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Abstract
Using Hirota’s bilinear method, we determine approximate analytical localized solutions of
the (2 + 1)-dimensional nonlinear Schrödinger equation with variable diffraction and
nonlinearity coefficients. Our results indicate that a new family of vortices can be formed in
the Kerr nonlinear media in the cylindrical geometry. Variable diffraction and nonlinearity
coefficients allow utilization of the soliton management method. We present solitary solutions
for two types of distributed coefficients: trigonometric and exponential. It is demonstrated that
the soliton profiles found are structurally stable, but slowly expanding with propagation.

PACS numbers: 42.65.Tg, 42.81.Dp

(Some figures may appear in color only in the online journal)

1. Introduction

After the prediction of self-trapping [1] of optical solitons in
nonlinear media [2, 3], there have been many theoretical and
experimental studies of stabilization of such solutions, under
different conditions for nonlinearity. It was demonstrated that
a bright soliton in (1 + 1) dimensions in a Kerr medium
is stable for positive or self-focusing nonlinearity in the
nonlinear Schrödinger equation (NLSE) [3]. However, in
(2 + 1) dimension ((2 + 1)D) or (3 + 1)D in a homogeneous
bulk Kerr medium, one has not found stable soliton-like
axisymmetric cylindrical beams or stable optical wave
packets [4–6].

In recent years, dispersion management (DM) of optical
solitons has attracted much interest and is expected to
be a major concept in future soliton-based communication
systems. It was shown theoretically and experimentally that
the strong DM regime provides for stable propagation of
pulses over very long distances. DM solitons are robust to
the Gordon–Haus timing jitter, which makes them favorable

against the standard solitons [7, 8]. Additionally, quasi-phase
matching in quadratic media produces averaged equations that
contain Kerr-type nonlinearities [9, 10] and thus DM solitons
have potential to be realized in a wide array of systems.

Recently, a model amenable to DM was developed for
the propagation of an optical beam in a nonlinear waveguide
array [11]. The width of the beam and the amplitude
of discrete spatial solitons, called the diffraction-managed
solitons [11], evolve in time periodically. In this context,
the solitons considered in this paper are close to the
diffraction-managed solitons. However, they do expand
slowly with propagation and attenuate in intensity, remaining
structurally stable. We term them solitons, although a more
precise definition would be the solitary vortex beams.
A comprehensive review of nonlinear phenomena connected
with the optical solitons in continuous and discrete systems
can be found in [3].

Although well studied in the one-dimensional (1D) case,
the 2D and 3D extensions of this problem are far less
explored. The major complication is that the solutions to
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NLSE in two and three dimensions are unstable against
collapse. In recent years, it has been demonstrated that
the nonlinearity management can prevent the collapse of
solitons in 2D Kerr-type optical media [12, 13]. It has also
been confirmed, by means of direct simulations, that an
axisymmetric cylindrical beam in (2 + 1)D can be stabilized
in a layered medium, as well as in 2D Bose–Einstein
condensates [14, 15], if a variable sign-changing nonlinearity
coefficient is used in different layers [12, 13]. As a result,
it was observed that the beam could survive over large
propagation distances if the Kerr coefficient in a layered
medium is allowed to vary between successive self-focusing
and self-defocusing nonlinearities, i.e. between the positive
and negative values [7]. From these facts one can reasonably
expect that the DM can play a balancing role also in the 2D
case, and the stable 2D DM solitons can exist.

In modern optical propagation technology, DM and
nonlinearity management are broadly applied. In a managed
system, the parameters are allowed to vary along the
propagation direction of the optical pulse. While many authors
investigate the propagation of one-dimensional temporal
solitons with different parameters in optical fibers, relatively
few contributors study multi-dimensional spatial solitons with
distributed parameters, the exception being our recent work
on the analytical solution of (3 + 1)D NLSE with distributed
coefficients [16, 17]. However, spatial solitary waves that
propagate in an optical material may analogously experience
distributed diffraction, nonlinearity and gain. Prior to our
analysis, a few points should be considered.

Firstly, any real material may experience parameter
perturbations, owing to the inhomogeneities in the material
and the fluctuations in the environment (temperature, etc).
In order to accurately describe the propagation of the light
beam, we utilize the NLSE with distributed coefficients.
Secondly, diffraction is related to the linear refractive index,
as well as to the wavelength of the laser and the width
of the input beam. That is, when the linear refractive
index is inhomogeneous, or is controlled artificially, the
diffraction varies. Thirdly, other methods can be used to
change the diffraction of the beam. For example, the periodic
structure of the material, such as photonic lattices, can
affect the diffraction of an optical beam. Depending on the
local dispersion and the local value of the wavevector, an
optical beam may experience normal, anomalous or even
vanishing diffraction, and therefore diffraction management
is possible [18–20]. There are indeed many other ways to
achieve the desired perturbation of coefficients [21–26], some
of which are important in the application of Bose–Einstein
condensates [22, 26].

The system under consideration is described by the
generalized NLSE with varying coefficients. Based on the
Hirota bilinear method, we find exact but approximate
solutions in the form of 2D vortex solitons. Although the
present work is of primary interest in the generation of robust
optical solitons, this investigation has interesting implication
in the study of Bose–Einstein condensates. The quantum
mechanical nonlinear equation governing the evolution of
the condensate, known as the Gross–Pitaevskii equation [3],
is identical with the classical NLSE [27] for the evolution
of optical beams in an external potential, although the

interpretation of variables and parameters of these two
equations is different.

The paper is organized as follows. The (2 + 1)D NLSE
with varying coefficients in a Kerr-type nonlinear medium
is analyzed in section 2, where the dispersion and the
nonlinear coefficients vary with the propagation distance. The
solitary solutions, obtained by using Hirota’s bilinear method,
are presented in section 2. Numerical simulations and the
discussion are provided in section 3. The concluding remarks
with a simple summary are given in section 4.

2. Model and discussion

The slowly varying optical field envelope in a Kerr-type
nonlinear medium is governed by the scaled generalized
NLSE:

i
∂u

∂z
+

1

2
β(z)∇⊥u + χ(z) |u|

2 u = 0, (1)

where ∇⊥ =
∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂ϕ2 is the transverse Laplacian
operator. We presume the cylindrical geometry. Here ϕ is
the azimuthal angle and we consider only ϕ > 0. Further,
z is the propagation (longitudinal) coordinate normalized to
the diffraction length and β(z) and χ(z) are the distributed
diffraction and the nonlinearity coefficients, respectively.

We search for the axisymmetric cylindrical-beam
solutions of equation (1) in the form u(r, ϕ, z) = 8(ϕ)U (r, z)
that separates the azimuthal part. We assume that the
azimuthal part of the solution is of the form 8(ϕ) = cos(sϕ) +
iµ sin(sϕ) [28], where s is a non-negative real constant—the
so-called topological charge (TC). Usually, TC is assumed
to be an integer, but it could also be fractional, allowing the
possibility of fractional angular momentum; such a possibility
has been discussed theoretically [29] and demonstrated
experimentally [30]. The parameter µ ∈ [0, 1] determines
the modulation depth of the beam intensity. Note that the
azimuthal part is only an approximate solution of equation (1),
valid for weak nonlinearities or for large values of µ (close to
1); this is because the |u|

2 term in the nonlinearity retains the
ϕ-dependence and spoils the assumed separation of variables.
Inserting the ansatz for u(r, ϕ, z) into equation (1), integrating
over ϕ from 0 to 2π , and when s is an integer or half-integer,
one readily derives an averaged equation for U :

i
∂U

∂z
+

1

2
β(z)

(
∂2

∂r2
+

1

r

∂

∂r
−

s2

r2

)
U

+
1

2
χ(z)(1 + µ2) |U |

2 U = 0. (2)

We aim at obtaining analytical solutions of equation (2).
It is not possible to obtain such solutions for arbitrary
distributed coefficients. In fact, no stable solitary solutions
are known even for the simplest choice of constant
coefficients. However, under the conditions of management
of coefficients and for their specific forms, it is possible to
obtain approximate analytical solutions. This is most easily
accomplished using the Hirota bilinear method.

To this end, we make use of the following transformation:
U = r g(r,z)

f (r,z) , where g(r, z) is a complex function and f(r, z) is
a real one. Substituting into equation (2), we obtain a relation
connecting s with β and the bilinear forms as

β(z)(1 − s2) = 0, (3a)

2
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H1[g f ] = 0, (3b)

H2[ f f ] = (1 + µ2)
χ(z)

β(z)
r2gg∗, (3c)

where the bilinear operators are H1 = irDz + 1
2rβ(z)D2

r +
3
2β(z)Dr , H2 = D2

r , and the asterisk indicates the complex
conjugation. Here, Dr is Hirota’s bilinear derivative
operator [31–33], defined as

Dn
z Dm

r f · g =

(
∂

∂z
−

∂

∂z′

)n (
∂

∂r
−

∂

∂r ′

)m

× f (z, r)g(z′, r ′)|r ′=r,z′=z .

The Hirota derivative is best comprehended by an
analogy to the Leibnitz derivative of a product: while in the
Leibnitz rule there exists the plus sign in the binomial, in the
Hirota derivative there is the minus sign.

Equation (3a) fixes TC to 1. Therefore, the present
method supplies as solutions only the simply charged soliton
vortices. We focus on obtaining solutions to equations (3b)
and (3c). Following the standard procedure for finding soliton
solutions, we expand the functions g(r, z) and f(r, z) in a
power series in terms of a small parameter ε:

g(r, z) = εg1(r, z) + ε3g3(r, z) + · · · + ε2 j+1g2 j+1(r, z) + · · · ,

f (r, z) = 1 + ε2 f2(r, z) + ε4 f4(r, z) + · · · + ε2 j f2 j (r, z) + · · · .

Substituting g(r, z) and f(r, z) into the bilinear
equations (3) and collecting terms pertaining to the same
powers of ε, we obtain the following system of linear partial
and ordinary differential equations:

ε1 : H1[g11] = 0, (4a)

ε2 : H2[1 f2 + f21] = (1 + µ2)
χ(z)

β(z)
r2g1g∗

1 , (4b)

ε3 : H1[g1 f2 + g31] = 0, (4c)

ε4 : H2[1 f4 + f41 + f2 f2] = (1 + µ2)
χ(z)

β(z)
r2(g1g∗

3 + g3g∗

1
).

(4d)
Now, in order to obtain the first-order nonstationary

soliton solution, we assume that g(r, z) is truncated to g1(r, z),
and f(r, z) truncated to f2(r, z), i.e. g j (r, z) = 0 for j =

3, 5, . . . and fk(r, z) = 0 for k = 4, 6, . . .. Thus, we find that

g1 =
a10(

c1 − 2i
∫

β(z) dz
)2 exp

[
r2

c1 − 2i
∫

β(z) dz
+ D1

]
,

(5a)
and

d f 2
2

dr2
= (1 + µ2)

χ(z)

β(z)
r2g1g∗

1 . (5b)

Equation (5b) can be solved analytically, and the solution
is

f2 = (1 + µ2)
χ(z)

β(z)
D(z)

(
eA(z)r2

2A(z)2
−

√
πr erfi

(
r
√

A(z)
)

4A(z)
3
2

)
,

(6)

where

D(z) =
a2

10e2D1

c2
1 + 4

(∫ z
0 β(z) dz

)2 , (6a)

A(z) =
2c1

c2
1 + 4

(∫ z
0 β(z) dz

)2 , (6b)

and erfi is the imaginary error function. Here, c1 and D1

are the integration constants. Even though the closed-form
solutions for g1 and f2 are found, involving only the
diffraction and the nonlinearity coefficients, we should
mention that such a truncation cannot be exact; it is
immediately seen that equations (4a) and (4c), as well as
equations (4b) and (4d), are incompatible with each other,
after g3 = 0 and f4 = 0 is substituted. Our procedure then is to
solve exactly the lower-order equations (4a) and (4b), leaving
the error to reside in the higher-order equations (4c) and
(4d). Thus, our procedure leads to analytical but approximate
solution of equation (1). The estimation of error in our
procedure and the comparison of analytical to numerical
solutions are provided below.

In the end, we arrive at the exact first-order solution of
equation (1) for the solitary mode:

u(r, ϕ, z) = [cos(ϕ) + iµ sin(ϕ)]r
g1

1 + f2
. (7)

3. Numerical analysis of the soliton solution

To address the features of soliton solutions, in the following
we consider the typical two nonlinear media, with the
diffraction and nonlinear coefficients chosen as: (i) β(z) =

β0 cos(z), χ(z) = χ0 cos(z); (ii) β(z) = β0 exp (z), χ(z) =

χ0 [34]. Such trigonometrically and exponentially distributed
coefficients are commonly used in the nonlinear fields of
study. Without losing generality, we set the initial conditions
to a10 = β0 = χ0 = 1 and the integration constants to c1 = 2,
D1 = 4. Our current interest is in the qualitative features of
the solution given in equation (7), rather than the particular
systems in detail. We plot all of our solutions using Matlab.
The numerical modeling of equation (1), as well as the
comparison with the evolving approximate exact solutions, is
presented in one figure only, figure 8; in more detail, it will be
presented elsewhere.

Figure 1 displays the intensity distribution of the
solution u as a function of z, with the coefficients β(z) =

β0 cos(z), χ(z) = χ0 cos(z). Here µ is set to 0, and to
simplify presentation, the azimuthal angle ϕ = 0 is chosen.
As the coefficients are trigonometric functions, the soliton
management is allowed. The sign-changing nonlinearity is
produced, leading to a more stable solution. The intensity
distribution of the beam keeps changing cyclically with the
propagation distance, in a self-similar manner. The period is
uniform. The periodicity of the two functions, β and χ , has to
be the same, because otherwise the ratio of the two functions
can be both positive and negative in equation (6), which would
produce singularities in u, since the magnitude of f2 would
diverge.

Ring-shaped vortex beams are obtained when µ = 1 is
chosen in equation (7). A typical example of such a vortex
ring is shown in figure 2, along with the axisymmetric radial

3
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Figure 1. Evolution of the first-order solitary wave (left), and the corresponding intensity contour plot in the r–z plane (right), with
β(z) = β0 cos(z), χ(z) = χ0 cos(z), a10 = β0 = χ0 = 1, c1 = 2, D1 = 4.

Figure 2. Intensity distributions of the slowly expanding vortex soliton in the x − y plane at different propagation distances z = 0, 10, 20
with µ = 1; the other parameters are the same as in figure 1.

intensity distribution of the solitary waves. The intensity is
zero at the center, as it should be for a vortex pattern. However,
in the course of evolution this nonstationary vortex ring
expands and gets attenuated in the radial direction. The larger
the radius of the stripes, the weaker the optical intensity of the
soliton ring. Moreover, since µ = 1, the distributions of the
optical field and the intensity are independent of the azimuthal
angle; |u|

2 displays a simple isotropic vortex ring shape. It is
also seen that the solution is azimuthally stable—no azimuthal
modulations are produced during propagation.

Figures 3 and 4 display the propagation dynamics of
the first-order soliton modes, which exhibit similar patterns.
The example in figure 3 is obtained for µ = 0 in equation
(7). It is shown that the structure of this solitary mode is
formed with two dipole lobes, coming from the azimuthal
modulation. The intensity remains zero at the center, as the
solitary wave carries an intrinsic vorticity. For each azimuthal
lobe, the maximum intensity is located at the center. The
structure expands radially. The structure in figure 4 is obtained
for µ = 0.8; it consists of two modulated rings. As is visible

4
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Figure 3. Intensity distributions of a slowly expanding bright dipole soliton in the x − y plane at different propagation distances
z = 0, 10, 20. The parameters are the same as in figure 2, but for µ = 0.

Figure 4. Intensity distributions of an expanding bright soliton in the x − y plane at different propagation distances z = 0, 10, 20. The
parameters are the same as in figure 2, but for µ = 0.8.

in figures 3 and 4, the shape of the solitary mode changes as µ

increases. With an increase in µ, the components of the dipole
solitary wave change their structure from the spiky pattern to
two modulated vortex rings.

Figure 5 displays the intensity distributions of the
solution u obtained for the choice of coefficients: β(z) =

β0 exp (z), χ(z) = χ0. The figure presents the view along the

angle ϕ = 0, as in figure 1; µ is set to 0. As β(z) is an
exponential function, the evolution of the beam is different
from that in figure 1, exhibiting only one simple bright
soliton pulse. One does not see the periodic pattern. The
profiles of the waves plotted in figures 1 and 5 are diffraction
managed. It is seen that after the application of diffraction
management the soliton remains stable but slowly expanding

5
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Figure 5. Evolution of the first-order solitary wave (left); examples of the cuts through the corresponding intensity at different propagation
distances z = 0, 0.5, 1 (right) with β(z) = β0 exp(z), χ(z) = χ0. The other parameters are the same as in figure 1.

Figure 6. Intensity distributions of expanding bright solitons in the x − y plane at different propagation distances z = 0, 0.5, 1 with µ = 1.
The other parameters are the same as in figure 5.

for large propagation distances. This shows clearly the effect
of the oscillating and exponential diffraction coefficients on
the wave stabilization. The diffraction management of the type
considered can prolong the life of a soliton significantly.

For µ = 1 and 0.8 in equation (7), similar to figures 2
and 4, we obtain a ring-shaped beam and a modulated
vortex ring, respectively. Two typical examples of such
solitary waves are shown in figures 6 and 7. As in the
trigonometrically modulated system presented in figures 2
and 4, this vortex in the course of evolution also expands and
gets attenuated radially. The larger the radii for the stripes,
the weaker the optical intensities of soliton rings. However,

different from the trigonometrically modulated system, the
soliton intensity reduces more quickly with propagation.

The approximate analytical solutions have been checked
by direct numerical integration of equation (1). We used a
2D split-step fast Fourier technique and consider as an initial
condition the field from equation (7), of the form

u(0, r, ϕ) = [cos(ϕ) + iµ sin(ϕ)]
g10

1 + f20
r.

Here g10 and f20 are the initial values of g1 and f2,
respectively. The comparison between the simulations and
analytical predictions for this case is shown in figure 8.

6



Phys. Scr. 87 (2013) 045401 S Xu et al

Figure 7. Intensity distributions of expanding bright solitons in the x − y plane at different propagation distances z = 0, 0.5, 1 with
µ = 0.8; the other parameters are the same as in figure 5.

Figure 8. Comparison of approximate analytical solutions with numerical simulations. (a)–(c) Approximate analytical solutions.
(d)–(f) Numerical simulations with a white noise of variance σ 2

= 6. (h, i) Simulated intensity (solid lines) together with the approximate
analytical predictions (dashed lines) for µ = 0.3. (g) The percentage relative error of amplitude for different µ = 0, 0.5, 1. The other
parameters are the same as in figure 1.

The figure also highlights the significant features of the
numerical evolution of a 2D vortex solitary wave. The
percentage relative error during the propagation is displayed
in figure 8(g) for different values of µ. These findings confirm
the fact that the diffraction management of the type considered
here can prolong the life of vortex solitary waves.

4. Conclusion

In summary, using Hirota’s bilinear method, approximate
first-order soliton solutions to the (2 + 1)D NLSE with varying
coefficients have been obtained and discussed in some
detail. These nonlinear excitations can be classified as vortex
bright spatial solitons, with structurally stable profiles slowly

expanding along the propagation direction. The present results
indicate that DM and nonlinearity management can be used to
support quasistable soliton beams. They may provide insights
into the low-energetic spatial soliton transmission with high
fidelity in the Kerr devices.
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