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diffraction and potential functions
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Analytical solutions to the (3 + 1)-dimensional Gross-Pitaevskii equation in the presence of chirp and for differ-
ent diffraction and potential functions are found. We utilize a method we formulated to solve the Riccati equation
for the chirp function that arises when the F -expansion technique and the homogeneous balance principle are
applied to the Gross-Pitaevskii equation. Three specific examples of physical interest are considered in some detail.
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I. INTRODUCTION

An enormous amount of research has been invested into
the Gross-Pitaevskii equation (GPE) [1], a nonlinear evolution
partial differential equation that arises in various fields of
physics. The equation was introduced by Gross [2] and
Pitaevskii [3] for unrelated problems but was later found
useful in modeling various quantum systems, including, most
notably, the Bose-Einstein condensates (BECs) [4]. Various,
mostly numerical [5], solutions to the GPE have been found,
prominently including localized wave solutions [6]. It is well-
known that stable soliton solutions to the (1 + 1)-dimensional
[(1 + 1)D] equation exist and have already been found in many
instances [7]. The difficulty arises when one attempts to find
stable soliton solutions to the higher-dimensional GPE.

Recent research was more concerned with solving the
multidimensional GP equation with distributed, i.e., time-
dependent, coefficients [8,9]. The F -expansion technique and
the homogeneous balance principle have proven effective
when used to solve analytically the GPE in (3 + 1)D. In
Ref. [10], a class of traveling wave solutions to the GPE
for constant values of the diffraction and the quadratic
potential coefficients was found. More recently, in Ref. [11]
soliton solutions were found for the sinusoidal time-varying
diffraction and potential functions. We extend the analysis
here, to include localized solutions with chirp for a number of
physically relevant choices for the diffraction and the potential
function coefficients.

We consider the GP equation in (3 + 1)D with distributed
coefficients:

i∂tu + β(t)

2
�u + χ (t)|u|2u + α(t)r2u = iγ (t)u, (1)

where � stands for the 3D Laplacian operator; r is the
position coordinate; and α, β, χ , and γ are, respectively, the
strength of the quadratic potential, the diffraction coefficient,
the nonlinearity, and the linear gain/loss coefficient [10]. We
solve this equation by utilizing the F expansion and the balance
principle and determine specifically the localized solutions
with nonzero chirp.

It should be noted that the stability of solutions to Eq. (1) is
not an overriding concern when the coefficients keep changing
in time, because the solutions are then transient in nature at all
times. Therefore, they may blow up or diminish in time or tend
to constant shapes. An especially interesting case is when the

coefficients are periodic sign-changing functions; the methods
of dispersion or diffraction or nonlinearity management then
can be used to ensure stability [7].

The paper is divided into three sections. First, the method
of solution is illustrated. The new solutions are presented next.
Finally, the main findings are summarized in the concluding
section of the paper.

II. SOLUTION METHOD

According to the F expansion and the balance principle
techniques [12–16], the solution of Eq. (1) is sought in the
form [10]:

u(x,y,z,t) = A(x,y,z,t) exp[iB(x,y,z,t)], (2)

where

A = f (t)F (θ ) + g(t)F−1(θ ), (3)

θ = k(t)x + l(t)y + m(t)z + ω(t), (4)

B = a(t)(x2 + y2 + z2) + b(t)(x + y + z) + e(t). (5)

Here f , g, k, l, m, ω, a, b, and e are parameter functions to
be determined, and F is one of the Jacobi elliptic functions
(JEFs). After substituting the above expressions in Eq. (1),
the following set of ordinary differential equation (ODEs) is
obtained [10]:

dfj

dt
+ 3aβfj − γfj = 0, (6)

dk

dt
+ 2kaβ = 0, (7)

dl

dt
+ 2laβ = 0, (8)

dm

dt
+ 2maβ = 0, (9)

db

dt
+ 2βab = 0, (10)

dω

dt
+ β(k + l + m)b = 0, (11)

de

dt
+ β

2
[3b2 − (k2 + l2 + m2)c2] − 3χf1f2 = 0, (12)

da

dt
+ 2βa2 − α = 0, (13)
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where j = 1,2, f1 = f , and f2 = g. Additionally, two
relations involving the functions f1 and f2 are found:

f1
[
β(k2 + l2 + m2)c4 + χf 2

1

] = 0, (14)

f2
[
β(k2 + l2 + m2)c0 + χf 2

2

] = 0. (15)

From the above ODEs one can see that the self-consistent
solution of this system of equations can be found only if
Eq. (13) for the parameter function a(t) can be solved.
The solutions of all other equations explicitly or implicitly
depend on a, and the equation for a is a Riccati differential
equation—which, in general, cannot be solved analytically.
This testifies about the importance of the parameter function
a, which is known as the chirp function. The equation for the
chirp can only be solved analytically for specific coefficient
functions. In Ref. [10] the solutions for constant α and β were
found. In addition, the solutions for α and β being both sine
or cosine functions were found in Ref. [11]. A more general
result was obtained in Ref. [8], stating that if the following
relation exists between the coefficient functions in Eq. (13):√

−β

α
=

√
−β0

α0
− 2

√
2sA√
B

∫ t

0
β dt, (16)

then the general solution to the Riccati equation (RE) can be
found. Here A and B > 0 are arbitrary constants and s = ±1.
Relation (16) is a strong mathematical statement, offering great
many new solutions to RE. However, from the physics point
of view, even more important is the fact that the coefficients
α and β—the strength of the quadratic potential and the
diffraction (dispersion) coefficient—are common quantities in
BECs and therefore amenable to experimental manipulation.
This opens the possibility of testing the limits of applicability
of GPE to BECs. In this paper we utilize some specific
solutions to RE satisfying relation (16) to obtain solutions
to the GPE with distributed coefficients that might be useful
in BE condensation.

Solving the system of ODEs (6)–(13), one discovers that
all solutions can conveniently be expressed in terms of a
single auxiliary function p, which is defined in terms of the
chirp function a, as p(t) = exp(−2

∫ t

0 βa dt). The solutions
are as follows:

f = f0p
3/2 exp

(∫ t

0
γ dt

)
, g = ε

√
c0

c4
f ; (17)

k = pk0, l = pl0, m = pm0, b = pb0; (18)

ω = ω0 − (k0 + l0 + m0)b0q; (19)

e = e0 + 1
2

[(
k2

0 + l2
0 + m2

0

)
(c2 − 6ε

√
c0c4) − 3b2

0

]
q, (20)

where q(t) = ∫ t

0 βp2 dt . The solution for u then is:

u = f0p
3/2 exp

(∫ t

0
γ dt

) [
F (θ ) + ε

√
c0

c4

1

F (θ )

]
× exp(i[a(x2 + y2 + z2) + b(x + y + z) + e]), (21)

where

θ = (k0x + l0y + m0z)p + ω0 − (k0 + l0 + m0)b0q.

We have chosen the form of the solution such that it is similar
to the one in Ref. [11], but the expressions for the auxiliary
functions p(t) and q(t) differ now. Here, ε = 0, ± 1. Note that
we only consider solutions with ε = 0 in order to avoid any
singularities. The expression for the nonlinearity, as imposed
by Eqs. (14) and (15), is:

χ (t) = −c4β(t)
(
k2

0 + l2
0 + m2

0

)
f −2

0 p−1 exp

(
−2

∫ t

0
γ dt

)
.

(22)

This relation, involving coefficients χ , β, and γ of the original
GPE (1), places a restriction on the solutions obtainable
by the present method. Hence, we can determine analytical
solutions of Eq. (1) by the present method, only when the four
coefficients of that equation satisfy the two relations contained
in Eqs. (16) and (22). One should note that the method offers
traveling wave solutions to Eq. (1) as well as localized
solutions, depending on the choice of JEF and on the value
of the elliptic modulus of JEF. We confine here attention only
to the localized solutions, by choosing F = sech. Moreover,
note that our choice of the value of γ can have an effect on
the behavior of the solution. For instance, choosing a negative
value will eventually cause the soliton to die away with time,
as will be seen in one of the examples.

III. RESULTS

We consider the solution to GPE for the three physically
relevant cases: first, when β = 1

2 (1 + e−δt ); second, when
β = cos(�t); and, third, when β = β̃(1 − D

B1t−B0
). The first

case presents a continuous change in the diffraction coefficient
from 1 to 1/2, which might be difficult to realize in actual
physical systems but provides simple analytical solutions. The
second, sign-reversing, case is relevant for periodic systems
with dispersion or diffraction management [7]; it is important
for displaying stable but breathing solutions. The third case
introduces the diffraction coefficient in the form of a Feshbach
resonance function, which is important for BECs.

A. Case 1: β = 1
2 (1 + e−δ t )

For this case, α is determined according to the relation (16),
to be

α = − 1 + e−δt

2
(
1 +

√
2(1−e−δt+δt)

δ

)2
.

(23)

After solving the relevant ODEs, we arrive at the following
form for the auxiliary function p(t):

p = −
25/4e− δt

2

√
−2+eδt (2+(

√
2+2t)δ)

δ

−2
√

2 + √
2tδ + 2tδa0 + ln

[
δ

−√
2+eδt (

√
2+δ+√

2tδ)

]
(
√

2 + 2a0)
. (24)
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The solution to the RE, which yields the appropriate chirp
function, has the following form:

a(t) = −δ

2 − 2e−δt + √
2δ + 2tδ

− δ
√

2eδt

[−√
2 + eδt (

√
2 + δ + √

2tδ)]ζ (t)
, (25)

where

ζ (t) = δt + ln

∣∣∣∣ δ

−√
2 + eδt (

√
2 + δ + √

2tδ)

∣∣∣∣ − 2

1 + √
2a0

.

Figure 1 shows how the solution of GPE looks like for this
case. One may note that after an initial rapid change, the
pulse settles into a slowly evolving bright solitary solution. It
should be stressed that this solution, as well as other localized
solutions in this paper, are not solitons in the usual sense of
the word. This comes about because the coefficients in GPE
are continuously changing time-dependent functions, which
also cause the chirp function to continuously change. These
changes in turn cause continuous reshaping of the solitary

wave—relatively mild in cases 1 and 3 but more dramatic
in case 2. Hence, as mentioned, the solutions are transient
in nature at all times. Similar findings have been reported in
Ref. [10]. Note also that, although these solutions are localized
when viewed as functions of the transverse variable θ , they are
not localized when viewed in real space. There, a direction
always exists in which these solutions are extended [10].

B. Case 2: β =
∞∑

n=0

(−1)n

(2n)!
(�t)2n = cos(�t)

From relation (16), we find α to be

α = − cos(�t)(
1 + 2

√
2 sin(�t)

�

)2 . (26)

For this case, the expression for p becomes

p =
2
√

2 + 4
√

2 sin(�t)
�

2
√

2 + ln
[
1 + 2

√
2 sin(�t)

�

]
(
√

2 + 2a0)
. (27)

Next, we find q(t):

q = er (2�2((2a0 + √
2) ln (ξ2(t)) + 2

√
2)Ei(2 ln (ξ2(t)) − r) − e−r ξ1(t))

�2((a0(2a0(
√

2a0 + 3) + 3
√

2) + 1) ln(ξ2(t)) + 4a0(a0 + √
2) + 2)

+ ξ3(t),

where

ξ1(t) = 8(
√

2a0 + 1)� sin(�t) − 4(2a0 +
√

2) cos(2�t) + (2a0 +
√

2)(�2 + 4),

ξ2(t) = 2
√

2 sin(�t)

�
+ 1, ξ3(t) =

−4e
− 4√

2a0+1 Ei
(

4√
2a0+1

) + √
2a0 + 1

√
2(

√
2a0 + 1)2

, r = − 4√
2a0 + 1

,

and Ei(x) = ∫ x

−∞
et

t
dt. The chirp function then has the

following form [8]:

a(t) = 2
√

2a0−(
√

2a0 + 1) ln
( 2

√
2 sin(�t)

�
+ 1

)
( 2

√
2 sin(�t)

�
+ 1

)(
(2a0 + √

2)ln
( 2

√
2 sin(�t)

�
+ 1

) + 2
√

2
) .

(28)

Note that here a proper choice of � had to be made to
ensure that the solutions do not blow up. Figure 2 displays the
behavior of the solution. It is seen that the choice of periodic

FIG. 1. (Color online) Intensity distribution |u|2 for the solution
of case 1. (a) No gain/loss. (b) γ = −0.05. Here F = sech. The
parameters are a0 = f0 = k0 = l0 = m0 = ω0 = 1, b0 = ε = 0, and
δ = 5.

β produces a breathing localized solution. This solution looks
like a regular breather when the parameter function b of the
solution is equal to 0 but wiggles back and forth, keeping an
asymmetric profile when b �= 0.

C. Case 3: β = β̃
(
1 − D

B1 t−B0

)

Recall that this form of β is the one that usually arises from
the dependence of the scattering length on the magnetic field
close to the Feshbach resonance of cold BEC atoms. Note that

FIG. 2. (Color online) Intensity distribution in case 2, with b0 = 0
in (a) and b0 = 5 in (b). Here F = sech. In both cases, � = 8. Other
parameters: a0 = f0 = k0 = l0 = m0 = ω0 = 1, γ = ε = 0.
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FIG. 3. (Color online) Intensity distribution in case 3 with no
gain/loss (γ = 0). Here F = sech. Other parameters: D = 10, B0 =
−1, a0 = B1 = f0 = ω0 = e0 = k0 = l0 = m0 = β̃ = 1, and b0 = 0.

here the magnetic field has a linear dependance on time. Also,
note the following important relations from [8]:

α(t) = −β̃
1 − D

B1t−B0[
1 − 2

√
2β̃t + 2

√
2β̃D

B1
ln

∣∣B1t−B0
B0

∣∣]2
, (29)

φ(t) = 2
√

2β̃

∫ t

0

1 − D
B1τ−B0

1 − 2
√

2β̃τ + 2
√

2β̃D

B1
ln

∣∣B1τ−B0
B0

∣∣ dτ, (30)

a(t) = 1√
2 − 2β̃t + 4β̃D

B1
ln

∣∣B1t−B0
B0

∣∣
+ eφ(t)

√
2

a0
√

2−1
+ 2β̃

∫ t

0

(
1 − D

B1τ−B0

)
eφ(τ ) dτ

. (31)

In this paper, we will not deal with the singularities that
result from the resonance form of β. Therefore, we will choose
parameters B1 and B0 such that the denominator remains finite.
This can be accomplished, for example, if we choose B1 = 1
and B0 = −1. Note that here we do not state an explicit form
of the parameter function p, as the expression for the integrals
cannot be found in terms of simple elementary functions. We
choose to keep the closed-form solutions in integral form and
visualize these solutions instead. The behavior of the solution
is shown in Fig. 3. The parameter values are properly chosen
such that the solution does not blow up. The solution starts from
small initial values but rapidly grows and then continuously

attenuates. The fact that the solitary solution attenuates in time
should not be alarming because the BE condensate lasts and
the GP model describing it is valid only in a limited time
interval.

IV. CONCLUSION

We have found exact localized solutions to GPE for a
few examples of the diffraction and potential functions in
potentially useful and realizable forms. We utilized the F -
expansion technique and the homogeneous balance principle
to obtain these solutions.

For the first case, it can be inferred that the intensity linearly
grows with time, even when there is no gain imposed on the
system. To prevent the intensity from becoming arbitrarily
large, some loss should be added to the system. In the example
shown this is achieved by choosing γ = −0.05.

The second case yields solutions akin to breathing solitons.
Such solutions propagate stably, with a periodic change in
the profile. It can be clearly observed that the addition of
the parameter b0 causes the periodic change in the soliton’s
direction and shape. The amplitude of the solitons does not
change when there is no gain or loss added to the system.

Finally, the third case produces a localized solitary wave
essentially confined to a finite interval of time. The solution
quickly grows and then decays in time, the reason being the
presence of a resonance in the diffraction coefficient. This
is clearly observed in Fig. 3. For other values of parameters
the solution might collapse. If the parameter b0 were chosen
to differ from 0, the same solitary wave would curve and
change direction. However, the wave would not wiggle back
and forth in this case, as in the second case, because the
diffraction function is not periodic in time. We emphasize
that the three aforementioned cases are possible to implement
in real physical systems.
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