the increase in tunneling �in the layer basis� or
charge imbalance �in the SAS basis� leads also to the increase
in the effective chemical potential of the “even” channel
which drives the system into a compressible phase.84

We also find that our calculations are unable to explain
the recent results of Shabani et al.,6,7 which consider only the

competing Moore-Read Pfaffian and Halperin 331 states. In
that work, they observe no FQHE at �=1 /2 when the charge
imbalance is zero, an emerging FQHE at �=1 /2 for nonzero
charge imbalance, and finally, that the FQHE is eventually
destroyed upon increasing charge imbalance. While we find
that the Halperin 331 FQHE is quite robust to a charge im-
balance tunneling term, our results would suggest that the
FQHE would monotonically decrease in strength with in-
creasing charge imbalance �that is, the measured activation
gap would decrease in strength, the minimum in Rxx would
weaken, and/or the “quality” of the plateau in Rxy would
deteriorate�—we would expect experiments to observe a
FQHE at �=1 /2 with zero charge imbalance that is eventu-
ally destroyed upon further imbalancing. The fact that this
does not happen in the experiment indicates that the ob-
served state at large imbalance must be something different
from the 331 or the Pfaffian state, at least within our model
calculations.

�ii� The FQHE in the second Landau level at �=5 /2 is
most likely the spin-polarized and one-component �non-
Abelian� Moore-Read Pfaffian state. This state, similar to the
Halperin 331 state in the lowest Landau level, is robust to
charge imbalancing. We also find that in regions of parameter
space when the system is largely two component, i.e., for
small 
SAS and 
�, the system might display a FQHE de-
scribed by the �Abelian� Halperin 331 state. This suggests5

the exciting possibility of experimentally tuning parameters
to drive an Abelian FQHE state �331� at �=5 /2 into a non-
Abelian FQHE state �Pf� at �=5 /2 by way of a quantum
phase transition.

�iii� One of our surprising theoretical findings is that the
Halperin 331 two-component bilayer Abelian paired FQHE
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FIG. 24. �Color online� Second Landau level: wave-function
overlap between the Moore-Read Pfaffian wave function in the
layer basis �top panel� and the SAS basis �lower panel� and the exact
ground state for the WQW for �a� W=0.2, �b� W=2, �c� W=4, and
�d� W=8 as a function of 
SAS and 
�.

(a) SLL, W=0.2

0 0.04 0.08 0.12
∆

SAS

0

0.1

0.2

0.3

∆
ρ

0

0.2

0.4

0.6

0.8

1

O
v
erlap

w
ith

3
3
1

(b) SLL, W=2.0

0 0.04 0.08 0.12
∆

SAS

0

0.1

0.2

0.3

∆
ρ

0

0.2

0.4

0.6

0.8

1

O
v
erlap

w
ith

3
3
1

(c) SLL, W=4.0

0 0.04 0.08 0.12
∆

SAS

0

0.1

0.2

0.3

∆
ρ

0

0.2

0.4

0.6

0.8

1

O
v
erlap

w
ith

3
3
1

(d) SLL, W=8.0

0 0.04 0.08 0.12
∆

SAS

0

0.2

0.4

0.6

0.8

1

∆
ρ

0

0.2

0.4

0.6

0.8

1

O
v
erlap

w
ith

3
3
1

FIG. 25. �Color online� Second Landau level: wave-function
overlap between the Halperin 331 wave function in the layer basis
and the exact ground state for the WQW for �a� W=0.2, �b� W=2,
�c� W=4, and �d� W=8 as a function of 
SAS and 
�. Note that the
overlap with the layer-basis Halperin 331 state is not shown since it
is always nearly zero.
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is robust, and survives, not only substantial interlayer tunnel-
ing, but also substantial charge imbalance. We suspect that
this result is quite general and possibly also applies to other
Abelian paired states69 in the same universality class of the
331 state.

Finally, we address a possible criticism to our work. As
mentioned previously, the Hilbert space of the bilayer prob-
lem is very large and, hence, we were only able to consider
N=8 electrons while adequately exploring the large param-
eter space inherent in a problem with interlayer tunneling
and charge imbalancing. A central result of our work con-
cerns the robustness of the Halperin 331 or Moore-Read
Pfaffian state to interlayer tunneling and charge imbalancing
terms present in the Hamiltonian. Is it possible that this ro-
bustness is a finite-size effect? We strongly believe that our
result is not a finite-size effect and the reason is as follows.
We know that the Halperin 331 two-component state de-
scribes the FQHE at �=1 /2 �LLL� in charged balanced bi-
layer systems with zero �or weak� interlayer tunneling and
that the 331 state is robust to interlayer tunneling �measured
as a fraction of the Coulomb energy�—this is known both

theoretically,1–5 and more importantly, experimentally.63–66

For zero layer separation, theoretically, the bilayer system
with interlayer tunneling and zero charge imbalance is iden-
tical to the bilayer system with zero interlayer tunneling and
finite charge imbalance via a pseudospin rotation. Further,
for nonzero layer separation, nonzero charge imbalance, and
zero interlayer tunneling, the theoretical results are qualita-
tively similar to the results for the charged balanced situation
with nonzero layer separation and nonzero interlayer
tunneling—finite layer separation breaks the SU�2� invari-
ance and thus the amount of interlayer tunneling needed to
destroy the 331 state is not necessarily equal to the amount
of charge imbalance needed to destroy the 331 state. How-
ever, the two “critical” values are qualitatively similar. Thus,
we feel that our results concerning the robustness of the 331
state to charge imbalancing is most likely not a finite-size
effect but a real effect awaiting experimental verification.
Finally, the physics of the bilayer FQHE at �=5 /2 is ex-
tremely rich with many unanswered and fascination ques-
tions �not to mention the fact that the bilayer problem in
higher Landau levels is conceptually difficult and nontrivial
�see Sec. V�� that, in our opinion, are awaiting experimental
answers.
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FIG. 26. �Color online� Second Landau level: pseudospin expec-
tation value of the exact ground state �for the WQW model� of
�NR−NL� /2 �top panel� and �NS−NAS� /2 �lower panel� for �a� W
=0.2, �b� W=2, �c� W=4, and �d� W=8. Note that the WQW model
always breaks SU�2� symmetry even for small W and that for W
�2 there are negative values of �NS−NAS� /2 meaning the system
prefers, in some regions of parameter space, to have more electrons
in the AS state compared to the S state even for positive and non-
zero 
SAS.
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FIG. 27. �Color online� Second Landau level: �b� FQHE energy
gap for the WQW model as a function of W and 
SAS with 
�=0.
Also shown is the �a� overlap between the SAS-basis Moore-Read
Pfaffian �top panel� and the layer-basis Halperin 331 �bottom panel�
wave functions and the exact ground state for 
�=0.
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Entanglement in topological phases of matter has so far been investigated through the perspective of

their ground-state wave functions. In contrast, we demonstrate that the excitations of fractional quantum

Hall (FQH) systems also contain information to identify the system’s topological order. Entanglement

spectrum of the FQH quasihole (QH) excitations is shown to differentiate between the conformal field

theory (CFT) sectors, based on the relative position of the QH with respect to the entanglement cut. For

Read-Rezayi model states, as well as Coulomb interaction eigenstates, the counting of the QH entangle-

ment levels in the thermodynamic limit matches exactly the CFT counting, and sector changes occur as

non-Abelian quasiholes successively cross the entanglement cut.

DOI: 10.1103/PhysRevLett.106.056801 PACS numbers: 73.43.�f, 63.20.Pw, 63.22.�m

Topologically ordered systems are not characterized by
local order parameters; nonlocal concepts, such as quan-
tum entanglement [1], have been extensively used in recent
years to describe such phases of matter. The favorite
method of analyzing the entanglement—entanglement en-
tropy (or its topological part for gapped systems [2])—does
not result in a unique characterization of the system: differ-
ent states of matter can have identical entanglement en-
tropy. Complicated topological phases, such as fractional
quantum Hall (FQH) states, are fully described by a multi-
tude of universal parameters, notably braiding matrices [3],
which are related to the properties of the FQH excitations
under adiabatic exchanges in space-time. In finite systems,
the braiding matrices are impossible to obtain and the
question arises whether the universal properties of a topo-
logically ordered state are obtainable via the entanglement
of its excitations. Although scarcely addressed in the ex-
isting literature [4,5], the question is pertinent also in view
of the phases of matter that can only be distinguished by
their excitation spectra [6].

Recently, it was proposed [7] that the entanglement
spectrum (ES), i.e., the (negative logarithm of the) full
set of eigenvalues of the reduced density matrix �A, is a
rich source of information on the topological order in FQH
ground states. Reduced density matrix �A of the subsystem
A of a pure FQH state jc i on the sphere [8] (Fig. 1) is given
by the usual trace �A ¼ TrBjc ihc j over the complemen-
tary subsystem B. The levels of �A can be classified
according to the number of particles NA and orbitals lA in
A, as well as the z-axis projection of the angular momen-
tum LA

z . The multiplicities and relative energy spectrum of
�A match that of the edge modes [7,9–11]. For ground
states of Coulomb Hamiltonians in the same universality
class with a FQH model state, the ES typically displays a
branch of low-lying (high-probability) levels, very similar

to those of the model state, accompanied by spurious levels
at high entanglement energy (low probability). The gap
between the low and high levels, properly defined by
taking the ‘‘conformal limit’’ [10], was conjectured and
numerically substantiated to remain constant upon increas-
ing the system size.
In this Letter we show that the ES of FQH excitation

states contains information to identify the universal prop-
erties of topological phases of matter. We consider model
wave functions, such as Laughlin [12], Moore-Read [13],
and Read-Rezayi [14], whose ground and excited states
with localized quasiholes (QHs) can be expressed as Jack
polynomials [15,16]. Furthermore, we consider the eigen-
states of Coulomb interaction potential with the impurities
that pin the QHs at a circle of latitude [17,18]. The ES of a
given FQH excitation is monitored as the QHs are moved
across the cut (Fig. 1). This reveals that the ES of the
excitations can probe different conformal field theory
(CFT) fermion-number sectors, that it gives the correct
counting of the edge states in the thermodynamic limit,
and that it is extremely sensitive (within a single magnetic
length) to whether non-Abelian QHs are on the same or
opposite sides of the entanglement cut. The latter property

FIG. 1 (color online). FQH sphere with a monopole of N�

magnetic flux quanta in the center, partitioned into hemispheres
A and B, and containing the bosonic Moore-Read state with two
QHs. We start with two separated QHs (left) and drag one QH
from the north to the south hemisphere (middle). The moving
QH is azimuthally delocalized. We end up with a QH twice the
charge at the south pole (right).
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can be taken as a simple manifestation of the non-Abelian
nature of the phase. These findings are corroborated in
studies of the realistic Coulomb interaction eigenstates.
We also analyze the behavior of the quasielectron excita-
tions, as well as the quasihole and quasielectron fluctua-
tions when close to the entanglement cut.

The orbital of an electron confined to the lowest Landau
level (LLL) moving on the Haldane sphere [8] (Fig. 1) can
be written as �mðzÞ ¼ N mz

m, where z ¼ xþ iy is the
complex 2D electron coordinate, the quantum numberm is
the Lz eigenvalue, andN m is a geometrical normalization
factor. Conformal limit [10] is defined as the geometry
where the normalization factors N m are all equal to 1.
General N-electron LLL states are analytic polynomials
�Fðz1; . . . ; zNÞ ¼ Q

i<jðzi � zjÞ�B, which can be factor-

ized into a Vandermonde determinant and a bosonic wave
function �B. We may therefore focus on the systems of
charged bosons in the LLL. Arbitrary �B is expandable
in terms of symmetric monomials indexed by a partition
� represented by occupation numbers nð�Þ ¼ fnmð�Þ;
m ¼ 0; 1; . . .g of the orbitals �m. Certain FQH wave func-
tions are, however, defined by a single root partition—all
the remaining partitions in the expansion of�B are derived
from it via ‘‘squeezing’’ operations [15]. This includes the
Read-Rezayi [14] Zk series of trial states for bosons at
filling factors � � N=N� ¼ k=2 which can be identified
with a family of Jack polynomials (Jacks) J��k

, parame-

trized by � ¼ �ðkþ 1Þ and indexed by a partition

nð�kÞ � ðk0k0k . . .Þ, i.e., �k
RR / J�ðkþ1Þ

k0k0... ðfzigÞ. Apart from
FQH ground states, the Jacks also yield wave functions of
the QH [15] and quasielectron [19] excitations, created by
varying the magnetic flux through the sphere. If the flux is
increased by one unit, k non-Abelian QHs of charge e=k
each are nucleated and pinned at locations w1; . . . ; wk.
Let us consider such an arrangement of the QHs where
the first n1 QHs are fixed at one pole of the sphere,
n2 ¼ k� 1� n1 are at the opposite pole, and the remain-
ing mobile QH is at wk in between the poles. The wave
function for Zk states with a QH at wk close to, e.g., the

north pole is given by a single Jack J�ðkþ1Þ
abab...abðfzigÞ with the

root partition abab . . . ab, where a ¼ ðk� 1� �nÞ=2,
b ¼ k� a, and �n ¼ n2 � n1 [16]. As the QH at wk

is moved from the north to the south pole, the wave
function mixes in several other Jacks [15,16], and we
can track its progression. When the QH reaches the
south pole, the wave function is again a single Jack,

J�ðkþ1Þ
aþ1b�1aþ1b�1;...;aþ1b�1ðfzigÞ.
The Jack QH wave function for k ¼ 1 describes a single

Abelian QH, localized at one of the orbitals of the sphere.
In Fig. 2 we show the numerically calculated ES in the
conformal limit for the Laughlin state of N ¼ 12 bosons
and a single localized QH. The cut is fixed such that the
subsystem A contains lA ¼ 12 orbitals and NA ¼ 6 parti-
cles. Above each plot in Figs. 2–4, we give the root
configuration used to generate the wave function and
draw the cut in orbital space (vertical line), showing the
high-probability ES levels in the inset. When the QH is at
one of the poles [Fig. 2(a)], the level counting matches that
of theUð1Þ chiral boson CFT. As we move the QH towards
the equator [Fig. 2(b)], the levels spread upwards, but the
CFT counting remains unaltered. The spreading reflects
the quantum-mechanical oscillation of the QH around
the cut but is expected to be confined within a magnetic
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FIG. 2 (color online). Conformal-limit ES of the Laughlin model state of N ¼ 12 bosons with a single QH, localized at one of
the poles (a), the equator (c) and in between (b). The location of the QH is given by the dot above each root partition. Insets show
high-probability ES levels.
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length around the equator; away from the equator, the
counting of the QH entanglement levels remains a faithful
representation of the FQH state. The CFT counting is lost
only when the QH is situated exactly on the entanglement
cut, which effectively splits the QH in two [Fig. 2(c)].
Using Jacks we obtained the ES of larger systems than
those attainable by exact diagonalization, and N ¼ 12 is
presented only to facilitate comparison with the Coulomb
case below.

For k ¼ 2 Moore-Read state, two non-Abelian QHs are
formed when a unit flux is added. When both QHs are at
the same pole, the wave function is represented by the root
0202 . . . 02. When a single e=2 QH is fixed at one pole and
the other is moved to the opposite pole, the Jack root is
1111 . . . 11. The ES for these two cases is shown in Fig. 3
and demonstrates that a sector change has taken place as
the non-Abelian QH is moved across the cut: the counting
1; 1; 3; . . . has changed into 1; 2; 4; . . . . The two different
countings represent the two topological sectors of the
theory, the even and odd fermion-number sectors, respec-
tively. Sector change occurs immediately as the QH crosses
the entanglement cut. The thermodynamic-limit counting
of the two excitation wave functions is in one-to-one
correspondence to that of the excitations above the ground

state for an even (20202000 . . . ) and odd (20201000 . . . )
number of particles.
An interesting question is what happens when more than

two topological sectors are present in the theory. The
simplest example is the Z4 Read-Rezayi state where the
three sectors’ counting is given by the excitations above
the ground states with N ¼ 0; 1; 2 ðmod 4Þ number of par-
ticles: 4040404000 . . . , the �1 sector 4040404010000 . . .
(equivalent to the �0

1 sector 40404040300000 . . . ), and the
�2 sector 4040404020000 . . . (�2 is its own conjugate). In
Fig. 4 we show the ES for the Z4 state of N ¼ 28 bosons
with a single flux added. Starting from an Abelian vortex
localized at one of the poles 0404 . . . 04 [Fig. 4(a)] with the
counting 1; 1; 3; 5; . . . , we transfer a single non-Abelian
QH to the opposite pole. If we do this once [Fig. 4(b)],
we obtain the state with the root 1313 . . . 13 and the count-
ing 1; 2; 5; 8; . . . ; doing it once again results in a root
2222 . . . 22 and the counting 1; 2; 6; 9; . . . [Fig. 4(c)].
Our main findings for the model states—the counting of

the QH edge modes and the sector change upon crossing
the cut—carry over to the realistic systems with LLL-
projected Coulomb interaction. The problem of QH local-
ization was solved generally in Ref. [17]. For the Laughlin
filling � ¼ 1=2, we simulate the probe by a delta-function

impurity potential [18] of weight 0:005=
ffiffiffiffiffiffiffiffiffiffiffiffi
N�=2

p
, localized

on the orbital m (Fig. 1). This potential is weak enough
not to cause any level crossing in the spectrum, but only
splits the degenerate multiplets of states. In Fig. 5 we show
the ES of the Coulomb ground state in the presence
of a localized QH by superimposing it on the model state
from Fig. 2. A finite entanglement gap separates the CFT
branch from the generic Coulomb continuum of higher
entanglement-energy states. The CFT branch, however,
displays the same counting as the model state. The
Coulomb continuum largely remains fixed as we move
the QH towards the equator, indicating that the scatter of
energy levels in Fig. 5 is essentially similar to the QH
oscillation across the cut and therefore due to the confor-
mal levels spreading in the upward direction. The Coulomb
QH therefore has the same behavior as the model one, at
least sufficiently far from the cut.
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We next study the � ¼ 1 Coulomb state, expected to be
in the universality class of Moore-Read. The Abelian
vortex gives identical counting to the one derived from
the root partition 0202 . . . 02 in Fig. 3 [20]. To separate
the two non-Abelian QHs, one on each pole, we use the
method of Ref. [17] restricting the Hilbert space to the
Lz ¼ 0 sector of the Moore-Read zero modes. Within this
subspace, we use a combination of two delta impurities,
one on each pole, to trap the non-Abelian QHs [20]. To
ensure that the QHs are indeed separated, we calculate the
excess charge �Qð�Þ [20]. Note that for the fermionic
Moore-Read state, a two-body potential is necessary in
order to pin the QHs [17]. In Fig. 6 we recognize
the same counting as the one that can be derived from
the root configuration 1111 . . . 11, which confirms that the
sector change has occurred.

Finally, we have also analyzed the ES of the Laughlin
model quasielectron states, Fig. 7, obtained as ground
states of the pseudopotential Hamiltonian at one flux re-
moved compared to the ground state and with a delta

impurity. Unlike the QH, quasielectron states show a finite
entanglement gap. This is expected as they are not unique
and densest zero modes of any local Hamiltonian [15].
Although the counting of the levels is again a faithful
representation of the edge spectrum, the effect of oscilla-
tion across the cut is much more pronounced due to their
larger size [21] compared to the corresponding QH exci-
tation. This leads to a rapid closing of the entanglement
gap as the quasielectron approaches the equator.
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The recent discovery of fractional quantum Hall (FQH) states in graphene raises the question of

whether the physics of graphene offers any advantages over GaAs-based materials in exploring strongly

correlated states of two-dimensional electrons. Here we propose a method to continuously tune the

effective electron interactions in graphene and its bilayer by the dielectric environment of the sample.

Using this method, the charge gaps of prominent FQH states, including � ¼ 1=3 or � ¼ 5=2 states, can be

increased several times, or reduced to zero. The tunability of the interactions can be used to realize and

stabilize various strongly correlated phases and explore the transitions between them.

DOI: 10.1103/PhysRevLett.107.176602 PACS numbers: 72.80.Vp, 63.20.Pw, 63.22.�m, 87.10.�e

Introduction.—Two-dimensional electron systems
(2DES) placed in a high magnetic field exhibit strongly
correlated phases characterized by fractionally quantized
Hall conductivity [1], quasiparticles that carry a fraction of
electron charge [2], and fractional (Abelian or possibly
non-Abelian) statistics [2,3]. These remarkable phe-
nomena occur in the extreme quantum limit—the frac-
tional quantum Hall (FQH) regime—when the number of
electrons Ne is comparable to the number of magnetic flux
quanta through the 2DES, N�, corresponding to a partial
filling � ¼ Ne=N� of one of the lower Landau levels
(LLs). When � is swept through the series of simple
fractions in the lowest n ¼ 0 Landau level (LLL) where
Ne < N�, the electrons condense into Laughlin states
which describe the strongest observed fractions (� ¼
1=3; 1=5; . . . ) [2], or weaker states that belong to the so-
called hierarchy [4,5] or composite fermion series [6].
Within the n ¼ 1 LL, the effective interaction changes
due to the nodal structure of LL orbitals, and some of the
more exotic states, such as the Read-Rezayi states [7], are
more likely to be favored. The experimentally most im-
portant member of the Read-Rezayi series is the Moore-
Read (MR) ‘‘Pfaffian’’ state [3], believed to describe the
FQH plateau at � ¼ 5=2 [8,9]. Quasiparticles of the Read-
Rezayi series obey the non-Abelian statistics [3] which is
of interest for topological quantum computation [10].

Although many FQH states have been discovered in
GaAs-based 2DES, these systems are plagued by the fact
that their 2DES is buried inside a larger 3D structure. This
fixes the effective interactions at values that are often not
optimal for some of the most interesting FQH states,
including the Read-Rezayi series. Theoretically, such
states are known to be very sensitive to the form of the
effective interactions [11,12]. Another problem stems from
the strong dielectric screening and finite well-width [13] in
GaAs, which weaken the electron-electron interactions,
thereby making FQH states fragile. This has been a major

obstacle in the studies of the possibly non-Abelian states,
which could only be observed in ultra-high-mobility
samples [8] (see, however, [14]). Thus, it is desirable to
find an alternative high-mobility 2DES with strong effec-
tive Coulomb interactions that are adjustable in a broad
range.
A promising candidate for this kind of material is

monolayer graphene (MG), a high-mobility atomically
thick 2DES [15], where recently a � ¼ 1=3 state [16],
and several other states [17], have been discovered.
Remarkably, due to graphene’s truly 2D nature, the short-
range electron interactions greatly exceed those in GaAs,
which leads to a significantly more robust FQH state at
� ¼ 1=3 [18]. A closely related material, bilayer graphene
(BG) [15] has similarly high mobility, and exhibits
interaction-induced quantum Hall states at integer filling
factors at low magnetic fields [19]. This indicates that,
similarly to MG, the underlying electron interactions are
strong and one could expect robust FQH states in BG as
well.
Main results.—Here we propose a way to continuously

tune the interactions in graphene in a wide range, using the
fact that 2DES in graphene is exposed and its properties
can be controlled by the dielectric environment, as illus-
trated in Fig. 1. Using exact diagonalization calculations,
we show that the tunability can be used to significantly
increase the excitation gap of the � ¼ 1=3 state in bothMG
and BG, as well as in the half-filled n ¼ 1 LL in BG. The
latter, similarly to the case of GaAs, resides in the gapped
MR Pfaffian state [11,12]. As the gap is varied, the over-
laps between the exact states and the model wave functions
improve by a few percent, and their topological character
becomes better protected. The reduction of the gap induces
the transitions to compressible and crystalline phases [12].
Model.—A graphene sample is situated in a dielectric

medium with permittivity �1, and a semi-infinite dielectric
plate with permittivity �2 � �1 is placed at a distance d=2
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away from the graphene sheet. The effective interactions
between electrons in graphene change due to the surface
charges induced at the boundary between dielectrics:

VðrÞ ¼ e2

�1r
þ �

e2

�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ d2
p ; � ¼ �1 � �2

�1 þ �2
: (1)

Below we measure the distance d in units of the magnetic
length lB and the energy in units of e2=�1lB. Ratio d=lB
controls the effective interactions within a partially filled
LL (see below). All the gaps quoted here should be multi-
plied by a factor �GaAs=�1 if comparison is to be made with
GaAs 2DES. An important advantage of this setup is that
the interactions can be tuned in situ by varying the mag-
netic field B, which modifies the ratio d=lB.

We project the interaction to a partially filled LL under
consideration, following the standard procedure in FQH
numerical studies [20]. Within a LL, VðrÞ is parametrized
by the Haldane pseudopotentials fVmg [20], which can be
conveniently evaluated from the Fourier transform of the
Coulomb interaction, ~VðqÞ, and the form factor FðqÞ en-
coding the properties of LL orbitals. Because of the differ-
ence in band structure, the form factors in MG, BG are
generally distinct from those of GaAs [21].

For what follows, it is useful to review the previous
results on the relation between pseudopotential values
and the stability of � ¼ 1=3 and � ¼ 5=2 states. At � ¼
1=3, the bare Coulomb interaction in n ¼ 0 LL favors the
Laughlin state. Reducing V1 while keeping Vm�3 constant
eventually destroys the gap and a compressible state sets in
[20]. At half filling of the LLL (� ¼ 1=2), the Coulomb
interaction gives rise to a gapless Fermi liquid of compos-
ite fermions [22]. However, in half-filled n ¼ 1 LL there is
a fully developed plateau in experiments [8], attributed
to the MR state [3]. The MR state is an eigenstate
of a particular three-body repulsive interaction [9].
Remarkably, in numerical studies, the ground state of the
Coulomb interaction at � ¼ 5=2 is seen to be adiabatically

connected to the MR state [23,24]; the overlap of the
ground state with the MR state is improved by the increase
in V1 pseudopotential (or, alternatively, by reducing V3)
[12]. Therefore, theory shows that varying the first few
pseudopotentials provides a convenient way to assess
stability and induce transitions between FQH states.
However, so far it has been difficult to find a controlled
way of tuning Vm’s experimentally in a sufficiently broad
range.
In Fig. 2 we show an example of the ratio V1=V3

calculated for n ¼ 0 LL of MG and BG using the setup
illustrated in Fig. 1. Changing � and d=lB leads to a large
variation of V1=V3 with respect to its pristine value (�¼0).
For comparison, we also show a typical variation of V1=V3

achievable in GaAs wide quantum wells (inset). In what
follows, we investigate the model defined by Eq. (1) using
exact diagonalization studies [20]. We focus on the case
of spin- and valley-polarized FQH states, such as the
Laughlin or MR state, and consider the physics of a single
nondegenerate Landau sublevel. For example, in case of
the MR state, we expect the total filling factor � ¼ �4þ
2Mþ 3=2 of the BG to be the most suitable for realizing
the Pfaffian state. Note that the exchange interactions favor
the following order of filling the eight n ¼ 0, 1 Landau
sublevels of the BG [25]: j0�1s1i, j1�1s1i, j0�2s2i,
j1�2s2i, where j�isii, 1 � i � 4 are the four orthogonal
states in the space of internal indices, with s and � denot-
ing two spin and two valley species, respectively. At � ¼
�4þ 2Mþ 3=2, where M ¼ 0, 1, 2, 3, the M pairs of
n ¼ 0, 1 sublevels are expected to be filled, and in the
topmost pair, n ¼ 0 Landau sublevel is filled completely,
as dictated by the exchange interactions, while n ¼ 1
sublevel is half-filled. For brevity, below we refer to this
n ¼ 1 sublevel as ‘‘n ¼ 1 LL in BG.’’
One important criterion of the stability of FQH states is

their gap to excitations, which can be either neutral
(quasiparticle-quasihole pair above the ground state) or
charged (created by changing the magnetic flux by one
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FIG. 2 (color online). Ratio V1=V3 as a function of � for
several values of d=lB in n ¼ 0 LL of MG and BG. Inset: typical
ratio V1=V3 for a GaAs infinite quantum well of width w=lB,
plotted on the same scale.

FIG. 1 (color online). Setup of a graphene system with tunable
electron interactions. Electron states are affected by a dielectric
plate placed in the vicinity of the surface. By varying the
dielectric permittivity of the plate and its distance d=2 to the
graphene layer, interactions of the desired form can be
engineered.
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unit). These two gaps are generally different, but for the
model defined by Eq. (1) we find that they show the same
behavior as a function of parameters � and d=lB.
We therefore focus on the charge gap, defined by �c �
Eqh þ Eqp � 2E0, where E0 is the ground-state energy and

Eqh, Eqp are the energies at N� þ 1, N� � 1, respectively

(Ne is kept fixed). In evaluating�c, it is convenient to place
the FQH system on the surface of a sphere, where incom-
pressible ground states are easily identified by their zero
angular momentum. On a finite sphere, FQH states are
further characterized by the shift S [26], which relates
Ne, N� to the filling factor � in the thermodynamic limit
via N� ¼ Ne=�þ S. In Fig. 3 we plot �c for the case of
� ¼ 1=3 filling in the n ¼ 0 LL (MG, BG) and � ¼ 1=2
filling of n ¼ 1 LL in BG. We do not show the results for
the n ¼ 1 LL of MG because they support significantly
weaker pairing correlations than in BG [27]. In these plots,
the system size is fixed at N ¼ 10 (� ¼ 1=3) and N ¼ 14
(� ¼ 1=2), and S is chosen to be �3. This shift corre-
sponds to the case of bare Coulomb interaction where the
states are known to be described by Laughlin andMRwave
functions. We estimate that the gaps can be increased
2–3 times with respect to the vacuum value (� ¼ 0). The
gaps in n ¼ 1 LL of BG are overall significantly smaller
than those in n ¼ 0 LL, which is consistent with the
experiments detecting fewer FQH states in n ¼ 1 LL of
GaAs. When �< 0, the gaps become very small and our
analysis would likely need to be extended to other shifts
that may be preferred by these compressible states in
minimizing their ground-state energy. This analysis will
be provided elsewhere. We emphasize that all the systems
smaller than those in Fig. 3 show qualitatively identical
plots with the same relative variation of the gap (we use the
rescaled magnetic length and background charge correc-
tion in Fig. 3 in order to minimize the finite-size
effects [6]).

Comparing the gaps in Fig. 3 with the ratio V1=V3, we
note that the maximum value of V1=V3 does not coincide
with the maximum of the gap. This is because the gaps are

determined by the complete set of pseudopotentials—
while negative �’s increase the ratio V1=V3, they also
reduce the magnitude of each individual Vm, thereby low-
ering the gap. However, the Laughlin states and higher
order hierarchy states are excellent trial states for positive,
as well as negative, �, i.e., for long-range Coulomb-like
interaction as well as strong short-ranged repulsion. This is
reflected in the high value of the overlap between an exact
state and the Laughlin wave function which varies by as
little as �1% over the entire phase diagram in Fig. 3 (not
shown).
The stability of the MR Pfaffian state is more subtle and

we expect sharper variation of the overlap as a function of
� and d=lB. In Fig. 4 we show the overlap between the
exact state of the dielectric model (for given � and d=lB)
and the MR Pfaffian state. The overlaps are remarkably
consistent for the two choices of boundary conditions: on
the sphere with S ¼ �3, Fig. 4(a), and on the torus with
the hexagonal unit cell, Fig. 4(b). Although the MR state is
threefold degenerate and characterized by different pseu-
domomenta ki, i ¼ 1, 2, 3 on the torus [12], the sixfold
symmetry of the Bravais lattice guarantees the degeneracy
of these ki subspaces and makes it possible to calculate the
overlap in the usual way. The maximum of the overlap
occurs for d between lB and 2lB, and is somewhat higher on
the sphere, due to the bias of the shift which lifts the
particle-hole symmetry (the anti-Pfaffian [28], having
S ¼ 1, occurs in a different Hilbert space and does not
‘‘mix’’ with the Pfaffian, as on the torus).
We now present additional evidence in favor of the state

being the MR Pfaffian (Fig. 5). First, we track the evolution
of the state upon further variation of V1 pseudopotential,
Fig. 5(a). The increase of V1 would partly mimic the effects
of LL mixing [29] that we neglected so far (we do not
investigate the effect of three-body interaction that also
arises in this case). In Fig. 5(a) we show the overlaps
between the exact state, jDieli, at � ¼ 1, d ¼ 1:5lB
[chosen from the high-overlap region in Fig. 4(b)], the
bare Coulomb n ¼ 1 LL state, jC; n ¼ 1i, with the MR
Pfaffian jMRi and its particle-hole symmetrized version,
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jMRi. The bare Coulomb state and the dielectric state
behave very similarly under the change of V1, the latter
being slightly more robust. As noted in Ref. [12], the
overlaps with jMRi on the torus are large (97% and better),
which is again the case for our dielectric state as well.

Another independent insight into the nature of the di-
electric state is the entanglement spectrum [30]. The multi-
plicities of the low-lying levels of the entanglement
spectrum contain topological information about a FQH
state; this information is protected by an entanglement
gap [24] whose magnitude measures the topological stabil-
ity of a state. We calculate and compare the entanglement
spectra on the sphere for the � ¼ 1=2 Coulomb n ¼ 1 LL
state and the dielectric eigenstate tuned to a region of high
overlap with the MR Pfaffian [Fig. 5(b)]. Not only do both
spectra display the same counting as the MR state (up to
some value of the subsystem A’s projection of the angular
momentum LA

z , set by the finite size of the sphere), but the
entanglement gap [indicated by arrows in Fig. 5(b)] is also
slightly enhanced with respect to the unscreened Coulomb
interaction.

Conclusions.—In summary, we proposed a method to
tune the electron interactions in graphene and its bilayer. In
this approach, interaction pseudopotentials can be varied in
a broad interval and FQH gaps can be enhanced several
times or even reduced to zero, allowing for a more com-
plete exploration of compressible and incompressible
phases than can be attained in GaAs materials. The pro-
posed method is expected to be very efficient in optimizing
the Abelian FQH states that belong to the hierarchy series,
where the variation of the charge gap is followed by a small
change in the overlap that generally remains very close to
unity. Non-Abelian states, although expected to be stabi-
lized, may require a more subtle approach with several
dielectric plates of different permittivities and thicknesses
of the order of lB placed in the vicinity of the surface. In
such a system, interactions can be tuned in a broader range

and would admit a simultaneous change of several
pseudopotentials that may be required for the realization
of other non-Abelian and multicomponent FQH states [31].
Finally, we note that the experiments on the tunneling
density of states [32] can directly measure the values of
the tuned pseudopotentials [33].
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A partially filled Landau level (LL) hosts a variety of correlated states of matter with unique properties. The
ability to control these phases requires tuning the effective electron interactions within a LL, which has been
difficult to achieve in GaAs-based structures. Here we consider a class of Dirac materials in which the chiral band
structure, along with the mass term, gives rise to a wide tunability of the effective interactions by the magnetic
field. This tunability is such that different phases can occur in a single LL, and phase transitions between them
can be driven in situ. The incompressible, Abelian and non-Abelian, liquids are stabilized in interaction regimes
different from GaAs. Our study points to a realistic method of controlling the correlated phases and studying the
phase transitions between them in materials such as graphene, bilayer graphene, and topological insulators.

DOI: 10.1103/PhysRevB.84.241306 PACS number(s): 73.43.−f

In a magnetic field, the kinetic energy of electrons confined
to move in two dimensions is quenched into a set of discrete
Landau levels (LLs). The properties of a partially filled LL are
therefore determined solely by the electron-electron interac-
tions, which give rise to a number of fundamentally different
many-body phases, including the incompressible fractional
quantum Hall (FQH) states,1–4 compressible Fermi-liquid-like
states (CFL),5 as well as states with broken translational
symmetry, such as charge-density waves (CDWs), stripes, and
bubble phases.6

The competition between different phases at a given partial
filling ν is sensitive to the form of the effective Coulomb
interactions within a LL. To the best of our knowledge,
experimentally, to date there is no reliable way of controlling
the effective interactions within a LL.7 This is because in
GaAs, the most common high-mobility two-dimensional (2D)
electron system, the effective interactions depend only on the
LL number, and not on the magnetic field. Thus, in order to
control the FQH phases, it is advantageous to find alternative
2D electron systems with tunable interactions.8

Recently, a class of such materials clean enough to observe
FQH phases has emerged. These so-called Dirac materials host
chiral excitations with the nontrivial Berry phases. Examples
include graphene, bilayer graphene,9 topological insulators,10

as well as certain quantum wells.11 A natural question arises—
could the Dirac materials offer any tunability in the FQH
regime?

Here, we answer this question affirmatively, and provide a
realistic model where the effective interactions can be widely
tuned by varying an external magnetic field, giving rise to
several phases within each LL, and quantum phase transitions
(QPTs) between them. We map out the phase diagram of
chiral materials at certain filling factors, identifying a different
regime of the effective interactions where the non-Abelian
Moore-Read (MR)12 and other paired states13 are stable away
from n = 1 LL of GaAs.13–15 Finally, we predict several
types of phase transitions that occur in Dirac materials (from
an incompressible FQH state to a compressible state, with
or without breaking of translational symmetry, between an

Abelian and a non-Abelian FQH state), which, to the best
of our knowledge, previously have only been considered in
artificial theoretical models.

The control of the correlated phases proposed here is
attractive for two reasons. First, it allows one to realize and
stabilize the exotic states,13 or may lead to a discovery of
alternate correlated states that are weak or absent in GaAs.
Second, it provides a setting for studying the fundamental
problem of phase transitions that involve topologically ordered
states. Our study shows that both of these goals can be
achieved by current experimental techniques of tuning the gap
in the spectrum, e.g., in bilayer graphene,9 and topological
insulators.10 In the former case, the gap is opened by a
perpendicular electric field, and in the latter case by the
deposition of magnetic adatoms. In graphene, it is more
challenging to open the gap, although there exist several
promising proposals (e.g., the mass can be generated either
spontaneously, or as a result of sublattice symmetry breaking9).

We consider fermions with the Berry phase π and 2π ,
described by the 2 × 2 Hamiltonian,

Hλπ =
[

� Mλ(px + ipy)λ

Mλ(px − ipy)λ −�

]
, λ = 1,2,

(1)

where M1 ≡ v0 is the Fermi velocity, M2 ≡ 1/2m (m is
the effective mass), and 2� is the band gap. The case
λ = 1 (Berry’s phase π ) is realized in graphene, topological
insulators, and special quantum wells;11 the case λ = 2
(Berry’s phase 2π occurs in bilayer graphene).

A Landau-level spectrum for π carriers, obtained by solving
the Schrödinger equation for Hπ in a magnetic field, is given by
εn = sgn(n)

√
�2 + ε2

0|n|, n = ±1,±2, . . ., ε0 = √
2h̄v0/�B is

the characteristic energy scale, and �B = √
h̄c/eB is the

magnetic length. The corresponding two-component wave
functions are given by ψn = (cos θnϕ|n|−1, sin θnϕ|n|), where
ϕn is the wave function of the nth nonrelativistic LL (standard
magnetic oscillator wave function), and parameter θ can be
expressed as tan θn = [sgn(n)

√
(�/ε0)2 + |n| − �/ε0]/

√|n|.
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In the limit of zero mass (graphene case), tan θn = ±1, and
the weights of ϕ|n|−1 and ϕ|n| in the wave function ψn become
equal. In the opposite limit of very large mass �/ε0 � 1, the
LLs become identical to the nonrelativistic ones: tan θ|n| → 0
[this corresponds to ψ|n| ≈ (ϕ|n|−1,0)], and tan θ−|n| → −∞
[ψ−|n| ≈ (0,ϕ|n|)]. Varying �/ε0 between 0 and ∞, which can
be achieved by changing magnetic field, allows one to explore
the whole range θ ∈ (0; π/2).

The two-component nature of the wave function modifies
the effective interaction within a LL, which determines the
many-body phases at a partial filling. We use the standard
approximation and project the interaction onto a partially
filled LL. In this case, the Fourier transform of the effective
interaction is a product of bare Coulomb interaction V (q) =
2πe2/q and the form factor3 |Fn(q)|2 which contains the
information about the band structure. In case of the materials
with the Berry phase π ,

Fπ
n (q) = cos2 θL|n|−1

(
q2�2

B

/
2
) + sin2 θL|n|

(
q2�2

B

/
2
)
, (2)

where Lk is the kth Laguerre polynomial, and for simplicity
we omitted the index of θ . The form factor is a mixture of
the (|n| − 1)th and |n|th LL form factors in a nonrelativistic
two-dimensional electron system (2DES) with parabolic dis-
persion. At θ = π/4, the above equation reduces to the form
factor of pristine graphene.16

Similarly, for carriers with the Berry phase
2π , the LL spectrum is given by εn =
sgn(n)

√
�2 + ε2

c |n|(|n| + 1), n = ±1,±2, . . ., where εc =
eB/mc is the cyclotron energy. The corresponding wave
functions are ψn = (cos θnϕ|n|−1, sin θnϕ|n|+1), with tan θn =
[sgn(n)

√
(�/εc)2 + |n|(|n| + 1) − �/εc]/

√|n|(|n| + 1). The
form factor is a mixture of standard (|n| − 1)th and (|n| + 1)th
form factors,

F 2π
n (q) = cos2 θL|n|−1

(
q2�2

B

/
2
) + sin2 θL|n|+1

(
q2�2

B

/
2
)
.

(3)

The tunable form of the effective interactions Eqs. (2) and
(3) provides a way to realize the transitions between strongly
correlated phases, as will be demonstrated below.

Much of the previous theoretical work on the quantum
Hall effect in the Dirac materials has been limited to
graphene, exploring the consequences of the fourfold LL
degeneracy (valley and spin) that leads to unique SU(2)-
and SU(4)-symmetric fractional states.17 Here we neglect the
multicomponent degrees of freedom,18 and examine the effects
originating from the interplay of the Coulomb interaction and
band structure. The large variation of the effective interactions,
due to the band structure, is assumed to be the dominant
effect, even when corrections due to LL mixing19 are taken
into account.

We proceed by studying the interacting states of Dirac
materials using exact diagonalization in the spherical and
torus geometry.20,21 The former is useful in studying the
incompressible liquids, but is not suitable for states that break
translational symmetry, when periodic boundary conditions
are more natural.21 If the system has an underlying lattice
structure, it is assumed that its lattice constant is much smaller
than �B . We map out the phase diagram as a function of θ

using the overlaps between an exact ground state and a trial

FIG. 1. (Color online) Transition between the Laughlin and the
bubble state. Overlap with the Laughlin wave function ON and charge
gap �N are plotted for an N -particle system at ν = 1/3 filling of (π,1)
and (π,2) LLs.

wave function. Moreover, we evaluate the energy gaps for
creating charged excitations, � ≡ Eqp + Eqh − 2E0, where
Eqh(Eqp) is the energy of the system in the presence of a
quasihole (quasiparticle) and E0 is the ground-state energy (all
in units of e2/ε�B). For simplicity, when we use the spherical
geometry, the form factors Eqs. (2) and (3) are calculated for a
flat surface; the curvature is expected to produce only a small
quantitative difference in larger systems and has a stronger
impact on the energy gaps than the overlaps. Various choices of
the single-particle Hamiltonian are denoted by (λπ,n), where
we restrict to λ = 1,2 and n = 1,2. Higher values of n are not
considered because they do not support FQH states.

At partial filling ν = 1/3, the Laughlin state is robust in
(π,1), (π,2), and (2π,1) LLs. The overlaps between the exact
ground state and the Laughlin wave function, as well as the
charge gaps in (π,1) and (π,2) LLs, are illustrated in Fig. 1.
The overlap remains very close to one for cos2 θ ∈ [0.2; 1] in
the (π,1) LL. This is not surprising because the form factors
of this LL are a mixture of 0 and 1 nonrelativistic form factors,
both of which favor the Laughlin state. An interesting feature
of Fig. 1 is that the energy gap shows a maximum at cos2 θ ≈
0.65, rather than at cos2 θ = 1 (pure n = 0 nonrelativistic
LL). This special value of θ maximizes the ratio of V1/V3

Haldane pseudopotentials3 which controls the gap in this case.
The overlap and the gap decrease drastically as cos2 θ → 0;
furthermore, in (π,2) LL, the Laughlin state quickly undergoes
a QPT to a bubble phase as the overlaps and gaps drop to
zero. A signature of this transition is also detected in the
projected structure factor,3 which develops a sharp peak in
the bubble phase.22 The transition is more naturally captured
in the torus geometry, where a large ground-state degeneracy,23

characterized by a 2D array of crystal momenta, develops in
(π,2) LL. Similar behavior is found in (2π,1) LL.22 One of
the members of the multiplet belongs to the zero-momentum
sector, which suggests that the transition is likely to be second
order.

Next, we consider a half-filled LL, where we find evidence
for the Moore-Read12 correlations in half-filled chiral (π,1)

241306-2
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FIG. 2. (Color online) Transition between the Moore-Read and
the CFL state. Overlap with the Pfaffian wave function ON and charge
gap �N are plotted for an N -particle system at ν = 1/2 filling of
(π,1) LL.

and (2π,1) LLs. In the former case, the Pfaffian becomes more
robust than its GaAs analog for cos2 θ ≈ 0.1 (Fig. 2). The point
cos θ = 0 corresponds to a n = 1 nonrelativistic LL where the
overlap is high (as expected). As cos θ increases, the overlap
reaches a maximum value at cos2 θ ≈ 0.1; this is followed
by an enhancement of the gap, which peaks at approximately
the same point (gaps show stronger finite-size effects than
the overlaps). The increased stability of the Pfaffian was
previously discussed in Ref. 24 in the context of biased bilayer
graphene. On the other hand, away from the “optimal” point
cos2 θ ≈ 0.1, the Pfaffian undergoes a QPT to the compressible
CFL state.5,15 This transition is accompanied by a change in
shift25 of the ground state beyond cos2 θ = 0.4, and is also
manifested in the gaps dropping to zero (Fig. 2). A similar
scenario is found in (2π,1) LL.22 At larger values of cos2 θ , in
both (π,1) and (2π,1), we expect a QPT into the CFL state;
at very small cos2 θ in (2π,1) LL, the Pfaffian gives way to a
stripe phase. Thus, chiral materials are suitable for studying
phase transitions between the Pfaffian, stripe phase, and the
CFL; these transitions are expected to be of a different nature,
either first or second order.26 This is a distinct advantage

over GaAs-based 2DES, where the effective interactions are
significantly more difficult to tune in a controlled fashion.

Note that the enhancement of the overlaps and gaps might
appear similar in nature to tweaking of the V1 pseudopotential,
known to have a favorable effect on the Pfaffian state.15

However, in the present case, the interaction that favors the
MR state is a superposition of n = 0 and n = 1 form factors,
including the long-range tail of the repulsive potential; thus it
represents a different regime where the MR state is stable. This
regime of stability does not crucially depend on the presence
of the n = 1 LL form factor. Similar signatures of the paired
states occur also in (2π,1) LL, where the interaction involves
a superposition of n = 0 and n = 2 LL form factors, making
the difference from GaAs even more striking.

We have also analyzed the filling ν = 3/522 (or ν = 2/5),
where the one expects to find the non-Abelian k = 3 Read-
Rezayi state13 that supports universal topological quantum
computation.27 Similar to the MR state, in chiral materials we
find non-Abelian correlations in both (π,1) and (2π,1) LLs,
with a phase transition to the stripe phase and the Abelian
hierarchy state20 (see also Fig. 3).

Finally, we consider a model that generalizes the effective
interaction given above and allows to map the phase diagram
for a wider class of materials. Specifically, we study the form
factors that are represented as a linear combination of |n|,
|n| + 1, and |n| + 2 nonrelativistic form factors. Such form
factors define a two-parameter family,

Fn(q) = cos2 θL|n|
(
q2�2

B

/
2
) + sin2 θ cos2 ϕL|n|+1

(
q2�2

B

/
2
)

+ sin2 θ sin2 ϕL|n|+2
(
q2�2

B

/
2
)
. (4)

The effective interactions of the above form arise in a number
of materials, including trilayer graphene,28 as well as bilayer
graphene in the limit of large asymmetry between the two
layers.24,29 The exact relation of the parameters (θ,ϕ) to
the band structure of various materials will be discussed
elsewhere.22 The phase diagram of the model in Eq. (4)
for its n = 0 LL is illustrated in Fig. 3. Along certain axes
(indicated by arrows), the generalized model reduces to one
of the particular cases (λπ,n) presented earlier. A salient
feature of the generalized model is that non-Abelian states are
found in a strip of θ,ϕ values where the effective interaction
significantly deviates from the n = 1 nonrelativistic one. On
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FIG. 3. (Color online) Phase diagram of a generic chiral material in a partially filled LL containing a mixture of n = 0, n = 1, and n = 2
nonrelativistic form factors. The color (grayscale) scheme on the right-hand side defines the magnitude of the overlaps with the Laughlin,
Moore-Read, and the k = 3 Read-Rezayi (RR) wave function. The shaded regions represent the phases with different topological numbers
(CFL, hierarchy state). The phase boundary between topological states is approximately drawn by a wiggly line.
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the right-hand side of the strip, the states undergo a QPT
to another FQH (or CFL) state with different topological
numbers. These transitions are represented by wiggly lines in
Fig. 3, where the shaded areas mark the resulting phases with a
different shift. On the left-hand side, the system crosses over to
compressible, CDW-like phases. The Abelian states dominate
over a wide region of parameter space and are insensitive to
variation in ϕ, unless cos θ is close to zero. We note that the
presented phase diagram is consistent with the one obtained
by considering the charge gaps instead of the overlaps.22

In summary, we showed that chiral materials sustain
regimes of the effective interactions that are different from
GaAs. This allows one to stabilize the desired phases
(including non-Abelian ones) within a single LL, and
provides a way to engineer QPTs between them. Our results
apply to a number of available high-mobility 2DES,9,10,28

however, bilayer and trilayer graphene appear as most suitable

candidates because their band structure can be tuned by an
external electric field. In fact, our proposal already can be
realized in bilayer graphene with the existing experimental
tools. It was demonstrated30 that the gap can be controlled
in the interval ±125 meV. With the cyclotron energy of ∼20
meV at B = 10 T, this translates into the ability to tune cos2 θ

in the interval (0.01; 0.99), sufficient for the realization of the
non-Abelian states (see Fig. 3). We believe that experimental
observation of the phases and QPTs predicted here should
be feasible in the near future, as the fractional quantum Hall
states in graphene have already been observed,31 and transport
anomalies suggesting fractional states have been seen in
topological insulators32 and bilayer graphene.33
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Abstract. The k = 3 Read–Rezayi (RR) parafermion quantum Hall state hosts
non-Abelian excitations which provide a platform for universal topological
quantum computation. Although the RR state may be realized at the filling factor
ν = 12/5 in GaAs-based two-dimensional electron systems, the corresponding
quantum Hall state is weak and at present nearly impossible to study
experimentally. Here we argue that the RR state can alternatively be realized in
a class of chiral materials with massless and massive Dirac-like band structure.
This family of materials encompasses monolayer and bilayer graphene, as well as
topological insulators. We show that, compared to GaAs, these systems provide
several important advantages in realizing and studying the RR state. Most
importantly, the effective interactions can be tuned in situ by varying the external
magnetic field, and by designing the dielectric environment of the sample. This
tunability enables the realization of RR state with controllable energy gaps in
different Landau levels. It also allows one to probe the quantum phase transitions
to other compressible and incompressible phases.
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1. Introduction

Strongly correlated phases of electrons, confined to move in the plane and subjected to
a perpendicular magnetic field, have attracted significant attention since the discovery of
fractionally quantized Hall conductivity [1]. The profound role of topology in this extreme
quantum limit leads to the presence of quasiparticles that carry a fraction of electron charge [2]
and fractional (Abelian or possibly non-Abelian) statistics [2, 3]. The prospect of excitations
possessing non-Abelian statistics has motivated different schemes for topological quantum
computation [4] based on these systems.

These remarkable phenomena occur in the fractional quantum Hall (FQH) regime, when
the number of electrons, Ne, is comparable to the number of magnetic flux quanta N8

through the two-dimensional electron system (2DES). Correlated FQH liquid states appear at
certain partial filling ν = Ne/N8 of the active Landau level (LL). In traditional semiconductor
heterostructures, the physics of a partially filled n = 1 LL differs significantly from that
of n = 0 LL, due to the node in the single-particle wavefunction [5]. As a consequence,
the hierarchy/composite fermion states [6, 7], ubiquitous in the lowest Landau level (LLL),
are significantly weakened in n = 1 LL, and some of the more exotic states, such as the
Read–Rezayi (RR) parafermion states [8], are likely to be favored. A number of studies have
focused on the simplest, k = 2 non-Abelian member of the RR sequence—the Moore–Read
(MR) ‘Pfaffian’ state [3]. The Pfaffian or perhaps its particle–hole conjugate version—the
anti-Pfaffian [9], with similar topological properties, is widely believed to describe the FQH
plateau at ν = 5/2 [10]. Quasiparticles of the MR and higher RR states obey the non-Abelian
statistics [3] which is of interest for topological quantum computation [4]. However, for the
purpose of universal topological quantum computation, the MR state is not sufficient, and one
must go to a higher, k = 3 member of the RR sequence (see [4] and, for a general case, [11]).
In GaAs systems, experiments [12, 13] have detected only a weak plateau at ν = 12/5, which
theoretical work [8] has tentatively identified with the particle–hole conjugate of the k = 3 RR
state. This state, however, is very fragile and has been seen only in a small number of samples,
triggering alternative theoretical proposals for its origin [14]. Numerical calculations suggest
that the appearance of the RR k = 3 state is linked to the finite width of the 2DES in GaAs
[15, 16], but little is known about the stability of the k = 3 RR state as the interaction is tuned
away from the bare Coulomb point. For example, in the case of the k = 2 (Moore–Read) state, it
is possible to construct a two-body interaction [17], resulting from particle–hole symmetrization
of the hard-core three-body repulsion, which yields a ground state with high overlap with the
exact ground state of the Coulomb interaction. This model interaction consists only of V1 and
V3 Haldane pseudopotentials (to be defined below). In the case of the k = 3 RR state, such an
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approximate two-body hard-core interaction has not been constructed, but one could expect that
it requires higher order Haldane pseudopotentials (and perhaps some three-body terms as well).

One of the main disadvantages of the GaAs-based devices is that their 2DES is buried
inside a larger, 3D structure. This unfortunate fact fixes the effective interactions at values that
are often not optimal for some of the most interesting FQH states, including the RR series.
For example, the MR state is found to lie very close to the boundary with a compressible phase
[18, 19]. Another problem stems from the strong dielectric screening and finite well width [20]
in GaAs, which weaken the electron–electron interactions and render FQH states fragile. This
has been a major obstacle in the studies of the non-Abelian states, which could only be observed
in ultra-high-mobility samples [10]. Thus, it is desirable to find an alternative high-mobility
2DES with strong effective Coulomb interactions that are adjustable in a broad range.

Recently, a new class of such high-mobility 2DESs that host chiral excitations with
non-trivial Berry phases was discovered. These ‘chiral’ materials include graphene and
bilayer graphene [21] and, more recently, topological insulators [22], as well as certain
quantum wells [23]. The chiral nature of the quasiparticles gives rise to new electronic
properties, including an unusual LL sequence, anomalous Hall effect and suppression of weak
localization [21]. When these chiral materials are subjected to a perpendicular magnetic field,
the kinetic energy quenches into discrete LLs, similar to the usual semiconductors with non-
chiral carriers. However, due to the chiral band structure [24] and the fact that the surface of
these materials is exposed [25], they offer new possibilities to tune the effective interactions and
explore strongly correlated phases.

In this paper, we analyze two practical ways of tuning the effective interactions in the
chiral 2DES, and the effect this has on the non-Abelian FQH states. As a case study, we choose
to focus on the k = 3 RR state. In stark contrast to GaAs, we find that the chiral 2DESs allow
for a more robust RR state along with the possibility of its realization in several LLs. Additional
insights can be obtained by driving transitions between the RR state and the Abelian hierarchy
state, or the compressible stripe phase [26]. Such transitions can be implemented in chiral and
massive 2DES by varying the external field. Overall, the tunability of the chiral 2DES allows
one to explore new interesting regimes of the effective Coulomb interactions, not achievable in
GaAs.

2. The model

We consider a family of 2D materials that are characterized by non-trivial Berry phases. One
such material is monolayer graphene, a high-mobility atomically thick 2DES [21], where
recently several FQH states of the type ν = m/3 have been discovered [27]. A closely related
material, bilayer graphene [21], has similarly high mobility and exhibits interaction-induced
quantum Hall states at integer filling factors at low magnetic fields [34]. Graphene and its bilayer
are characterized by the Berry phase π [28] (graphene-like) and 2π [29] (bilayer-graphene-like
with an energy gap), respectively.

Many of the previous theoretical works on chiral materials have been restricted to graphene,
exploring the consequences of the fourfold LL degeneracy (valley and spin) that leads to
new SU(2) and SU(4)-symmetric fractional states [30]. Instead, we focus on the high-field
limit, neglecting the multicomponent degrees of freedom, and examine the effects from the
interplay between the Coulomb interaction and band structure. We consider a family of
band structures introduced in [24], which describe a number of high-mobility materials,
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including graphene with massive carriers (mass is generated either spontaneously or as a
result of sublattice symmetry breaking [21]), topological insulators [22], bilayer graphene [21],
trilayer graphene [31], and similar materials. Pristine graphene, which hosts massless Dirac-like
fermions, is contained in this model as a particular case. More explicitly, we consider a family
of 2 × 2 Hamiltonians with the Berry phase π and 2π [24]. The case of π -carriers is realized in
graphene, topological insulators and special quantum wells [23]; the case of 2π -carriers occurs
in bilayer graphene, where the energy gap can be controlled in a wide range by a perpendicular
electric field [21]. These 2 × 2 effective Hamiltonians can be derived perturbatively starting
from a tight-binding model for each of the materials with a given chirality σ ; however, the
effective model will be applicable in a narrower energy range for larger σ [32]. As is well
known for the case of graphene, the one-body eigenstates of such Hamiltonians possess a
spinor structure. Consequently, the harmonic oscillator raising/lowering operators will mix the
different components to produce an effective form factor that has a richer structure than in
the case of a simple parabolic band such as in GaAs, making it possible to tune the effective
interaction.

For π carriers, the single-particle wavefunctions are given by [24] ψn =

(cos θnφ|n|−1, sin θnφ|n|), where φn is the wave function of the nth non-relativistic LL
(n = ±1,±2, . . .), and the parameter θ depends on the ratio 1/(h̄v0/`B), where 1 is the mass
gap, v0 the Fermi velocity and `B =

√
h̄c/eB the magnetic length. We use the notation (σπ, n)

to denote the nth LL for σπ carriers (σ = 1, 2). As a consequence of the spinor wavefunction,
the effective form factor [5] Fπ

n (q) that describes the interaction projected to a (π, n) LL is
given by

Fπ
n (q)= cos2 θL |n|−1

(
q2`2

B

2

)
+ sin2 θL |n|

(
q2`2

B

2

)
, (1)

where Lk is the kth Laguerre polynomial, and for simplicity we omitted the index of θ . The
form factor is a mixture of the (|n| − 1)th and |n|th LL form-factors in a non-relativistic
2DES with parabolic dispersion. At θ = π/4, the above equation reduces to the form factor
of graphene [33]; however, quite generally by varying 1/(h̄v0/`B), one can realize any value
of θ ∈ (0;π/2).

Similarly, for carriers with the Berry phase 2π , the single-particle wavefunctions are
ψn = (cos θnφ|n|−1, sin θnφ|n|+1), and the form factor is a mixture of standard (|n| − 1)th and
(|n| + 1)th form factors,

F2π
n (q)= cos2 θL |n|−1

(
q2`2

B

2

)
+ sin2 θL |n|+1

(
q2`2

B

2

)
. (2)

The tunable form of the effective interaction equations (1,2) provides a way of engineering
transitions between strongly correlated phases in situ by changing the field. As pointed out by
Haldane [5], an interacting many-body system of electrons, confined to a partially filled LL,
is defined by a finite set of numbers—the Haldane pseudopotentials. For rotationally invariant
systems, these numbers Vm represent the amplitudes of a state of two electrons with the relative
angular momentum m. The physics of the FQHE is determined by small-m pseudopotentials,
i.e. V1, V3, V5, . . .. The role of higher Vm’s is to enforce charge neutrality, but they do not affect
the incompressibility. Therefore, the ratio of the two strongest pseudopotentials, V1/V3, can be a
rough indicator of the expected many-body phases. In figure 1(b) we show this ratio for several
types of charge carriers and LLs. The variation of V1/V3 as a function of θ is to be contrasted
with figure 1(a) where the same quantity is plotted for an infinite GaAs quantum well of width
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Figure 1. The variability of the ratio V1/V3 of the Haldane pseudopotentials for
GaAs and chiral 2DES. (a) V1/V3 as a function of the width w in the case of
an infinite quantum well model, appropriate for GaAs. (b, c) V1/V3 in chiral
materials, shown as a function of the band structure parameter θ , introduced in
Eq. (1, 2) (b), and as a function of the screening parameter α and the distance of
the dielectric plate d (c). Chiral 2DESs offer a possibility of tuning V1/V3 in a
much broader range than is possible within a quantum well model.

w. In GaAs the width of the well can be tuned by electrostatic gates; however, it invariably
reduces V1/V3, whereas the chiral 2DESs allow for both an increase and decrease of V1/V3 and
in a wider range.

Up to this point, we have discussed the change in the effective interaction V (q)|F(q)|2

that resulted from a modification of the single-particle wavefunctions and therefore F(q). The
second method, proposed in [25], allows one to directly change V (q). Chiral materials, such
as graphene, are often exposed to the environment, which allows for dielectric material to be
deposited on top of them. We consider a setup where the graphene sample is situated in a
dielectric medium with permittivity ε1, and a semi-infinite dielectric plate with permittivity
ε2 6= ε1 is placed at a distance d/2 away from the graphene sheet. The effective interactions
between electrons in graphene change due to the surface charges induced at the boundary
between dielectrics [25]:

V (r)=
e2

ε1r
+α

e2

ε1

√
r 2 + d2

, where α =
ε1 − ε2

ε1 + ε2
. (3)

The ratio d/`B controls the effective interactions within a partially filled LL. However, the
overall energy scale is also modified and this has an impact on the magnitude of the excitation
gap. The gap should be multiplied by a factor εGaAs/ε1 if comparison is to be made with the
GaAs 2DES. Again, an important advantage of this setup is that the interactions can be tuned
in situ by varying the magnetic field B, which modifies the ratio d/`B . The consequences for the
many-body system are illustrated in figure 1(c). In the dielectric case, V1/V3 is found to have
a substantially larger variation as a function of α than the quantum well model or the tuning of
the band structure through θ . In particular, for intermediate d ∼ `B and negative α, V1/V3 can
be readily increased by 50% compared to its bare value (α = 0).

Therefore, based on the behavior of V1/V3, we expect that chiral 2DESs offer many
possibilities of tuning the interactions. By increasing V1/V3, we expect to stabilize the
incompressible phases; on the other hand, by reducing it, one can drive a transition to
compressible phases, such as stripes and bubbles. In the following, we will explicitly verify
these statements in exact diagonalization calculations and determine the stability of the k = 3
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RR state. In the operational sense, one can define several criteria for the ‘stability’ of a state;
the more those criteria are met, the more ‘stable’ the state is. For example, one can compare the
overlap (scalar product) between an exact many-body ground state and the RR wavefunction;
if the overlap, defined below, is consistently close to unity for a number of system sizes, we
consider it as one of the indicators that the state is in the RR phase. However, there are known
examples of different phases of matter which possess ground states of high overlap with each
other in finite systems [35]; conversely, a relatively poor overlap cannot be taken as a definitive
proof that a phase is not realized. Additional indicators to identify the phase of matter are,
for example, the ground-state degeneracy on the torus and the shift on the sphere (selected to
minimize the total ground-state energy). Finally, the robustness of a phase is also determined
by the magnitude of the gap for creating neutral and charged excitations. All of these indicators
should be assessed together in determining the nature of a phase being studied.

3. The method and results

We consider an interacting, N -electron problem with an LL spectrum given above, on a compact
surface threaded by N8 magnetic flux quanta using exact diagonalization. In the study of FQHE,
two kinds of surfaces are available that preserve the translational invariance of an infinite 2DEG:
sphere [6] and torus ([36], see also chapter by F D M Haldane in [5]). The two choices of
boundary conditions illustrate the specific features of an FQH state under investigation: on a
sphere, the FQH state couples to the curvature of the manifold, which is characterized by the
topological number called shift [37]. The shift produces a small offset between N8 and the
magnetic monopole, whose strength is denoted by 2S, placed in the center of a sphere. As a
consequence, different FQH states ‘live’ in different Hilbert spaces and, in principle, can be
directly compared only after extrapolation to the thermodynamic limit. On the other hand, the
flat surface of a torus leads to a unique definition of N8 for given N and ν, so that different
candidate states describing the same filling ν are all realized in the same Hilbert space. The
caveats of this geometry are the additional geometric parameters, the angle and aspect ratio of
the torus; the Hamiltonian of a finite-size system depends on these parameters and their specific
values favor one FQH phase over the others. Thus, an analysis is slightly more involved but the
advantage is that a ground-state degeneracy can be used to identify the phase. For example, in
order to detect a stripe phase, we use a rectangular geometry with a specific aspect ratio that best
accommodates the stripe in one direction. In contrast, on the sphere FQH states always appear
as non-degenerate, zero angular momentum ground states.

We will mostly present data for the spherical geometry because this allows for a number
of simple diagnostic quantities to be evaluated in a straightforward manner. The spherical
representation of broken-symmetry states, however, necessarily contains defects, and periodic
boundary conditions have to be used in this case. A number of useful insights can be inferred
from the study of the energy spectrum; in addition, we will use overlap calculations to
compare an exact, many-body ground state 9exact, with a numerical representation of a trial
wavefunction,9trial. The overlap is defined as a scalar product between two normalized vectors,
O = |〈9trial|9exact〉|. If O is consistently close to unity for a number of system sizes considered,
we consider the trial wavefunction to be a faithful description of an FQH phase. From the
knowledge of a ground-state wavefunction 90, we also evaluate the (projected) static structure
factor [39]. Sharp peaks in the structure factor indicate the onset of compressible phases [40].

In figure 2 we show the overlap between the k = 3 RR wavefunction and the exact
ground state of a system in (π, 1) and (π, 2) LLs, as a function of θ . We set the shift to

New Journal of Physics 14 (2012) 025009 (http://www.njp.org/)

http://www.njp.org/


7

Figure 2. Overlap between the k = 3 RR state and the exact ground state in (π, 1)
and (π, 2) LLs as a function of θ , for systems of different sizes N . High overlap
is found close to the bare Coulomb interaction in n = 1 non-relativistic LL. At
cos2 θ ≈ 0.15, the ground state undergoes a change in shift, and a hierarchy
state sets in (right). For cos2 θ 6 0.8 in (π, 2) LL, the system undergoes an
incompressible–compressible transition to a stripe phase.

−3, corresponding to that of the RR state, and do not consider other candidate states with
different values of the shift [38]. The RR model wavefunction can be obtained by diagonalizing
a four-body short-range interaction [8], which quickly becomes numerically prohibitive as the
number of particles grows, or recursively via Jack polynomials [41]. The filling factor is fixed at
ν = 3/5, but in the absence of LL mixing, our results directly apply to ν = 2/5 via particle–hole
symmetry. The highest overlap is found for the effective interaction that is in the vicinity of
the pure n = 1 non-relativistic Coulomb potential. Smaller systems (under N = 21 particles)
indicate that the RR state might be enhanced for cos2 θ slightly less than 1 in (π, 2) LL,
which corresponds to a small relative decrease of V1 pseudopotential [8]. However, the largest
system one can obtain by exact diagonalization, N = 21, suggests that the maximum overlap is
practically at the bare Coulomb point. It cannot be determined with certainty whether this is an
intrinsic feature of the RR state or a finite-size effect that plagues N = 21 system. Finite-size
effects are generally very strong at this filling factor and further theoretical studies, possibly
employing density-matrix renormalization group techniques, are needed. On either side of the
bare Coulomb point, the RR state is quickly destroyed. On the left, for cos2 θ 6 0.8 in (π, 2) LL,
there is an incompressible–compressible transition to a stripe phase. As mentioned earlier, states
with broken translational symmetry are not adequately represented in the spherical geometry;
however, we can still detect the stripe by the presence of a sharp peak in the structure factor. One
arrives at the same conclusion (but more transparently) in the torus geometry, where it is found
that the system develops a manifold of nearly degenerate ground states for cos2 θ 6 0.8 that are
characterized by a linear (uni-directional) array of pseudomomenta that defines the preferred
direction of a stripe. As we move away from the pure Coulomb point in (π, 1) LL, the ground
state undergoes a change in shift for cos2 θ > 0.15 in order to minimize the energy. The new
value of the shift is that of a hierarchy state. Therefore, in chiral 2DES, one can, in principle,
study a subtle phase transition between two topological phases with Abelian and non-Abelian
excitations.
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An interesting feature, shown in figure 3, is the presence of k = 3 RR correlations in a
(2π, 1) LL. Note that the effective interaction in this case interpolates between pure n = 0 and
n = 2 (non-relativistic) LL Coulomb repulsion; therefore it is quite different from the n = 1 LL
form factor (figure 2). In this case, the RR state appears in a narrow window, between the stripe
phase (for cos2 θ 6 0.5) and the hierarchy state (shaded region in figure 3, for cos2 θ > 0.2).
We note that the N = 18 system has a significantly poorer overlap than all the other systems
considered, including a larger N = 21 system, which leads us to conclude that the poor overlap
might be a finite-size effect6. More importantly, the excitation gap in the window where the
ground state is well described by the RR wavefunction is very small (and also smaller than in
(π, 1), (π, 2) LLs). This, together with the presence of a strong incompressible hierarchy phase,
would make it difficult to observe experimentally.

In the remainder of this paper, we investigate the dependence of the excitation gap as we
tune the parameters of the system. As mentioned above, the experimental gap at ν = 12/5 in
GaAs is tiny. It is therefore essential to find ways of enhancing this gap in order to manipulate
the state, e.g. via surface probes. To this end, we consider a generalized model for the material
that involves a superposition of n = 0, n = 1 and n = 2 LL non-relativistic form factors [24]:

Fn(q)= cos2 θL |n|

(
q2`2

B

2

)
+ sin2 θ cos2 φL |n|+1

(
q2`2

B

2

)
+ sin2 θ sin2 φL |n|+2

(
q2`2

B

2

)
. (4)

In figure 4 we plot the charge gap at ν = 3/5 for N = 18 particles. The ground state of this
particular system has a somewhat poorer overlap with the RR state than other system sizes;
however, the charge gap shows no such difference from other cases. Along certain lines,
indicated by arrows, the phase diagram reduces to one of the cases studied above. Note that
proper finite-size scaling needs to be performed in order to get the correct values for the gap;
however, it was previously found for filling factors ν = 1/3 and ν = 1/2 [24, 25] that this
rigorous analysis produces values that are roughly in agreement with those shown in figure 4.

6 Such effects on the sphere often originate from the aliasing problem, but in this case it is not clear what the
competing state is. The aliasing problem on the sphere was introduced by N d’Ambrumenil and R Morf (1989
Phys. Rev. B 40 6108).
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Figure 4. Charge gap (in units of e2/ε`B) at ν = 3/5 for the generalized material
described by equation (4). The gap smoothly decreases from the hierarchy phase
down to zero (stripe phase). The RR state appears in the transition region. The
gaps are calculated for N = 18 particles at the shift −3.

At ν = 3/5 the number of available system sizes is too small to perform such an extrapolation
reliably, and the plot in figure 4 should only be viewed qualitatively. We find a smooth transition
between the hierarchy state and a stripe, with the gaps gradually dropping to zero for small
cos2 θ . In the curved, narrow region around the transition, we previously found large overlaps
with the RR state [24]. The excitation gaps in the transition region are much smaller than in
the hierarchy phase, but they are nonetheless higher than at the pure n = 1 non-relativistic LL
point (cos2 θ = 0, cos2 φ = 1). Therefore, tuning the band structure does allow for a modest
enhancement of the gap in the RR phase. Qualitatively similar results are obtained for the
neutral, instead of charge, gap.

A larger variation of the gap can be achieved in the setup that utilizes the dielectric
screening (equation (3)). In figure 5 we show the charge gap as a function of the screening
parameter α and the distance of the dielectric plate, d/`B . Unless α is close to unity, the gap does
not vary significantly with d/`B , which hints at the strong finite-size effects present even in this,
fairly large, system of N = 18 particles. However, as α becomes close to unity, the gap displays
a clear maximum for d ∼ `B , which is roughly twice as large as that for the bare interaction. The
overlap with the RR wavefunction is zero for α <−0.5, but fairly large otherwise. Therefore,
at least for positive α, the gap can be tuned without reducing the good overlap with the model
wavefunction.

4. Conclusion

In this paper we have explored the stability of the k = 3 RR state, the prime candidate for
topological quantum computation, in the phase diagram as we tune the effective interaction
via band structure parameters (that depend on the chirality of the material), or via dielectric
screening. Numerical calculations suggest that the RR state is most stable in the vicinity of the
bare n = 1 non-relativistic LL Coulomb potential, the same one that describes GaAs materials.
Nevertheless, the chiral 2DESs offer several advantages over GaAs. Firstly, we find that the
RR state can be realized in various (as opposed to a single) LLs, where the interactions have
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a different form than that in GaAs. More importantly, the excitation gaps can be enhanced and
the nature of the RR state can be further probed by driving in situ quantum phase transitions,
either to compressible states with stripe ordering or to an incompressible (hierarchy/composite
fermion) state.
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Bonderson P, Feiguin A E, Möller G and Slingerland J K 2012 Phys. Rev. Lett. 108 036806
Wojs A 2009 Phys. Rev. B 80 041104

[15] Rezayi E H and Read N 2009 Phys. Rev. B 79 075306
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Goerbig M O, Moessner R and Douçot B 2006 Phys. Rev. B 74 161407
[34] Feldman B E, Martin J and Yacoby A 2009 Nat. Phys. 5 889
[35] Steven Simon H, Rezayi E H, Cooper N R and Berdnikov I 2007 Phys. Rev. B 75 075317
[36] Yoshioka D, Halperin B I and Lee P A 1983 Phys. Rev. Lett. 50 1219
[37] Wen X G and Zee A 1992 Phys. Rev. Lett. 69 953
[38] Hermanns M 2010 Phys. Rev. Lett. 104 056803
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It was recently pointed out that topological liquid phases arising in the fractional quantum Hall effect (FQHE)
are not required to be rotationally invariant, as most variational wave functions proposed to date have been.
Instead, they possess a geometric degree of freedom corresponding to a shear deformation that acts like an
intrinsic metric. We apply this idea to a system with an anisotropic band mass, as is intrinsically the case
in many-valley semiconductors such as AlAs and Si or in isotropic systems like GaAs in the presence of a
tilted magnetic field, which breaks the rotational invariance. We perform exact diagonalization calculations
with periodic boundary conditions (torus geometry) for various filling fractions in the lowest, first, and second
Landau levels. In the lowest Landau level, we demonstrate that FQHE states generally survive the breakdown of
rotational invariance by moderate values of the band mass anisotropy. At 1/3 filling, we generate a variational
family of Laughlin wave functions parametrized by the metric degree of freedom. We show that the intrinsic
metric of the Laughlin state adjusts as the band mass anisotropy or the dielectric tensor is varied, while the phase
remains robust. In the n = 1 Landau level, mass anisotropy drives transitions between incompressible liquids
and compressible states with charge density wave ordering. In n � 2 Landau levels, mass anisotropy selects and
enhances stripe ordering with compatible wave vectors at partial 1/3 and 1/2 fillings.

DOI: 10.1103/PhysRevB.85.165318 PACS number(s): 73.43.Cd, 73.21.Fg, 71.10.Pm

I. INTRODUCTION

Two-dimensional electron systems (2DES) placed in a high
magnetic field exhibit a wide variety of strongly correlated
phases, which have been the subject of numerous theoretical
and experimental investigations since the first observation of
fractionally quantized Hall conductivity.1 Examples of such
phases of matter are the Laughlin states,2 describing partial
fillings ν = 1/3 and 1/5 of the lowest (n = 0) Landau level
(LL) as well as their generalizations to other odd-denominator
fillings in the framework of hierarchy3 and composite fermion
theory.4 These phases are topologically ordered and possess
quasiparticle excitations with fractional statistics. At half-
filling of the first excited, n = 1 LL, an even more exotic paired
state, the Moore-Read Pfaffian,5 might be realized, which
possesses non-Abelian excitations—the Majorana fermions.5,6

Besides the incompressible liquids, some fillings ν also
lead to compressible phases without quantized conductance.
This is the case with the simplest of all fractions–ν = 1/2 in
n = 0 LL, which is a Fermi liquid of composite fermions7

that only supports an anomalous Hall effect.8 Generically
for any ν, apart from the incompressible liquids, the natural
candidates are compressible phases that break translational
symmetry, such as charge density waves (CDWs).9 Those
were in fact proposed to describe the ground state of 2DES
before FQHE was observed.10 When ν is very small (under
1/7), a correlated Wigner crystal indeed becomes energetically
superior to a Laughlin-type state.11,12 Furthermore, when
ν > 2, several varieties of states with broken translational
symmetry become energetically favorable. Around half-filling
of n � 2 LL, the ground state becomes a charge density wave in
one spatial direction or a “stripe”;13–16 away from half-filling,
two-dimesional crystalline order sets in, resulting in a “bubble”
phase.13–15,17 Some of these phases also occur in n < 2 LLs
when the hard-core component of the effective interaction is

significantly softer than Coulomb interaction.18 More recently,
experiments on AlAs (see Ref. 19 for an overview) have
suggested interesting physics may arise from the interplay
between quantum Hall ordering and spontaneously broken
internal symmetries.20 Furthermore, transport experiments on
GaAs under tilted field have shown21 that it is possible to have,
at the same time, the quantization of resistance and anisotropic
transport, suggesting a possible coexistence of an incompress-
ible liquid with a compressible (“nematic”) phase.22

Theoretical understanding of the FQHE was pioneered by
Laughlin’s method of many-body trial wave functions.2 Model
wave functions can be formulated using the conformal field
theory5 and conveniently evaluated in finite-size systems via
exact diagonalization of the parent Hamiltonians.23 In addi-
tion, excitation spectra containing quasiparticles/quasiholes
above the ground state can be studied. Such analytical and
numerical studies are made much easier by exploiting symme-
try and the corresponding quantum numbers to characterize
the ground state and excitations. To this end, rotational
symmetry has been very useful;24 occasionally, periodic
boundary conditions have also been used.25,26

However, as it was recently pointed out,34 rotational
symmetry is not fundamental to the appearance of FQHE.
In a theoretical treatment of the FQHE, it is important
to distinguish several “metrics” that naturally arise in the
problem. The band mass tensor yields a metric that defines
the shape of the LL orbitals. A second metric derives from
the dielectric tensor of the semiconducting material and
defines the shape of the equipotential contours around an
electron. Rotational invariance means that these two metrics
are congruent, however, in a real sample they might be different
from one another, thus lifting the rotational invariance.

It turns out, however, that a given FQH state also pos-
sesses an intrinsic metric that is derived from the two types
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introduced above. FQH fluids can be described as condensates
of composite bosons,28 which are topological objects that
explain the quantization of the Hall conductance and the
emergence of fractionally charged quasiparticles. However,
apart from topology, composite bosons also have a geometrical
degree of freedom—the intrinsic metric that controls their
shape. In a rotationally invariant case, the intrinsic metric
is equal to the metric in the Hamiltonian; more generally,
as we explicitly demonstrate below, the shape of composite
bosons can be defined even in systems without rotational
invariance. The fluctuation of the intrinsic metric plays an
important role for the geometrical field theory of the FQHE27

and determines the energetics of quasiparticles, collective
modes, etc. Generalizations of the Laughlin wave function
to the broken-rotational-symmetry case have been proposed
for liquid crystal and nematic Hall phases,29 and very recently
Laughlin and Moore-Read wave functions (as well as their
parent Hamiltonians) have been formulated for the anisotropic
case.30

The motivation for studying the effect of anisotropy in
FQHE is twofold. On the one hand, anisotropy probes the
variations of the intrinsic metric of FQH fluids, a fundamental
physical quantity that relates to the geometric description of
FQHE. Secondly, we explore the possible effects resulting
from tuning the rotational-symmetry breaking by an external
parameter. Note that the rotational invariance is explicitly
broken in real samples due to the presence of impurities,
which are essential for the emergence of FQH plateaus.
Furthermore, it is possible to induce the breaking of rotational
invariance by tilting the magnetic field,31 or by using systems
with anisotropic bands, e.g., many-valley semiconductors like
AlAs or Si in the presence of uniaxial stress. The former
method is performed routinely and belongs to the most popular
techniques for studying the FQHE; the latter method is relevant
to AlAs32 and some new classes of materials where FQHE
might be studied. We provide brief arguments how the tilting
of the field can be mapped to an effective variation of the
metric and then focus on the second method.

This paper is organized as follows. In Sec. II, we introduce
and motivate the model for a FQH system with band mass
anisotropy. In Sec. III, we discuss the intrinsic metric of
the Laughlin state. We define a family of the Laughlin wave
functions characterized by the varying shape of their elemen-
tary droplets. Intrinsic metric is determined variationally by
optimizing the overlap between this family of wave functions
and the exact Coulomb ground state. In Sec. IV, we perform
exact diagonalization of finite systems at several filling factors
to explore quantum phase transitions that occur as a function
of the anisotropy. Our conclusions are presented in Sec. V.

II. MODEL

Consider an electron moving in the plane with the perpen-
dicular magnetic field Bẑ = ∇ × A(r). The Hamiltonian can
be written in the following, manifestly covariant form:

Kα,φ = 1

2m
gabπaπb. (1)

Here, πa = pa − e
c
Aa(r),a = x,y represents the dynamical

momentum and g is the 2 × 2 mass tensor parametrized

by the anisotropy α and the angle of the principal axis
φ. Note that the Hamiltonian is covariant with respect to
spatial transformations, but does not couple time and space
coordinates. The mass tensor is unimodular det g = 1. In
the isotropic case when g is the unit matrix, we can obtain
the single-particle energies (Landau levels) by choosing, for
example, a symmetric gauge Ax = By/2,Ay = −Bx/2. In
this case, the dynamical momenta become πx = −ih̄ ∂

∂x
+

h̄

2�2
B

y and πy = −ih̄ ∂
∂y

− h̄

2�2
B

x, in terms of the magnetic

length �B = √
h̄/eB. The Hamiltonian can be transformed

into diagonal form K = h̄ωc

2 (a†a + 1
2 ) with the help of ladder

operators a ∝ πx + iπy and a† ∝ πx − iπy . However, for each
value of a†a, there is residual degeneracy equal to the number
of the magnetic flux quanta Nφ . This degeneracy is resolved
by a second pair of operators b,b† that commute with a,a†

and depend on the guiding center coordinates of the electron,
Ra = ra − εab

h̄
πb�

2
B . Operators b† create the (unnormalized)

single-particle eigenstates of the lowest LL,

φ
α=1,φ=0
l (z) = zle−z∗z/4�2

B , (2)

with z = x + iy being the complex coordinate of an electron
in the plane (and z∗ denoting its complex conjugate). The
quantum number l is an eigenvalue of the angular momentum
Lz and the single-particle states φl are localized on concentric
rings around the origin.

To illustrate the effect of mass anisotropy, we take the prin-
cipal axes of the mass tensor to be along the x and y directions
(φ = 0), with different masses along the two directions (α �=
1). Via simple rescaling x → x/

√
α,y → y

√
α, and therefore

introducing ã ∝ √
απx + i√

α
πy and ã† ∝ √

απx − i√
α
πy , we

can immediately write down the single-particle orbitals for this
case:

φα
l (x,y) =

(
x√
α

+ iy
√

α

)l

e
− 1

4�2
B

( x2

α
+αy2)

. (3)

Notice that the probability density |φl|2 is no longer localized
on a circle, but rather an ellipse for α �= 1. Therefore, on a
single-particle level, the effect of mass anisotropy is to stretch
or squeeze the one-body orbitals along certain directions,
possibly rotating the principal axis (for φ �= 0).

As we mentioned in Sec. I, certain semiconductor materials
are likely to have nontrivial metric defined by the anisotropy.
Alternatively, the effective mass tensor can be experimentally
tuned by tilting the magnetic field.21 Tilting is known to
produce complicated effects because it induces the coupling
between electronic subbands and LL mixing, and a detailed
analysis will be presented elsewhere. To express formally
the connection between tilt and mass anisotropy, let us add
a parallel field component to the system B|| and pick the
gauge A = (0,B⊥x − B||z,0). The one-body Hamiltonian is
then given by

H = 1

2m

[
p2

x +
(

py + e

c
B⊥x − e

c
B||z

)2

+ p2
z

]
+ 1

2
mω0z

2,

where it is assumed that normal confinement (perpendicular to
the Hall surface) is given by a harmonic well. This Hamiltonian
can be mapped to two harmonic oscillators, with characteristic
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oscillator frequencies:33

ω2
1,2 = 1

2

[(
ω2

z + ω2
c

) ± (
ω2

z − ω2
c

)
sec(2θ̄ )

]
, (4)

where ωz = √
ω2

0 + ω2
|| is the harmonic frequency of the

normal confinement and ω‖ = eB‖/m. The mixing of the
cyclotron frequency and the confinement frequency is
parametrized by tan 2θ̄ = 2ωcω‖/(ω2

c − ω2
z ). Defining �0 =√

1/eB⊥ and �i = 1/
√

mωi , i = 1,2, the eigenstates of the
Hamiltonian are given by

ψn1,n2 (r) ∝ eikyψ (1)
n1

[
cos θ̄

(
x + l2

0k
) − sin θ̄z

]
×ψ (2)

n2

[
sin θ̄

(
x + l2

0k
) + cos θ̄ z

]
, (5)

where ψi
ni

is the usual harmonic oscillator wave function
for level ni . If we focus on the ground state (n1 = n2 = 0)
and define λi=1,2 = ωi/ωc, we can express its in-plane wave
function as

ψ
x−y

00 (r) ∝ eiky exp

[
− 1

2�2
0

α1
(
x + �2

0k
2
)2

]
,

where

α1 = λ1λ2

λ1 sin2 θ̄ + λ2 cos2 θ̄
.

Therefore the metric can be immediately read off as

g =
(

1/α1 0

0 α1

)
.

More generally, parametrizing the in-plane magnetic field by
B‖ = (B‖ cos φ,B‖ sin φ), the effective metric associated with
the tilt can be shown to be given by

g =
(

cosh 2θ+ sinh 2θ cos 2φ sinh 2θ sin 2φ

sinh 2θ sin 2φ cosh 2θ− sinh 2θ cos 2φ

)
,

(6)

where cosh 2θ = 1
2 (α + 1

α
). Therefore the effect of tilting on

the LLL single-particle levels can be captured by the variation
of the mass tensor.

In order to study a finite, interacting system of Ne electrons,
it is convenient to choose a compact surface to represent the
2DES. As we emphasized in Sec. I, the presence of mass
anisotropy destroys rotational invariance, and one must use
periodic boundary conditions,25,26 i.e., put the 2DES on the
surface of a torus. The unit cell can generally be chosen as a
parallelogram with sides a and b whose area S is quantized
because of the magnetic translations algebra: S ≡ |a × b| =
2π�2

BNφ . The single-particle states compatible with periodic
boundary conditions are given in the Landau gauge by

φα
j,n(r) = 1√

N
∑

k

ei(Xj +ka)y− 1
2α

(Xj +ka+x)2

×Hn

(
Xj + ka + x√

α

)
, (7)

where j = 0, . . . ,Nφ − 1, Xj ≡ 2πj/b, normalization factor
is N = b

√
π

√
α2nn!, and the sum over k extends over all

integers. We have set �B = 1. The wave function for the nth
LL involves a Hermite polynomial Hn. For simplicity, we
assumed the case of a rectangular torus and g = diag[α,1/α],

but Eq. (7) can be generalized to an arbitrary shape/anisotropy
using Jacobi theta functions.

Many-body states, like in the isotropic case, can be
classified using a crystal quasimomentum K defined in a
Brillouin zone.26 With a suitable definition of the Brillouin
zone, incompressible states always occur at K = 0, and are
characterized by the gap in their excitation spectrum. The
Hamiltonian for Ne electrons is given by the sum of the kinetic
term and the Coulomb interaction,

Hα,φ =
∑

i

K
α,φ

i +
∑
i<j

1

|ri − rj |ε . (8)

Note the explicit appearance of two distinct metrics in the
above equation. As discussed above, one of these metrics
parametrizes the shape of the cyclotron orbits (α,φ). However,
because 2DES is embedded in a three-dimensional dielectric
host material, which is characterized by its own dielectic tensor
ε, there is a second metric that defines the shape of equipoten-
tial lines around an electron, denoted by |ri − rj |ε . These two
metrics are physically distinct, however, the properties of the
system are determined only by the relative difference between
the mass and the dielectric tensors, and for simplicity, we can
set the latter to unity. In other words, we assume that Coulomb
interaction is isotropic in space, hence its Fourier transform
is V (q) = 1/q ≡ 1/

√
q2

x + q2
y [to model finite-width effects,

we use the softened form of V (q), following the Fang-Howard
prescription]. Projected to a single nth LL, the interaction part
of the Hamiltonian becomes H = ∑

{ji } Vj1j2j3j4c
†
j1
c
†
j2
cj3cj4 ,

where

Vj1j2j3j4 = 1

2S

′∑
q

V (q)Ln

(
1

2
q2

g

)

× e− 1
2 q2

g eiqx (Xj1 −Xj3 )δ
′
t,j1−j4

δ
′
j1+j2,j3+j4

, (9)

where q2
g ≡ gabqaqb (e.g., in case of a diagonal mass tensor,

q2
g = αq2

x + q2
y/α) and Ln is the Laguerre polynomial. The

primed δ functions are to be taken (modNφ), and the sum
over q extends over the reciprocal space (the prime on the
sum indicates that the diverging q = 0 term is canceled by the
positive background charge).

Apart from the many-body translational symmetry, discrete
symmetries can be used to further reduce the Hilbert space.
Several types of Bravais lattices are possible, depending on the
angle θ between the sides of the torus, a and b, and the aspect
ratio, |a|/|b|. Both of these can be tuned as free parameters.
In the presence of anisotropy, however, the highest symmetry
is only given by the rectangular lattice, even when |a| = |b|.
Tuning the angle θ enables to perform the area-preserving
deformations of the torus, which is useful in resolving the
collective modes of FQH states in finite systems, and probing
quantities such as Hall viscosity.34

In this paper, we only consider spin-polarized electrons
and neglect the so-called multicomponent degrees of freedom,
which can be the usual spin or bilayer/valley degree of
freedom. This means that the filling factors we refer to as
n + ν correspond to kn + ν in experiments, where integer k

denotes the additional degeneracy that comes from several
“flavors” of electrons.
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FIG. 1. (Color online) Energy spectrum in units of e2/εlB as
a function of anisotropy α for the square unit cell and n = 0 LL
Coulomb interaction at ν = 1/3. The system is Ne = 7 electrons and
φ = 0. Due to the square unit cell, the spectrum is symmetric under
α → 1/α.

III. ANISOTROPY IN THE LOWEST LANDAU LEVEL:
ROBUSTNESS AND THE INTRINSIC METRIC

OF THE LAUGHLIN STATE

In Fig. 1, we present the energy spectrum of the Coulomb
interaction at ν = 1/3 as a function of anisotropy (we assume
φ = 0). The system is placed on the torus with a square unit
cell, and energies are expressed in units of e2/ε�B . A very flat
minimum around isotropy point and the existence of a robust
gap suggest that the ground state of the Coulomb interaction at
ν = 1/3 is remarkably stable to variation in anisotropy. As we
show below, in this range of α, the ground state is described
by a generalized Laughlin wave function. Moreover, the set of
lowest neutral excitations, forming a magnetoroton branch, are
also stable and separated from the rest of the spectrum. Within
this manifold, some level crossings occur as α is changed, but
this only corresponds to the redistribution of the levels within a
roton branch. Beyond α ≈ 0.5, the ground-state energy rises,
indicating an instability and the eventual destruction of the
Laughlin phase.

In rotationally-invariant situations, the incompressible liq-
uids at fillings ν = 1/m of n = 0 LL (m being an odd integer)
are described by the Laughlin wave function.2 In the geometry
of an infinite plane, the Laughlin state is given by

�
ν=1/m

L =
∏
i<j

(zi − zj )me− ∑
k z∗

k zk/4�2
B . (10)

Here, z = x + iy stands for the usual complex representation
of the coordinates in the plane and can also be expressed
in terms of spinor coordinates providing a mapping to the
spherical geometry.24 However, the Laughlin state can also
be extended to the torus geometry,35 where the continuous
rotation symmetry is broken down and survives at most in
form of a discrete subgroup. In this case, �

ν=1/m

L is defined
by its short-distance correlations that assume the form of the
(odd) Jacobi ϑ1 theta function of zi − zj .35

As a trial wave function, �
ν=1/3
L provides an excellent

description of the physical system at ν = 1/3 in the limit
of strong cyclotron energy with respect to the Coulomb
repulsion in the 2DES plane, h̄ωc  e2/ε�B , when excitations
to higher LLs are prohibited. In this limit, the operators a,ã

act trivially and the only dynamical degrees of freedom are the
(noncommuting) guiding centers. Up to the normalization, we
can then view the wave function (10) as follows:

�
ν=1/m

L (g) ∝
∏
i<j

[b†i (g) − b
†
j (g)]m|0〉, (11)

where b
†
i (g) explicitly depend on the metric g.34 For general

g, b
†
i (g) is obtained by a Bogoliubov transformation from the

bi,b
†
i in the rotationally invariant case. Equivalently, the wave

function can be expressed by a unitary transformation �L(g) =
exp(−iξαβ�αβ)�L(0), where ξαβ is a real symmetric tensor
and �αβ = 1

4

∑
i{Ra

i ,R
b
i } is the generator of area-preserving

diffeomorphisms.34 The expression for the transformation
matrix and the first-quantized expression for the wave function
in Eq. (11) is given in Ref. 30.

The freedom in choosing g implies that the usual rotation-
ally symmetric Laughlin wave function is a representative of a
class of wave functions. However, being a topological phase,
the physics of the Laughlin state does not depend on any given
metric or length scales. Various wave functions �

ν=1/m

L (g)
differ from one another microscopically in terms of the shapes
of their elementary droplets. For a FQH state at filling ν = p/q

(p, q are not necessarily co-prime), an elementary droplet is
a unit of fluid containing p particles in an area that encloses
q flux quanta. The incompressible state is a condensate of
such elementary droplets. For example, at ν = 1/3, we have
a single particle occupying each three consequtive orbitals
and preventing more particles from populating this region. In
the language of root partitions and the Jack polynomials,36

the Laughlin ν = 1/3 state is defined by a root pattern
100100100100100 . . . , and therefore its elementary droplet
is 100. Note that these simple patterns only serve as labels for
correlated wave functions that cannot be thought of as a simple
crystal of electrons pinned at each third orbital and repelling
each other via electrostatic forces.

For a model wave function, the “gauge” freedom in b,b†

implies that the shape of elementary droplets changes with
varying g, but the basic physical properties remain invariant
unless the anisotropy magnitude α becomes too large or too
small. If α is such that the maximum effective separation
between electrons along some direction is of the order of �B

or smaller, the FQH liquid correlations are expected to break
down and CDW states might be favored (we will present some
examples of this in Sec. IV). On the other hand, a generic
state involves a competition of two different metrics—the
cyclotron gm and the Coulomb gC metrics—therefore it is
best approximated by the Laughlin state with an intrinsic
metric g that is generally different from both gm and gC .
Intrinsic metric g is the one that minimizes the variational
energy Eg ,

Eg = 〈�L(g)|H (gm,gC)|�L(g)〉
〈�L(g)|�L(g)〉 . (12)
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To find the intrinsic metric in the microscopic calculation,
we use a slightly different criterion that g should maximize
the overlap with the exact ground state of H (gm,gC). In the
rotationally invariant case, the ground state of the Coulomb
interaction at ν = 1/3 is known to have a remarkably high
overlap with the Laughlin wave function. The overlap is
defined as a scalar product between two normalized vectors,
and in this particular case it is typically greater than 97%.
Therefore we expect the intrisic metric chosen to maximize the
overlap also to minimize the correlation energy (12). To obtain
the anisotropic Laughlin states, we perform exact diagonaliza-
tion of the “V1 Hamiltonian” on the torus. This Hamiltonian
gives �

ν=1/3
L as a unique and densest zero-energy ground

state.23 Note that any translationally invariant interaction can
be expanded in terms of the Laguerre polynomials, V (q) =∑

m VmLm(q2), where the coefficients Vm are the Haldane
pseudopotentials.23 Truncating this expansion at the first term,
V1L1(q2), singles out the strongest (“hard-core”) component,
which defines the Laughlin state at filling ν = 1/3. As the
pseudopotential Hamiltonian is just a projection operator in
the relative angular momentum space, the metric in V1L1(q2)
is the same as that originating from the cyclotron orbits.

In Fig. 2, we pick the ground state of the Coulomb
interaction with fixed mass anisotropy α0 = 2,φ0 = 0 (the
metric of the dielectric tensor is implicitly assumed to be
α = 1,φ = 0), and we evaluate the overlap with a family
of Laughlin states generated by varying α,φ. The overlap
|〈�α,φ

L |�α0=2,φ0=0
C 〉| is plotted as a function of α and φ. We

observe that the principal axis of the Laughlin state is aligned
with that of the Coulomb state (maximum overlap occurs for
φ = φ0 = 0). Interestingly, the maximum overlap does not
occur for α = α0, but for some value of the anisotropy that is
a “compromise” between the dielectric α = 1 and a cyclotron
one α = 2. The value of the anisotropy that defines the intrinsic
metric depends linearly on the band mass anisotropy (see
Fig. 3). This result illustrates the ability of the Laughlin state to
optimize the shape of its fundamental droplets and maximize

FIG. 2. (Color online) Overlap between the Coulomb ground
state at ν = 1/3 for fixed anisotropy α0 = 2,φ0 = 0, and the family of
Laughlin states parametrized by varying α, φ. The system is Ne = 9
electrons on a hexagonal torus.

1

1.1

1.2

1.3

1.4

1 1.2 1.4 1.6 1.8 2

FIG. 3. (Color online) Dependence of the intrinsic metric α on
the mass metric αm (Coulomb metric is set to identity).

the overlap with a given anisotropic ground state of a finite
system.

An alternative way to obtain the intrinsic metric is to
analyze the shape of the lowest excitation, the magnetoroton
mode, which was successfully described by the single-mode
approximation.37 In a rotationally invariant case, this mode
has a minimum at k ∼ �−1

B . In the presence of anisotropy, the
minimum occurs at different |k| in the different directions
(see Fig. 4). This leads to an alternative definition of the
intrinsic metric based on the shape of the roton minimum
in the 2D momentum plane. We numerically establish that
this definition agrees well with our previous definition of the
intrinsic metric. In Fig. 4, we plot the energy spectrum of
an anisotropic Coulomb interaction at ν = 1/3 as a function
of the rescaled momentum

√
gabkakb, where g is the guiding

center metric that maximizes the overlap with the family of
Laughlin wave functions (see Fig. 3). With the usual definition

FIG. 4. (Color online) Energy spectrum of Ne = 9 electrons at
ν = 1/3 with the effective mass anisotropy αm = 2 along the x axis.
When plotted as a function of

√
k2

x + k2
y (green crosses), two branches

of the magnetoroton mode are present (blue dotted lines are guide to
the eye). If the spectrum is plotted as a function of

√
gabkakb, the two

branches collapse onto the same curve.
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of the momentum |k|, several roton minima appear. Different
magnetoroton branches collapse onto the same curve if we plot
them as a function of

√
gabkakb. This is reasonable, because

the magnetoroton mode is well approximated by single-mode
approximation up to the roton minimum,38 which is defined
entirely in terms of the properties of the ground state. The
anisotropy of the ground state structure factor (determined by
the shape of elementary droplets) dictates the position of the
roton minimum.

The analysis of this section, in principle, applies to other
LLL states at fillings ν = p/(2p + 1),p = 2,3, . . . , though it
is more involved because of the “multicomponent nature” of
these states and typically a smaller excitation gap.

IV. HIGHER LANDAU LEVELS: QUANTUM PHASE
TRANSITIONS DRIVEN BY ANISOTROPY

We have found that ν = 1/3 in the LLL is particularly
robust with respect to anisotropy, and this is the case also with
other prominent FQH states. In higher LLs, due to a number
of nodes in the single-particle wave function, the region of
the phase diagram where incompressible states occur becomes
increasingly narrower, and compressible phases such as stripes
and bubbles take over. In this section, we discuss the effects of
anisotropy on FQH states in higher LLs, focusing on fillings
ν = 1/3 and 1/2. Because of closer energy scales, we find that
moderate changes in the anisotropy induce phase transitions
between compressible and incompressible phases.

A. n � 2 Landau levels: stripes and bubbles

In n = 2 LL and higher, isotropic FQH states are energet-
ically less favorable than stripe and bubble phases at filling
ν = n + 1/2 and ν = n + 1/3, respectively. In Fig. 5, we
show the energy spectrum (in units of e2/ε�B) as a function
of anisotropy α (we set the angle φ to zero). Energies are
plotted relative to the ground state at each α, and we chose
the relatively modest system sizes (Ne = 8 and 10 electrons)
to facilitate comparison with the existing isotropic data in the
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FIG. 5. (Color online) Energy spectrum of ν = 1/3 (left) and
ν = 1/2 filled n = 2 LL (right): mass anisotropy establishes and
reinforces the stripe order. At ν = 1/3, a large set of quasidegenerate
levels around α = 1 belongs to the bubble phase;17 for α > 1.2, a
smaller subset of these levels, together with some excited levels, form
another quasidegenerate multiplet that belongs to a stripe phase. At
ν = 1/2, the ground state is a stripe already for α = 1,16 and its gap
and splitting within the multiplet change as α is increased.

literature.16,17 The aspect ratio is set to the optimal values for
the appearance of stripes or bubbles (see Refs. 16 and 17).

As we see on the right panel of Fig. 5, at ν = 1/2, the
presence of mass anisotropy reinforces the stripe when α is
increased. This leads to a more pronounced quasidegeneracy of
the ground-state multiplet and an increase of the gap between
this multiplet and the excited states. For yet larger values of
α, it appears that some of these excited states may become
the ground state, however, this occurs for very large α when
this finite system effectively becomes one-dimensional under
anisotropy deformations.

In case of ν = 2 + 1/3 state, it has been argued that the
isotropy point is described by a two-dimensional CDW order
known as the bubble phase.17 A bubble differs from a stripe
in having a larger degeneracy and a two-dimensional mesh
of (quasi)degenerate ground-state wave vectors (as opposed
to the one-dimensional array in case of a stripe). The spread
of the quasidegenerate levels was also found to be somewhat
larger than in case of stripes. All of these features are obvious
in Fig. 5 (left) for α = 1. The bubble phase remains stable
to some extent when α is reduced; for very small α, it is
eventually destroyed and replaced by a simple CDW. On the
other hand, when α is increased, a smaller subset of momenta
becomes very closely degenerate with some of the excited
levels. This second-order (or weakly first order) transition
results in a stripe phase. As for the ν = 1/2 case, this stripe
becomes enhanced as α is further increased. Therefore, in
n � 2 LLs mass anisotropy generally produces stripes, even
when isotropic ground states have a tendency to forming a
bubble phase.

B. n = 1 Landau level: incompressible to compressible
transitions driven by anisotropy

In n = 1 LL, ν = 1/3 state is significantly weaker than its
n = 0 LL counterpart, having an experimental gap an order
of magnitude smaller and roughly the same as the gap of
ν = 1/2 state. This has been anticipated in early numerical
calculations that found the ground state of the Coulomb
interaction projected to n = 1 LL to be at the transition point
between compressible and incompressible phases.23

Although idealized numerical calculations with pure (pro-
jected) Coulomb interaction work exceedingly well in n =
0 LL, more realistic models are required to describe phases
in n = 1 LL. In particular, the inclusion of finite-width
effects43 and varying a few strongest Haldane pseudopoten-
tials is necessary to determine the phase diagram. We find
that varying the V1 pseudopotential leads to the following
outcomes: (i) generically, for δV1 < 0, the system is pushed
deeper into a compressible phase, and (ii) for δV1 > 0,
finite-size calculations on systems up to Ne = 9 electrons
permit the existence of two regimes: for 0 < δV a

1 < δV1 <

δV b
1 , the ground state is in the Laughlin universality class,

but the lowest excitation is not the magnetoroton, and for
δV1 > δV b

1 , the ground state and the excitation spectrum is the
same as in n = 0 LL. For smaller systems, δV b

1 is estimated
to be around 0.1e2/ε�B , while δV a

1 is around 0.04e2/ε�B .
Larger systems suggest that these two points might merge in
the thermodynamic limit, when only a small modification of
the interaction might be needed for the Laughlin physics to
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FIG. 6. (Color online) Spectrum of Ne = 8 electrons at ν = 1 +
1/3 with thickness w = 2�B . Inset: same spectrum plotted relative
to the ground state at each α. Unit cell has a rectangular shape with
aspect ratio 3/4.

appear at ν = 1/3 in n = 1 LL. Alternatively, we can consider
the Fang-Howard ansatz that mimicks the finite-width effects.
In this case, the width of �B or smaller is sufficient to drive
a phase transition between the compressible state and the
Laughlin-like state, in agreement with results on the sphere
and using an alternative finite-width ansatz.39

In summary, the ground state at ν = 1 + 1/3 very likely
belongs to the Laughlin universality class. We note that
the collective mode in this case displays significantly more
wiggles than in the LLL (some wiggles exist in case of
n = 0 LL Coulomb state, but they are less pronounced). For
large momenta, the magnetoroton mode also appears to merge
with the continuum of quasiparticle-quasihole excitations.
This is likely a finite-size artefact, although we cannot rule
out that it represents an intrinsic feature of ν = 1 + 1/3 state,
in which case, it might have an observable signature in optical
experiments that distinguishes it from the ν = 1/3 state.

Because of the fragility of ν = 1 + 1/3 state, we expect
that mass anisotropy might have more dramatic consequences
than in the LLL. In Fig. 6, we plot the energy spectrum as
a function of anisotropy. One notices that the isotropy point
(α = 1) does not bear any special importance; indeed, the
system appears more stable in the vicinity of it where it can
lower its ground-state energy or increase the neutral gap. On
either side of the isotropy point, however, the system remains
in the Laughlin universality class; e.g., at α = 0.8 and 1.3,
the maximum overlap with the Laughlin state is 75% and
80%, respectively (these overlaps, although modest compared
to the standards of n = 0 LL, can be adiabatically further
increased by tuning the V1 pseudopotential). Note that the
quoted maximum overlaps are achieved by the Laughlin state
with α′ somewhat different from α of the Coulomb state,
analogous to Fig. 2.

The new aspect of Fig. 6 is the transition to a compressible
state with CDW ordering for α � 0.4. In that region of
parameter space, the system is very sensitive to changes
in the boundary condition—the sharp degeneracies seen in
rectangular geometry in Fig. 6 are not obvious in case of higher

-6 -4 -2 0 2 4 6-8
-6

-4
-2

0
2

4
6

8
0

0.2

0.4

0.6

0.8

S0(q)

qx

qy

S0(q)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-6 -4 -2 0 2 4 6-8
-6

-4
-2

0
2

4
6

8
0

0.2

0.4

0.6

S0(q)

qx

qy

S0(q)

0
0.1
0.2
0.3
0.4
0.5
0.6

FIG. 7. (Color online) Guiding-center structure factor S0(q) for
ν = 1/3 state in n = 1 LL with thickness w = 2lB and anisotropy
α = 0.4 (a). For comparison, we also show S0(q) for the state with
α = 1.3 which is in the Laughlin universality class (b). Two peaks in
the response function (a) represent the onset of compressibility and
CDW ordering.

symmetry, square or hexagonal, unit cell. As an additional
diagnostic tool for the compressible states, it is useful to
consider a guiding-center structure factor,

S0(q) = 1

Nφ

∑
i,j

〈eiq·Ri e−iq·Rj 〉 − 〈eiq·Ri 〉〈e−iq·Rj 〉, (13)

where the expression for the Fourier components of the
guiding-center density, ρ(q) = ∑N

i eiq·Ri , has been used.
Note that S0(q) is normalized per flux quantum rather than
(conventional) per particle.34 In Fig. 7(a), we show the plot of
S0(q) evaluated for the state with α = 0.4 in Fig. 6. Two sharp
peaks in the response, similar to those previously identified
in n � 2 LL states,16 are the hallmark of CDW order. They
are to be contrasted with the smooth response in case of an
anisotropic state in the Laughlin universality class for α = 1.3,
Fig. 7(b).

As a second example in n = 1 LL, we consider half-filling
where the Moore-Read Pfaffian state5 is believed to be realized
in some regions of the phase diagram. This state has a non-
Abelian nature, which is reflected in the nontrivial ground-state
degeneracy6 when subjected to periodic boundary conditions.
For ν = 1/2, the eigenstates of any translationally invariant
interaction possess a twofold center-of-mass degeneracy.26

On top of this, Moore-Read state has an additional threefold
degeneracy. Conventionally, the many-body Brillouin zone is
defined for p = 1, q = 2 and has a size N2 (N being the
GCD of Ne and Nφ), which forces the degenerate ground
states to belong to a Brillouin zone corner K = (N/2,N/2)
and centers of the sides, K = (0,N/2); (N/2,0). It is also
possible to define a “quartered” Brillouin zone such that the
three degenerate states are all mapped to zero momentum.40
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FIG. 8. (Color online) Spectrum of Ne = 14 electrons at ν = 1 +
1/2 with thickness w = 2lB as a function of anisotropy α. Energies
are plotted relative to the ground state at each α, and the unit cell has
a rectangular shape with aspect ratio 3/4.

The three K sectors are equivalent for a hexagonal unit cell,
however, in an anisotropic system, the degeneracy is always
lifted.

In Fig. 8, we plot the spectrum of the Coulomb interaction
as a function of anisotropy (states belonging to K sectors
where the Moore-Read state is realized, are indicated). As
earlier, we assume finite width of w = 2�B in order to instate
the Pfaffian correlations.18 Note that our calculation only
uses two-body (Coulomb) interaction, therefore in each finite
system, the Moore-Read state will mix with its particle-hole
conjugate pair, the anti-Pfaffian.41 The mixing between the
two states can be controlled by including higher LLs.42 For
0.5 � α � 1.3, we find a threefold quasidegenerate multiplet,
suggesting the presence of Moore-Read state at the isotropy
point and in the neighborhood of it. In finite systems, there
is some splitting of the degeneracy that might be reduced
upon tuning the V1 and V3 pseudopotentials. Also, upon tuning
the anisotropy around α = 1, there are crossings within the
multiplet of degenerate ground states without apparent closing
of the gap. The region of the Moore-Read state is defined by
sharp transitions toward crystal phases. These transitions are
likely second order because they do not appear to involve any

level crossing, but rather lifting of the degeneracy within a
ground-state multiplet.

V. CONCLUSION

We have presented a method to study the effects of
anisotropy on FQH phases in finite-size systems. We found
that the prominent FQH states (as in the lowest Landau level)
are robust to variations of anisotropy due to the adjustment of
the intrinsic metric describing the shape of their elementary
droplets. As we demonstrated using the example of the
Laughlin ν = 1/3 state, this metric is usually a compromise
between the metric dictated by the cyclotron motion and the
metric originating in the dielectic environment of the 2DES.
In this sense, it is unlike the noninteracting Landau level
problem, or the problem of weak localization,44 where the
anisotropy can be completely “gauged away” (i.e., removed)
by length rescaling. Instead, it is more akin to the problem
of shallow donors in many-valley semiconductors.45 Indeed,
such compromise picture leads to a quantitatively accurate
description of the variation of the critical density of the metal-
insulator transition (an intrinsically many-body phenomenon)
in three-dimensional doped many-valley semiconductors,46 so
one may wish to ascertain to what extent this can lead to
quantitative predictions in the FQHE case. In higher LLs,
anisotropy induces quantum phase transitions, likely of second
order, to compressible phases with broken symmetry.

Anisotropy is an important aspect of FQHE as it represents a
mechanism that probes the intrinsic metric of incompressible
fluids in the geometrical picture of the FQHE. In addition,
because our calculations show the possibility of phase tran-
sitions in the n > 0 Landau levels as a function of mass
anisotropy, it motivates experimental studies on systems with
both moderate mass anisotropy (e.g., AlAs and Si, α ∼ 3–5) as
well as systems with large mass anisotropy (e.g., Ge, α ∼ 20),
where behavior may be different in the upper Landau levels
from the anisotropic GaAs. In these systems, as in GaAs,
anisotropy could be further tuned using tilted fields, thereby
adding to the richness of the FQHE phenomena.

Note added. Following the completion of this work, a
related manuscript has appeared47 that studies in more detail
the anisotropy effects at ν = 1/3 filling.
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We construct model wave functions for the collective modes of fractional quantum Hall systems. The

wave functions are expressed in terms of symmetric polynomials characterized by a root partition that

defines a ‘‘squeezed’’ basis, and show excellent agreement with exact diagonalization results for finite

systems. In the long wavelength limit, we prove that the model wave functions are identical to those

predicted by the single-mode approximation, leading to intriguing interpretations of the collective modes

from the perspective of the ground-state guiding-center metric.

DOI: 10.1103/PhysRevLett.108.256807 PACS numbers: 73.43.Cd, 73.43.Lp

One of the main driving forces in characterizing the
topological phases arising in the context of the fractional
quantum Hall (FQH) effect [1] has been the construction of
the model wave functions and their parent Hamiltonians
[2–5]. Depending on the nature of the effective interaction
within a partially filled Landau level, numerous phases
appear, ranging from crystals to incompressible liquids
with fractional [2] and possibly non-Abelian [4] quasipar-
ticle statistics. Within the lowest Landau level (LLL), the
kinetic energy of the electrons is a constant, and all
dynamics come from the Coulomb repulsion [3]. Thus,
the essential features of the many-body ground states and
the low-lying excitations are solely determined by the
particle statistics and quantum fluctuations that minimize
the repulsion. Laughlin’s wave function [2] is a prominent
example: the statistics are taken care of by the odd power in
the Jastrow factor and, for rotationally invariant systems,
the energy is minimized by placing all zeros of the wave
function on the electrons. Subsequently, an intuitive pic-
ture of ‘‘composite fermions’’ was put forward by Jain [6],
which lead to a classification of the numerous fractional
states observed experimentally, and also provided a nu-
merical procedure for constructing various model wave
functions [6]. While much effort has been devoted to
formulating FQH ground-state wave functions and those
of charged excitations (quasihole and quasielectron), rela-
tively little progress has been made in understanding the
neutral excitations since the seminal work of Girvin,
MacDonald, and Platzman introduced the single-mode
approximation (SMA) to describe the lowest excitation in
terms of a neutral density wave, or the ‘‘magnetoroton’’
[7]. Very recently, this question was revisited and explicit
wave functions for the neutral collective excitations were
proposed for the Abelian, as well as non-Abelian, FQH
states utilizing a multicomponent composite fermion
approach [8,9].

In this Letter, we construct model wave functions for the
collective modes of FQH states by extending the Jack
polynomial description [10,11]. We model the lowest neu-
tral excitation as a dipole formed by a single quasielectron
and a single quasihole. At the Laughlin � ¼ 1=3 filling, we
obtain a single bosonic mode that corresponds to the
magnetoroton; in theMoore-Read � ¼ 5=2 case, we obtain
in addition a neutral fermionic mode [12,13] that stems
from the non-Abelian statistics. We identify the long wave-
length limit of the bosonic modes as a ‘‘spin-2’’ excitation
(analogous to the graviton), and that of the fermionic mode
as a ‘‘spin-3=2’’ (with a possible analogy to the gravitino).
Our model wave functions show excellent agreement with
exact diagonalization results at all wavelengths. In the limit
of long wavelengths, we present a proof that the model
wave functions become equivalent to the SMA result,
which thus remains an accurate description even at ener-
gies lying above the threshold of the roton-pair continuum.
We first review some basic properties of the Jack poly-

nomials. The Jacks are symmetric multivariable polyno-
mials J�� ðz1; z2; . . . ; zNe

Þ, parametrized by a number � and

a root partition � with length l� � Ne, where Ne is the
number of electrons. For bosonic FQH states, the statistics
of the system restrict us to only symmetric monomials with
a fixed total degree, which corresponds to a fixed angular
momentum on a disk or a sphere [14]. Fermionic FQH
states are obtained by multiplying the bosonic counterpart
with a Vandermonde determinant. The root partitions en-
code the clustering properties that effectively ‘‘keep elec-
trons apart’’ from each other; a ‘‘ðk; r; NeÞ-admissible’’
partition is such that no more than k electrons are found
in r consecutive orbitals. The root partition tells us how the
wave function vanishes when particles are brought to-
gether. For example, the root partition of the ground state
and the quasihole states at � ¼ 1=m Laughlin filling con-
tains no more than one electron in m consecutive orbitals.
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The corresponding Jack vanishes at least with a power ofm
when two electrons approach each other.

From a practical point of view, the Hilbert space we are
interested in, after reduction by particle statistics and sym-
metry, only needs to include polynomials with appropriate
clustering properties (whereby Jacks are special cases). In
fact, for the ground state and single quasihole states of the
Read-Rezayi series (including the Laughlin and Moore-
Read states), such Hilbert space is one-dimensional and
spanned by a single Jack polynomial with � ¼ � kþ1

r�1 that

can be obtained directly via recursive relations [15].
Quasielectron states, on the other hand, are more compli-
cated [16] because they contain local defects where elec-
trons are forced to get closer to each other than allowed in
the ground state. The same difficulty arises in collective
modes that consist of quasielectron-quasihole pairs. In
these cases, the reduced Hibert space is no longer one-
dimensional with a single Jack polynomial.

We now proceed to construct explicit model wave func-
tions for the magnetoroton mode in the Laughlin state at
� ¼ 1=3 filling. We work in the spherical geometry with a
monopole of strength 2S placed at the center [14]. The root
partition for the Laughlin ground state is well known: � ¼
f100100100100 � � � 1001g [10]. The clustering property in
this case means that no more than a single electron can
exist in three consecutive orbitals [17]. The collective
mode in the limit of momentum k ! 0 consists of two
quasielectron-quasihole pairs, forming a quadrupole. As
the momentum increases, a dipole moment develops with
the separation of one quasielectron-quasihole pair. This is
summarized in the explicit set of root partitions, as follows:

We label the states by their total angular momentum L on
the sphere. Note the ground state with the root partition
f1001001 � � � 1001g has L ¼ 0, and the excitation with
the smallest momentum that can be created is L ¼ 2. In
Eq. (1), the black dot schematically indicates the position
of a quasielectron, while the white dot that of a quasihole.
To determine the position of a quasiparticle, we look at any
three consecutive orbitals in the root partitions above, and
count the number of electrons to see if it violates the
ground-state clustering property. In this particular case, if
there is more (less) than one electron, we then have a
quasielectron (quasihole), which is located right below
the middle of the three consecutive orbitals. Due to rota-
tional invariance on the sphere, we next impose the highest
weight condition on the wave functions jc L

�i to single out
the state with quasiparticles piled up at the north pole:

Lþjc L
�i ¼ 0; jc L

�i ¼
X

���
a�m�; (2)

where m� are monomials with partition � [10]. The

summation is over all partitions � that can be squeezed
from the root partition �. For example, mf1001g � z31 � z32,
mf0110g � z21z2 � z1z

2
2, and {0110} is squeezed from

{1001}. The constraints in Eq. (2) substantially reduce
the Hilbert space dimension (e.g., the basis dimension is
less than 20 for 10 particles). The resulting lowest-energy
eigenstates of the Hamiltonian, restricted to this Hilbert
space, are very good approximations to the exact magneto-
roton mode.
The innovation we implement here is to impose an

additional constraint that can be formally expressed as

V̂ 1c1c2jc L
�i ¼ 0: (3)

Here, V̂1 is the operator corresponding to the first Haldane
pseudopotential [3], and ci annihilates an electron at the ith
orbital. This additional constraint renders jc L

�i unique by
enforcing the following clustering property: the wave func-
tion is vanishing only when two or more clusters of two
particles coincide in real space.
The resulting implementation is numerically much less

expensive, with variational energies only slightly above the
ones obtained in the Hilbert space defined by constraints
(2), and improving with the increase in system size. We
note that the model wave functions jc L

�i inherit rich alge-
braic structures from the underlying Jacks. When the geo-
metric normalization factors on the sphere are removed,
the coefficients of the decomposition in Fock space are
integers, with the coefficient of the root configuration
normalized to 1. Furthermore, they satisfy a ‘‘product
rule’’ [15,18] if the first five orbitals are treated as one
‘‘big’’ orbital, which allows us to generate a large subset of
coefficients recursively. This suggests the product rule is
not restricted to pure Jacks and is robust against local
defects of the wave function. An approximation to jc L

�i
can be built from the product rules; the overlap between the
approximate and exact model wave functions is high and
increases with system size (see Table I). These properties
reduce the computational cost for generating these model
wave functions compared to direct diagonalization.
We now proceed to evaluate the variational energies of

the model wave functions obtained via constraints Eqs. (2)
and (3). In Fig. 1, the variational energies are plotted versus

TABLE I. The overlap of the approximate model wave func-
tions constructed from product rules and the true model wave
functions.

Number of electrons 9 10 11 12

L ¼ 2 89:83% 90:13% 90:31% 90:42%
L ¼ 3 86:42% 86:99% 87:37% 87:63%
L ¼ 4 83:63% 84:59% 85:23% 85:69%
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momentum k ¼ L=
ffiffiffi
S

p
, where Norb ¼ 2Sþ 1 is the num-

ber of orbitals in the LLL.We include the data for a number
of system sizes and rescale the magnetic length ‘B by a

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=Norb

p
to minimize the finite size effects. For the

model V̂1 Hamiltonian and Coulomb Hamiltonian, the
dispersion obtained using the model wave function is in
excellent agreement with the results from exact diagonal-
ization, both in small k and large k regime. Our model
wave functions compare favorably with the exact diago-
nalization eigenstates, with 99% overlap for 10 electrons.

Using the same approach, we can construct the
collective-mode wave functions for the entire Read-
Rezayi series. As an example, we consider an interesting
case of the Moore-Read state, where in addition to the
bosonic mode, we also obtain a mode that corresponds to
the unpaired electron—the neutral fermion (NF) mode
[13]. On the sphere, the root configurations of the two
modes are given by

11100100110011 � � �L ¼ 2;

111000110011 � � �L ¼ 3=2;

11100101010011 � � �L ¼ 3;

111001010011 � � �L ¼ 5=2;

11100101010101 � � �L ¼ 4;

111001010101 � � �L ¼ 7=2; ..
.
:

(4)

The Moore-Read ground-state root partition is given by 2
electrons in 4 consecutive orbitals [10]. Similarly to the
Laughlin state, any deviation from the uniform background
density yields the position of the quasihole or quasielectron
[not labeled in Eq. (4)]. In Eq. (4), the left column with an
integer angular momentum is the magnetoroton mode. The

NF mode with a half-integer angular momentum is given
in the right column. Unique model wave functions can
be constructed by imposing the constraint Eq. (2) and,
in addition, a modified constraint Eq. (3) that reads
H3bc1c2c3jcMR

� i ¼ 0, where H3b is the Moore-Read

three-body Hamiltonian. Their variational energies are
plotted in Fig. 2.
We would like to emphasize for both the Laughlin and

Moore-Read case that the collective modes enter the multi-
roton continuum in the long wavelength limit. The con-
tinuum starts at energy that is double the energy gap of the
roton minimum. While this makes exact diagonalization
ambiguous, the root partitions give clear physical interpre-
tation for the modes for the entire momentum range.
Interestingly, the L ¼ 1 state (and L ¼ 1=2 state for the
neutral fermion mode) vanishes with the set of constraints
we impose. Thus, in the long wavelength limit, the collec-
tive mode is given by a quadrupole excitation. In light of
the geometrical picture [19] of the FQH effect, we identify
the magnetoroton mode as a spin-2 ‘‘graviton’’ and the NF
mode as a spin- 32 ‘‘gravitino,’’ or the ‘‘supersymmetric

partner’’ of the magnetoroton mode.
Recently, model wave functions for the excitations at

� ¼ 1=2 filling for bosons were also obtained in a multi-
component composite fermion picture [8,9]. We have con-
firmed that the wave functions of Ref. [9] are numerically
identical to ours in finite size systems. The approach of
Ref. [9], though completely different at the outset, arrives
at the wave functions that satisfy the same clustering
properties as ours, which fixes them to be unique. The
uniqueness property motivates us to investigate the SMA
wave functions obtained from the ground state jc 0i by the
guiding-center density modulation, jc ki ¼ �̂kjc 0i, where

FIG. 1 (color online). The variational energy of the model
wave functions defined by Eqs. (2) and (3), against V̂1 (left
axis, arbitrary units) and Coulomb Hamiltonians (right axis, in
units of e2=�‘B), plotted as a function of momentum. The data
are generated from system sizes ranging from 6 to 12 electrons
(the inset shows the same plot for the bosonic Laughlin state).

FIG. 2 (color online). The variational energy of the model
wave functions for the magnetoroton (MR) mode and the
neutral fermion (NF) mode, evaluated against the three-body
Hamiltonian. The data are generated from system sizes ranging
from 5 to 17 electrons, where the odd number of electrons
contribute to the NF mode, and the even number of electrons
contribute to the magnetoroton mode. (The inset shows the same
plot for the bosonic Moore-Read state.)
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�̂k ¼ P
ie

ikRi is the guiding-center density operator. The
SMAyields excitation energies manifestly as a property of
the ground state. Though it successfully predicts the mag-
netoroton minimum of the collective mode of FQH states
at � ¼ 1=m, there is some ambiguity in the limit of k ! 0
when the SMA variational energy enters the roton-pair
continuum, eluding comparisons with exact diagonaliza-
tion. It is thus useful to compare the SMA prediction with
our model wave functions in the small k limit, since the
latter are valid in that regime and have transparent physical
properties given by the root partitions.

The SMA construction can be adapted to the sphere as
follows. The ground state on a sphere has the total angular
momentum L ¼ 0, and the SMAwave function with total
angular momentum L is obtained by boosting one electron
with orbital angular momentum L. The projection into the
LLL is equivalent to the projection of the boosted single-
particle state into the sub-Hilbert space of the total spin S.
Formally, we have

jc SMA
LM i ¼ X

i

ĈS;L;S
miþM;M;mi

jc 0i; (5)

where i is the electron index, and ĈS;L;S
m0;M;m

is defined by its

action on the single electron state ĈSLS
m0Mmjmi ¼ CSLS

m0Mm
jm0i,

where CSLS
m0Mm

¼ hm0jŶLMjmi are the Clebsch-Gordan co-

efficients, and ŶLM are the spherical harmonics. This is a
result of the Wigner-Eckart theorem, and due to rotational
invariance we can set M ¼ L in Eq. (5). The dispersion of
the SMAwave functions is plotted in Fig. 3 along with that
of our model wave functions.

For small momenta, the variational energies of the two
classes of wave functions agree very well, while the SMA
mode evidently becomes invalid for momenta larger than
the magnetoroton minimum. Note that at L ¼ 2; 3 the
SMAwave functions only involve the elements of the basis

squeezed from the same root partition that defines our
model wave functions. Taking the Laughlin 1=3 as an
example, we now prove the SMA wave functions are
actually identical to ours at L ¼ 2; 3. By the product rule
of the Jack polynomial, we can write

jc 0i � J��1
� J��2

þ J��3
� J��4

þ j �c 0i; (6)

where we suppressed the relative coefficients because
they are unimportant for the proof. The partitions �1 ¼
f10010g, �2 ¼ f01001001 � � �g, �3 ¼ f10001g, �4 ¼
f10001001 � � �g, and j �c 0i involve the rest of the squeezed
basis. It is easy to check that c1c2

P
iĈ

S;L;S
miþL;L;mi

j �c 0i ¼ 0.

We thus have

V̂ 1c1c2jc SMA
LL i � V̂1f0000g � ðJ��2

þ tJ��4
Þ ¼ 0: (7)

Again, the coefficients are suppressed in Eq. (7), and t ¼ 0
for L ¼ 2. Thus, the SMA wave functions satisfy exactly
the same constraints as our model wave functions, which
makes them identical. Note that for L > 3 the SMA wave
functions contain unsqueezed basis components with re-
spect to the root partitions used in our model wave func-
tion, and the proof breaks down.
In conclusion, we demonstrated a numerically efficient

method of constructing accurate model wave functions for
the collective modes in FQH systems. The wave functions
are identified with the SMA wave functions in the long
wavelength limit. This result reveals a crucial link between
the ‘‘graviton’’ mode and the SMA mode at long wave-
lengths, which plays an important role in the geometrical
theory of the FQH effect [19]. For realistic Coulomb or
pseudopotential interactions, the ‘‘graviton’’ mode decays
into multiroton pairs and appears experimentally inacces-
sible. It would be interesting to see if the interaction can be
tuned in such a way as to expose the ‘‘graviton’’ mode at
k ! 0 below the roton-pair continuum.
We thank B.A. Bernevig for useful discussions. This

work was supported by DOE Grant No. DE-SC0002140.
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We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix
renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We
provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy
ground states, as well as an analysis of the number of sweeps and basis elements that need to be
kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian
at ν = 1/3 and ν = 5/2 filling are extracted and compared with the results obtained by previous DMRG
implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and
suggests that this boundary condition is particularly suited for the application of the DMRG method to
the FQHE.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Strongly correlated systems in low dimensions are among the
most active areas in the condensed matter physics. These sys-
tems contain a large number of particles that interact strongly
with each other and cannot be understood in a single-particle pic-
ture. A paradigm of strongly correlated systems is the fractional
quantum Hall effect [1] (FQHE) that occurs when a system of two-
dimensional electrons partially fills one of the Landau levels in a
strong perpendicular magnetic field. Since the kinetic energy is
frozen in a partially-filled Landau level, the electron–electron in-
teraction is the only relevant term in the Hamiltonian and leads to
the emergence of non-perturbative ground-states with fractional-
ized charge [2] and anyonic, Abelian and non-Abelian [3], statistics.

Due to the non-perturbative nature of the FQHE, numerical
methods have played a crucial role since the original work of
Laughlin [2]. In particular, exact diagonalization (ED) presented it-
self as a versatile and extremely powerful tool that unraveled many
of the complexities of FQH systems [4,5]. The popularity and quick
success of ED was due to the specific correlations of FQH sys-
tems that rapidly minimize the finite-size effects with increasing
the number of particles in the simulation. Highly accurate predic-
tions of the system’s properties in the thermodynamic limit could
be obtained by considering systems as small as 10 particles [5].

* Corresponding author at: Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544, USA.

E-mail address: zihu@princeton.edu (Z.-X. Hu).

As it is well known, the main bottleneck of ED calculations lies
in the exponential explosion of the size of the many-body Hilbert
space as the number of particles grows. While for the simplest FQH
fractions, such as the Laughlin ν = 1/3 state [2], admittedly all
essential physical properties can be obtained in the systems attain-
able by ED, in the majority of other cases ED is not sufficient. This
is particularly striking in case of spin degree of freedom, or SU(4)
internal symmetry if we consider FQHE in graphene [6]. However,
similar constraints arise even in the spin-polarized case of the non-
Abelian Read–Rezayi sequence [7], where electrons are believed to
pair into k � 2-body clusters. Therefore, a non-Abelian Ne-particle
state at level k is likely to have finite-size effects comparable to the
Laughlin-like state of Ne/k particles. Hence, to address the prop-
erties of the non-Abelian ground-state it is desirable to consider
systems at least k times as large. It is therefore of essential im-
portance to develop new numerical methods that can reach larger
system sizes than ED.

One such method is the density matrix renormalization group
(DMRG), invented by White [8] in 1992. DMRG has been quite
successful over the last decade when it was applied to one-
dimensional systems such as the Heisenberg spin chains and the
one-dimensional Hubbard model. In essence, it is a variational
method to get the ground state and the low-lying energy states
of the system. The algorithm contains two main parts. One is
called the infinite size algorithm which grows the system to a big
size, and the other one is referred to as the finite-size algorithm,
which makes the ground state converge. The only approximation
in the DMRG method is the truncation of the Hilbert space ac-
cording to the eigenvalues of the reduced density matrix for the

0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
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subblock which is used to construct the large system. The more
states are kept in the reduced density matrix, the higher the ac-
curacy one can achieve in principle. It is generally believed that
the entanglement entropy of a subregion often grows like the
boundary area of the subregion [9]. A larger entanglement en-
tropy, or larger correlation, means that one needs to keep more
states to achieve a sufficient accuracy. The success of DMRG in the
one-dimensional systems was ensured by the low entanglement
between the two subregions which only have a point surface be-
tween two blocks.

On the other hand, a FQH system is two-dimensional and thus
the success of the DMRG method in FQHE is by no means obvious.
However, in a Landau gauge, the one-body orbitals are Gaussian-
localized and provide a mapping to an effective “one-dimensional”
chain with the long-range Coulomb interaction. This motivates an
attempt to apply the DMRG to the FQHE system. The first such at-
tempt was done for the periodic boundary conditions (torus geom-
etry) by Shibata and Yoshioka [10], mostly considering compress-
ible, stripe and bubble, phases in higher Landau levels. Feiguin et
al. [11] developed a DMRG scheme for the ground state and excited
states in the spherical geometry for larger systems at filling factors
ν = 1/3 and ν = 5/2. Hard-core interactions were also studied on
thin cylinders in an unpublished work [12], and for bosonic sys-
tems in Ref. [13]. Most recently, Zhao et al. [14] developed an
independent DMRG implementation that by far exceeds the previ-
ous attempts. In this study, the maximal system size was Ne = 24
for ν = 1/3 and Ne = 34 for ν = 5/2. The independent implemen-
tations [10–14] appear to differ significantly from each other in
various aspects, in particular in the number of basis states that are
kept, ranging from a few hundred in the torus geometry, up to
Nkeep = 20 000 states in Ref. [14].

In this Letter, we report on the systematic study of the FQHE
system in the spherical and cylinder geometry based on our in-
dependent implementation of the DMRG method. We address the
well-studied FQH systems at fillings ν = 1/3 and ν = 5/2 with the
goal of providing a detailed benchmark of the DMRG algorithm
and comparing it with the previous implementations. New phys-
ical results obtained with the current DMRG implementation will
be presented elsewhere [15].

The remainder of this Letter is organized as follows. In Section 2
we analyze the convergence of the V 1 Haldane pseudopotential [4,
5] Hamiltonian on the sphere that is analytically known to yield
the Laughlin wavefunction as an exact zero-energy ground state. In
the case of Coulomb interaction, we evaluate the ground state en-
ergy for ν = 1/3 and ν = 5/2 fillings corresponding to the Laugh-
lin [2] and Moore–Read [3] states. The ground-state energies per
particle are extrapolated to the thermodynamic limit using finite-
size scaling techniques. In Section 3, we draw some comparisons
with the cylinder geometry, which is an alternative geometry for
studying the FQHE that so far has scarcely been used [16]. The con-
vergence for the V 1 Hamiltonian is found to be significantly faster
on the cylinder than on the sphere, suggesting that this bound-
ary condition might be promising for further studies of the FQHE.
Discussion and conclusions are given in Section 4.

2. Sphere geometry

We study a model for spin-polarized electrons moving on the
surface of a sphere, with a magnetic monopole 2S placed in the
center to generate a radially-symmetric magnetic field perpendicu-
lar to the surface [4]. In strong magnetic fields, electrons in general
completely fill (n − 1) single particle Landau levels which are con-
sidered to be “inert”, and all dynamics comes from a partially-filled
nth Landau level. Any two-body Hamiltonian, projected to this nth
Landau level (neglecting the excitations to higher Landau levels),

Fig. 1. (a) The convergence of the ground-state energies for the hard-core V 1 Hamil-
tonian at ν = 1/3 as a function of the finite size sweeping number when keeping
4000 states in the subsystem. (b) The ground-state energy as a function of the num-
ber of kept states. We perform 10 finite-size sweeps for each point. The energies are
on a logarithmic scale.

can be written in the usual second-quantized form,

H = 1

2

∑

m1,m2,m3,m4

〈m1m2|V |m3m4〉a+
m1

a+
m2

am3am4 . (1)

In the spherical geometry, quantum numbers mi ’s label the
z-component of the angular momentum for particle i which
takes values: −S,−(S − 1), . . . , S . The one-body orbitals are the
monopole harmonics [4] Y Slm which generalize the usual spherical
harmonics obtained for S = 0. When we target a specific many-
body state, we also need to adjust the flux 2S to take into account
the so-called shift that determines the total number of the avail-
able orbitals. This means that 2S = 1

ν Ne +S , where S is a universal
number that characterizes each many-body state, e.g. S = −3 for
the Lauglin and Moore–Read state.

Because of rotational and translational invariance, any two-body
interaction matrix element 〈m1m2|V |m3m4〉 can be decomposed
as [18]

〈m1m2|V |m3m4〉

=
2S∑

J=0

J∑

M=− J

〈Sm1, Sm2| J M〉〈Sm3, Sm4| J M〉V (S)
J /R, (2)

where V J are the Haldane pseudopotentials [4] and R = √
S�B is

the radius of the sphere in terms of the magnetic length �B =√
h̄/eB . The first two terms in the above equation are the Clebsch–

Gordan coefficients on the sphere. When symmetry is taken into
account, at filling ν = 1/3 the Lanzcos method can diagonalize the
sparse Hamiltonian matrix for up to 14 electrons, corresponding to
the Hilbert space dimension of ∼ 108.

As shown by Haldane [5], the advantage of the pseudopotential
formulation is that model wavefunctions can be defined as ground
states of the truncated Hamiltonians. For example, the Laughlin
wavefunction is obtained as an exact zero-energy ground state for
the hard-core interaction with V 1 > 0, Vm>1 = 0, with an exci-
tation gap controlled by the magnitude of V 1. From the compu-
tational point of view, V 1 Hamiltonian is nearly as sparse as the
full Coulomb Hamiltonian, but it serves as a universal reference to
test the accuracy of the DMRG code for large systems because the
ground-state energy is known to be exactly zero for any system
size.

In Fig. 1 we show the ground-state energy convergence for dif-
ferent system sizes as a function of the finite-size sweep number
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Fig. 2. Ground-state energy per particle for the ν = 1/3 state up to 20 electrons as
a function of size of the system. Solid points are the results of exact diagonaliza-
tion and the blank circles represent DMRG results. The two fitting curves are with
(upper) and without (lower) rescaling the magnetic length as described in Refs. [19,
20]. The energy in the thermodynamic limit is ≈ −0.4101e2/�B which is consistent
with previous studies [11,14].

Fig. 3. The entanglement spectrum for 18 electrons at ν = 1/3 with the Coulomb
interaction. The subsystem contains 9 electrons in 25 orbitals.

with the fixed number of states kept (Nkeep = 4000), or as a func-
tion of the number of kept states in the subsystem with a fixed
sweep number. For a fixed number of kept states, the accuracy
of the ground state energy decreases when we increase the sys-
tem size. It means that more states for the larger systems need to
be kept if the same accuracy is demanded. As shown in Fig. 1(b),
increasing the number of kept states obviously helps the conver-
gence although the energy drops very slowly when Nkeep is large.
However, for the largest system size with Ne = 18 we tested in
Fig. 1, the ground-state energy drops to 10−4 when just keeping
4000 states and after finishing 10 finite size sweeps. This energy is
far below the gap between the ground state and the first excited
state. We assume the ground state is close enough to the Laugh-
lin state in this case. To improve the accuracy, one needs more
finite-size sweeps and keeping more states in the truncation.

Having established the convergence scaling for the hard-core
Hamiltonian, we move to the full Coulomb interaction. At ν = 1/3
we calculate the ground-state energy for systems up to 20 elec-
trons. All the results are obtained by keeping up to 5000 states
in the subsystem. With keeping the same number of states, we
find the efficiency of our code is the same as that shown in Fig. 1
of Ref. [14]. The results for different system sizes at ν = 1/3 are
summarized in Fig. 2, which includes the data both from the ED
and the DMRG. It shows they match with each other very well.
We do the finite-size scaling for the ground-state energy per elec-
tron with a quadratic polynomial, and extrapolate the thermo-

Fig. 4. Finite size scaling of the ground-state energy per particle for ν = 5/2 FQH
state up to Ne = 30 electrons. The results are obtained by keeping up to 5000 states
in the truncation and after completing 10 finite size sweeps. The energy in the ther-
modynamic limit is consistent before and after rescaling the magnetic length �B ,
which means that the large system sizes have automatically eliminated the curva-
ture effects.

dynamic limit energy to be −0.410048e2/�B . On finite spheres,
it has been suggested [19,20] that the curvature effects can be
substantially minimized by rescaling the magnetic length �B . We
also plot the rescaled energies in Fig. 2 and do the finite-size
scaling with a linear function. The energy in the thermodynamic
limit −0.410136e2/�′

B is almost the same as that without rescal-
ing the magnetic length. This means the large-scale study by the
DMRG method has already removed the finite-size effects coming
from the curvature. Our results are also consistent with the previ-
ous DMRG study [11,14]. Besides the ground-state energy, we also
plot the entanglement spectrum [21] in Fig. 3 for 18 electrons at
ν = 1/3, for which we cut the system into two equal parts. The
splitting between the conformal part [21] and the non-conformal
part, and the counting of the conformal states in the entanglement
spectrum, demonstrate that DMRG has captured the correct topo-
logical properties of the ground state.

As a second case, we consider the filling ν = 5/2, believed to be
described by the Moore–Read Pfaffian state [3]. This state is more
fragile that the Laughlin state and has a smaller gap by nearly an
order of magnitude. To study the convergence, it is in principle
possible to use the exact interaction that produces the Moore–
Read state as a zero-energy ground state, but this is much more
costly because it is a three-body interaction. The results for the
Coulomb interaction projected to n = 1 Landau level are shown in
Fig. 4. The ground-state energies are obtained for up to 30 elec-
trons by keeping at most 5000 states. The result for the largest
system size presented in this plot was obtained within one week
on a computer cluster with 12 cores and 144G memory. With
the same scaling techniques as in the ν = 1/3 case, we extract
the ground-state energy per electron in the thermodynamic limit
≈ −0.3622e2/�B , consistent with Refs. [11,14].

3. Cylinder geometry

To complement the results obtained in the spherical geometry,
in this section we consider the cylinder geometry [16]. Cylinder
geometry is interesting because it shares some features with the
compact geometries, such as sphere or torus, but also possesses
two open boundaries, which makes it convenient for the study of
the edge effects, like the disk geometry [22–24]. Compared to the
sphere, the attractive feature of the cylinder is the flat surface and
lack of curvature effects.

Cylinder boundary condition is compatible with the Landau
gauge where periodic boundary condition in assumed along one
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Fig. 5. The convergence of the ground-state energy for electrons with hard-core in-
teraction on the cylinder. (a) We keep 2000 states in the truncation procedure for all
the system sizes. The ground-state energy drops very fast in the finite-size sweep-
ing procedure. (b) The dependence of the ground-state energy on the number of
kept states for 20 electrons.

direction (say y-axis) with a repeat distance L, and open boundary
condition in the other direction (x-axis). The single-body wave-
function in the lowest Landau level is given by

ψm(x, y) = 1√
π1/2L�B

eikm ye−(x+km�B )2/2�2
B , (3)

where km = 2πm/L is the momentum for the mth orbital. The or-
bital index m takes values 0,1, . . . , Norb − 1, and the distance in
x-direction between two nearest orbitals is 2π/L.

For a finite size system with Ne particles at filling ν = 1/3 for
example, the number of orbitals is Norb = 3Ne − 2, and thus the
area of the cylinder is quantized to be 2π Norb�

2
B . To accommodate

the finite number of the orbitals Norb , we fix the extent in the
x-direction to be X = 2π Norb�

2
B/L. Similar to the torus geometry,

the properties of many-body states depend on the aspect ratio λ =
X/L = 2π Norb�

2
B/L2. In the following we concentrate on the FQH

states that are realized in the vicinity of λ = 1.
For the V 1 hard-core interaction, the Hamiltonian (in units �B =

1) can be written in a simple form [16]:

H = 1

2

∑

m,n,l

(
m2 − n2)e−(m2+n2)/2a+

n+la
+
m+lam+n+lal. (4)

Exact diagonalization studies [16,17] show that H has a zero-
energy ground state, but the nature of the ground state changes
from the incompressible liquid to the charge-density wave upon
varying the aspect ratio. Here we focus on the liquid state and ob-
tain it by DMRG method for large systems up to 20 electrons with
the hard-core interaction.

The convergence of the ground state energy as a function of the
sweep number and the number of kept states is shown in Fig. 5.
For the system with 20 electrons, we obtain the ground state en-
ergy 10−13 when keeping only 2000 states and after completing
6 finite-size sweeps. On the other hand, if we look at the final
ground state energy as a function of the number of the kept states,
we observe that the same accuracy can be reached even by keep-
ing only 1000 states.

To verify that the ground state is indeed the Laughlin state, we
plot the average occupation number 〈c+

mcm〉 for the system with 20
electrons in 58 orbitals in Fig. 6. For an incompressible liquid, the
average occupation number is roughly constant in the bulk and
equal to ν , with some deviations close to the two edges. This is
indeed what we observe in Fig. 6.

Fig. 6. The mean orbital occupation number for 20 electrons with hard-core inter-
action at ν = 1/3 on the cylinder. DMRG calculation is performed by keeping 3000
states and finishing 6 finite size sweeps.

Fig. 7. The entanglement spectrum of the Laughlin state for 20 electrons on the
cylinder. Because of the hard-core interaction, the entanglement spectrum only con-
tains the conformal branch, with the same counting as in Fig. 3.

We also plot the entanglement spectrum on the cylinder, Fig. 7.
Because we use the ground-state of the V 1 pseudopotential Hamil-
tonian, the entanglement spectrum only contains a conformal
branch, but is otherwise similar to the spectrum obtained on the
sphere, Fig. 3. In particular, the counting of the conformal levels is
identical in the two cases (up to the limit set by the size of the
sphere). Note that although the true energy spectrum reflects the
presence of two edges on the cylinder, the entanglement spectrum
involves only a single cut and thus probes only a single edge, in
complete analogy with the sphere.

4. Conclusions and discussion

We presented a systematic study of the FQHE at two well-
known and important filling factors, ν = 1/3 and ν = 5/2, for
boundary conditions using our independent implementation of the
DMRG method. In the spherical geometry, the DMRG results for
the ground state energies at filling ν = 1/3 and ν = 5/2 are con-
sistent with the exact diagonalization study for small system sizes,
and the previous DMRG studies [11,14] for large system sizes. For
the largest system size we have reached, the error of the ground
state energy is about 10−4 which is roughly two–three orders of
magnitude below the energy gap to the excited states. The consis-
tency in the extrapolation of the ground-state energy shows that
these system sizes have negligible curvature effects.

The application of the DMRG method to the cylinder geometry
shows much higher efficiency compared to the sphere. Based on
the convergence for the V 1 interaction, we expect the cylinder to
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be the more promising venue for the future applications of DMRG.
Due to the presence of two open edges, the treatment of the full
Coulomb interaction is not as straightforward as in the compact
spherical geometry, and requires special care in defining the con-
fining potential to contain the fluid. One may furthermore expect
various phase transitions as a function of the aspect ratio and the
magnitude of the confining potential relative to e2ε�B . Details of
these studies will be presented elsewhere [15].
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We study the nature of the � ¼ 5=2 quantum Hall state in wide quantum wells under the mixing of

electronic subbands and Landau levels. A general method is introduced to analyze the Moore-Read

Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, under periodic boundary conditions in

a ‘‘quartered’’ Brillouin zone scheme containing both even and odd numbers of electrons. By examining

the rotational quantum numbers on the torus, we show spontaneous breaking of the particle-hole

symmetry can be observed in finite-size systems. In the presence of electronic-subband and Landau-

level mixing, the particle-hole symmetry is broken in such a way that the anti-Pfaffian state is

unambiguously favored, and becomes more robust in the vicinity of a transition to the compressible

phase, in agreement with recent experiments.

DOI: 10.1103/PhysRevLett.109.266806 PACS numbers: 73.43.Cd, 63.20.Pw, 63.22.�m

The quantized Hall state at the � ¼ 5=2 Landau level
(LL) filling factor [1] has been the subject of significant
recent interest due to a strong suspicion, with considerable
support from the numerical calculations [2–5], that it is
described by the Moore-Read ‘‘Pfaffian’’ (Pf) state [6].
This incompressible quantum fluid, which is a prototype
state for non-Abelian exchange statistics [6,7], is found
in the vicinity of the phase boundary with compressible
phases characterized by stripe order and Fermi-liquid-like
behavior [3]. Generally, the incompressible fluids of the
fractional quantized Hall effect [8–10] possess protected
gapless edge modes, and gapped bulk excitations which
carry fractional charge and obey fractional statistics
[6,11,12]. These attributes—quantization, fractionaliza-
tion, and protection—represent the hallmark of topological
phases [13]. In the case of non-Abelian states, the degen-
eracy of the quasiparticle states may be suitable to imple-
ment a ‘‘fault-tolerant’’ quantum computation [14].

The Moore-Read state, though defined in a half-filled
LL, is not invariant under the particle-hole (p-h) trans-
formation, and therefore its p-h conjugate partner—the
‘‘anti-Pfaffian’’ (APf) state [15]—emerged as a competing
candidate to describe the ground state of � ¼ 5=2. In
experiment, either the Pf or APf state is realized, depending
on the explicit form of the p-h symmetry-breaking fields
(e.g., 3-body interaction [16] or more generally LL mixing
[17–19]). In the absence of those, the true ground state is
selected by spontaneous p-h symmetry breaking. A similar
outcome should be reproducible in finite-size calculations,
which have been known to capture remarkably well the
fundamental aspects of fractional quantized Hall effect
physics [10]. However, for technical reasons (see below),
this never occurs for an even number of electrons, which
has been the assumption of most studies to date [20,21].

Although the Pf and APf states have identical non-
Abelian braiding properties in the bulk, they represent

distinct phases of matter as reflected, e.g., in their edge
physics [22,23]—a signature of the underlying topological
order [13]. A number of recent experiments have focused
on measuring the quasiparticle charge at � ¼ 5=2 [24–26],
and on detecting the non-Abelian statistics using edge-
tunneling interferometry [27,28]. These probes, while not
definitive in all regards, are consistent with the non-
Abelian statistics, and have provided additional insights
into the nature of the ground state. In particular, the dis-
covery of the counterpropagating mode [29] is consistent
only with the APf state.
At the same time, other experiments have probed

the stability of � ¼ 5=2 by driving the transitions from
the incompressible to the compressible phases such as the
Fermi liquid-like state [30,31], and the anisotropic, stripe,
and nematic phases [3,32]. This was accomplished by
tilting the magnetic field [32], and by tuning the density
in wide quantum well (WQW) samples [33,34]. In the
latter case, it was recently noticed [34] that the quantized
� ¼ 5=2 state becomes stronger in the vicinity of a tran-
sition to the Fermi liquid-like phase.
In this Letter we introduce a new method to study the

physics of the Moore-Read state and its p-h conjugate.
We consider a compact torus geometry [35,36] with a
quartered many-body Brillouin zone (BZ) for both even
and odd numbers of electrons Ne. Regardless of the parity
of Ne, for the Moore-Read 3-body Hamiltonian we obtain
a zero-energy and zero-momentum ground state, with
bosonic (‘‘magnetoroton’’) and fermionic (‘‘neutral fer-
mion’’ [37]) collective modes at fixed Ne. This is in stark
contrast, e.g., to the spherical geometry [38], where the
zero-energy ground state only exists for even Ne, and the
fermionic mode can only be obtained for odd Ne [37].
The essential physical similarity of the even and odd Ne

cases on the torus enables us to restrict to the latter case
when Pf and APf states can be further classified by their
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invariance under discrete rotations in high symmetry
Bravais lattices. For special odd values of Ne we recover
spontaneous p-h symmetry breaking in finite systems as
Pf and APf states acquire different angular momenta com-
patible with periodic boundary conditions (PBCs). This
formalism is then applied to a realistic model of a wide
quantum well with two subbands, S1 (symmetric subband
with the n ¼ 1 LL form factor) and A0 (antisymmetric
subband with the n ¼ 0 LL form factor), where p-h sym-
metry is broken explicitly by the mixing of electronic
subbands and LLs as a result of tuning the density [34].
We identify the APf state as the one describing the ground
state in these circumstances, and show that its gap incre-
ases prior to the transition to the compressible phase, in
agreement with experiments [34].

We consider Ne electrons in a fundamental domain
L1 �L2 subject to magnetic field Bẑ. An operator that
translates a single electron and commutes with the
Hamiltonian is the magnetic translation operator which
obeys a noncommutative algebra, leading to the quantiza-
tion of the flux N� threading the system, ẑ � ðL1 �L2Þ ¼
2�‘2BN�, where ‘B ¼ ffiffiffiffiffiffiffiffiffiffiffi

@=eB
p

is the magnetic length. In a
many-body system, symmetry classification is achieved by
the help of the emergent many-body translation operators
[36], which can be factorized into a center of mass and a
relative part. The action of the former produces a character-
istic degeneracy equal to q, where Ne ¼ pN, N� ¼ qN,
and N is canonically assumed to be the greatest common
divisor of Ne and N� such that p and q are coprime. The
eigenvalue of the relative translation operator is a many-
body momentum k [36] that fully classifies the spectrum in
the BZ N � N zone, with the exception of high symmetry
points where discrete symmetries may produce additional
degeneracies, as we explain below.

For the outlined algebraic derivation it is not essential
that p, q be coprime numbers. In fact, enforcing this
condition might hide the important physical features of
a fractional quantum Hall (FQH) state. This occurs for
the Moore-Read state which possesses a pairing structure
revealed in its fundamental root pattern 110011001100. . .,
that defines the clustering properties on genus-0 surfaces
[39]. The corresponding filling factor � ¼ 1=2 should be
viewed as � ¼ 2=4 because the root pattern admits two
particles in each four consecutive orbitals. To incorporate
this clustering condition, we need to map the wave vectors
onto a quartered BZ ~N � ~N zone [40], which can be
viewed as a result of ‘‘folding’’ the original N � N zone
[see Fig. 1(a)]. For N even, the zone corner and midpoints
of the zone sides all map to a k ¼ 0 point [red points in
Fig. 1(a)]. These wave vectors also define the sectors of
the Hilbert spacewhere a threefold degenerateMoore-Read
ground state is obtained [6]. The Moore-Read parent
Hamiltonian also possesses a zero-energy ground state for
an odd number of electrons, which corresponds to a single
unpaired electron with k ¼ 0 [7]. In this case, the folding

still ‘‘compactifies’’ the original BZ, but the k ¼ 0 sector
remains invariant under the folding. Thus, in the quartered
BZ, the ground states of the Moore-Read Hamiltonian are
invariably obtained in thek ¼ 0 sector of the Hilbert space,
as they should be for an incompressible liquid, and the
threefold degenerate states are allowed to mix.
Advantages of the quartered BZ become obvious

when the full energy spectrum of the Moore-Read
3-body Hamiltonian H3b ¼ �P

i<j<kSijk½r4
ir2

j�ðri � rjÞ
�ðrj � rkÞ� is studied as a function of momentum [see

Fig. 1(b)]. Using the conventional definition of the BZ,
there is no obvious structure in the low-lying excitation
spectrum of the Moore-Read 3-body Hamiltonian.
However, if the same spectrum is replotted in a quartered
zone, it reveals a bosonic mode (the magnetoroton) and a
fermionic mode (neutral fermion) [37]. Because of the BZ
folding, in the even case (Ne ¼ 14) we obtain three copies
of the bosonic mode and a single copy of the fermionic
one. In the odd case (Ne ¼ 13), the multiplicities are
interchanged [40]. Contrary to spherical geometry where
spectra for different particle numbers have to be super-
imposed on the same plot to resolve the two modes, on the
torus both modes are obtained for a fixed system size Ne.
An additional advantage of PBCs is that one can access a
quasicontinuum of the momenta k, as opposed to a much
smaller subset of angular momenta on the sphere. This is
achieved by adiabatic variation of the shape of the unit cell
in terms of its aspect ratio jL1j=jL2j or the angle between
vectors L1 and L2, subject to a constraint that the area
jL1 �L2j remains fixed and equal to 2�‘2BN�. In Fig. 1
we set the ratio equal to unity, and vary the angle between
the square and the hexagon.
Using the quartered BZ we can also directly address the

phase transition between the Moore-Read state and the
composite Fermi liquid (CFL). Spherical geometry is in-
adequate for this purpose because the two states have
different ‘‘shifts’’ [41]. To capture the transition, we study
the energy spectrum of a Hamiltonian that interpolates
between the model 3-body Hamiltonian and the n ¼ 0 LL
Coulomb interaction, �H3b þ ð1� �ÞHC. In a quartered

FIG. 1 (color online). (a) An example of a squared many-body
BZ (open circles), and the folding to a quartered BZ (black
circles) for even Ne. Red circles denote sectors that map to the
zero momentum k ¼ 0 sector. (b) Energy spectrum of the
Moore-Read 3-body Hamiltonian in a quartered BZ for
Ne ¼ 14 and Ne ¼ 13 (inset) particles.
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BZ, the spectra for even and odd Ne are strikingly similar,
and the data in Fig. 2 correspond to Ne ¼ 11 which is also
studied in a different model below. The neutral fermion and
the magnetoroton modes become significantly distorted
and difficult to identify for � < 1; nevertheless, one can
track their evolution until the eventual collapse of the gap
for � ! 0. At this point the ground state moves from k ¼ 0
to some k� ‘�1

B , and the system undergoes a second-order
transition to the compressible phase. In contrast, for the
n ¼ 1 LL Coulomb interaction, a similar calculation
does not lead to the gap closing for any �. Adiabatic
variation of PBCs also enables one to calculate, e.g., the
Hall viscosity, which is expected to diverge at the � ¼ 0
point. The regime of small � might display an interesting
crossover between type-I and type-II superconducting
behavior [42].

In order to address the competition between the Pf and
APf states for the generic (2-body) interactions, it is essen-
tial to consider all possible symmetries of the Hamiltonian
at half filling. In particular, the two symmetries of interest
here are the p-h conjugation �ph, and discrete rotations

compatible with PBCs [43,44]. The first is represented by
an antiunitary operator formally similar to the well-known
case of the time-reversal operator [45]. In the presence of
both symmetries, extra (isolated) degeneracies may occur
which belong to conjugate or corepresentations of discrete
rotations [36,45]. In the case of even Ne, rotational sym-
metry does not lead to any additional quantum numbers for
the ground state at � ¼ 5=2. For some k ¼ 0 excited
states, �2ph ¼ �1 and these, following Kramer’s theorem,

are all doubly degenerate. On the other hand, for odd Ne

and k ¼ 0, �2ph ¼ 1 and only isolated degeneracies are

possible. The ground state in this case is either unique or
a doublet. For any geometry other than hexagonal, the
ground state is a singlet. For hexagonal geometry, the
ground state is also a singlet if the number of electrons is
given by Ne ¼ 6mþ 1, where m 2 Z. For other Ne, the
ground state is a doublet [46].

To understand these trends for generic Hamiltonians it is
helpful to consider the rotational properties of Pf and APf
model states. On the torus with n-fold point symmetry, the
angular momentum of the APf state, measured relative to
the Pf state, is given by �M ¼ 2NpairðmodnÞ, where Npair

is the number of paired electrons. For n ¼ 2 or n ¼ 4
(square or lower symmetry), �M ¼ 0 since Npair is always

even. Thus there is no symmetry reason for the Pf and APf
states (being the eigenstates of different Hamiltonians) to
be orthogonal. On the other hand, for n ¼ 6, �M � 0 if
Ne � 6mþ 1, and the two states are necessarily orthogo-
nal. It is under precisely these conditions that the doublet
ground states are observed. These seemingly unrelated
events are another confirmation that in the case of the
Coulomb interactions the system is in the Moore-Read
phase. There are always doublets present in the spectrum,
but they describe the ground state only in cases where the
Pf and APf states have �M � 0. Evidently, the rotational
quantum numbers of the doublet match those of the Pf and
APf states. There will be no spontaneous breaking of the
p-h symmetry in the absence of such degeneracies until the
thermodynamic limit is reached. Achieving this property
for finite sizes makes the comparison of the exact ground
state with the Pf or APf state much cleaner than the case of
even Ne, for example. As we show below, LL mixing splits
the doublets in such a way that each member has a finite
overlap with either the Pf or APf state, while having zero
overlap with the other.
We illustrate the ideas above on a model of the WQW in

which electrons can populate two ‘‘active’’ subbands with
LL indices n ¼ 0 and n ¼ 1 [47]. We refer to these levels
as A0 and S1, where S, A stands for the wave function in
the perpendicular z 2 ½0; w� direction, w being the width
of the well. For simplicity, we assume reflection symmetry
around z ¼ w=2, and the two subbands are given by sym-
metric or antisymmetric infinite square well wave func-

tions ’S ¼
ffiffiffiffiffiffiffiffiffi

2=w
p

sinð�z=wÞ, ’A ¼ ffiffiffiffiffiffiffiffiffi

2=w
p

sinð2�z=wÞ.
The remaining subbands are either completely filled or
completely empty, and excitations to them are forbidden.
The energy splitting between the subbands, �SAS, can be
realistically tuned by electrostatic gates [34], but in our
calculation it is assumed to be an independent parameter.
This model is expected to provide a realistic description
of a number of recent experiments on the WQWs where
FQH states were probed by tuning the effective interaction
via subband and LL mixing. In particular, we focus on
� ¼ 5=2 considering a half-filled S1 level mixing with
an A0 level. It is assumed that the electron spin is fully
polarized [2,48–51].
In Fig. 3(a) we plot the neutral gap and mean value of

the pseudospin operator Sz ¼ 1
2

P

iðcyS;icS;i � cyA;icA;iÞ in the
ground state for Ne ¼ 10 particles. We set w=‘B ¼ 2:7,
which roughly agrees with the experimental width [32,34].
When �SAS is large, excitations to the A0 level are costly,
and the ground state is fully polarized in the S1 level and it
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FIG. 2 (color online). Transition between the Moore-Read and
the composite Fermi liquid state. Energy spectrum of �H3b þ
ð1� �ÞHC is plotted as a function of momentum for � ¼ 0:2
(left) and � ¼ 0 (right), illustrating the collapse of the neutral
mode around k� ‘�1

B . Inset shows the spectrum for pure H3b.
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is of the same nature as the one that is usually observed in
wide samples. As �SAS becomes smaller, the difference of
n ¼ 0 and n ¼ 1 LL form factors makes it increasingly
favorable to promote particles into the A0 level and reduce
the correlation energy. Eventually, all particles migrate to
the A0 subband, where they form a composite Fermi liquid;
as shown in Fig. 3(a), this happens slightly before the
actual coincidence of the two subbands. The steplike
behavior of hSzi suggests the transition to be very sharp,
and we find it to be more affected by the difference in LL
(rather than the subband) form factors. Right before the
transition, excitations from S1 to A0 lead to an increase of
the neutral gap of the system [34]. We believe the increase
of the gap to be an intrinsic feature of the system, but
limitations on the system sizes attainable by exact diago-
nalization prevent us from performing a proper finite-size
scaling of the gap.

Finally, we investigate the nature of the ground state
before the transition to the compressible phase. In Fig. 3(b)
we compare the Ne ¼ 10 electron ground state (projected
to the S1 level) with the Pf and APf wave functions defined
on a hexagonal unit cell. At large �SAS, the p-h symmetry
is preserved, and the Pf and APf states have identical
overlaps with the exact state. In the transition region, p-h
symmetry is lifted, and the APf overlap is growing
while that of the Pf state is decreasing. However, the Pf
and APf states have a significant overlap with each other
for Ne ¼ 10 particles [19]. To avoid this problem, we
instead consider the Ne ¼ 11 case, when discrete symme-
try forces the Pf and APf states to be orthogonal. At the
same time, the Coulomb ground state, which is exactly
twofold degenerate for infinite �SAS, splits when �SAS is
reduced [see Fig. 3(c)]. The size of the full Hilbert space
for Ne ¼ 11 is very large to be directly diagonalized, so we
limit the number of excitations to the higher subband [19].
The convergence is found to be rapid, and the essential
properties of the ground state and the transition point can
be captured accurately by allowing for not more than three
electrons in a higher subband. The effect of a small amount

of symmetry-breaking by �SAS is sufficient to select the
APf state with 95% overlap with the ground state, while the
Pf overlap drops to zero [see Fig. 3(d)]. The APf overlap
can be increased further by varying the V1 pseudopotential
in a ‘‘SU(2)-invariant’’ manner [19] [see Fig. 3(d), inset].
These results provide unambiguous evidence that the
ground state of the WQW is described by the APf state.
In summary, we have demonstrated that PBCs for spe-

cial finite systems with an appropriately defined BZ are
essential for the study of the non-Abelian FQH states, their
collective excitation spectra, and the effects of particle-
hole symmetry breaking in WQWs under LL and subband
mixing. Although we have presented results for the case
of S1 and A0 mixing, the more common case of S1 and S2
mixing (applicable to narrower quantum well samples)
similarly selects the APf state to describe the ground state.
This conclusion is not affected by mixing in even higher
LLs (S3 and beyond). The sharpness of the transition and
the ‘‘population inversion’’ illustrated in Fig. 3 might be
relevant for the emergence of lowest LL physics under
extreme tilting of the magnetic field [32].
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Matrix product states for trial quantum Hall states
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We obtain an exact matrix-product-state (MPS) representation of a large series of fractional quantum Hall
(FQH) states in various geometries of genus 0. The states in question include all paired k = 2 Jack polynomials,
such as the Moore-Read and Gaffnian states, as well as the Read-Rezayi k = 3 state. We also outline the
procedures through which the MPSs of other model FQH states can be obtained, provided their wave function
can be written as a correlator in a 1 + 1 conformal field theory (CFT). The auxiliary Hilbert space of the MPS,
which gives the counting of the entanglement spectrum, is then simply the Hilbert space of the underlying
CFT. This formalism enlightens the link between entanglement spectrum and edge modes. Properties of model
wave functions such as the thin-torus root partitions and squeezing are recast in the MPS form, and numerical
benchmarks for the accuracy of the new MPS prescription in various geometries are provided.

DOI: 10.1103/PhysRevB.87.161112 PACS number(s): 73.43.−f, 05.10.Cc, 11.25.Hf, 71.27.+a

The understanding and simulation of quantum many-body
states in one space dimension has experienced revolutionary
progress with the advent of the density matrix renormalization
group.1 In modern language, this method can be viewed as a
variational optimization over the set of matrix product states
(MPSs).2,3 Indeed, gapped one-dimensional systems (which
generally have low entanglement) can be very efficiently sim-
ulated by expressing the weights of many-body noninteracting
states in an interacting wave function as products of finite-
dimensional matrices B[i]mi associated with each occupied
(mi = 1) or unoccupied (mi = 0) site i (or spin): |ψ〉 =∑

{mi } PLB[1]m1B[2]m2 . . . B[Ns]mNs PR|m1,m2, . . . mNs
〉. PL,

PR are projectors into the state at the end of the chain (absent
for periodic boundary conditions or the infinite chain). As long
as the “bond dimension” χ of the matrix B[i] is less than 2i ,
this provides a more economical representation of the state.
Generic 1D gapped systems can be approximated by finite χ .4

Critical systems however require an MPS with an infinite bond
dimension.5,6

Due to their perimeter law entanglement, 2D systems (such
as the fractional quantum Hall effect) are harder to simulate
by MPSs.7–10 In a recent paper11 exploiting the fact that
fractional quantum Hall (FHQ) model states can be written
as correlators of primary fields in conformal field theories
(CFTs), an MPS expression was obtained for continuum
Laughlin12 and Moore-Read13 states on infinite cylinders. The
bond dimension χ grows with the number of particles but
scales with the circumference L of the cylinder rather than its
area. Approximate expressions can be obtained by truncating
χ of the exact MPS. A key ingredient of Ref. 11 is the
expansion of operators in a free basis (boson for Laughlin
and Majorana plus boson for Moore-Read), which cannot
be easily implemented in the more complicated, interacting
bases of other FQH states such as the Read-Rezayi series.14

The exciting possibility is that if all model FQH states could
be written in MPS form, current numerical barriers could be
broken and properties such as correlation functions would be
computable for large sizes. This is supported by the continuous
MPS proposed in Ref. 15.

In this Rapid Communication we provide a generic pre-
scription that enables us to obtain the unnormalized (thin an-
nulus) MPS form of a model FQH state which is the correlator
of a primary field in a CFT. We explicitly construct the MPS for
the (k,r) = (2,r) paired Jack polynomial states16,17 (r = 2,3
being the Moore-Read and Gaffnian18 wave functions), as well
as for (k,r) = (3,2) corresponding to the Read-Rezayi Z3 wave
function.14 Several key ingredients and subtleties, such as the
presence of non-orthonormal bases, null vectors, and intricate
operator commutation relations, are discussed. We then show
how to extend the MPS description to different manifolds such
as the cylinder, sphere, and plane, and how several known
properties of the CFT wave functions such as squeezing arise
naturally in this description. We then generate several [the
(k,r) = (2,2),(2,3),(2,6),(3,2)] of these states numerically to
verify our MPS, and provide numerical benchmarks to attest
to the accuracy of the MPS on the cylinder19 and sphere.20

A large class of FQH ground states are described by the
many-point correlation function of an electron operator field
V (z) in a chiral 1 + 1 CFT:13

〈Ne

√
q|V (zNe

) . . . V (z1)|0〉 =
∑

λ

cλmλ(z1, . . . ,zNe
) (1)

where mλ are monomials (or Slaters for fermions) of angular
momentum λ = (λ1, . . . ,λNe

). Ne is the number of electrons,
and the filling fraction is ν = 1/q (note that q will not always
be integer). The state 〈Ne

√
q| describes the background charge

at infinity. The coefficient cλ can be obtained by contour
integrals. Upon inserting a complete basis of states on the
left-hand side of (1) we get

cλ =
∑
{αj }

Ne∏
j=1

1

2πi

∮
dzj

z
λj +1
j

〈αj |V (zj )|αj−1〉. (2)

The U (1) charge of |α0〉,|αNe
〉 is 0,Ne

√
q, respectively. This

is an infinite, site (Landau level orbital momentum) dependent
MPS |�〉 = ∑

{mi }(B̃
m1 [1] . . . B̃mN	 [N	])Ne

√
q,0|m1 . . . mN	

〉,
with the matrices for an orbital j being, in the limit
of an annulus with a very large radius (the so-called
“conformal limit”) 〈α′|B̃0[j ]|α〉 = δα′,α and 〈α′|B̃1[j ]|α〉 =

161112-11098-0121/2013/87(16)/161112(5) ©2013 American Physical Society
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δ�α′ ,�α+h+j 〈α′|V (1)|α〉. h is the conformal dimension of V (z),
and higher occupation number (of occupation m) matrices are
simply B̃m[j ] = (B̃1[j ])m/

√
m!.

To obtain a site-independent MPS, we need to spread
the background charge uniformly over the droplet. We make
explicit the dependence on the U (1) charge by writing
states |α〉 = |Q〉 ⊗ |α̃〉, where Q is the U (1) charge and α̃

encodes the rest (descendant, neutral sector). As the matrix
element 〈α̃′|V (1)|α̃〉 does not depend on charge Q, we are
free to modify the distribution of the background charge.
Spreading uniformly the background charge amounts to an
insertion of a U (1) background charge −1/

√
q between

each orbital. This yields a site-independent MPS with Bm =
e−i/2

√
qϕ0V m

0 e−i/2
√

qϕ0/
√

m!, where ϕ0 is the U (1) boson zero
mode.

〈α′|V0|α〉 = 1

2πi

∮
dz

z
〈α′|V (z)|α〉, (3)

where α and α′ are the basis of descendants in the CFT (not free
fermions as in Ref. 11). Our expression further differs from the
one in Ref. 11 by time-evolution terms U (δτ ) = exp(−δτL0),
which give the cylinder normalization. Conformal invariance
yields

〈α′|V (z)|α〉 = z�α′−�α−h〈α′|V (1)|α〉, (4)

where h,�α are the conformal dimensions of the primary
field V (z) and of the descendent |α〉. The matrix elements
of V0 are then related to the CFT 3-point function 〈α′|V0|α〉 =
δ�α′ ,�α+h〈α′|V (1)|α〉. The “electron operator” is a primary
field of the tensor product form V (z) = 	(z) ⊗ : ei

√
qϕ(z) :,

where 	(z) lives in the so-called neutral |a〉 conformal
field theory CFTn factorized from the U (1) sector |b〉.
In this basis |α〉 = |a〉 ⊗ |b〉 the 3-point function factor-
izes as 〈a′; b′|V (1)|a; b〉 = δ�a′+�b′ ,�a+�b+h〈a′|	(1)|a〉 〈b′| :
eiβϕ(1) : |b〉 where h = q2/2 + h	 is the conformal dimension
of V (z). Note the delta function in the total conformal
dimension of the field and not separately in the neutral and
U (1) parts. In the following we explain how to obtain the
neutral, interacting CFT matrix elements for the case of (k,r)
Jacks for k = 2 and k = 3.

First, we reevaluate the U (1) matrix elements in a way easily
generalizable to non-free-field CFT and in a basis where they
are real:

ϕ(w) = ϕ0 − ia0 ln(w) + i
∑
n�=0

1

n
anw

−n, (5)

where an are the bosonic modes obeying the Heisenberg
algebra [an,am] = nδn+m,0. a0 is the zero mode of the
conserved current and measures the U (1) charge, while ϕ0

is its canonical conjugate ([ϕ0,a0] = i). Primary fields are the
vertex operators Vβ(z) =: eiβϕ(z) : with conformal dimension
β2/2. The corresponding highest weight state |β〉 = Vβ(0)|0〉,
which is annihilated by all an>0, has U (1) charge β. Since we
defined the U (1) charge to be a0, the electric charge is 1√

q
a0.

Descendants are obtained by acting on |β〉 with the lowering
operators a

†
n = a−n, n > 0. They are labeled by a partition

μ = {μj }, with μ1 � μ2 � · · · � μn > 0:

|Q,μ〉 =
∏
j

a−μj
|Q〉, a0|Q,μ〉 = Q|Q,μ〉. (6)

For multiplicities of element j , mj = mj (μ) the norm is

〈Q,μ|Q′,μ′〉 = zμδQ,Q′δμμ′ , zμ =
∏
j

jmj mj !. (7)

The matrix elements of the primary field between the nor-
malized basis of descendants can be computed easily using
the recurrence [am, : eiβϕ(z) :] =: eiβϕ(z) : βzm. They are of the
form

〈Q′,μ′| : eiβϕ(z) : |Q,μ〉 = z|μ′|−|μ|+βQAμ′,μδQ′,Q+β, (8)

which is consistent with Eq. (4) and with charge conservation;
βQ comes from the difference in conformal dimensions
(Q′2 − Q2)/2. With mj = mj (μ) and m′

j = mj (μ′) being the
multiplicities of j in μ and μ′, one finds

Aμ′,μ =
∏
j�1

m′
j∑

r=0

mj∑
s=0

(−1)s

r!s!

(
β√
j

)r+s

δm′
j +s,mj +r

√
m′

j !mj !

(mj − s)!
.

(9)

These matrix elements are real (useful for numerics) with the
symmetry Aμ,μ′(β) = Aμ′,μ(−β).

We now move to the neutral part, starting with the case
of (k,r) = (2,r) Jacks. The CFT can be factorized as a U (1)
free boson times a neutral minimal model M(3,2 + r).21 The
underlying symmetry of this minimal model is the Virasoro
algebra

[Ln,Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m,0 (10)

with central charge c = 1 − 6(g − 1)2/g, g = 2+r
3 . The elec-

tron operator is V (z) = �(z) : ei
√

2h�+mϕ(z). �(z) = 	(1|2)(z)
is a primary field in the neutral CFT, with conformal dimension
h� kept generic. Like in the U (1) case, the Hilbert space of the
neutral CFT is made of the primary fields |�〉, eigenstates (with
eigenvalue �) of L0 and annihilated by lowering operators
Ln,n > 0, and their descendants, indexed by a partition λ =
(λ1,λ2, · · · ,λn):

|�,λ〉 = L−λ1L−λ2 · · · L−λn
|�〉, (11)

also eigenstates of L0 with eigenvalues � + |λ|, where |λ| =∑
i λi . Using the Virasoro algebra (10) and L

†
n = L−n, we can

compute any overlap between descendants. While descendants
with different |λ| are clearly orthogonal (having different
L0 eigenvalues), a major difference from the U (1) case is
that the descendants (11) are generically independent but not
orthogonal. Hence, at each level |λ|, we have to numerically
build an orthonormal basis.

Another issue is that for nonunitary CFTs (such as the one
underlying the Gaffnian) some descendants have a negative
norm. These states have to be included, and the sign of their
norm can be handled by an extra diagonal matrix D acting on
the right of the MPS matrices: Bm → BmD.

A final major difference from the U (1) case is the presence
of null vectors, states of vanishing norm under the scalar
product defined by L

†
n = L−n. This is a reflection of the fact

that for special values of � (which include all the interesting
cases), some states in (11) are not independent. CFT characters
count the number of independent descendants at each level,
from which one can deduce the number of null vectors. Our
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numerical procedure for computing overlaps reproduces this
counting. At each level we need to detect and drop all null
vectors before performing the Gram-Schmidt process.

To compute matrix elements 〈�′,λ′|�(1)|�,λ〉 between
descendants, it is convenient to work in the overcomplete (due
to null vectors) “basis” (11) and then transform back to the
orthonormal basis. The level-0 matrix element 〈�′|�(1)|�〉
is simply the OPE structure constant D�′,h�,�, known in the
closed form for minimal models, and gives an overall prefactor
which can be ignored. Others can be computed using a method
similar to that for the U (1) CFT; for all m ∈ Z,

[Lm − L0,	
(h)(1)] = m h 	(h)(1), (12)

where 	(h) is any primary field with a generic conformal
dimension h. Any matrix element can in principle be computed
exactly using this method but to the best of our knowledge there
is no analytical closed formula.

We are now in the position to write down the MPS matrices
for (k = 2,r) Jack states. The state |�,λ; Q,μ〉 = |�,λ〉 ⊗
|Q,μ〉 of an overcomplete “basis” of states in the CFT for
k = 2 Jack states has level (“momentum”) P = |λ| + |μ|,
which serves as the truncation parameter for the MPS. The
matrix elements 〈�′,λ′; Q′,μ′|Bm|�,λ; Q,μ〉 for m = 0,1 are
given by

B0 : δμ,μ′δQ′,Q− 1√
q
δ�,�′ 〈�′,λ′|�,λ〉, (13)

B1 : δ�′+|λ′|+|μ′|+√
qQ,�+|λ|+|μ|+h�+1/2

×〈�′,λ′|�(1)|�,λ〉 δQ′,Q+√
q−1/

√
q Aμ′,μ. (14)

〈�′,λ′|�(1)|�,λ〉 can be computed using the neutral CFT,
then changed to an orthonormal basis. Aμ′,μ is given in (9) for
β = √

q. The values of �,�′ are fixed by the fusion rules of
the electron operator in the neutral sector. For the (k,r) = (2,r)
Jacks, these are � × � = 1, � × 1 = �, which gives rise to
two neutral sectors |x〉 x = 0,1 with conformal dimension
� = xh� and

〈x ′,λ′|�(1)|x,λ〉 = δx+x ′,1〈x ′,λ′|�(1)|x,λ〉. (15)

We have implemented the above MPS numerically and verified
that it exactly reproduces all (k,r) = (2,2),(2,3),(2,6) Jack
states. The P = 0 MPS recovers the thin torus limit22 (root
partition) of these Jacks. The topological sector (responsible
for the ground-state degeneracy) can be fixed by choosing
matrix elements of the product Bm1 . . . B

mNφ between different
primary fields. One can describe quasihole states by inserting
quasihole matrices in the MPS, as was done for Laughin and
Moore-Read states in Ref. 11. Or alternatively, edge states are
obtained by choosing matrix elements involving descendant
states instead of primaries. This means that the MPS formalism
establishes a mapping between edge states and the auxiliary
space, which in turns controls the entanglement spectrum.
In particular the MPS makes transparent the counting of the
orbital entanglement spectrum for such states.23

We now move to the Read-Rezayi Z3 state, exemplified
by the k = 3 Jack polynomial. For k > 2 Jack states, the only
known approach is to deal with a CFT with an enlarged algebra,
the so-called Wk algebra [see Eqs. (44), (45), and (46) of
Ref. 24], which includes a W current of spin 3. This generic
approach, which applies to all (k,r) = (3,r) Jack states,

becomes inefficient for the Z3 Read-Rezayi (RR) state due to
the appearance of an extremely large number of null vectors (at
each level of truncation). The underlying CFT for the k = 3 RR
state is known to be equivalent to the minimal model M(5,6),
the field �1(z) becoming the primary field 	(3|1)(z). This
alternative approach provides a basis in which matrix elements
involve only Virasoro modes Ln. The electron operator is
V (z) =: ei

√
qϕ(z) : ⊗ �1(z) with q = 2/3 + m. The neutral

CFT field 	(3|1) can be split into two chiral fields �1(z), �−1(z)
with conformal dimension hψ = 2/3. Their fusion rules in the
W3 framework are �1 × �1 = �−1,�1 × �−1 = 1. While in
the W3 algebra language |W 〉 = √

3/cW−3 |0〉 is a descendant
of the identity, it is primary (with conformal dimension 3)
with respect to the Virasoro algebra: Ln |W 〉 = 0, n > 0.
Accordingly, in the minimal model M(5,6) framework one
has to work with the fusion rule �1 × �−1 = 1 + W .

The Z3 parafermions have three sectors corresponding to
the Z3 charge of the field x = 0,±1. Working in the Virasoro
algebra, the x = 0 sector contains two primaries |0〉 , |W 〉 as
well as their descendants obtained just like above by the action
of the Virasoro generators L−n, whereas x = ±1 are made
of |ψ±1〉 and their descendants. The matrix element between
descendants 〈�′,λ′|�1(1)|�,λ〉 vanishes unless x ′ = x + 1
mod 3. The matrix elements we need are 〈�1,λ

′|�1(1)|0,λ〉,
〈�1,λ

′|�1(1)|W,λ〉, 〈�−1,λ
′|�1(1)|�1,λ〉, all others being

obtained from the above by charge conjugation 〈α′|�1(1)|α〉 =
〈C(α)|�1(1)|C(α′)〉, where charge conjugation interchanges
|�±1〉, leaves |0〉 invariant, and flips the sign of |W 〉. Using
Eq. (12), we can compute these matrix elements up to one
coefficient, namely 〈�1| �1(1) |W 〉 / 〈�1| �1(1) |0〉. But this
is simply an OPE structure constant, which is found to be√

26/9.
Once the matrix elements (real, with this normal-

ization) between descendants are known, it is easy
to find the explicit form of the MPS B matri-
ces for the RR state, 〈�′,λ′; Q′,μ′|B0|�,λ; Q,μ〉 and
〈�′,λ′; Q′,μ′|B1|�,λ; Q,μ〉:

B0 : δμ,μ′δQ′,Q−1/
√

q〈�′,λ′|�,λ〉, (16)

B1 : δ�′+|λ′|+|μ′|+√
qQ,�+|λ|+|μ|+h�+1/2

×〈�′,λ′|�1(1)|�,λ〉 δQ′,Q+√
q−1/

√
q Aμ′,μ, (17)

with h� = 2/3. Aμ′,μ is given in (9) for β = √
q. λ = {λi} is a

partition of descendants of all four primary fields (W included)
in the theory. As before, P = |λ| + |μ| is the truncation
parameter for the MPS. As before the P = 0 MPS recovers
the root partition . . . 10m−110m−110m+110m−110m−11, which
is the thin-torus limit of the RR state multiplied by m Jastrow
factors.

The obtained MPS description of the Jacks (un-normalized
wave functions on the annulus) is trivially transmuted to other
geometries: For the sphere and the infinite plane, we obtain
a site-dependent MPS with Bmi [i] = Bmi /N (i), where Ni is
the norm of the single particle orbital zi in the respective
geometries. For the cylinder, a site-independent MPS is
possible by introducing a time evolution e−2πL0/L, with L

denoting the circumference of the cylinder. The well-known
squeezing properties of FQH states easily follow from the
MPS description.
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ν

Ψ
Ψ

FIG. 1. (Color online) Growth of the auxiliary Hilbert space and
convergence criteria for different types of boundary conditions. Upper
panel: Dimension of the auxiliary space for the Laughlin, Moore-
Read, Gaffnian, and Read-Rezayi Z3 state as a function of Pmax.
Lower panel: Quantum distance between the exact Read-Rezayi Z3

and the truncated MPS state on the sphere (b) and on the cylinder
with aspect ratio 1 (c) as a function of Pmax. Note that for N = 24 and
Pmax = 10, the MPS only gives 40% of the 6.2 × 107 components.
Smaller quantum distances are obtained for Laughlin, Moore-Read,
and Gaffnian (not shown).

So far the MPS description we have provided is exact. For
numerical purposes of approximating a given state, we intro-
duce the truncation level Pmax, which is the maximum allowed
value of P = |λ| + |μ|. Pmax = 0 gives the root partition (thin-
torus limit) of the Jack polynomials and amounts to dropping
all descendants in the CFT Hilbert space. Pmax = 1 gives the
correct weights for all configurations obtained through a single
squeezing of the root partition. Generically, the truncation at
Pmax amounts to restricting the number of any squeezing steps
from the root partition to Pmax. This is also the momentum
quantum number labeling the entanglement spectrum levels.25

Due to the shape of the orbital spectrum, the truncation to a
certain Pmax is expected to be equivalent to keeping the states

with the highest Schmidt weight in the ground state. This
is also related (though not equivalent) to expansions around
the thin cylinder limit,26,27 where the weights of configurations
decrease with the amount of squeezings from the root partition
(equivalent to the exponential decay of correlation functions
in the associated CFT).

In Fig. 1 we provide numerical benchmarks for the accuracy
of approximating the full Jack states by the MPS truncated at
level Pmax. The approximate Laughlin, Moore-Read, Gaffnian,
and Read-Rezayi states have been constructed by MPS B

matrices whose auxiliary Hilbert space dimension grows
as shown in Fig. 1(a). The accuracy of the approximation
is quantified by the overlap of an MPS state with a full
Jack polynomial, and an example of the Read-Rezayi Z3

state is given in Figs. 1(b) and 1(c). We observe that the
approximate MPS state becomes an excellent approximation
of the exact FQH state for relatively low values of Pmax = 10.
Note that the convergence to the exact state on the sphere
[Fig. 1(b)] is strikingly slower than on the cylinder [Fig. 1(c)],
making this a preferred type of boundary condition for DMRG
implementations.28–31

In conclusion, we have provided a method to obtain the
MPS description of FQH model states given by correlators of
the primary fields in a CFT. We have furthermore obtained
the exact MPS form of the (k,r) = (2,r),(3,2) Jack states
(including Moore-Read, Gaffnian, and Read-Rezayi k = 3
state), and compared the approximate MPS (truncated to
a certain Pmax) with the exact states. Comparatively small
values of Pmax were found to be sufficient for obtaining
extremely accurate approximations of these states on the
cylinder, which might have consequences for the improved
DMRG implementations of realistic (Coulomb) Hamiltonians.
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Fractional quantum Hall effect in a tilted magnetic field
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Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 12 May 2013; published 27 June 2013)

We discuss the orbital effect of a tilted magnetic field on the quantum Hall effect in parabolic quantum wells.
Many-body states realized at the fractional 1

3 and 1
2 filling of the second electronic subband are studied using

finite-size exact diagonalization. In both cases, we obtain the phase diagram consisting of a fractional quantum
Hall fluid phase that persists for moderate tilts, and eventually undergoes a direct transition to the stripe phase. It
is shown that tilting of the field probes the geometrical degree of freedom of fractional quantum Hall fluids, and
can be partly related to the effect of band-mass anisotropy.

DOI: 10.1103/PhysRevB.87.245315 PACS number(s): 73.43.Cd, 73.21.Fg, 71.10.Pm

I. INTRODUCTION

When a thin two-dimensional (2D) layer of highly mobile
charge carriers is placed in a perpendicular magnetic field, it
gives rise to a fascinating variety of phases1 that have been the
subject of intensive study over the last three decades.2 Among
the most remarkable of these phases are those that display
an excitation gap, and therefore quantized Hall conductivity
in transport, even when their valence Landau level is only
partially filled.1 This phenomenon, the fractional quantum Hall
effect (FQHE), was soon realized to be a direct manifestation
of the many-body nature of these phases, and a variety
of elaborate theoretical concepts have been put forward to
understand it. These techniques have included, inter alia,
the method of writing down “inspired” first-quantized wave
functions à la Laughlin3 which have been shown to possess
intricate analytical structure,4 the Chern-Simons topological
field theory5 and the conformal field theory,6 composite
fermion theory,7 and of course the explicit microscopic cal-
culations based on exact diagonalization.8 Perhaps somewhat
surprisingly, the last method has been particularly successful
due to the specific nature of the correlations in FQHE
that rapidly quench the finite-size effects as the number
of particles is increased. A most striking example of this
occurs for the fractionally filled ν = 1

3 Laughlin state, where
the essential physical properties (the quantum numbers of
the ground states, the type of collective excitation mode
and its gap) can be identified in systems as small as four
particles. Similarly, composite fermion theory7 in many cases
achieves an astonishing quantitative accuracy in calculations
of the overlaps between the composite-fermion trial wave
functions and the exact ground states of the realistic Coulomb
Hamiltonians.

Because of the synergy of the theoretical approaches
mentioned above, a fairly good agreement between experiment
and theory has been established in a number of cases. The
level of agreement appears to be the best in the lowest Landau
level (LL) defined by the filling factors 0 < ν < 2. In this
range of ν’s, the “hierarchy” theory9–11 and composite-fermion
theory7 account for nearly all of the observed experimental
phenomenology. Because of the high magnetic field, in typical
samples the role of multicomponent degrees of freedom, such
as spin, is not crucial. However, recently FQHE also been
observed in graphene12 where multicomponent degrees of
freedom are known to play a much more subtle role,13 and

agreement between theory and experiment is generally poorer
at this stage.

Another effect that is potentially important is the so-called
“Landau-level mixing.”14,21 In most theoretical descriptions
of a partially filled Landau level, excitations to other Landau
levels are disregarded. This approximation is particularly
desirable in numerics, where the inclusion of multiple Landau
levels leads to an extremely rapid increase of the size of the
Hilbert space. While physically the neglect of LL mixing
appears to be reasonable in the lowest n = 0 LL, recent work14

shows that this approximation is somewhat poor for n = 1 LL.
This is unfortunate because some of the most exciting FQH
states are realized in n = 1 LL, such as the celebrated ν = 5

2
(Ref. 15) and ν = 12

5 (Ref. 16) states that are believed to
possess non-Abelian quasiparticles in the bulk.6,17 In the case
of half filling, LL mixing is the mechanism that breaks the
particle-hole symmetry, and selects one of the two candidate
wave functions proposed for it.6,18–20 More accurate treatment
of LL mixing has inspired some recent work,14,21 but in general
its effects on various filling factors are still poorly understood.

In this paper, we discuss another mechanism that is also
ubiquitous to many FQHE experiments, yet has not been
fully understood theoretically. We consider the so-called
“tilted field” setup22 where, in addition to the perpendicular
component of the magnetic field along the z axis, a parallel
component of the field is introduced along the x axis. The total
magnetic field in that case points along an angle θ with respect
to the vertical axis, which we refer to as the tilt angle. This
technique has been immensely popular in experiment,22–31

e.g., as a probe for spin polarization: to the lowest order,
the only effect of parallel field is to increase the Zeeman
coupling, therefore it distinguishes a polarized ground state
from an unpolarized one. However, this is true only in the
limit of a sample with zero thickness. Since the real samples are
typically a few tens of nanometers thick, and the experiments
are often performed at very large tilt angles reaching 70◦–80◦,
one expects a strong coupling between the tilt and the orbital
motion of electrons. Therefore, the consequences of tilting
could be far more dramatic for the many-body states than it
naively appears. This was vividly illustrated in several recent
experiments.25–31

The remainder of this paper is organized as follows. In
Sec. II, we review the solution of the one-body problem
in a parabolic quantum well subject to a combination of

245315-11098-0121/2013/87(24)/245315(9) ©2013 American Physical Society
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perpendicular and parallel fields. In Sec. III, we derive the
matrix elements of the interaction Hamiltonian adapted for
finite-size studies. In the main Sec. IV, we present the results
of numerical simulations for the fractional fillings 1

3 and 1
2

of one of the excited subbands that was the subject of recent
experiments.28,31 We conclude with the discussion of these
results (Sec. V), pointing out their limitations, connection to
related recent work in the literature, and future directions.

II. ONE-BODY PROBLEM

In this section we review the quantum-mechanical solution
for a single particle inside a parabolic quantum well confined
in a potential U = 1

2m∗ω2
0z

2, with a perpendicular component
of the magnetic field Bzẑ and a parallel (x) component B‖.
This solution was first given in Maan et al.32 (see also Refs. 33
and 34). We consider parabolic confinement for simplicity
since an analytic solution is not possible for square quantum
wells. However, the two models, square and parabolic, are
expected to show the same qualitative features up to some
rescaling of the effective width of the well (see Ref. 35 for
details).

The input parameters are the tilting angle θ , defined by
tan θ = B‖/Bz, and ω0/ωz, where ω0 is the confinement
frequency. We also have ω2

c = ω2
x + ω2

z , i.e., ωz = ωc cos θ ,
ωx = ωc sin θ . We are interested in preserving the filling
factor as the field is tilted, i.e., we assume ωz is constant
(perpendicular field determines the filling factor), and hence
we can work in units �2

0 = h̄/mωz = 1.
The one-body problem is conveniently solved in the Landau

gauge (0,Bzx − B‖z,0), and maps to a sum of two harmonic
oscillators by the rotation in the x ′-z plane, where x ′ ≡ x +
cky/eBz and ky is the momentum along the y axis. The rotation
angle φ is given by

tan 2φ = −2ωxωz

ω2
0 + ω2

x − ω2
z

,

and the frequencies of the two oscillators are given by

ω2
1 = (

ω2
0 + ω2

x

)
sin2 φ + ω2

z cos2 φ + 2ωxωz sin φ cos φ,

ω2
2 = (

ω2
0 + ω2

x

)
cos2 φ + ω2

z sin2 φ − 2ωxωz sin φ cos φ.

These frequencies define two effective magnetic lengths

�2
1 = ωz/ω1, �2

2 = ωz/ω2.

Note that ω1 denotes the frequency of the oscillator with the
coordinate x ′ cos φ − z sin φ. Therefore, when the tilt angle is
zero, ω1 → ωz and �1 → 1, which ensures that the problem
correctly reduces to the situation without the parallel field. For
φ = 0, the parabolic confinement has an effect only on the z

coordinate that couples to the magnetic length �2 which may
be different from �0.

Energy levels of a single particle are thus labeled by (n1,n2)
corresponding to the quantum numbers of the two oscillators.
It is instructive to analyze the first few low-lying levels as a
function of the tilt, as shown in Fig. 1. Energies are quoted in
units of ωz, which is assumed to be constant. In general, the
subbands display a number of crossings as the parallel field is
increased. However, we will focus on the two lowest subbands
(0,0) and (1,0), which are experimentally relevant and do not

cross any other subband or each other. In Fig. 1 we show
energy levels for three choices of confinement ω0/ωz � 1.
These values correspond to higher mobility quantum wells,
which are relevant for FQHE that we study below (in principle,
ω0/ωz < 1 is also possible but those quantum wells typically
have lower mobilities). Note that for very large tilts (60◦
and higher), the levels organize into subbands (n1,0), (n1,1),
(n1,2), etc. In this interesting regime, each of the new emergent
bands represents a continuum of LLs that have collapsed on top
of each other. This strong-mixing regime is difficult to study
theoretically, and the results of this paper are not expected to
hold there. We will further comment on this in Sec. V.

In the Landau gauge with an open boundary condition along
x (cylinder geometry), the single-particle wave functions are
given by

φ00
j (x,y,z) = 1√

bπ�1�2
eiXj yχ�1 (X )χ�2 (Z),

φ10
j (x,y,z) = 1√

2bπ�1�2
H1

(X
�1

)
eiXj yχ�1 (X )χ�2 (Z),

where χ�(x) = exp(−x2/2�2), X ≡ (Xj + x) cos φ − z sin φ,
Z ≡ (Xj + x) sin φ + z cos φ, and H1 is the first Hermite
polynomial. The repeat distance along y is denoted by b and
Xj ≡ 2πj/b, where j is an integer labeling the orbitals. In
order to eliminate edge effects, it is useful to consider a fully
periodic boundary condition, i.e., wrap the cylinder along x

onto a torus. The wave functions in that case are given by

	σσ ′
j (x,y,z) =

∑
k∈Z

φσσ ′
j+kNφ

(x,y,z), (1)

where a is the dimension of torus along x, and the quantization
of flux leads to the constraint ab = 2πNφ (σ,σ ′ label the
subbands). The index j runs from 0 to Nφ − 1. The wave
functions above are written for a rectangular torus; at the cost
of a few extra complications, they can be straightforwardly
generalized to an arbitrary twisted torus, which is needed if
one wishes to study, e.g., a unit cell with highest (hexagonal)
symmetry in the two-dimensional plane.35

III. MANY-BODY HAMILTONIAN

Using the one-body wave functions in Eq. (1), we can
construct the interacting Hamiltonian by computing the matrix
elements36∫

d2r1d
2r2

∫
dz1dz2	

σ1σ
′
1∗

j1
(r1,z1)	

σ2σ
′
2∗

j2
(r2,z2)

×V (r1 − r2,z1 − z2)	
σ3σ

′
3

j3
(r2,z2)	

σ4σ
′
4

j4
(r1,z1), (2)

where r denotes the vector in the x-y plane. As it stands,
Coulomb interaction in Eq. (2) admits all types of scatter-
ing processes from subbands (σ1σ

′
1),(σ2σ

′
2) into subbands

(σ3σ
′
3),(σ4σ

′
4), subject to the momentum conservation [see

Eq. (3) below]. However, as we are mainly interested in
partially filled (0,0) and (1,0) subbands, which become well
separated from other subbands for large values of the con-
finement (see Fig. 1), we will neglect all scattering processes
between different subbands, i.e., retain only σ1 = · · · = σ4

and σ ′
1 = · · · = σ ′

4. This method is analogous to the “lowest
Landau-level projection” commonly used in FQH finite-size
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FIG. 1. (Color online) Energy levels E = (n1 + 1/2)ω1 + (n2 + 1/2)ω2 in units of ωz as a function of tilt angle θ , for several low-lying
subbands (n1,n2) and three choices of the confining potential ω0/ωz = 1,1.3,1.8 (from left to right). Red lines correspond to the subbands
(0,n2), blue lines correspond to (1,n2), green lines correspond to (2,n2). If the confinement is equal to 1, subbands (0,1) and (1,0) are degenerate,
as expected.

studies.2 We expect this approximation to become increasingly
better as the confinement is increased.

To evaluate the matrix element, it is convenient to use the
Fourier transform

V (r1 − r2,z1 − z2) =
∑

q

∫
dqz

1

q2 + q2
z

eiq(r1−r2)eiqz(z1−z2).

Note that this is a Fourier transform of the three-dimensional
(3D) Coulomb potential, but at end we will integrate out qz.
Finally, the torus matrix element for subband (0,0) reads as

Vj1...j4 = δ′
j1+j2,j3+j4

Nφ

′∑
qx= 2πs

a
,qy= 2πt

b

δ′
qy ,Xj1 −Xj4

e−iqx (Xj1 −Xj3 )

× e
− q2

x
2 (�2

1 cos2 φ+�2
2 sin2 φ)− q2

y

2

(
cos2 φ

�2
1

+ sin2 φ

�2
2

)
×

∫
dqz

1

q2
x + q2

y + q2
z

e− 1
2 q2

z (�2
2 cos2 φ+�2

1 sin2 φ)

× eqzqx sin φ cos φ(�2
1−�2

2). (3)

The prime on the delta functions stands for “modulo Nφ”
and the prime on the summation indicates that the q = 0
component has been canceled out by the neutralizing (positive)
backround charge. In the case of the (0,0) subband, the above
matrix element can be analytically further simplified to some
extent, but this is no longer the case when higher subbands are
considered, and one is left with the general expression quoted
in Eq. (3).

The effective matrix element projected to one of the higher
subbands is obtained by multiplying the integrand in Eq. (3) by
an extra form factor |F (q,qz)|2. The computation of this form
factor is straightforward and involves the standard algebra
of Landau-level raising/lowering operators,2 but it quickly
becomes tedious for very high subbands. Here, we quote
the result for the excited subband (0,1) where F (q,qz) is
given by

F 01(q,qz) = 1 − 1

2�2
2

q2
y sin2 φ − 1

2
�2

2(qx sin φ + qz cos φ)2,

and for the (1,0) subband

F 10(q,qz) = 1 − 1
2

(
�2

1q
2
x + q2

y/�
2
1

)
cos2 φ

− 1
2�2

1qz sin φ(−2qx cos φ + qz sin φ).

Altogether, the matrix elements have a somewhat complicated
form, but all the intermediate integrals/sums converge rapidly,
hence can be straightforwardly evaluated in practice. There-
fore, one can follow the standard approach of diagonalizing
the many-body Hamiltonian in a basis of periodic orbitals on
the surface of the torus.37 To reduce the computational cost,
it is desirable to use invariance under magnetic translations to
block-reduce the Hamiltonian. This formalism was first given
in Ref. 37 (see Refs. 38 and 39 for pedagogical reviews).

Note that the form of the Hamiltonian (3) it is clear that the
parallel field explicitly builds in anisotropy in the problem: the
components qx and qy in the Gaussian factor are coupled to
different effective magnetic lengths. This can be understood
semiclassically: in a purely perpendicular field, the cyclotron
orbits of an electron are circles. When the field is tilted,
electrons orbit around the tilted axis. Due to the confinement
of electrons to the 2D layer, the true shape of their orbits is
a projection of these circles to the 2D plane, i.e., their shape
becomes elliptical.
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FIG. 2. (Color online) Energy spectrum for N = 10 particles at
filling 1

3 of the subband (1,0) as a function of tilt angle (measured
in degrees). Inset shows the same spectrum but plotted relative to
the ground state at each tilt angle, which represents the neutral gap
of the system as a function of tilt. Energy levels belonging to k = 0
momentum sectors are shown in green color.
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FIG. 3. (Color online) Guiding-center structure factor for N = 10 particles at ν = 1
3 filling and tilt angle zero, 30◦ and 60◦ (left to right).

The state at the largest tilt angle has charge-density order reflected in two sharp peaks, while for two smaller tilt angles the ground state
is a liquid.

IV. RESULTS

In this section, we present the results of exact diagonaliza-
tion of the Hamiltonian (3) for a finite number of electrons
in a toroidal geometry. This choice of boundary condition is
dictated by two requirements: (i) compatibility of the Landau
gauge with the presence of a parallel field, and (ii) the absence
of open boundaries which avoids the complications due to the
edge physics. The presence of parallel field does not affect the
standard symmetry classification, as we mentioned in Sec. III,
and Haldane’s many-body momentum37 can be used to label
the states. We will consider hexagonal unit cells, and focus on
partial fillings 1

3 and 1
2 of the subband (1,0). This corresponds

to filling factors ν = 7
3 and ν = 5

2 which have been the subject
of recent experimental studies.28,29,31 Also, for simplicity we
fix ω0/ωz = 1.3, which roughly corresponds to the sample
design in Ref. 31. (The main conclusions do not depend on
the precise value of this ratio.) Note that in the simulations
presented here we neglect the spin of the electrons, and only
concentrate on the orbital effects of the tilt because the ground
states at ν = 7

3 and ν = 5
2 are believed to be polarized.40,41

In Fig. 2, we show the energy spectrum of N = 10 particles
at filling 1

3 of the subband (1,0) as a function of tilt angle
(measured in degrees). Inset shows the same spectrum but
plotted relative to the ground state at each tilt angle. In other
words, the inset illustrates the behavior of the neutral gap
of the system as a function of tilt (in units of e2/ε�0). Note
that the experimentally measured gaps in transport correspond
to the so-called “charge” gaps, which are significantly harder
to compute in the periodic geometry (for the purpose of
computing charge gaps, sphere geometry has been used, almost
universally, in the literature7).

The evolution depicted in Fig. 2 suggests that ν = 7
3 is

fairly robust for small tilt angles (up to 30◦–40◦). The neutral

gap even appears to increase for small tilt angles up to 10◦,
however, a careful extrapolation of the gap as a function of
1/N would be needed to firmly conclude whether the state
becomes enhanced for small tilt as some of the experiments
seemed to indicate.29 Beyond 40◦, the ground-state energy
sharply rises, and states from different k sectors join to
form a quasidegenerate ground-state manifold. Upon closer
examination, we find that the momenta of the quasidegenerate
states are of the form (kx,0), indicating linear order along the
x direction. This is known to be one of the signatures of the
stripe phase.42–46
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FIG. 4. (Color online) Overlap between the exact ground state at
each tilt angle θ , 0(θ ), and a family of Laughlin states parametrized
by the metric of their fundamental droplet 

g

L. Color scale represents
the value of the overlap as a function of tilt angle and parameter α

that defines the metric. Black points indicate the maximal overlap for
the given tilt angle.
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FIG. 5. (Color online) Energy spectrum for N = 10, 12, and 14 particles at filling 1
2 in the subband (1,0) as a function of tilt angle (measured

in degrees). Spectrum is plotted relative to the ground state at each tilt angle, illustrating the behavior of the neutral gap of the system. Levels
tentatively belonging to the topologically degenerate Moore-Read ground states are denoted by blue and green colors.

Further evidence for the stripe phase is found in the shape
of the guiding-center structure factor10

S0(q) = 1

Nφ

∑
i,j

〈eiq·Ri e−iq·Rj 〉 − 〈eiq·Ri 〉〈e−iq·Rj 〉, (4)

as a function of tilt, as shown in Fig. 3. In the definition of
S0(q), the brackets 〈. . .〉 denote the ground-state expectation
value of the operator representing the Fourier component of
the guiding-center density

ρ(q) =
N∑
i

eiq·Ri . (5)

Here, Ri denotes the guiding-center coordinate2 of the particle
i. Compared to the standard definition,47 S0 has the single-
particle form factors stripped off, and it is normalized per
flux quantum instead of per particle. For zero tilt, S0 has a
characteristic circular maximum, and tends to a constant value
ν − ν2 (for the normalization chosen above) as q → ∞.10 For
a tilt angle of 30◦, the structure factor has a similar behavior
as a function of qx,qy , but the locus of its maxima has become
an ellipse stretched along the x direction. Finally, for a tilt of
60◦, S0 displays a qualitatively different shape with two sharp
peaks, indicating broken-symmetry ordering in the x direction.
This is another evidence46 for the formation of the stripe phase
in the regime of tilt beyond 40◦.

In the regime between zero and 30◦ tilt, we identify the
ground state as a FQH liquid corresponding to the family of
Laughlin wave functions with the internal metric fluctuating to
optimize itself with respect to the external perturbation (tilt).
The existence of this internal degree of freedom was recently
pointed out in Ref. 48. A convenient way of formally defining
the family of FQH liquid states with a varying internal metric
is through the pseudopotential formalism.10 In the case of the
Laughlin 1

3 filling, this family of states {g

L} is defined by the
zero-mode condition

V̂1(g)g

L = 0, (6)

where V̂1(g) is the generalized Haldane pseudopotential
Hamiltonian with a given metric g (Ref. 48):

V̂1(g) =
∑

q

L1
(
q2

g�
2
0

)
exp

(
−q2

g�
2
0

2

)
ρ(q)ρ(−q). (7)

Here, the operator ρ is defined in Eq. (5), and L1 is the first
Laguerre polynomial. Two-dimensional metric g defines the
norm of q2

g ≡ gabqaqb and is taken to be unimodular det g = 1.
The first-quantized expressions for 

g

L are given in Ref. 49.
Previously, generalized Laughlin wave functions have been

studied in the context of anisotropic systems,50,51 where it was
assumed that the band-mass tensor or the Coulomb dielectric
tensor is explicitly anisotropic. These works have established
that FQHE physics survives some amount of anisotropy, while
the phase corresponding to large anisotropy was identified
with a stripe. In Ref. 51, some evidence for a quantum Hall
nematic phase52 was provided for the intermediate regime
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FIG. 6. (Color online) Overlap between the exact ground state
at each tilt angle θ , 0(θ ), and a family of Moore-Read states
parametrized by the metric of their fundamental droplet 

g

MR. Color
scale represents the value of the overlap as a function of the tilt angle
and the parameter α that defines the metric. System size is N = 14
particles on a hexagonal torus in (0,7) momentum sector.
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FIG. 7. (Color online) Guiding-center structure factor for a particular member of the ground-state manifold [labeled (0,7) in Fig. 5] for
N = 14 particles at ν = 1

2 in (1,0) subband, for tilt angles 0◦, 30◦, and 50◦ degrees. The state at the largest tilt angle has charge-density order
reflected in two sharp peaks, whereas for smaller tilt angles the ground state is a liquid.

of anisotropies. As we mentioned in Sec. III, the dominant
Gaussian term in the tilted Hamiltonian has the same form as
in mass-anisotropic systems, therefore, we might expect some
similarity with the results obtained in Refs. 50 and 51. How-
ever, the presence of extra terms in Eq. (3) prevents a complete
mapping of the tilted field onto a mass-anisotropic problem.

To further motivate the identification of the small-tilt phase
with the FQH liquid, we compute the overlap between the
exact ground state at a given tilt, and the family of Laughlin
states 

g

L parametrized the anisotropy parameter α (Fig. 4). We
assume g is unimodular, and does not contain any off-diagonal
terms. Therefore, the metric g is parametrized by α,1/α on
the diagonal. By varying α, for each tilt angle we find it is
possible to achieve a high overlap (in excess of 97%), typical
of the Laughlin state. The maximum overlap can be used as
a criterion for determining the internal metric of the Laughlin
state at a given tilt. As seen in Fig. 4, the maximum overlap
varies approximately linearly with tilt for tilt angles smaller
than 40◦, in agreement with the result found in systems with
band anisotropy.50

Another fractional state of interest in the (1,0) subband
is the ν = 1

2 , corresponding to the total filling ν = 5
2 in

experiment. In GaAs heterostructure samples without tilt, this
state is roughly of the same strength as ν = 7

3 .16 A great
deal of theoretical evidence40,53 points to the fact that the
ν = 5

2 state is described by the Moore-Read Pfaffian wave
function, and might have non-Abelian quasiparticles in the
bulk, which makes it more exotic than the states of the Laughlin
type. A necessary requirement for the non-Abelian statistics
in this case is the full spin polarization of the ground state,
which is consistent with theoretical predictions40 as well as
experimental findings.41

In Fig. 5, we show the energy spectrum at filling 1
2 of

the subband (1,0) as a function of tilting angle (in degrees).

This state is more fragile than the 1
3 state, therefore we show

three different system sizes (N = 10,12,14) to illustrate the
convergence to the thermodynamic limit. As before, the data
in the upper panel in Fig. 5 correspond to the raw energy
spectrum, and the lower panel shows the neutral gap.

The difficulty in establishing convergence to the thermo-
dynamic limit in this case is partly related to the fact that
the Moore-Read state has a sixfold topological degeneracy on
the torus. Using the conventional symmetry classification, this
degeneracy can be factored into a trivial twofold degeneracy,37

and the residual threefold degeneracy resulting from the non-
Abelian statistics.54 The threefold degenerate states belong
to the same momentum sector only in case of the hexagonal
symmetry. The tilted field, however, reduces the symmetry
down to centered rectangular, and only two of the states remain
in the same sector. In finite systems, there will be some amount
of splitting between the sectors, as can be seen in Fig. 5. As
the N = 14 system shows, the splitting gets suppressed as
larger sizes are approached and is consistent with eventually
becoming zero in the thermodynamic limit. The fact that there
is a well-defined threefold ground state multiplet even for the
small systems that can be accessed by exact diagonalization
is an important piece of evidence in favor of the Moore-Read
state.

Apart from topological degeneracy, it is also possible to
compute the overlap between the exact ground state and the
Moore-Read wave function. Similar to the Laughlin case
discussed above, in a situation where tilt is present, one must
consider a family of Moore-Read states parametrized by the
internal metric. The overlaps between this family of states
and the exact ground state are given in Fig. 6. The behavior
of the maximum overlap as a function of tilt is qualitatively
consistent with Fig. 4. The value of the maximum overlap
with the Moore-Read state is smaller than in case of the
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FIG. 8. (Color online) Determinant of the metric in the Gaussian
form factor of Eq. (3) as a function of tilt, for several values of the
confining potential.

Laughlin state, but it can improved by varying some of the
short-range Haldane pseudopotentials, as it has been done in
the literature.53

Apart from some amount of splitting within the ground-
state manifold, the evolution of the energy spectrum in Fig. 5
is also reminiscent of the 1

3 case (Fig. 2). The quantum Hall
state remains stable up to 30◦–40◦ tilt, at which point it gives
rise to a stripe phase. This transition is again captured in the
behavior of the structure factor displayed in Fig. 7.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the effect of coupling between
a parallel component of the magnetic field and the electronic
motion restricted to the 2D plane of a parabolic quantum
well. We have demonstrated that this coupling probes the
geometrical degree of freedom of fractional quantum Hall
liquid states.48 For filling factors 1

3 and 1
2 of the excited (1,0)

subband, the ground states are incompressible fluids when the
parallel field is zero. As the tilt angle is increased from zero
to 30◦, the internal geometry of these states adjusts itself to
accommodate the variation of the external metric imposed by
the tilt. Up to this distortion of the elementary droplets from
circular to elliptical, the FQHE physics is maintained in this
regime. Beyond 40◦ tilt, the states undergo a transition to the
broken-symmetry phase with stripe order.

Previously, FQHE was studied in systems with explicit
anisotropy introduced through the band-mass tensor50 or the
dielectric tensor defining the Coulomb interaction51 (see also
experimental results for the anisotropic “composite Fermi-
liquid” state in Ref. 55). For small tilt angles, our results are in
qualitative agreement because the Gaussian factor (3) contains
a metric g that is nearly unimodular, and hence (neglecting the
complicated prefactors) the tilted problem can be rewritten
as an effective mass anisotropy. The “volume” is given by

det g = (�2
1 cos2 φ + �2

2 sin2 φ)(cos2 φ/�2
1 + sin2 φ/�2

2), and
det g is plotted as a function of tilt in Fig. 8. The volume
remains fairly close to unity for tilts smaller than 40◦,
supporting the similarity between tilt and mass anisotropy.
Note that lower values of the confinement ω0/ωz lead to
a faster deviation of the volume away from unity, and
therefore the intrinsic tilt effects are effectively stronger in
this regime. Furthermore, it would be interesting to explore
connections between a spatially nonuniform tilt and the
so-called Fubini-Study metric in lattice analogs of FQHE. 56

In principle, the tilted-field phase diagram might also admit
the existence of the so-called nematic quantum Hall phases.52

These phases are believed to spontaneously break rotational
symmetry, whereas the tilted field breaks such a symmetry
explicitly. Although we do not find direct evidence for such
phases in the case of generic (Coulomb) interaction studied
here, it would be important to understand better the connection
between nematic phases57,58 and quantum Hall phases with
elliptical elementary droplets, and how one could tune between
them by modifying the interaction.

Finally, we mention several limitations of this work. Apart
from the “obvious” assumptions of zero temperature and clean
(translationally invariant) systems, the main limitations of this
work are the neglect of the electron spin, and the mixing
between various subbands. Incorporating spin would be useful
for other fractions, notably ν = 2

5 (corresponding to ν = 12
5

in experiment) where a spin transition was detected as a
function of tilt.30 However, this fraction has a much smaller
gap in comparison to 1

3 or 1
2 , and numerical techniques beyond

exact diagonalization are required to access sufficiently large
systems that are not plagued by the finite-size effects. Simi-
larly, the mixing between different subbands is another effect
that is difficult to treat reliably within exact-diagonalization
schemes. While we do not expect our results to be strongly
affected by the mixing when tilt is less than 40◦–50◦, in
the regime of large tilts (�70◦) they will undoubtedly be
important, as we can see from the Landau-level structure
(Fig. 1). With respect to the results presented here, mixing
effects are furthermore important for two specific reasons.
First, the mixing lifts the particle-hole symmetry between
the Pfaffian and anti-Pfaffian14 and selects only one of them
to describe the ground state at ν = 5

2 . Second, experiments
performed in the regime of extremely large tilts (∼70◦) have
found a puzzling reemergence of isotropic transport28 in that
limit. It would be interesting to understand the connection
between isotropic transport and extreme LL mixing in future
work.
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Recent numerical work by Bardarson, Pollmann, and Moore revealed a slow, logarithmic in time,

growth of the entanglement entropy for initial product states in a putative many-body localized phase. We

show that this surprising phenomenon results from the dephasing due to exponentially small interaction-

induced corrections to the eigenenergies of different states. For weak interactions, we find that the

entanglement entropy grows as � lnðVt=@Þ, where V is the interaction strength, and � is the single-particle

localization length. The saturated value of the entanglement entropy at long times is determined by the

participation ratios of the initial state over the eigenstates of the subsystem. Our work shows that the

logarithmic entanglement growth is a universal phenomenon characteristic of the many-body localized

phase in any number of spatial dimensions, and reveals a broad hierarchy of dephasing time scales present

in such a phase.

DOI: 10.1103/PhysRevLett.110.260601 PACS numbers: 05.60.Gg, 05.30.Rt, 37.10.Jk, 72.15.Rn

Introduction.—While it is well known that arbitrarily
weak disorder localizes all single-particle quantum-
mechanical states in one and two dimensions, the effect
of a disorder potential on the states of interacting systems
largely remains an open problem. References [1,2] conjec-
tured that localization in a many-body system survives in
the presence of weak interactions. When the strength of the
interactions is increased, at some critical value a transition
to the delocalized phase—a ‘‘many-body localization’’
transition—takes place, as observed in the numerical simu-
lations [3–13].

An important challenge is to understand the physical
properties of the many-body localized (MBL) phase.
Recent work [14] (see also Ref. [4]) revealed that even
very weak interactions dramatically change the growth of
entanglement of nonequilibrium many-body states. The
authors of Ref. [14] studied the time evolution of product
states in a 1D disordered XXZ spin chain. In the absence of
interactions, such states maintain a low degree of entan-
glement upon evolution, and the entanglement entropy Sent
obeys an area law. In contrast, in the presence of interac-
tions the states showed a slow, logarithmic in time, growth
of Sent (here and below we use ‘‘entanglement’’ and
‘‘entanglement entropy’’ interchangeably). The saturated
value of Sent was found to vary approximately linearly with
system size, and remained well below the maximum pos-
sible value [14–16].

In this Letter, we identify a mechanism that underlies the
logarithmic growth of entanglement in interacting MBL
states. The key observation is that although very weak
interactions have a small effect on the MBL eigenstates,
they nevertheless induce small corrections to their ener-
gies, which ultimately lead to the dephasing between

different eigenstates at long time scales. We argue that
this gives rise to a logarithmic growth of Sent with time
for a broad class of initial states that are a product of states
in the two subsystems, a special example of which was
considered in Ref. [14].
For weak interactions, our mechanism leads to the fol-

lowing predictions regarding entanglement growth as a
function of the system’s parameters: (i) entropy grows as
SentðtÞ / � logðVt=@Þ, where V is the interaction strength
and � is the single-particle localization length; (ii) the
saturation value of Sent is of the order of the ‘‘diagonal
entropy’’ Sdiag [17] of the given initial state. Diagonal

entropy is determined by the participation ratios of the
initial state in the basis of eigenstates of the system for
V ¼ 0. We also illustrate these predictions with numerical
simulations of finite systems, in particular by constructing
examples of initial states for which the saturated Sent is
equal to Sdiag.

Model.—Without loss of generality, we consider a 1D
lattice model of fermions with on-site disorder and nearest-
neighbor interactions

H ¼ J
X
hiji

cyi cj þ
X
i

Win̂i þ V
X
hiji

n̂in̂j; n̂i ¼ cyi ci; (1)

where i; j ¼ 1; . . . ; N, and hiji denotes nearest neighbors.
This model is equivalent to the random-field XXZ spin
chain [14]. From our discussion below, it will become
apparent that the logarithmic growth of entanglement in
MBL systems is a robust phenomenon which does not
depend on the dimensionality or the microscopic details
of the system.
We will focus mostly on the regime of weak interactions

for which the logarithmic growth of Sent found in Ref. [14]
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is perhaps the most striking. In the absence of interactions,
V ¼ 0, disorder localizes the single-particle states, with
localization length �, and the many-body eigenstates are
simply states in which a certain number of single-particle
orbitals is occupied. Interactions that are much weaker
compared to the typical level spacing �1=� do not sig-
nificantly modify the many-body eigenstates. We have
explicitly verified this statement for small systems, and
assume it holds in general. However, even though the
eigenstates are not strongly affected by the interactions,
their energies are modified. If we fix the positions of all
particles, except for a pair of particles situated at a distance
x � � away from each other, the interaction energy of this

pair is �Ve�x=�, and the corresponding dephasing time is

tdeph � @ex=�=V. This gives rise to a hierarchy of dephasing

time scales present in the problem, ranging from the fastest

tmin ¼ @=V to the slowest tmax ¼ tmine
L=�, where L is the

system size.
Generally, the product initial states considered in

Ref. [14], as well as the initial states of other kinds con-
sidered below, are a superposition of many eigenstates. The
interactions introduce a slow dephasing between different
states, and effectively generate entanglement between dif-
ferent remote parts of the system. A subsystem of size x
becomes nearly maximally entangled with the rest of the

system after an exponentially long time tdephðxÞ �
@ex=�=V; thus, the bipartite Sent will increase logarithmi-
cally in time.

Two particles.—Let us start with a simple example
which demonstrates that the slow growth of entangle-
ment occurs for just two particles. Consider two distant
particles prepared in an equal-weight superposition of two

neighboring localized orbitals j�0i ¼ 1=2ðcy1 þ cy2 Þðcy3 þ
cy4 Þj0i, where cyi creates an eigenstate localized near site i.
We assume that the distance between the support of the
wave functions 1, 2 and 3, 4 is large (x � �) (see Fig. 1).

In the absence of interactions, no entanglement is gen-
erated during time evolution. Interactions, however, intro-
duce a correction to the energy of the state j��i ¼
cy�cy�j0i, where � ¼ 1, 2, � ¼ 3, 4. In the leading order

of perturbation theory, the energy of this state is given by
E�� ¼ "� þ "� þ �E��, where "�, "� are the single-

particle energies, and the last term �E�� ¼ C��Ve
�x=�

is due to the interactions, C�� being a constant which

depends only algebraically on x.
The time-evolved state is given by j�ðtÞi ¼

1=2
P

�;� expð�iE��tÞj��i, and the reduced density

matrix for the first particle reads

�̂ L ¼ 1

2
1 FðtÞ=2

F�ðtÞ=2 1

� �
; (2)

where FðtÞ ¼ e�i�tð1þ e�i��tÞ, �� ¼ �E14 � �E24 �
�E13 þ �E23, and � ¼ "1 � "2 þ �E13 � �E23. The
eigenstates of �̂L therefore oscillate with a very long period

T ¼ 2�=��� ð@=VÞex=�. At times t ¼ ð2nþ 1Þ�=��,
the off-diagonal elements vanish, and the eigenvalues
become equal to 1=2. At these times, the particles become
maximally entangled with Sent ¼ ln2. Figure 1 demon-
strates that even weak interactions lead to the entanglement
of the order of Sent � ln2, and the rate of entanglement
change is inversely proportional to the interaction strength.
In Fig. 1, particles are in a superposition of states which are
not the exact eigenstates; hence, the maximum value of Sent
is slightly below ln2 � 0:69. Note that no disorder or time
averaging is used.
General case.—Turning to the general many-body case,

let us divide the system into two parts L and R, labeling
the single-particle orbitals that are localized dominantly in
L by index �n, and those residing inR by �n. There may
be some ambiguity for the state residing near the boundary
between L and R, but we will be interested in systems of
size L � �, for which the boundary effects are not very
important.
We consider initial states that are products of some

superposition of states with definite numbers of particles
in L and R:

j�ðt ¼ 0Þi ¼ X
f�g2L

Af�gj�1 . . .�Ki

� X
f�g2R

Bf�gj�1 . . .�Mi: (3)

Coefficients A, B are chosen such that � is normalized.
Neglecting the change to the eigenstate due to interac-

tions, the reduced density matrix for L after time

evolution reads �̂L ¼ P
�;�0���0 j�ih�0j, where ���0 ¼

A�A
�
�0
P

�jB�j2eiðE�0��E��Þt, and we have used a shorthand

notation � � f�g, � � f�g. It is convenient to define

(a)

(b)

FIG. 1 (color online). (a) Generation of entanglement between
two remote particles, each prepared in an equal superposition of
two eigenstates. Exponentially small overlap of the orbitals leads
to the dephasing time growing exponentially with distance.
(b) Sent as a function of time for a given realization of disorder
and different interaction strengths. When V ¼ 0, Sent � 10�4

and remains small at all times. For V � 0, values of SentðtÞ
collapse on a single curve when time is scaled by 1=V. System
size is L ¼ 10 sites, and disorder strength is W ¼ 6.
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A�ðtÞ ¼ A�e
�iE�t, where E� is the energy of the j�i state

for the isolated L subsystem. Assuming that j�i � j�i
remains an eigenstate (this may not be true near the bound-
ary, but the boundary effect is not important for entangle-
ment growth, at least in large systems), the above equation,
written in terms of coefficients A�ðtÞ, preserves the same
form, except the energies E�� should be substituted by the

interaction energy �E�� between particles in theL andR
subsystems. For particles that reside far away from the
boundary, this correction can be calculated in perturbation
theory.

The energy difference �E�0� � �E�� that enters the off-

diagonal elements of �̂L, to the leading order, is propor-

tional to Ve�x=�. Here x is the minimum distance between
a particle inL, the position of which is different in states �
and �0, and the particles in R. However, it also contains
many smaller contributions, which arise due to the inter-
action between more distant pairs of particles. Thus, the
off-diagonal elements oscillate at a number of very differ-
ent, incommensurate frequencies.

The interaction energy leads to dephasing, which
decreases the off-diagonal elements of �̂L, thus generating

entanglement. Effectively, at times tðxÞ � tmine
x=� the

degrees of freedom within a distance xðtÞ � lnðt=tminÞ
from the boundary between L and R are affected by
dephasing, while states that differ only in the positions of
particles further away from the boundary are still phase
coherent. This generates the entropy

SentðtÞ ¼ CSdiag; Sdiag ¼ �X
PiðxÞ lnPiðxÞ; (4)

where PiðxÞ are the probabilities of different states j�i in a
segment of size x, calculated from the wave function of the
initial state. Quantity Sdiag is the diagonal entropy—a

maximum achievable entropy for a given initial state,
assuming that interactions do not change the eigenstates.
Sent is expected to be smaller than Sdiag by a factor C & 1;

the precise value of this prefactor is nonuniversal, and
depends on the preparation of the initial state. In the
long-time limit, assuming thatR � L and the initial state
is a superposition of many different states, we expect the
off-diagonal elements to become very small such that
the entanglement entropy approaches its maximum value
with C ! 1.

Since for initial product states Sdiag is proportional to the

subsystem size, entanglement grows logarithmically:

SentðtÞ / � logðVt=@Þ: (5)

We emphasize that our argument does not rely on averag-
ing, and therefore entanglement grows according to Eq. (5)
even for a single disorder realization, and even for rela-
tively small systems.

Numerical simulations.—In order to illustrate the above
mechanism, and to explore the growth of entanglement for
different initial states, we performed numerical simulations

of the model (1) with a finite number of particles in a
random potential uniformly distributed in the interval
[�W, W]. Hopping is set to J ¼ 1=2 and we consider
chains with an even number of sites and open boundary
conditions at half filling. The number of different disorder
realizations ranged from 30 000 (L ¼ 8) to 800 (L ¼ 14);

the number of initial states was 2L=2 for each disorder
realization. In the figures below, error bars (if not shown)
are approximately equal to the size of the symbols in each
plot.
Using exact diagonalization for systems up to 14 sites,

we compute the time evolution of various initial states,
which allows us to obtain SentðtÞ for half partition. We
study its average �SentðtÞ over different initial states belong-
ing to the same class, and over different realizations of
disorder. Similar to Ref. [14], we first consider a class of
localized product states (LPS) where each fermion is ini-
tially located at a given site. Results for �SentðtÞ for a system
of L ¼ 12 sites and disorderW ¼ 5 are shown in Fig. 2(a).
After a rapid increase of entropy on time scales of the
inverse hopping, due to diffusive transport on a scale
smaller than the localization length, �SentðtÞ saturates for a
noninteracting system. In the presence of even weak inter-
actions, �SentðtÞ continues to grow further. In full agreement
with our analysis above, values of � �Sent � �Sent � �S0 col-
lapse onto a single curve as a function of lnðVt=@Þ [see the
inset of Fig. 2(a)], where �S0 is the saturation entropy of a
noninteracting system.
The saturation value �Sentð1Þ does not vary appreciably

with interaction strength when interactions are weak. This
further supports the conclusion that weak interactions
only weakly alter the eigenstates of the system. For fixed
V ¼ 0:01, �Sentð1Þ and Sdiag decrease with disorder [see

Fig. 2(b)] approximately as 1=W (scaling not shown). Such
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FIG. 2 (color online). (a) Averaged entanglement entropy of
initial product states, in which all fermions are localized at some
sites, shows a characteristic logarithmic growth on long time
scales (system size is L ¼ 12, W ¼ 5). Growth rate is found to
be proportional to lnðVt=@Þ (inset). Saturated entanglement
(b) and the ratio C ¼ �Sentð1Þ= �Sdiag (c) decrease with W (for

fixed V ¼ 0:01).
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scaling stems from the fact that when � is of the order of
one lattice spacing, the leading contribution to the entan-
glement comes from rare resonant pairs of neighboring
sites (rather than typical off-resonant sites), which occur
with probability J=W. Each pair contributes a number of
the order � ln2 to the entanglement as well as diagonal
entropy.

We compare the saturated entanglement to Sdiag, calcu-

lated using the values of PiðL=2Þ for the initial state of the
L subsystem. The PiðL=2Þ are obtained from the density
matrix, using the eigenstates of the interacting Hamiltonian
restricted to L. In this sense, while �Sentð1Þ is determined
from the time evolution of the system, Sdiag is solely the

property of the initial state.
To interpret the dependence of the ratio C ¼

�Sentð1Þ= �Sdiag on system size and disorder [see Fig. 2(c)],

we must take into account two additional effects important
for small systems: (i) the diffusion of particles across the
entanglement cut; and (ii) the inefficiency of decoherence
when the number of terms in Eq. (3) is small or when L
and R are of equal size. These effects counteract each
other, as diffusion leads to an additional contribution to Sent
not captured by Eq. (4). On the other hand, inefficient
decoherence leads to incomplete dephasing, and decreases
�Sentð1Þ compared to Sdiag. The positive contribution from

(i) is suppressed for larger systems or smaller localization
lengths. The effect of (ii) depends on the initial state. For
LPS in the localized phase, the participation ratio is of
order unity, and the effect (ii) is very pronounced. Thus, C
is smaller than 1, and it decreases with increasing disorder
or system size [see Fig. 2(c)].

Next, we consider a different kind of initial states with
larger participation ratios. The initial state of theR and L
subsystem is chosen as a projection to the half-filled sector

of the state
Q

i1=
ffiffiffi
2

p ð1� cyi Þj0i, with � signs chosen at
random. Particles within each subsystem are therefore
strongly entangled, but there is no entanglement between
the subsystems at t ¼ 0. In this case, we find the same
logarithmic entanglement growth, but �Sentð1Þ [see the
solid lines in Fig. 3(a)] is larger compared to the previous
case, and varies weakly with disorder. The ratio C [see the
upper panel of Fig. 3(b)] now scales to 1 when system
size is increased, contrary to the LPS. For this type of
initial state, due to larger values of �Sentð1Þ, the boundary
diffusion contribution is less important; also, the superpo-
sition of a large number of eigenstates in each half of the
system makes decoherence more efficient; thus, C is closer
to 1.

Finally, we construct an example where Sent reaches
Sdiag. We take a product of the LPS in L, and the strongly

entangled state inR. To further suppress the diffusion, we
require the two sites adjacent to the entanglement cut to be
always empty. �Sentð1Þ displays the behavior similar to the
LPS case [see the dashed lines in Fig. 3(a)], but is larger
due to the more effective dephasing. Remarkably, Fig. 3(b)

demonstrates that for larger system sizes, saturation and
diagonal entropies become equal, in agreement with the
above analysis.
Discussion.—To summarize, we presented a mechanism

of the logarithmic growth of entanglement in the MBL
phase. We also established the laws governing the entan-
glement growth, and tested them in numerical simulations
for different initial states. We note that in the delocalized
phase the entanglement is expected to grow much faster (as
a power-law function of time), suggesting that the scaling
of Sent can be used as a potential tool for studying the
localization-delocalization critical point and its properties.
Although we focused on the limit of weak interactions,

in which the eigenstates are similar to those of a non-
interacting model, we expect our conclusions to hold also
for stronger interactions which do modify the eigenstates.
In this case, �Sentð1Þ is expected to be determined by the
participation ratios of the initial state in the basis of the
interacting subsystem’s eigenstates. Furthermore, our con-
clusions are expected to apply to localized interacting
systems in any number of spatial dimensions.
Our work indicates an exponentially broad distribution

of dephasing time scales present in a MBL system. It gives
support to the ‘‘strong-localization’’ scenario of the many-
body localization transition, and shows that the entangle-
ment growth arises due to interaction-induced dephasing,
rather than due to the effect of interactions on the eigen-
states, as was hypothesized in Ref. [14].
We note that recently Vosk and Altman [18] considered

an XXZ model with random exchange interactions, but
without a random field. For a special initial state, they
developed a strong-disorder renormalization group proce-
dure, and found that Sent grows as a power of lnt. The
difference from our result stems from the fact that the state
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FIG. 3 (color online). (a) Saturated entanglement entropy as a
function of disorder W for a strongly entangled state (solid
lines), and a product of a strongly entangled state and an LPS
state (dashed lines). (b) Ratio of saturated and diagonal entropy
as a function of disorder W for the same two states. For the
product of a strongly entangled state and an LPS state (lower
panel), C tends to 1 for larger system sizes as W is increased
(interaction is set to V ¼ 0:01).
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considered in Ref. [18] was critical; however, the basic
underlying mechanism—dephasing due to exponentially
weak interactions between remote spins—is qualitatively
similar. After this Letter was submitted, we became aware
of a related independent work [19] where the logarithmic
growth of entanglement was established from phenomeno-
logical considerations.
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[16] F. Iglói, Z. Szatmári, and Y.-C. Lin, Phys. Rev. B 85,

094417 (2012).
[17] A. Polkovnikov, Ann. Phys. (Amsterdam) 326, 486 (2011).
[18] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204

(2013).
[19] D. A. Huse and V. Oganesyan, arXiv:1305.4915.

PRL 110, 260601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

260601-5

http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevB.81.134202
http://dx.doi.org/10.1103/PhysRevB.81.224429
http://dx.doi.org/10.1103/PhysRevB.81.224429
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevB.83.094431
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevB.84.094203
http://dx.doi.org/10.1103/PhysRevB.84.094203
http://dx.doi.org/10.1038/ncomms2115
http://dx.doi.org/10.1038/ncomms2115
http://dx.doi.org/10.1209/0295-5075/101/37003
http://dx.doi.org/10.1209/0295-5075/101/37003
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1088/1742-5468/2006/03/P03001
http://dx.doi.org/10.1088/1742-5468/2006/03/P03001
http://dx.doi.org/10.1103/PhysRevB.85.094417
http://dx.doi.org/10.1103/PhysRevB.85.094417
http://dx.doi.org/10.1016/j.aop.2010.08.004
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://arXiv.org/abs/1305.4915


Sign In Marked List (0) EndNote ResearcherID Saved Searches and Alerts Log Out Help

Search Search History

All Databases
<< Return to Web of Science ®    

Citing Articles Title: Local Conservation Laws and the Structure of the Many-Body Localized States
Author(s): Serbyn, Maksym ; Papic, Z. ; Abanin, Dmitry A.
Source: PHYSICAL REVIEW LETTERS  Volume: 111   Issue: 12     Article Number: 127201   DOI: 10.1103/PhysRevLett.111.127201   Published: SEP 17 2013

This item has been cited by items indexed in the databases listed below. [more information]

1 in All Databases

1 publication in Web of Science

0 publication in BIOSIS Citation Index

0 publication in SciELO Citation Index

0 publication in Chinese Science Citation Database

0 data sets in Data Citation Index

0 publication in Data Citation Index 

Results: 1 Page 1  of 1   Sort by: Publication Date -- newest to oldest

Refine Results

Search within results for

Databases

Research Domains

SCIENCE TECHNOLOGY

Research Areas

PHYSICS

Document Types

Authors

Group/Corporate Authors

Editors

Funding Agencies

Source Titles

Conference/Meeting Titles

Publication Years

Languages

Countries/Territories

Create Citation Report

Select Page Add to Marked List (0) Send to:

 1.

Title: Probing Real-Space and Time-Resolved Correlation Functions with Many-Body Ramsey Interferometry
Author(s): Knap, Michael; Kantian, Adrian; Giamarchi, Thierry; et al.
Source: PHYSICAL REVIEW LETTERS  Volume: 111   Issue: 14     Article Number: 147205   DOI: 10.1103/PhysRevLett.111.147205   Published: OCT 4 2013
Times Cited: 0  (from All Databases)

[ View abstract  ]

Select Page Add to Marked List (0) Send to:

Results: 1 Show 50 per page Page 1  of 1   Sort by: Publication Date -- newest to oldest

1 records matched your query of the 55,067,330 (contains duplicates) in the data limits you selected.

View in: 简体中文 繁體中文 English ⽇本語 한국어 Português Español

© 2013 Thomson Reuters Terms of Use Privacy Policy Please give us your feedback on using Web of Knowledge.

my.endnote.com

my.endnote.com

Web of Knowledge [v.5.12] - All Databases Citing A... http://apps.webofknowledge.com.proxy.lib.uwaterl...

1 of 1 13-11-20 06:36 PM



Local Conservation Laws and the Structure of the Many-Body Localized States
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We construct a complete set of local integrals of motion that characterize the many-body localized

(MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates

in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We

describe the structure of the eigenstates in the MBL phase and discuss the implications of local

conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization

can be used to protect coherence in the system by suppressing relaxation between eigenstates with

different local integrals of motion.

DOI: 10.1103/PhysRevLett.111.127201 PACS numbers: 75.10.Pq, 05.30.Rt, 64.70.Tg, 72.15.Rn

Introduction.—Localization of eigenstates of a single
particle in the presence of disorder is among the most
remarkable consequences of quantum mechanics.
Although the single-particle localization and localization-
delocalization transition are well understood [1,2], much
less is known about the nature of the eigenstates in inter-
acting many-body disordered systems. The interest in the
problem of the many-body localization was rekindled
when recent works [3,4] suggested that the localized phase
is stable with respect to weak interactions. This conjecture
was also corroborated by numerical studies [5–16].

In the noninteracting localized phase, dynamics is sim-
ple because any initial wave function can be decomposed
into a superposition of localized single-particle eigen-
states. However, when interactions are introduced, the
dynamics becomes notably richer [7,16–18]. Although
particle transport is still expected to be blocked, the time
evolution of initial product states in the interacting local-
ized phase generates a universal slow growth of entangle-
ment entropy [17]. Saturated entropy was established to
be proportional to system size [7,16–18], and such growth
of the entanglement was argued to reflect ‘‘partial thermal-
ization’’ of the system. However, the type of the ensemble
describing the many-body localized (MBL) phase is
unknown.

On the experimental side, probing the dynamics of
interacting disordered systems has become feasible due
to the advances in the field of ultracold atomic gases
[19,20]. In particular, nearly isolated quantum systems of
cold atoms can now be engineered, prepared in a variety of
initial states (including product states [21]), and studied
during their subsequent time evolution. These opportuni-
ties call for developing a better understanding of the laws
that govern the dynamics in the MBL phase.

Here we consider a many-body system whose eigen-
states at all energies are localized, and show that they

can be characterized by a large number of emergent local
integrals of motion corresponding to multiple local con-
servation laws. These integrals of motion form a complete
set, in the sense that their values completely determine the
eigenstates. Local conservation laws strongly constrain the
quantum dynamics in the MBL phase, preventing a com-
plete thermalization of any given subsystem. Any initial
state can be decomposed in terms of the eigenstates pos-
sessing definite values of the integrals of motion. During
time evolution, the weights of different states cannot
change. However, because of the exponentially weak in-
teraction between distant degrees of freedom, the relative
phases between the states with different values of local
integrals of motion become randomized. Any local observ-
able at long times is therefore determined only by the set of
probabilities of local integrals of motion that affect the
degrees of freedom in the region where the observable is
measured. We refer to this as the local diagonal ensemble.
The dephasing due to the interactions between distant
subsystems is a distinct feature of the MBL phase com-
pared to the noninteracting one, and underlies the slow
growth of entanglement [16,17,22,23].
Integrals of motion.—First, we note that for the non-

interacting case the local integrals of motion are simply

given by Îi ¼ cyi ci, where cyi creates a localized single-
particle state. For fermions, the possible eigenvalues of
this integral of motion are Ii 2 f0; 1g. In a system with K
orbitals, there are 2K eigenstates, which are uniquely
labeled by the eigenvalues of K integrals of motion.
In order to explicitly construct local integrals of motion

for an interacting system, we assume the following prop-
erty of the localized phase: local perturbations lead only to
local modifications of the eigenstates in the MBL phase.
That is, if we act on a MBL eigenstate with a local
perturbation, introduced either adiabatically or instantane-
ously, the degrees of freedom situated at a distance L � �
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(here � is the localization length [24]) away from the
support of the perturbation operator, are generally affected
exponentially weakly. We will support this statement
below by the numerical study of the random-field XXZ
chain, also considered in Refs. [7,10,12,15,16].

Let us consider a MBL system described by a local
Hamiltonian, and let us divide it into subsystems of size
l � �. Without loss of generality, we consider a 1D sys-
tem, although our conclusions apply to localized phases in
any number of spatial dimensions. We number the subsys-
tems by i ¼ 1; . . . ; N from left to right, assuming the
number of degrees of freedom M in each subsystem is
the same (e.g., for K spins, M ¼ 2K). For the fixed sub-
system i, we denote parts of the full system to the left
and to the right of i by Li and Ri, respectively. The
Hamiltonian can be written as

H ¼ HL þHi þHR þHLi þHRi; (1)

where HL, HR, Hi act only on the degrees of freedom in
L, R, i, while HLi, HRi couple L, i and R, i.

If the subsystems L, i, R are disconnected from each
other (i.e., HLi, HRi are set to zero), the eigenstates
are simple products: j���i0 ¼ j�iL � j�ii � j�iR, where
� 2 f1; . . . ;Mi�1g, � ¼ f1; . . . ;Mg, �¼f1;...;MN�ig.
Once the subsystems are connected, the eigenstates of
the full Hamiltonian (1) are obtained from the product
states j���i0 by nearly local rotations. We label the
resulting eigenstates by their ‘‘ancestors,’’ omitting the
‘‘0’’ subscript,

j���i ¼ ÔLiÔRij�iL � �ii � j�iR: (2)

Operator ÔLi is a unitary many-body rotation which
strongly transforms only the degrees of freedom within a
distance �� away from the boundary between L and i

(similarly for ÔRi). The commutator of ÔLi and ÔRi, as
well as the action on the degrees of freedom far away,
decays exponentially. We note that the assignment (2),
which links the eigenstates of the system to the eigenstates
of subsystems, is not unique, and assume that a certain
one-to-one correspondence is chosen.

We now define the integral of motion for subsystem i

Îi ¼
XM
�¼1

�
XMi�1

�¼1

XMN�i

�¼1

j���ih���j: (3)

Being a linear combination of projectors onto the exact

eigenstates, Îi necessarily commutes with the Hamiltonian
and assumes eigenvalues 1; . . . ;M. Intuitively, states with

the same eigenvalue of Îi look nearly identical within the
subsystem i at distances larger than � away from the
boundaries with subsystems L, R.

Sums of projectors onto the eigenstates are integrals of
motion by construction; however, generally such operators
are nonlocal and affect all degrees of freedom of the
system. The operator in Eq. (3) is special in that it is local;

i.e., it weakly affects the degrees of freedom in L or R at
a distance x � � away from the boundaries with the ith

subsystem. The locality of Îi follows directly from the

locality of operators ÔLi, ÔRi, which implies that the
sum of projectors becomes very close to the identity op-
erator far away from the boundaries. Below, we will test
the locality of the operator in Eq. (3) in a specific model.
Having defined the integral of motion for the subsystem

i, we can similarly define N � 1 integrals of motion for the
remaining N � 1 subsystems, such that in total we have N

integrals Îi, i ¼ 1; . . . ; N. Different Îi commute with each

other ½Îi; Îj� ¼ 0 since they are sums of projectors onto the

exact eigenstates of the full system. Each Îi has M pos-
sible eigenvalues; thus, the full description of the system
via integrals of motion requires MN parameters, which
coincides with the dimensionality of the Hilbert space. An

operator Îi can also be viewed as the z component Îi ¼ Ŝiz
of a ‘‘spin’’ S ¼ ðM� 1Þ=2. Raising and lowering opera-
tors can then be used to construct the entire set of eigen-
states, starting from any given eigenstate jI1I2 . . . INi
characterized by the integrals of motion I1; I2; . . . ; IN.
Therefore, specifying the eigenvalues of all integrals of
motion defined above completely determines the eigen-
states of the system.
Hamiltonian and its relation to integrals of motion.—

The Hamiltonian takes an especially simple form when
written in terms of the integrals of motion:

H ¼ XN
i

XM
I1¼1

EIiP̂
i
Ii þ

XN
i�j

XM
Ii;Ij¼1

EIiIjP̂
i
IiP̂

j
Ij

þ XN
i<j<k

XM
Ii;IjIk¼1

EIiIjIkP̂
i
IiP̂

j
Ij
P̂ k

Ik þ � � � ; (4)

where P̂ i
Ii is the projector onto the subspace for which the

eigenvalue of the ith integral of motion is equal to Ii. In the
above equation, EIi can be roughly viewed as the energy of

the ith subsystem for the sector Ii, EIiIj is the interaction

energy between i and j subsystems, etc. There are inter-
actions between any given n subsystems; however, they are
exponentially small. Generally, we expect that energies EIi

are proportional to l, the size of the subsystems. EIiIj are

proportional to � when i ¼ j� 1, and are suppressed as

�e�lðji�jj�1Þ=� otherwise (the interactions between the
neighboring subsystems are limited to the boundary and
are therefore proportional to �). The above representation
of the Hamiltonian gives us a way to describe the dynamics
in the MBL phase for various kinds of initial states
[7,10–12,16,17].
Dynamics.—As a first step, we consider the dynamics of

an eigenstate which is perturbed locally. We assume a

sudden action of the local unitary operator Û on the

eigenstate j�0i ¼ jI1I2 . . . INi. Operator Û acts only on
the degrees of freedom in subsystem 1, and its support is
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situated far from the boundary between subsystems 1
and 2. The initial wave function j�ðt ¼ 0Þi can be decom-
posed in terms of the eigenstates:

j�ðt ¼ 0Þi ¼ Ûj�0i ¼
X
I0
1

UI1I
0
1
jI01I2 . . . INi þ � � � : (5)

This form of the decomposition is dictated by the fact that
the values of the integrals of motion I2; . . . ; IN can be
changed only with an exponentially small probability;
hence, the terms with other values of I2; I3; . . . in Eq. (5)
are represented by ellipses. Neglecting these terms, the
subsequent dynamics becomes trivial:

j�ðtÞi ¼ X
I0
1

UI1I
0
1
e
�iEI0

1
I2...IN

tjI01I2 . . . INi; (6)

where EI01I2...IN is the energy of the state jI01I2 . . . INi.
Generally, we expect a finite number of different I01 which
have significant matrix elementsUI1I

0
1
, typically comparable

to the dimensionality of a subsystem of size��. Therefore,
the time evolution (6) describes coherent oscillations that
involve a finite number of states. Any local observable in
region 1 would therefore oscillate at a number of frequen-
cies, showing revivals but no dephasing. This situation
changes if the state j�0i is not an eigenstate, but a super-
position of several eigenstates which involve different
values of I2; I3; . . . ; Ik. In this case, exponentially slow
dephasing arises, suppressing the revivals and oscillations
of local observables in the long-time limit. The values of
observables at long times are determined by the probabilities
jUI1I

0
1
j2.

Second, we describe the global evolution of states which
differ from the eigenstates everywhere, not just locally. For
definiteness, consider an initial product state of subsystems
1; 2; . . . ; N:

j�i ¼ �N
i¼1

� XM
�i¼1

A�i
j�ii

�
; (7)

where j�ii is an eigenstate of the Hamiltonian Hi. Modern
experimental techniques allow for the preparation and
manipulation of such states in optical lattices [21].

Each component �N
i¼1j�ii of the product state (7) can be

related to the eigenstate of the whole system, jI1I2 . . . INi,
by the set of local rotations acting near the boundaries
between different subsystems. The dynamics correspond-
ing to this effect will be limited to the boundaries between
pairs of subsystems. However, for each wave function,
degrees of freedom at a distance x � � away from the
boundary will remain undisturbed. Such dynamics there-
fore does not generate long-range entanglement.

More importantly, since we are dealing with a superpo-
sition of different product states �N

i¼1j�ii, the degrees of

freedom in the subsystem i will be in a superposition of
states with different values of the integral of motion Ii.
Different states entering this superposition are eigenstates;

therefore, their relative weights cannot change under time
evolution. However, their phases will become random due
to the interactions with distant subsystems, as is evident
from the Hamiltonian (4). Such dephasing, though expo-
nentially slow, will produce long-range entanglement, and
thus give rise to the entanglement entropy that is extensive
in the system size and determined by the participation
ratios of different eigenstates [25], as discussed in detail
in Ref. [16].
Numerical simulations.—Although our construction is

general, we now test the validity of our basic assumption
using exact diagonalization of a particular model—the
random-field XXZ spin chain. We consider a chain of L
spins with open boundary conditions, exchange J? ¼ 1,
and interaction strength Jz ¼ V, while the random onsite
magnetic field is uniformly distributed in the interval�W.
The total z component of the spin is conserved, and calcu-
lations are restricted to the Sz ¼ 0 sector. For V ¼ 0 the
model is equivalent to free fermions with disorder, and all
states are localized. Because of the limits on the accessible
system sizes in exact diagonalization, we restrict ourselves
to the case of the symmetric bipartite division of the full
system LR into the left (L) and right (R) half.
First, we study the averaged entanglement entropy Sent

of theL subsystem in the eigenstates ofLR, illustrated in
Fig. 1(a). For strong disorder, Sent saturates to a value of the
order 1 with increasing system size, indicating short-range
entanglement in the MBL eigenstates, which is consistent
with our basic assumption.
Next, we use the inverse participation ratio (IPR) as an

intuitive, albeit somewhat indirect, test of the locality of

operators ÔLi from Eq. (2), which, when acting on prod-
ucts of eigenstates of systems L, R, give eigenstates of
LR. The IPR for some state j�i over a complete basis j�ii
is defined as IPRðj�iÞ ¼ ðP p2

i Þ�1, where pi ¼ jh�j�iij2
represents the probability of finding a state j�ii. Defined in
such a way, the IPR takes values between 1 and the Hilbert
space dimension, and effectively tells us how many

FIG. 1 (color online). (a) Averaged entanglement entropy is of
the order 1 and varies weakly with L for strong disorder, indicat-
ing that eigenstates are short-range entangled. Interaction strength
is V ¼ 1. (b) Inverse participation ratios for the product of two
eigenstates of the L and R subsystems are close to 1 and do not
depend on L for strong disorder.
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components have nonzero weight in the decomposition of
the given state over the chosen complete basis. Figure 1(b)
shows the average IPR for the product j�i � j�i of two
random eigenstates of the L and R subsystems over the
eigenstates j�i of LR. The value of the IPR at strong
disorder is very close to 1, indicating that the product of
eigenstates of L and R is ‘‘close’’ to the eigenstate of the
full system LR. Furthermore, the IPR does not grow with
L for strong disorder, suggesting that the product of eigen-
states of L and R differs from the eigenstate of the full
system only near the boundary.

To provide further support for our construction of the
integrals of motion, we numerically implemented the pro-
jector operator similar to the one defined in Eq. (3). Every
eigenstate j�i of LR is labeled by its ‘‘ancestor’’ in L as
in Eq. (2). To find the ancestor, we calculate the density
matrix �̂� for the L subsystem from j�i. Using �̂�,
we extract the probabilities of all eigenstates of L as
p� ¼ jh�j�̂�j�ij2. In the limit of very strong disorder the
typical value of the largest p� is close to 1 [26]. Thus, the
‘‘ancestor’’ for j�i is defined to be an eigenstate of L
with the largest probability p�.

Although we do not assign labels for the right subsys-
tem, such labeling is sufficient to implement the operator

P̂� ¼ P
�P̂�� as a projector onto the subspace of all

eigenstates with the same label � for the L. As a simple

test, we study the locality of the projector P̂�: by construc-
tion it must have trivial action in the right subsystem.
To test this property, we perturb some eigenstate with label
�, j��i, at the right boundary jc �i ¼ ð1=2þ 2SL �
SL�1Þj��i. Because we are interested in the weight of
jc �i in the subspace with the same label �, we plot the

averaged hc �jP̂�jc �i as a function of disorder in Fig. 2.
For strong disorder, even when the interaction strength is
V ¼ 1, the perturbed state jc �i has almost all of its weight
in the subspace with index �, indicating that the degrees of

freedom in the subsystem L are not affected by the per-
turbation acting on the subsystem R. It is evident from
Fig. 2(b) that the weight within the subspace � grows as
a function of system size at W >W�, and decreases at
W <W�, where W� 	 3. Thus, W� gives an estimate of
the MBL transition location in agreement with Ref. [10].
We note that the construction described above allows for
more explicit tests to be done, which will be presented in
future work [27]. Additional numerical verifications of our
central assumption can be found in Ref. [26].
Discussion.—We established that the MBL phase is

characterized by a number of local integrals of motion,
supporting the hypothesis put forward in Ref. [18]. This
implies that the MBL phase does not thermalize, and only
partial thermalization of initial product states, constrained
by the local conservation laws, is possible.
It should be noted that there are many ways to define

local integrals of motion. For example, in certain problems
[28] it might be helpful to label the integrals of motion by a
set of 1=2 pseudospins. Then, M ¼ 2K possible values of

a given integral of motion Îi can be viewed as states of K
pseudospins �

�
i , � ¼ 1; . . . ; K. The z projections of these

pseudospins form a complete set of integrals of motion,
and the Hamiltonian only involves �

�
iz operators and their

products. Operators ��
i can be viewed as effective degrees

of freedom, in terms of which the dynamics becomes
trivial: up-down states of spins are eigenstates, so time
evolution can only lead to the dephasing between them.
Another implication of our work concerns the structure

of the MBL eigenstates: they are short-range entangled,
obey the area law, and can be generally represented as a
product of eigenstates of the subsystems of size� �which
have been locally ‘‘corrected’’ near the boundaries with
neighboring subsystems. This suggests an efficient numeri-
cal procedure for describing the MBL eigenstates in terms
of matrix-product states. Starting from the product of
eigenstates of decoupled blocks of size� �, entanglement
between the blocks is introduced by the repeated action of
the boundary terms in the Hamiltonian. The boundary
terms generate only a finite-dimensional space; thus, di-
agonalizing the boundary Hamiltonian for each finite-
dimensional subspace, it should be possible to find the
eigenstates of two coupled blocks, etc.
Finally, our picture suggests a realistic route to extend-

ing coherence times in nearly isolated quantum systems,
where decoherence is induced by interactions. Examples of
such systems, in addition to systems of ultracold atoms,
include nuclear spins and NV centers in diamond [29].
Assuming that one could induce strong static disorder
leading to the many-body localization, the coherence
time of a subsystem can be made very long. To achieve
this, one needs to prepare a subsystem of size � � (e.g.,
subsystem 1 in the above example), as well as its immedi-
ate neighborhood (e.g., subsystem 2) in some eigenstate.
Then, local operations on the subsystem’s degrees of

FIG. 2 (color online). The weight of the perturbed eigenstate
j��i in the subspace with index �. For strong disorder, the action
of the projector is contained within the subspace �, irrespective
of the interaction: the case of no interaction V ¼ 0 is shown in
(a), and V ¼ 1 in (b). The weight increases with system size. For
weak disorder (W < 3), the presence of interactions causes the
weight to decrease with the system size, suggesting the onset of
the delocalized phase.
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freedom would couple states with different integrals of
motion I1, but with fixed values of I2. Therefore, even
though the rest of the system is in some complicated
superposition state, it will only give rise to an exponen-
tially weak dephasing, with the rate proportional to
expð�l=�Þ.
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Note added.—During the completion of this manuscript,
we became aware of a related work [28] discussing the
existence of local integrals of motion in the MBL phase.
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a b s t r a c t

Due to its fourfold spin-valley degeneracy, graphene in a strong magnetic field may be viewed as a
four-component quantum Hall system. We investigate the consequences of this particular structure
on a possible, yet unobserved, fractional quantum Hall effect in graphene within a trial-wavefunction
approach and exact-diagonalisation calculations. This trial-wavefunction approach generalises an original
idea by Halperin to account for the SU(2) spin in semiconductor heterostructures with a relatively weak
Zeeman effect. Whereas the four-component structure at a filling factor ν = 1/3 adds simply a SU(4)-
ferromagnetic spinor ordering to the otherwise unaltered Laughlin state, the system favours a valley-
unpolarised state at ν = 2/5 and a completely unpolarised state at ν = 4/9. Due to the similar behaviour
of the interaction potential in the zero-energy graphene Landau level and the first excited one, we expect
these states to be present in both levels.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Electrons in graphene may be viewed as a particular form of
the two-dimensional electron gas (2DEG), with the fundamental
difference that, due to the particular band structure, their
low-energy properties are described in terms of a zero-mass
Dirac equation rather than the usual effective-mass Schrödinger
equation [1]. One of the most salient features of the 2DEG, when
submitted to a strong magnetic field, is the quantum Hall effect
which occurs in an integer (IQHE) as well as in a fractional
(FQHE) form. The former is also manifest in graphene [2,3], and
its obervation is a spectacular proof of relativistic electrons (and
holes) in graphene, due to an unusual quantisation of the Hall
conductivity, σH = 2(e2/h)(2n + 1), in terms of the integer n, as
expected on theoretical grounds [4–6].
Experimental evidence for the FQHE, which is due to elec-

tron–electron interactions in a partially filled Landau level (LL),
is yet lacking in graphene. In the usual 2DEG in GaAs/AlGaAs
heterostructures, the FQHE is, indeed, seen in samples with
high mobilities yet unaccessed in graphene on a SiO2 substrate
(µ ∼ 50 000 cm2/V s for typical samples). Higher mobilities
(µ ∼ 200 000 cm2/V s) have been achieved in current-annealed

∗ Corresponding author.
E-mail address: goerbig@lps.u-psud.fr (M.O. Goerbig).

suspended graphene [7], but unexpectedly the IQHE happens to
break down above 1T, probably due to extrinsic effects that are
not related to the intrinsic electronic properties of these graphene
samples [8]. In spite of the missing FQHE, interaction physics is
likely to be at the origin of additional plateaus in the Hall conduc-
tivity at LL filling factors νG = ±1 (and 0) [9], where νG = nC/nB
is the ratio between the carrier density (nC > 0 for electron and
nC < 0 for hole transport) and that, nB = B/(h/e), of the flux
quanta threading the graphene sheet.
From a theoretical point of view, interactions in graphene

LLs are expected to be relevant. Indeed, one needs to compare
the typical energy for exchange interaction VC = e2/εRC '
25
√
B [T]/ε

√
2n+ 1 meV, in terms of the dielectric constant ε

and the cyclotron radius RC = lB
√
2n+ 1, with the magnetic

length lB =
√
h̄/eB = 25/

√
B [T] nm, to the LL separation ∆n =√

2h̄(vF/lB)(
√
n+ 1 −

√
n), where vF is the Fermi velocity. In

spite of the decreasing LL separation in the large-n limit, the ratio
between both energy scales remains constant and reproduces the
fine-structure constant of graphene, αG = VC/∆n = e2/h̄vFε '
2.2/ε. Notice that the Coulomb interaction respects the fourfold
spin-valley degeneracy to lowest order in a/lB ' 0.005

√
B [T],

where a = 0.14 nm is the distance between nearest-neighbour
carbon atoms in graphene. This fourfold spin-valley symmetry
is described in the framework of the SU(4) group which covers
the two copies of the SU(2) spin and the SU(2) valley isospin.
Lattice effects break this SU(4) symmetry at an energy scale
VC (a/lB) ' 0.1B [T]/ε meV [10–13], which is roughly on the

0038-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ssc.2009.02.050
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same order of magnitude as the expected Zeeman effect in
graphene [9]. Other symmetry-breaking mechanisms have been
proposed [14–16] but happen to be equally suppressed with
respect to the leading interaction energy scale VC . An exception
may be graphene on a graphite substrate, where the natural lattice
commensurability of the substrate and the sample may lead to a
stronger coupling than for graphene on a SiO2 substrate [17]. This
yields a mass term in the Dirac Hamiltonian which lifts the valley
degeneracy of the zero-energy LL [14].
Based on these considerations, graphene in a strong magnetic

field may thus be viewed as a four-component quantum Hall
system, and we neglect SU(4)-symmetry breaking terms in the
remainder of the paper. An interesting theoretical expectation
resulting from this feature is the formation of a quantum Hall
ferromagnet at ν = ±1 [18,10,11,19] with SU(4)-skyrmion
excitations, which may have peculiar magnetic properties [19,20].
Also for the FQHE, the SU(4) spin-valley symmetry is expected to
play a relevant role and has been considered within a composite-
fermion approach [21] as well as one based on SU(4) Halperin
wavefunctions [22,23].
In this paper, we review how the four-component structure

of graphene may have particular signatures in a possible FQHE.
In a first step, we discuss the structure of the interaction model
for electrons restricted to a single graphene LL. We concentrate
on the spin-valley SU(4) symmetric part of the interaction model,
which constitutes the leading energy scale, and discuss, based on
the behaviour of the pseudopotentials, theoretical expectations for
the FQHE in graphene in the LLs n = 0 and 1. In the second part
of this paper, we corroborate these qualitative expectations with
the help of the SU(4) wavefunction approach [22,23] and exact-
diagonalisation calculations.

2. Interaction model

In the case of a partially filled LL, one may separate the ‘‘low-
energy’’ degrees of freedom, which consist of intra-LL excitations,
from the ‘‘high-energy’’ inter-LL excitations. In the absence of
disorder, all states within the partially filled LL have the same
kinetic energy such that intra-LL excitations may be described by
considering only electron–electron interactions,

Hλn =
1
2

∑
q
v(q)ρλn(−q)ρλn(q), (1)

where v(q) = 2πe2/εq is the 2D Fourier-transformed Coulomb
interaction potential. The Fourier components ρλn(q) of the
density operator are constructed solely from states within the n-
th LL in the band λ (λ = + for the conduction and λ = − for the
valence band). This construction is analogous to that used in the
conventional 2DEG, but the density operators ρn(q) are now built
up from spinor states of the 2D Dirac equation,

ψ
ξ
λn,m =

1
√
2

(
|n− 1,m〉
λ|n,m〉

)
(2)

for n 6= 0 and

ψ
ξ

n=0,m =

(
0

|n = 0,m〉

)
(3)

for the zero-energy LL n = 0, in terms of the harmonic oscillator
states |n,m〉 and the guiding-centre quantum number m = 0.
Here, we have chosen the first component of the spinor to
represent at the K point (ξ = +) the amplitude on the A sublattice
and that on the B sublattice at the K ′ point (ξ = −). Notice that
the valley and the sublattice indices happen to be the same in the
zero-energy LL n = 0 and that, thus, a perturbation that breaks

the inversion symmetry (the equivalence of the two sublattices)
automatically lifts the valley degeneracy [14–16]. In terms of the
spinor states (2) and (3), the density operator may be written

ρλn(q) =
∑
ξ,m

(
ψ
ξ
λn,m

)Ď
e−iq·rψ ξ

λn,m′c
Ď
λn,m;ξ cλn,m′;ξ , (4)

where c(Ď)λn,m;ξ annihilates (creates) an electron in the stateψ
ξ
λn,m. In

Eq. (4),we have neglected the contributions that are off-diagonal in
the valley index. Indeed, these contributions give rise to a rapidly
oscillating phase exp(±iK ·r) in thematrix elements, where±K =
±(4π/3

√
3a)ex is the location of the K and K ′ points, respectively,

and yield terms in the Hamiltonian (1), which break the valley-
SU(2) symmetry of the interaction. They are suppressed by a factor
a/lBwith respect to the leading interaction energy scale e2/εlB [10],
as mentioned in the introduction. For the sake of simplicity and
because of their smallness, we neglect these terms here.
Within the symmetric gauge, A = (B/2)(−y, x, 0), the position

operator r in Eq. (4) may be decomposed into the guiding-centre
position R and the cyclotron variable η. Whereas the latter only
affects the quantum number n, R acts onm, and we may therefore
rewrite the density operator (4), ρλn(q) = Fn(q)ρ̄(q), as a product
of the projected density operator

ρ̄(q) =
∑
ξ ;m,m′

〈
m
∣∣e−iq·R∣∣m′〉 cĎλn,m;ξ cλn,m′;ξ (5)

and the graphene form factor

Fn(q) =
1
2

(〈
n− 1

∣∣e−iq·η∣∣ n− 1〉+ 〈n ∣∣e−iq·η∣∣ n〉)
=
1
2

[
Ln−1

(
q2l2B
2

)
+ Ln

(
q2l2B
2

)]
e−q

2 l2B/4 (6)

for n 6= 0, in terms of Laguerre polynomials, and

Fn=0(q) =
〈
0
∣∣e−iq·η∣∣ 0〉 = e−q2 l2B/4 (7)

for n = 0. With the help of the projected density operators, the
interaction Hamiltonian (1) reads

Hλn =
1
2

∑
q
vGn (q)ρ̄(−q)ρ̄(q), (8)

where we have defined the effective interaction potential for
graphene LLs,

vGn (q) =
2πe2

εq
[Fn(q)]2 . (9)

Notice that the structure of the Hamiltonian (8) is that of
electrons in a conventional 2DEG restricted to a single LL if one
takes into account that the projected density operators satisfy the
magnetic translation algebra [24]

[ρ̄(q), ρ̄(q′)] = 2i sin
(
q′ ∧ ql2B
2

)
ρ̄(q+ q′), (10)

where q′ ∧ q ≡ q′xqy − qxq
′
y is the 2D vector product. This is a

remarkable result in view of the different translation symmetries
of the zero-field Hamiltonian; whereas the electrons in the 2DEG
are non-relativistic and therefore satisfy Galilean invariance, the
relativistic electrons in graphene are Lorentz-invariant. However,
once submitted to a strongmagnetic field and restricted to a single
LL, the translation symmetry of the electrons is described by the
magnetic translation group in both cases.
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2.1. SU(4) symmetry

The most salient difference between the conventional 2DEG
and graphene arises from the larger internal symmetry of the
latter, due to its valley degeneracy. This valley degeneracy may be
accounted for by an SU(2) valley isospin in addition to the physical
SU(2) spin, which we have omitted so far and the symmetry of
which is respected by the interaction Hamiltonian. Similarly to the
projected charge density operator (5), we may introduce spin and
isospin density operators, S̄µ(q) and Īµ(q), respectively, with the
help of the tensor products [20]

S̄µ(q) = (Sµ ⊗ 1)⊗ ρ̄(q),

Īµ(q) = (1⊗ Iµ)⊗ ρ̄(q). (11)

Here, the operators Sµ and Iµ are (up to a factor 1/2) Paulimatrices,
which act on the spin and valley isospin indices, respectively.
The operators (Sµ ⊗ 1) and (1 ⊗ Iµ) may also be viewed as the
generators of the SU(2)×SU(2) symmetry group, which is smaller
than the abovementioned SU(4) group. However, once combined
in a tensor product with the projected density operators ρ̄(q), the
SU(2)×SU(2)-extended magnetic translation group is no longer
closed due to the non-commutativity of the Fourier components
of the projected density operators. By commutating [S̄µ(q), Īν(q)],
one obtains the remaining generators of the SU(4)-extended
magnetic translation group [20], which is, thus, the relevant
symmetry that describes the physical properties of electrons in
graphene restricted to a single LL.

2.2. Effective interaction potential and pseudopotentials

Another difference, apart from the abovementioned larger
internal symmetry, between the 2DEG and graphene in a
strong magnetic field arises from the slightly different effective
interaction potentials in the n-th LL. The effective interaction for
graphene is given by Eq. (9) whereas that in the conventional 2DEG
reads

v2DEGn (q) =
2πe2

εq

[
Ln

(
q2l2B
2

)
e−q

2 l2B/4
]2
. (12)

The difference between the two of them vanishes for n = 0,
as well as in the large-n limit [10], but leads to quite important
physical differences in the first excited LL (n = 1) when comparing
graphene to the 2DEG.
For the discussion of the FQHE, it is more appropriate to

use Haldane’s pseudopotential construction [25], which is an
expansion of the effective interaction potential in the basis of two-
particle states with a fixed relative angular momentum `. In the
Laughlin state at filling factor ν = 1/m [26],

φLm({zj, z
∗

j }) =
∏
k<l

(zk − zl)me
−
∑
j
|zj|2/4

, (13)

in terms of the complex position zj = (xj + iyj)/lB of the j-th
particle, e.g., no particle pair has a relative angular momentum
less than ` = m. Therefore, all pseudopotentials V`<m are
completely screened, and the Laughlin state (13) is the exact N-
particle ground state with zero energy of a model interaction
potential with V`<m > 0 and V`≥m = 0 [25]. Although this model
interaction potential is quite different from the pseudopotentials
of the effective interaction potentials (9) and (12), it allows
one to generate numerically the Laughlin state, which may be
then compared to those obtained within exact-diagonalisation
calculations of the realistic interaction potential.

Fig. 1. Pseudopotentials for graphene and the 2DEG in n = 0 (graphene and 2DEG,
circles), n = 1 (graphene, squares), and n = 1 (2DEG, triangles). The energy is
measured in units of e2/εlB . The lines are a guide to the eye.

Notice that one may easily obtain the pseudopotentials of a
given interaction potential vn(q) in Fourier space, such as (12) or
(9), with the help of

V n` =
∑
q
vn(q)L`(q2l2B)e

−q2 l2B/2. (14)

The pseudopotentials for n = 0 and n = 1 in graphene and the
2DEG are shown in Fig. 1,which allows us tomake somequalitative
statements about a potential FQHE in graphene as compared to
that of the 2DEG. First, apart from the internal symmetry, the
polarised FQHE states in the zero-energy LL are expected to be the
same in graphene as in the 2DEG because there is no difference
in the effective interaction potential. The only difference stems
from the larger internal symmetry in graphene, which affects the
unpolarised FQHE states in n = 0. Second, the n = 1 LL in
graphene is much more reminiscent of the n = 0 LL than of the
n = 1 LL in the 2DEG. From an interaction point of view, one
would therefore expect that the quantum phases encountered in
the n = 1 graphene LL are merely a copy of those in n = 0.
Furthermore, if one considers spin-polarised FQHE states, only
pseudopotentials with odd angular momentum are relevant due
to the fermionic nature of the electrons. It is apparent from Fig. 1
that odd-` pseudopotentials are systematically larger in n = 1
than in n = 0. Therefore, the overall energy scale of FQHE states
in n = 1 is slightly larger (by ∼10%) than in n = 0, and one
would expect, somewhat counterintuitively, that the n = 1 FQHE
states are more stable than those in n = 0, for the same B-field
value. These qualitative predictions [10] have been corroborated
within exact-diagonalisation studies, where only the valley isospin
degree of freedomwas considered and the physical spin was taken
as completely polarised [27,28].

3. Trial wavefunctions

In order to account for the internal SU(4) symmetry in graphene
LLs, two of us have proposed a trial-wavefunction approach [22]
based on an original idea by Halperin [29] for the description of
two-component FQHE states. These states,

ψ
SU(4)
m1,...,mK ;nij

= φLm1,...,m4φ
inter
nij e

−

K∑
j=1

Nj∑
kj=1
|z(j)kj
|
2/4

, (15)

consist of a product of four Laughlin wavefunctions (13) (one per
spin-valley component)

φLm1,...,mK =

4∏
j=1

Nj∏
kj<lj

(
z(j)kj − z

(j)
lj

)mj
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and a term

φinternij =

4∏
i<j

Ni∏
ki

Nj∏
kj

(
z(i)ki − z

(j)
kj

)nij
that takes into account correlations between the different com-
ponents, labeled by the indices i, j = 1, . . . , 4. Whereas the ex-
ponents mj must be odd integers to account for the fermionic
statistics of the electrons, the exponents nij, which describe inter-
component correlations, may also be even. Notice further that
not all wavefunctions are good candidates for a possible FQHE
in graphene; it has indeed been shown, within the plasma anal-
ogy [26], that some wavefunctions correspond to a liquid in which
the components undergo a spontaneous phase separation [23].
The exponents nij and njj ≡ mj define a symmetric 4× 4 matrix

M = (nij), which determines the component densities ρj — or else
the component filling factors νj = ρj/nB,1ν1ν2ν3
ν4

 = M−1
111
1

 . (16)

Eq. (16) is only well-defined if the matrix M is invertible. If M is
not invertible, some of the component filling factors, e.g. ν1 and ν2,
remain unfixed, but not necessarily the sum of the two (ν1 + ν2).
This is a particular feature of possible underlying ferromagnetic
properties of thewavefunction [22], as is discussed below for some
special cases.
In the following, we consider some particular subclasses of

the trial wavefunctions (15), which are natural candidates for a
FQHE in graphene. Explicitely, we attribute the four spin-valley
components as 1 = (↑, K), 2 = (↑, K ′), 3 = (↓, K), and 4 =
(↓, K ′), where the first component denotes the spin orientation
(↑ or ↓) and the second the valley (K or K ′). We investigate
wavefunctions, where all intracomponent exponents are identical
mi = m, i.e. we consider the same interaction potential for any
of the components, as it is the case in graphene. Furthermore, we
consider n13 = n24 ≡ na and n12 = n14 = n23 = n34 ≡ ne,
which makes an explicit distinction between inter-component
correlations in the same valley (na) and those in different valleys
(ne). This distinction may seem somewhat arbitrary – indeed, it
does no longer treat the spin on the same footing as the valley
isospin – but it happens to be useful in some cases if one intends
to describe states with intermediate polarisation, such as for a
moderate Zeeman field. The equivalence between spin and valley
isospin is naturally restored for ne = na. We use the notation
[m; ne, na] to describe these subclasses of trial wavefunctions (15),
the validity of which we check by exact diagonalisation of N
particles on a sphere [25].

3.1. [m;m,m] wavefunctions

If all exponents are identical odd integers m, we obtain a
completely antisymmetric orbital wavefunction, which is nothing
other than the Laughlin wavefunction (13). In this case, the
distinction between the components vanishes, and the component
filling factors are not fixed—onemay,without changing the orbital
wavefunction, fill only oneparticular component aswell as another
one or distribute the particles over all components. Only the total
filling factor is fixed at ν = 1/m. The corresponding exponent

1 The filling factors used here are those that arise naturally in FQHE studies,
i.e. they are defined with respect to the bottom of the partially filled LL, in contrast
to νG defined with respect to the center of n = 0. In order to make the connection
between the two filling factors, one needs to choose ν = ν1+ν2+ν3+ν4 = νG+2.

Table 1
Overlap O between the (3, 3, 2) wavefunction and the state obtained from exact
diagonalisation of the effective interaction potential in n = 0 and n = 1.

Number of particles N 4 6 8 10

Overlap O in n = 0 0.990 0.985 0.979 0.970
Overlap O in n = 1 0.965 0.882 0.896 0.876

matrix M is indeed not invertible (of rank 1), and the residual
freedom of distributing the electrons over the four components
may be viewed as the arbitrary orientation of a four-spinor in
SU(4) space. The Laughlin wavefunction in graphene is therefore
associated with an SU(4) ferromagnetism, similar to that of the
state at νG = ±1 [18,10,11,19,20], where a graphene quantumHall
effect has been observed at high magnetic fields [9].
As already mentioned above, the Laughlin wavefunction has

the good property of screening all pseudopotentials with angular
momentum ` < m and has, form = 3, the usual large overlapwith
the Coulomb ground state [21].

3.2. [m;m− 1,m] wavefunctions

A similarly good wavefunction is [m;m − 1,m], where the
intervalley-component exponents are decreased by one. It also
screens all pseudopotentials V`<m in any pair of electrons within
the same valley, but an electron pair in two different valleys is
affected by the pseudopotential V`=m−1. The filling factor, where
this wavefunction may occur, is

ν =
2

2m− 1
,

i.e. at slightly larger densities as the Laughlin wavefunction with
the same m. The exponent matrix M is still not invertible but
of rank 2, and indeed only the filling factors in the two valleys,
νK = ν1 + ν3 and νK ′ = ν2 + ν4, respectively, are fixed, νK =
νK ′ = 1/(2m − 1). The wavefunction, thus, describes a state
with ferromagnetic spin ordering, but which is valley-isospin un-
polarised. One may alternatively view this [m;m − 1,m] wave-
function as a tensor product of an SU(2) Halperin (m,m,m − 1)
isospin-singlet wavefunction [29] and a completely symmetric
(ferromagnetic) two-spinor that describes the physical spin.
We have checkedwithin exact diagonalisation calculations that

the [3; 2, 3] wavefunction (m = 3) describes indeed, to great
accuracy, the ground state in graphene at ν = 2/5. It was shownby
exact diagonalisation in Ref. [21] that, forN = 4 and 6 particles, the
physical properties are indeed governed by an SU(2) symmetry, as
suggested by the [m;m−1,m]wavefunction. The overlap between
this trial state and the one obtained by exact diagonalisation with
implemented SU(2) symmetry of the Coulomb interaction in n = 0
and 1 is shown in Table 1 for up to 10 particles. It is above 97%
for all studied system sizes in the zero-energy LL n = 0, but
slightly smaller (∼88%) in n = 1. We have used the planar
pseudopotentials (14) in the calculation of the n = 1 LL and
checked that the difference is less than 1% in n = 0when compared
to using the more accurate spherical ones, even for the smallest
system sizes N = 4 and 6.
It has been shown that the ground state at ν = 2/5 in the

conventional 2DEG is well described by an unpolarised (3, 3, 2)
SU(2) Halperin wavefunction once the spin degree of freedom
is taken into account [30]. This wavefunction is identical to the
composite-fermion wavefunction when including the SU(2) spin.
The energy difference between the polarised and the unpolarised
2/5 states is, however, relatively small as compared to the
Zeeman effect at the corresponding magnetic fields, such that
a polarised state is usually favoured. Intriguing spin transitions
have furthermore been observed experimentally at ν = 2/5
and hint to even more complex physical properties of the 2/5
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FQHE [31]. Notice that the situation of the [3; 2, 3] state in
graphene is remarkably different from that in the 2DEG: even in
the presence of a strong Zeeman effect, only the ferromagnetically
ordered physical spin is polarised, while the state remains a
valley-isospin singlet. Whether such a valley-isospin singlet state
is indeed encountered in graphene depends sensitively on the
valley-symmetry breaking terms; whereas a possible easy-axis
ferromagnetism, as has been proposed for the zero-energy LL n =
0 [11], may destroy the [3; 2, 3] state, it is favoured in the case of
an easy-plane valley-isospin anisotropy, which may occur in the
n = 1 graphene LL due to intervalley coupling terms of the order
VC (a/lB) [10].
We have furthermore studied the (5, 5, 4) wavefunction (m =

5) at ν = 2/9. Its overlap with the state obtained by exact
diagonalisation is lower than for the (3, 3, 2) case (withO = 0.941
for N = 4 and O = 0.892 for N = 6), but remains relatively high.

3.3. [m;m− 1,m− 1] wavefunctions

Another candidate is the [m;m− 1,m− 1] wavefunction [23]
which may describe FQHE states at

ν =
4

4m− 3
.

The corresponding exponent matrix M is now invertible, and the
filling factor of each spin-valley component is ν = 1/(4m − 3),
i.e. the state is an SU(4) singlet. As for the [m;m,m] and [m;m −
1,m]wavefunctions, all intracomponent correlations are such that
the pseudopotentials V`<m are screened, but V`=m−1 is relevant for
all intercomponent interactions.
As an example, we consider the [3; 2, 2]wavefunction (m = 3),

which is a candidate for a possible graphene FQHE at ν = 4/9.
Our exact-diagonalisation calculations with implemented SU(4)
symmetry, for N = 4 and 8 particles, indicate that this trial
wavefunction describes indeed to great accuracy the ground state
for the Coulomb interaction potential in the n = 0 LL, with an
overlap of O = 0.999 for N = 4 and O = 0.992 for N = 8.
In n = 1, it is O = 0.944 for N = 8, for the case where one
uses the planar pseudopotentials (14). These results indicate that a
possible 4/9 FQHE state in graphene is, remarkably, of a completely
different nature than the composite-fermion state at ν = 4/9
in a one-component system, such as the conventional 2DEG with
complete spin polarisation. It is, nevertheless, an open issue to
what extent the SU(4) singlet state survives if one takes into
account the Zeeman effect at high magnetic fields, which favours
a polarisation in the spin channel. A complementary composite-
fermion calculation with SU(4) symmetry has revealed that, at
ν = 4/9, stateswith intermediate SU(4) isospin polarisation – such
as a valley-isospin singlet with full spin polarisation – may exist,
with a slightly higher energy than the composite-fermion SU(4)
singlet [21], which is indeed identical to the [3; 2, 2]wavefunction.
One may, therefore, expect a transition between two 4/9 states
with different polarisation when the Zeeman energy outcasts the
energy difference between the two states. This is similar to the
abovementioned 2/5 state in a conventional 2DEG [30].

4. Conclusions

In conclusion, we have investigated theoretically some partic-
ular features of the FQHE in graphene as compared to the 2DEG.
The electrons in graphene lose their relativistic character asso-
ciated with the Lorentz invariance once they are restricted to a
single LL, in which case the translations are governed by the mag-
netic translation group, as in the 2DEG case. The main difference

between the 2DEG and graphene arises from the approximate
SU(4) spin-valley symmetry, which is respected in a wide energy
range. Another difference arises from the spinor character of the
wavefunctions, which yields a different effective electron–electron
interaction in graphene as compared to the 2DEG. The graphene in-
teraction potential in the first excited LL n = 1 (in both the valence
and the conduction band) is shown to be similar to that in the cen-
tral zero-energy LL n = 0, yet with a slightly larger overall energy
scale (roughly 10% larger).
The FQHE at ν = 1/3 is described as a Laughlin state [26]

with SU(4)-ferromagnetic spin-valley ordering, similar to the state
at ν = 1 [18,10,11,19,20]. In contrast to this state, the system
profits from its internal degrees of freedom by choosing a state
with partial and full SU(4)-isospin depolarisation at ν = 2/5 and
ν = 4/9, respectively. The [3; 2, 3] state at ν = 2/5 is a valley-
isospin singlet, but its physical spin is ferromagnetically ordered
and may eventually be oriented by the Zeeman effect. The state at
ν = 4/9 is described in terms of a [3; 2, 2]Halperin wavefunction,
which is an SU(4) singlet with necessarily zero spin and valley
isospin polarisation. A possible FQHE at ν = 4/9 in graphene may
therefore be sensitive to the Zeeman effect at high magnetic fields,
and one may expect transitions between states with different
polarisation, similar to the 2DEG at ν = 2/5 and 2/3 [31].

Acknowledgments

This work was funded by the Agence Nationale de la Recherche
under Grant Nos. ANR-06-NANO-019-03 and ANR-JCJC-0003-01.
ZP was supported by the European Commission, through a Marie
Curie Foundation contract MEST CT 2004-51-4307 and Center of
Excellence Grant CX-CMCS, as well as by the Serbian Ministry of
Science under Grant No. 141035.We acknowledge furthermaterial
support from the Basque ‘‘Les Bugnes’’ Foundation.

References

[1] For a recent review, see A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov,
A.K. Geim, Rev. Mod. Phys. 81 (2009) 109.

[2] K.S. Novoselov, A.K. Geim, S.V. Morosov, D. Jiang, M.I. Katsnelson,
I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197.

[3] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201.
[4] T. Ando, Zheng, Phys. Rev. B 65 (2002) 245420.
[5] V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 93 (2005) 146801.
[6] N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73 (2006) 125411.
[7] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,
H.L. Stormer, Solid State Commun. 146 (2008) 351.

[8] P. Kim, talk at the ICTP conference ‘‘Graphene Week 2008’’.
[9] Y. Zhang, Z. Jiang, J.P. Small,M.S. Purewal, Y.-W. Tan,M. Fazlollahi, J.D. Chudow,
J.A. Jaszczak, H.L. Stormer, P. Kim, Phys. Rev. Lett 96 (2006) 136806.

[10] M.O. Goerbig, R. Moessner, B. Douçot, Phys. Rev. B 74 (2006) 161407.
[11] J. Alicea, M.P.A. Fisher, Phys. Rev. B 74 (2006) 075422.
[12] D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 98 (2007) 156801.
[13] R.L. Doretto, C. Morais smith, Phys. Rev. B 76 (2007) 195431.
[14] F.D.M. Haldane, Phys. Rev. Lett. 61 (1988) 2015.
[15] J.-N. Fuchs, P. Lederer, Phys. Rev. Lett. 98 (2007) 016803.
[16] I. Herbut, Phys. Rev. B 75 (2007) 165411; Phys. Rev. B 76 (2007) 085432.
[17] G. Li, A. Luican, E.Y. Andrei, 2008. arXiv:0803.4016.
[18] K. Nomura, A.H. Macdonald, Phys. Rev. Lett. 96 (2006) 256602.
[19] K. Yang, S. Das Sarma, A.H. MacDonald, Phys. Rev. B 74 (2006) 075423.
[20] B. Douçot,M.O. Goerbig, P. Lederer, R.Moessner, Phys. Rev. B 78 (2008) 195327.
[21] C. Töke, J.K. Jain, Phys. Rev. B 75 (2007) 245440.
[22] M.O. Goerbig, N. Regnault, Phys. Rev. B 75 (2007) 241405.
[23] R. de. Gail, N. Regnault, M.O. Goerbig, Phys. Rev. B 77 (2008) 165310.
[24] S.M. Girvin, A.H. Macdonald, P.M. Platzman, Phys.Rev.B 33 (1986) 2481.
[25] F.D.M. Haldane, Phys. Rev. Lett. 61 (1988) 2015.
[26] R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.
[27] V.M. Apalkov, T. Chakraborty, Phys. Rev. Lett. 97 (2006) 126801.
[28] C. Töke, P.E. Lammert, V.H. Crespi, J.K. Jain, Phys. Rev. B 74 (2006) 235417.
[29] B.I. Halperin, Helv. Phys. Acta 56 (1983) 75.
[30] T. Chakraborty, F.C. Zhang, Phys. Rev. B 29 (1984) 7032.
[31] W. Kang, J.B. Young, S.T. Hannahs, E. Palm, K.L. Campman, A.C. Gossard, Phys.

Rev. B 56 (1997) R12776;
I.K. Kukushkin, K.v. Klitzing, K. Eberl, Phys. Rev. Lett. 82 (1999) 3665.

http://arxiv.org/0803.4016


July 12, 2012 15:14 WSPC/147-MPLB S0217984912501345 1–10

Modern Physics Letters B
Vol. 26, No. 21 (2012) 1250134 (10 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0217984912501345

DISORDERING OF THE CORRELATED STATE OF THE

QUANTUM HALL BILAYER AT FILLING FACTOR ν = 1
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∗Scientific Computing Laboratory, Institute of Physics,

University of Belgrade, P. O. Box 68, 11 000 Belgrade, Serbia
†Laboratoire de Physique des Solides, University Paris-Sud,

CNRS, UMR 8502, F-91405 Orsay Cedex, France
‡zpapic@ipb.ac.rs

Received 13 April 2012
Revised 13 May 2012
Accepted 16 May 2012
Published 13 July 2012

The phase diagram of a quantum Hall bilayer at total filling ν = 1 contains an incom-
pressible superfluid for small distances d between the layers, as well as the compressible
phase corresponding to two uncoupled Fermi liquids for large d. Using exact diagonal-
ization on the sphere and torus geometry, we investigate a long-standing question of the
nature of the transition between the two regimes, and the possibility for the existence
of a paired phase in the transition region. We find considerable evidence for a direct
transition between the superfluid and the Fermi liquid phase, based in particular on the
behavior of the ground state energy on the sphere (including appropriate finite-size cor-
rections) as a function of d. At the critical distance dC ≈ 1.6ℓB the topological number
(“shift”) of the ground state changes, suggesting that tuning the layer separation d in
experiment likely leads to a direct transition between the superfluid and the Fermi liquid
phase.

Keywords: Fraction quantum Hall effect; quantum Hall bilayer; Chern–Simons theory;
exact diagonalization; superfluid disordering.

PACS Number(s): 63.22.-m, 87.10.-e, 63.20.Pw

Quantum Hall bilayer (QHB) is a semiconductor structure that consists of two

quantum wells spatially separated by an insulating barrier that is of the same

order of magnitude as the width of each of the wells. When QHB is placed in

the perpendicular magnetic field, adjusted in such a way that that the ratio of the

number of electrons in the system (N) and the magnetic flux quanta (Nφ) is exactly

ν = N/Nφ = 1, remarkable manifestations of quantum-mechanical coherence take

place on the macroscopic scale.1 These interesting effects occur upon varying a

single parameter, d/ℓB, the ratio of the center-to-center distance between the wells
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d to the magnetic length ℓB =
√

~c/eB. Much of the QHB physics has been well

established in the extreme cases when d is (1) much smaller, or (2) much larger

than ℓB.

When d≪ ℓB, i.e. the Coulomb interaction between electrons in the same layer

and in the opposite layers is of about the same magnitude, a good starting point

for the physical description is the Halperin state Ψ111,
2 explicitly defined below in

Eq. (1). The physics contained in Ψ111 is that of exciton binding:1,3 an electron

in one layer and a correlation hole directly opposite to it in the other layer, are

in a coherent quantum-mechanical superposition dictated by the form of the Ψ111

wave function. This exciton description can be a viewpoint of the phenomenon of

superfluidity found in these systems,4 and is closely connected to the concept of

composite bosons (CBs)5–7 that can be used as natural quantum Hall quasiparticles

in the small d/ℓB regime.

On the other hand, when d≫ ℓB we have the case of the decoupled layers and

the ground state (GS) is a product of two Fermi seas, each described by the Rezayi–

Read wave function ΨRR,
8 defined below in Eq. (3). The underlying quasiparticles

in this case are composite fermions (CFs), the usual quasiparticles of the single-layer

quantum Hall physics.9

To address the range of intermediate d, when the system is a disordered su-

perfluid, one may try to capture the basic physics by interpolating between the

two limits described above. In other words, one may describe the physics by using

mixed states of CBs and CFs.10 This is a phenomenological approach in which we

start from the identical underlying electrons, split them into a group of those that

correlate as CBs, and a group of those that correlate as CFs. The wave function

for the superfluid state at small d will involve mainly CBs; the disordering of the

CB superfluid can be viewed as caused by “nucleation” of CF quasiparticles as d is

increased.

In the remainder of this paper, we first introduce and systematically review

the construction of mixed states of CBs and CFs,11,12 paying special emphasis on

the kind of pairing between CFs that might be relevant for the bilayer system to

produce a paired state. After presenting the analytic arguments that motivate the

existence of a paired state in the transition region between superfluid and Fermi

liquid phases, we present the results of exact diagonalization calculations on the

torus and sphere, and conclude by discussing some of their implications.

The basic ingredients for the construction of mixed CB/CF states are the

Halperin 111 state, describing the bilayer ground state for very small distances

d, and the Rezayi–Read wave function that describes the Fermi liquid state in a

single-layer quantum Hall system at ν = 1/2. The 111 state is given by

Ψ111({z↑, z↓}) =
N↑
∏

i<j

(z↑i − z↑j )

N↓
∏

k<l

(z↓k − z↓l )

N↑
∏

m=1

N↓
∏

n=1

(z↑m − z↓n) . (1)
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Here zσ = xσ + iyσ is the complex 2D coordinate of an electron in the layer σ ∈
{↑, ↓} (containing Nσ particles), and we have set the magnetic length ℓB equal to 1,

supressing the spinor part of the wave function and the ubiquitous lowest Landau

level (LLL) Gaussian factors. Because it describes identical electrons, this wave

function is subject to the constraint that there is the same number of magnetic flux

quanta per particle. This translates into the following flux-counting relation

Nφ = N↑ − 1 +N↓ = N↓ − 1 +N↑ , (2)

which necessitates N↑ = N↓ = N/2.

On the other hand, the Rezayi–Read CF-sea state8 at ν = 1/2 is given by

ΨRR(z) = PLLL F(z, z)
∏

i<j

(zi − zj)
2 , (3)

where F stands for the Slater determinant of free waves. Because F contains the

terms involving z, we need to project those by PLLL to obtain a holomorphic LLL

wave function. The wave function for two decoupled layers is then simply given by

the product ΨRR(z↑)×ΨRR(z↓).

Possible corrections to the 111 state, resulting from increasing the distance d

that leads to superfluid disordering, have been the subject of numerous previous

works in the literature. For example, an approach based on the traditional Chern–

Simons theory7 of CBs in the RPA approximation finds the following correction to

Ψ111:
13

Ψph = exp

{

−1

2

∑

k

√

VS(k)
ρ/m

|k| ρS
k
ρS−k

}

Ψ111 , (4)

where ρSk ≡ ρ↑
k
− ρ↓

k
is the difference of the densities of two layers, VS(k) =

V↑↑(k)−V↑↓(k)
2 is the interaction in the neutral channel, m is the electron mass and ρ̄

is the uniform total density. As usual, the bilayer problem at ν = 1 has been decom-

posed into the charge and neutral channel, and the latter reduces to the problem

of an ordinary superfluid with the phonon contribution, hence our notation for the

correction Ψph. In the small d limit VS(k) = πd, and we can expand the expression

Ψph as

Ψph = Ψ111 −
(

∑

k

c
√
d

|k| ρ
S
−k
ρS
k

)

Ψ111 + · · · , (5)

where c is a positive constant. The terms after the first one represent corrections,

in the order of importance, to the Ψ111 ansatz as d increases. The form of the

correction is fixed by the basic phenomenology and sum rules for a superfluid in

two dimensions.14

The previous correction can be recovered as a special case of the mixed CB-CF

ansatz, as we now show. For small distances d, it was argued in Refs. 10–12 that the

low-energy physics of the bilayer should be captured by the following mixed state
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of CBs and CFs:

Ψ1 = A↑A↓

{

Ψ111(z↑, z↓)ΨRR(w↑)ΨRR(w↓)
∏

i,j

(zi↑ − wj↑)
∏

k,l

(zk↑ − wl↓)

×
∏

p,q

(zi↓ − wq↑)
∏

m,n

(zm↓ − wn↓)

}

, (6)

where Aσ stands for the anti-symmetrization in the layer σ, and we omitted the

projection to the LLL. By using the expressions for the densities of electrons in

each layer, ρσ(η) =
∑

i δ
2(η− zσi )+

∑

i δ
2(η−wσ

i ), we can further rewrite the wave

function in the following way:12

Ψ1 =

∫

∏

n∈CF

d2ηnσ

{

∏

k<l(ηk↑ − ηl↑)
∏

p<q(ηp↓ − ηq↓)
∏

i,j(ηi↑ − ηj↓)
F(η↑)

×F(η↓)× ρ↑(η1↑) · · · ρ↓(ηn↓)Ψ111(z↑, z↓)

}

, (7)

where n is the total number of electrons that correlate as CFs. This expression is

exactly equivalent to Eq. (6) (up to an unimportant numerical factor).

Let us compare the first phonon corrections in both approaches to find out

which possibilities for the pairing are allowed amongst the most simple choices for

the (weak) pairing function. Based on the usual Chern–Simons approach, the first

phonon correction is ∼∑
k

1
|k|ρ

↑
k
ρ↓−k

. On the other hand, the mixed wave function

including pairing suggests the following simplest correction when there are two CFs:
∫

d2η1↑

∫

d2η2↓
1

(η1↑ − η2↓)
g(η1↑ − η2↓)ρ

↑(η1↑)ρ
↓(η2↓) , (8)

where g is the pairing function. If we choose g(z) = 1/z, we obtain no correction

whatsoever to the 111 state. Among other simple choices, the next candidate for

the pairing function could be g(z) =
√

z/z̄ (z̄ is the complex conjugate of z). When

substituted in Eq. (8), this reduces to the form of the first phonon contribution in

the long-distance limit with the 1
|k| singularity, Eq. (5). Thus g(z) =

√

z/z̄ accom-

modates the usual (on the level of RPA) superfluid description given in Eq. (5). It

can be shown that g(z) = const. i.e. no pairing, also produces a trivial correction;

see Table 1 caption. We can continue exploring the simple choices for pairing, e.g.

the next possibility in the order of weakness of the pairing that retains the same

angular momentum for the pairing as g(z) =
√

z/z̄ is g(z) = 1/z̄. The phonon

contribution in this case turns out to be ∼ ∑

k
ln(|k|ℓB)ρ↑kρ

↓
−k

.12 Our results can

be summarized as in Table 1.

Having identified some simple pairing functions allowed in the bilayer system

starting from Ψ1 and at small d/ℓB, we can ask whether any of those may lead to

a paired phase in the intermediate range of d/ℓB and can we find a simple wave

function to describe this phase. If the translation symmetry remains unbroken as we
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Table 1. Phonon corrections for different choices of the pairing

function. The functions f1, f2 and f3 define the weight of each cor-
rection in terms of the bilayer distance d. In the first case (no pairing)

the correction is proportional to
∑

k

1
(kx+iky)

ρ↑
k
ρ↓
−k

, but we expect

that with no constraint on the number of CFs [as in Eqs. (4) and (5)],
this will correspond to

∑

k

1
(kx+iky)

ρS
k
ρS
−k

i.e. zero (no correction)

due to the anti-symmetry under k → −k exchange.

g(z) = const. (no pairing)
∑

k
f1(d)

1

(kx + iky)
ρ↑
k
ρ↓
−k

g(z) = 1/z no correction when multiplies Ψ111

g(z) =
√

z/z̄
∑

k
f2(d)

1

|k|
ρ↑
k
ρ↓
−k

g(z) = 1/z̄
∑

k
f3(d) ln(|k|ℓB)ρ↑

k
ρ↓
−k

increase d, one of the viable candidates is the mixed CB/CF wave function with the

pairing g(z) = 1/z̄. This pairing has the same angular momentum as g(z) =
√

z/z̄,

but it also has an additional amplitude factor to it. If we take the choice g(z) = 1/z̄

and examine the final form of the mixed state when there are no CBs, we are lead

to its following forms (see Ref. 12 for details),

Ψ2 = det

(

1

z̄i↑ − z̄j↓

)

∏

i<j

(zi↑ − zj↑)
2
∏

k<l

(zk↓ − zl↓)
2

= det

(

1

z̄i↑ − z̄j↓

)

det

(

1

zk↑ − zl↓

)

Ψ111 , (9)

where we used the Cauchy determinant identity in going from the first to the second

line. The neutral part of Ψ2 (i.e. the two determinants which do not carry a net flux

through the system as Ψ111 does) can be viewed as a correlator of vertex operators

of a single nonchiral bosonic field. According to Ref. 15, CFT correlators not only

describe quantum Hall ground state wave functions, but can also be used to find

out about the excitation spectrum and connect its edge and bulk theories. Using

CFT analogy, one can construct the neutral excitations for Ψ2 in terms of the

vertex operators that multiply the ground state wave function (see Ref. 12 for the

precise form of these operators). These vertex operators are parametrized by the

exponents β1 and β2; if the low-lying spectrum were consisting only of β1 = 1
2 and

β2 = 1
2 quasiparticle excitations, our system would be described by the so-called

BF Chern–Simons theory or the theory of the 2D superconductor.16 Combining

the analysis with the charge part (Ψ111) in which only charge-1 excitations are

allowed (half-flux quantum excitations are strongly confined17), we arrive at the

conclusion that the degeneracy of the system’s ground state on the torus must be

four.16,18 However, the vertex operators yield a single-valued expression acting on

the ground state also for any real β1, including β1 = 0 (no excitation), and therefore

one can expect a gapless branch of excitations parametrized by a continuum of β1,
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and compressible (gapless) behavior of the system in the neutral sector (the charge

channel, being described by Ψ111, is incompressible).

In the following, we explore the prospects for the paired phase in finite-size sys-

tems using exact diagonalization for different choices of boundary conditions. There

have been many numerical studies of the quantum Hall bilayer at ν = 1.10,19–27

In particular, elaborate studies in Refs. 10 and 20 demonstrated the relevance of

CB/CF constructions for the clean systems (no impurities). Trial wave functions of

this kind describe a continuous crossover between the CB superfluid and the two

decoupled CF liquids via a possible intermediate p-wave paired phase that in our

analysis corresponds to Ψ2, Eq. (9). Here we would like to focus on addressing the

question whether such a phase has a clear signature in small finite systems that can

be studied numerically. This question is relevant in light of the new experimental

results which indicate that the CF liquid phase in the usual samples is partially

spin-polarized.28 Since the 111 state is a QH ferromagnet, the experiments appear

to preclude the possibility of a smooth crossover and instead suggest a first-order

transition .29 For larger Zeeman fields, the transition becomes smooth and the

critical point drifts to larger values of d.28,30

The topological content of Ψ2 is the four-fold ground state degeneracy on the

torus. In Ref. 20 this degeneracy was analyzed as a function of d, and different

shapes of the torus unit cell, but no definite conclusion was drawn due to the strong

finite-size effects. We corroborate this finding by diagonalizing a larger system of

N = 16 particles, Fig. 1. N electrons are placed on the surface of a torus i.e. we

impose periodic boundary conditions in the presence of Nφ = N/ν = N quanta of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

∆E
 [e

2 /ε
l B

]

d/lB

(8,8)
(8,0)
(0,8)
(0,0)

Fig. 1. (Color online) Energy spectrum of the quantum Hall bilayer at total filling ν = 1 on the
torus. The system contains N = 16 electrons in a rectangular domain a× b with the aspect ratio
a/b = 0.99. Spectrum is plotted relative to the ground state at each d/ℓB , and special symbols
denote the momentum sectors where the paired phase is expected to be degenerate.
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the perpendicular magnetic field. The interaction between the electrons in the same

layer is given by V ↑↑
c (r) = e2/ǫr and between those in opposite layers V ↑↓

c (r) =

e2/ǫ
√
r2 + d2. Note that, for simplicity, in numerical calculations we consider a

fixed number of electrons in each layer (negligible interlayer tunneling). However,

the CF/CB construction in Eq. (6) can easily accommodate the charge imbalance

by a redistribution of CBs, which was also revealed in experiments. On the other

hand, it can be shown12 that compressible states cannot easily accommodate such

a redistribution.

The bilayer Hamiltonian is numerically diagonalized for each d/ℓB, and eigen-

energies are plotted in Fig. 1. Four seemingly degenerate states can be identified in

the lowest-lying spectrum starting from d = 1.4ℓB, but the gap decreases smoothly

with the increase of d, which suggests that these states belong to the compressible

CF liquid. Two decoupled CF liquids are allowed to display a four-fold degeneracy

due to their center-of-mass motion.31 This degeneracy, contrary to the one of Ψ2,

has no topological content, but in a finite system it may nonetheless persist for some

variation of the aspect ratio or other parameters i.e. it may appear quasi-robust.

However, since the gap of the system smoothly decreases as a function of d, it is

unlikely that there is a third phase, distinct from the 111 state and the decoupled

CF liquids.

We can also change the boundary condition and place N electrons on the surface

of a sphere32 with a magnetic monopole in the center. In order to probe a given

many-body state ψ at the filling factor ν, the number of flux quanta generated by

the monopole has to be adjusted in such a way that Nφ = N/ν − S, where S is

the shift, a topological number that characterizes each ψ. Since the Hilbert space is

defined by (N,Nφ), two different states ψ1 and ψ2, which describe the same filling

factor ν1 = ν2 = ν, may be realized in different Hilbert spaces if S1 6= S2. As an

example, take Ψ̃2 which is characterized by the shift S = 1, like the 111 state,

whereas CF liquid state occurs at S = 2. Therefore, one cannot directly compare

e.g. the overlaps of the exact ground state with the 111 state and CF liquids for a

fixed N . Instead, one must perform an extrapolation to the thermodynamic limit to

discriminate between phases. Overlaps are not useful from this point of view because

they would extrapolate to zero in the thermodynamic limit, however ground state

energy is an example of a quantity that is meaningful in this sense. It defines the

transition point dC between the 111 state and CF liquids as the value of d above

which the ground state energy is lower at the shift S = 2 than at S = 1. We estimate

dC from the crossing point of the ground state energies for the two shifts, S = 1

and 2, for various system sizes N = 6 − 16, Fig. 2. In doing so, it is essential to

include the background charge correction and rescale the magnetic length in order

to carefully compare the energies of the systems living on two slightly different

FQH spheres.33 It can be shown33 that beyond d ∼ 1.5ℓB, which we identified as

the critical value for the appearance of the four-fold degeneracy on the torus, one

should no longer describe the system at the shift of S = 1. Therefore, it is likely

that the 111 phase goes directly into the CF liquids even at this finite value of d,
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 0.9

 1
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 1.3

 1.4

 1.5

 1.6

 1.7

 0  0.04  0.08  0.12  0.16  0.2

d C
/l B

1/N

Fig. 2. Critical bilayer distance dC defined as the crossing point of the ground state energies at
shifts S = 1 and S = 2 on the sphere. Linear extrapolation for N → ∞ yields dC ∼ 1.6ℓB and
does not involve the smallest system N = 6 which shows strong finite-size effects.

and not via the p-wave paired state. Nevertheless, the two energies remain very

close to each other and the paired wave function such as Ψ̃2 is not conclusively

ruled out as a candidate for the description of the system. It may either describe

an excited state of the CF liquid or a phase with a tiny gap that would be hard to

discern from an ordinary compressible state in the experiment.

Our estimate of critical dC ∼ 1.6ℓB roughly agrees with that obtained by com-

plementary methods in the literature, e.g. in Ref. 21 where dC was estimated by

measuring the change in the pseudospin expectation value at a fixed shift S = 1

and zero tunneling. Although the obtained dC is in reasonable agreement with the

experiments, it does not imply that we have proved a direct transition between the

two shifts for the ground state (S = 1 versus S = 2). In order to do that, one

would want, for each fixed d, to diagonalize the Hamiltonian for all the available

system sizes and make the thermodynamic extrapolation of the energies (with the

appropriate corrections) as a function of 1/N . While this works nicely for the shift

of S = 1, in the case of CF shift S = 2 the ground state energy has a nontrivial

dependence on 1/N which reflects the shell-filling effect33 The dependence of en-

ergy on 1/N is somewhat similar to that reported in Ref. 34 for the single layer at

S = 2, except that the energy minima occur for N/2 = n2, n = 2, 3, . . . . In between

the minima, the energy has a local maximum. Therefore, in order to perform a reli-

able extrapolation, a few minima/maxima would be required, but since we are only

able to diagonalize up to N = 16, that gives us a single minimum n = 2. However,

the fact that for all the available systems we consistently obtain lower ground state

energy at S = 2 for sufficiently large d strongly suggests that the transition involves

a change in shift at finite d.
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In conclusion, we discussed how the ground state of the quantum Hall bilayer

at ν = 1 evolves with the changing distance between the layers in the light of

trial wave functions describing the mixed states of CBs and CFs, as well as using

numerical diagonalization on the sphere and torus. The study of the ground state

energy on the sphere gives considerable support for the direct transition between

superfluid and Fermi liquid phases. Paired state may only exist in the regions of

the phase diagram where the interaction is significantly different from the pure

Coulomb repulsion studied in this work.
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In this talk I will discuss several aspects of frac�onal quantum Hall physics relevant to the even‐denominator states in wide quantum
wells.
In these systems, the interac�ons can be tuned in a complex way by varying the sample thickness, tunnelling between subbands, and
density imbalance, such that one can explore transi�ons between a non‐Abelian incompressible state, the mul�component 331
Halperin state, and the compressible Fermi‐liquid‐like state.

Furthermore, I will show that in the incompressible phase, the mixing between Landau levels and electronic subbands breaks the
par�cle‐hole symmetry in such a way that the ground state at nu=5/2 filling is generically described by the ``an�‐Pfaffian" state [1].
The interplay between subbands also leads to an enhancement of the excita�on gap of the non‐Abelian state, as observed in recent
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Though it has been recognized early on as one of the fundamental aspects of quantum mechanics,
entanglement has played an increasingly important role in condensed matter physics as well, in
particular due to the fact that it underlies the recent ``tensor network" description of many-body systems,
and through its practical uses as a resource for quantum computing. In this talk I will illustrate the
profound role of the entanglement in two, rather different, types of physical systems : the topological
phases arising in the context of the fractional quantum Hall effect, and the quantum disordered systems
in a ``many-body localized" phase. I will show that the entanglement provides a way to understand the
structure of the topologically-ordered ground states via a direct link between conformal field theory,
solvable models, and the ``matrix-product state" formalism. Furthermore, I will demonstrate that the
entanglement also provides specific signatures for the non-equilibrium dynamics of disordered systems
and for the nature of the eigenstates in the ``many-body localized phase", which may have important
consequences for controlling the coherence of isolated quantum systems in experiment.

Post-scriptum :

contact : D. Poilblanc

Laboratoire de Physique Théorique de Toulouse - UMR 5... http://www.lpt.ups-tlse.fr/spip.php?article1058&lang=fr
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KAVLI INSTITUTE FOR THEORETICAL PHYSICS 
 

UNIVERSITY OF CALIFORNIA                 TELEPHONE:(805) 893-7337 
SANTA BARBARA, CALIFORNIA 93106-4030                      (805) 893-4111 
http://www.kitp.ucsb.edu                               FAX: (805) 893-2431 
                            INTERNET: gross@kitp.ucsb.edu 
 

        February 10, 2012 
 

         
Dr. Zlatko Papic 
Department of Electrical Engineering 
Princeton University 
Olden Street 
Princeton, NJ 08544 

 
Dear Dr. Papic: 
 
As you know, the Kavli Institute for Theoretical Physics in Santa Barbara is organizing a 
research program entitled Frustrated Magnetism and Quantum Spin Liquids: From Theory 
and Models to Experiments that will take place during the period August 13 – November 
9, 2012.  Where magnetic order is suppressed all the way to zero temperature, an 
unusual class of phases, quantum spin liquids, may be realized in principle.  Recently, a 
growing number of experimental spin liquid candidates have emerged.  A central goal 
of this program is bring together scientists involved in numerical simulation, formal 
theory, and experiments to assess the subject and its prospects for the future.  It is being 
coordinated by Kazushi Kanoda, Patrick Lee, Ashvin Vishwanath, and Steven White, 
assisted by Leon Balents and Radu Coldea as scientific advisors.  An associated 
conference Exotic Phases of Frustrated Magnets will be held from October 8—12, 2012.  
Further details on both activities may be found on our web site: 
http://www.kitp.ucsb.edu/activities/dbdetails?acro=chirps12. 
 
After consultation with the coordinators, I would like to invite you to participate in the 
program for the period October 1, 2012 to November 9, 2012.  While you are here, we 
will reimburse you for living expenses up to a maximum $85/day.* We understand that 
you are able to provide for your travel expenses from other resources. 
 
If, however, at some point you find that you are having difficulty accepting because of 
financial strictures, for example because you will be accompanied by family members, 
please contact the Deputy Director to see whether KITP may be able to provide further 
assistance.  We attempt to facilitate long-term visits within the limitations of our budget 
and regulations. 
 
For your reference, I enclose important information about visiting KITP plus a page 
listing some of our administrative staff who assist in arranging visits and supporting 
visitors. If you will not have medical insurance coverage applicable to your stay here, 
please contact Timber Kelley for further information.  
 
 

                                                 
* U.S. tax laws and University of California regulations require that reimbursements for meals not exceed 
$60.00/day, and that lodging and all other expenses beyond $60.00/day be documented by original 
receipts.  If you are not a U.S. citizen or permanent resident, it is imperative that you bring your passport 
and have either the proper status (W-B, W-1) or proper visa (usually a B-1 or a J-1) in order to be 
reimbursed by the KITP. If you will have a visa (J or H) issued by another institution, please contact 
Timber Kelley at myvisit@kitp.ucsb.edu for instructions. 



Dr. Zlatko Papic                                                                           February 10, 2012    
 
 
 
 
 
 

 

I would greatly appreciate learning from you promptly (no later than Sunday, March 4) 
if you will be able to participate. In your response, by e-mail to myvisit@kitp.ucsb.edu, 
please let us know explicitly whether the proposed dates are acceptable. Because of 
space and financial limitations, any significant change in the duration or time of your 
visit requires consultation with the coordinators and with us.  This includes changes 
that would result in your participation for less than the whole period for which you are 
invited.† We look forward to an exciting and productive research program. Please do 
not hesitate to contact the Deputy Director Marty Einhorn (meinhorn@kitp.ucsb.edu; 
805-893-6309) or me if you have any questions.   
 
 
 
 
 
 

Sincerely yours, 

 
 
David Gross 
Director 

 
DG: tk 
Encl: staff list, ipp 
 
 

                                                 
† If you have questions about alternative dates or financial arrangements, you should contact directly the 
Deputy Director, Martin Einhorn, meinhorn@kitp.ucsb.edu. 
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Our seminar takes place on Tuesdays at 2:30pm in our seminar room (Elings Hall 2250), unless
otherwise noted below.

Spring 2014 schedule
01/07: David Clarke, Caltech
tba

01/14: Dong Liu, Michigan State
tba

Fall 2013 schedule
08/13 and 08/14 (9-11m and 1-3pm): Cirprian Manolescu, UCLA
The triangulation conjecture

10/01: Mike Zaletel, UC Berkeley
Exact matrix product states for the quantum Hall effect - from conformal block wave functions to
tensor networks

10/03: Matthew Gilbert, UIUC
Interplay between Topology and Superconductivity in 2D Time-Reversal Invariant Insulators

10/04 (11:00 am): Ravin Bhatt, Princeton
Anderson model of localization: Has the fat lady sung yet?

10/08: Titus Neupert, Princeton
Fractional Chern insulators in doped irradiated grapheme

10/22: Curt von Keyserlingk, Oxford
Exactly solvable models of topological matter in 3D

10/30 (2:00 pm): Mike Freedman, Station Q
Ginzburg-Landau superconductivity with exotic covariant derivatives

10/31: Shivaji Sondhi, Princeton
Non-equilibrium topological matter

11/05: Pavel Ioselevich, Landau Institute
Tunneling into a Majorana fermion

11/12: Jeffrey Teo, UIUC
Twist Defects in Topological Systems with Anyonic Symmetries

11/13 (11am): Gideon Wachtel, Hebrew University, Jerusalem
Critical temperature enhancement in a composite superconductor

11/19: Yang-Le Wu, Princeton
Quantum Hall Wave Functions: Lattice Models and Non-Abelian Quasiholes

Spring 2013 schedule
01/07 - 03/28: KITP Workshop Control of Complex Quantum Systems
For the current schedule, refer to the KITP weekly schedule

02/19: Joe Polchinski, KITP
Black Holes: Complementarity of Firewalls

04/02 (2:00pm): Alexey Soluyanov, ETH Zurich
Wannier functions and topological invariants

05/02: Ali Yazdani, Princeton
Majorana Fermions in Chains of Magnetic Atoms on a Superconductor

06/04: Taylor Hughes, UIUC
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Geometric response and topological defects in topological insulators and superconductors

06/11: Anton Akhmerov, Harvard
Macroscopic manipulation of Majorana fermions with superconducting circuits

Fall 2012 schedule
09/18: Zhengcheng Gu, Caltech
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10/04: Jonathan Ruhman, Weizmann
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10/16: Xiao-Gang Wen, Perimeter Institute
Symmetry protected topological/"trivial" (SPT) phases

10/19: Andrew Potter, MIT
Coexistence of Ferromagnetism and Superconductivity at LaAlO3/SrTiO3 Interfaces

10/30 (10:30am): Paul Bruillard, Texas A&M
Topological Quantum Computation – Classification of Premodular Categories and Wang’s
Conjecture

10/31: Liza Huijse, Harvard
A multi-critical point of strongly interacting itinerant fermions with supersymmetry

11/01: Zlatko Papic, Princeton
Aspects of tunability of the interactions in the quantum Hall effect: probing the interplay of
topology, quantum geometry and symmetry breaking

11/05: Maissam Barkeshli, Stanford
Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems

11/06 (10:30am): Miles Stoudenmire, UC Irvine
Exact Calculations in the 1D Continuum for DFT and Beyond

11/06: Wei Pan, Sandia National Lab
Spin transition in the nu=8/3 fractional quantum Hall effect

11/27 (2:00pm): Jeongwan Haah, Caltech
An exotic spin model and topological phase in 3D

11/28: Adam Nahum, Oxford
Loop models, vortex lines, and SU(n) magnets
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Dr. G. Malcolm Stocks 
Bldg. 4100, MS-6114 

P.O. Box 2008 
Oak Ridge, TN 37831-6114 

Phone: (865) 574-5163 
Fax: (865) 576-4944 

E-mail: stocksgm@ornl.gov 

 

August 25, 2011 

Dr. Zlatko Papic 

Department of Electrical Engineering 

Princeton University 

Via email to: zpapic@Princeton.EDU 

 

Dear Dr. Papic, 

 

On behalf of the organizers of CCP 2011, I am inviting you to present a talk at the Conference on 

Computational Physics 2011 (CCP 2011) to be held in Gatlinburg, Tennessee, USA, during the period 30
th
 

October – 3
rd

 November 2011. The Conference on Computational Physics (CCP) series is an annual 

international conference that is dedicated to presenting an overview of the most recent developments and 

opportunities in computational physics across a broad range of topical areas.  

 

Scientifically, CCP 2011 is being organized around cross-cutting themes that bring together researchers 

from different scientific domains with the intent to stimulate cross fertilization within the overall context of 

computational physics. While you are invited to present a talk of your choosing, we would hope that you 

address current issues in the field of Fractional Quantum Hall Effect. Ideally, your talk should aim to 

provide an overview of recent progress in the field that would be accessible to a wide scientific audience 

and bring out links to other areas covered in the conference. A full description of the thematic structure and 

domain science sub-structure of the conference can be seen at the CCP 2011 website: 

http://ccp2011.ornl.gov and in the attached conference announcement. 

 

The CCP series is sponsored by the International Union of Pure and Applied Physics (IUPAP; 

http://www.iupap.org/index.html) and has been in existence more that 20 years. The series alternates 

amongst the nations of the world divided (roughly) into Eastern, Central and Western zones with the most 

recent ones having been held in Ouro Preto, Brazil in 2008, Taiwan in 2009 and Trondheim, Norway in 

2010. As a major international conference, the CCP series aims to draw computational scientists from 

around the world, both as invited speakers and as conference participants. Your participation as an invited 

speaker will contribute greatly to the quality of the program and help ensure a high level of participation 

from fellow scientists, post-doctoral fellows, and students from all parts of the globe. 

 

If you choose to accept our invitation we will be happy to waive the registration fee and, in case of 

extraordinary hardship, make a contribution to your travel expenses.  

 

Sincerely, 

 

 
G. Malcolm Stocks 

For the Local Organizing Committee and International Advisory Committee  

 

Conference email address: ccp2011@ornl.gov 

Conference website: http://ccp2011.ornl.gov 

http://ccp2011.ornl.gov/
http://www.iupap.org/index.html
http://ccp2011.ornl.gov/


 

Search for Topological Phases 
of Matter 

New Frontiers in Low-Dimensional Systems Program 

 
21-22 April 2011 

 
Jadwin Hall 

Fourth Floor, Room 407 
 
Topological order is a new kind of order in quantum systems which can arise in the absence of any symmetry breaking. 
Topologically ordered states, or topological phases, have fundamentally new physical properties, including fractionally 
charged quasipartcles which obey anyonic or non-abelian statistics and quantized edge states.  Apart from fundamental 
importance, topological states may be of practical importance because they provide a platform for new kind of quantum 
computation. Currently, one of the main challenges in this field is to find condensed matter systems which exhibit robust 
and tunable topological phases.  
 
In this short workshop, we will bring together a small number of leading researchers working on topological states in 
various systems, from frustrated magnets and fractional quantum Hall systems to cold atoms and Josephson junction 
arrays. We are hoping to cover some of the most exciting recent breakthroughs in this field. Our primary goal will be to 
identify the most promising future directions in the search for topological phases, as well as to formulate outstanding 
theoretical and experimental challenges.     
 

Please register on line at pcts.princeton.edu/pcts  
 

Organizers:  
Dmitry Abanin, Andrei Bernevig, M. Zahid Hasan, Shivaji Sondhi 

 
Speakers 

 
Fakher Assaad, University Wurzburg 
Bryan Clark, Princeton University 
Markus Greiner, Harvard University 
Zenji  Hiroi, University Tokyo 
Andrew Houck, Princeton University 
Andreas  Lauchli, Max Planck Institute 
Lindsay LeBlanc, NIST 
 
 

Benjamin Lev, University of Illinois at Urbana-
Champaign 
Roderich Moessner, MPI-PKS Dresden 
Zlatko Papic, Princeton University 
Mansour Shayegan, Princeton University 
Steven White, University California, Irvine 
Minoru Yamashita, Kyoto University 
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