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We obtain exact extended traveling-wave and spatiotemporal soliton solutions to the generalized
�3+1)-dimensional nonlinear Schrödinger equations for both the normal and the anomalous dispersion.
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The generalized nonlinear Schrödinger equation
(GNLSE) is of paradigmatic importance to many
fields of physics [1,2]. It is of tremendous importance
in nonlinear optics, where it describes the full
spatiotemporal (ST) optical solitons, or light bullets.
Interest in NLSE is aroused by the discovery of soli-
tary wave solutions [3]. However, stable exact soliton
solutions to NLSE exist only in �1+1�-dimensions
��1+1�D�; to our knowledge there are no known exact
stable solitons in higher dimensions. Here we present
analytical traveling-wave and soliton solutions to the
GNLSE in �3+1�D. Their stability will be addressed
elsewhere.

We consider the GNLSE in �3+1�D with distrib-
uted coefficients [4–6],

i�zu +
��z�

2
���u + s�t

2u� + ��z��u�2u = i��z�u, �1�

which describes evolution of a slowly varying wave
packet envelope u�z ,x ,y , t� in a diffractive dispersive
nonlinear Kerr medium, in the paraxial approxima-
tion. Here z is the propagation coordinate, ��=�x

2

+�y
2 represents the transverse Laplacean, and t is the

reduced time, i.e., time in the frame of reference mov-
ing with the wave packet. The functions �, �, and �
stand for the diffraction/dispersion, nonlinearity, and
gain coefficients, respectively. All coordinates in Eq.
(1) are made dimensionless by the choice of coeffi-
cients.

The parameter s= ±1 is the dispersion sign param-
eter. For s= +1 we have the anomalous dispersion,
and for s=−1 we have the normal dispersion. Disper-
sions of different signs describe different physical
situations [4–6], and the corresponding models (1) be-
long to different classes of partial differential equa-
tions. Nevertheless, we show in this Letter how to ob-
tain classes of exact solutions for the dispersions of
different signs by using the same solution method [7].

Thus far the solutions to the multidimensional
NLSE have been obtained only for the anomalous
dispersion [6,8]. Here we obtain solutions for the nor-
mal dispersion. For ease of comparison, both the nor-

mal and the anomalous solutions are presented in
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parallel. Solutions for the normal dispersion are of
great interest, because the normal or positive disper-
sion is known to arrest or slow down the wave packet
collapse associated with the multidimensional NLSE
[9].

We define the complex field u of Eq. (1) in terms of
its amplitude and phase,

u�z,x,y,t� = A�z,x,y,t�exp�iB�z,x,y,t��. �2�

Substituting u into Eq. (1), we find two coupled equa-
tions for A and B,

�zA +
1

2
��2�xA�xB + 2�yA�yB + 2s�tA�tB

+ A��� + s�t
2�B� = �A, �3�

− A�zB +
1

2
����� + s�t

2�A − A��xB�2 − A��yB�2

− sA��tB�2� + �A3 = 0. �4�

To these equations we apply the balance principle
[10,11] and the F-expansion technique [12,13], as de-
veloped in [7]. We seek the traveling-wave solutions
to Eqs. (3) and (4), and we assume the functions to be
of the form

A = f�z�F��� + g�z�F−1���, �5�

� = k�z�x + l�z�y + m�z�t + ��z�, �6�

B = a�z��x2 + y2 + st2� + b�z��x + y + t� + e�z�, �7�

where f, g, k, l, m, w, a, b, e are parameter functions
to be determined and F is a Jacobi elliptic function
(JEF).

Substituting Eqs. (5)–(7) into Eqs. (3) and (4) and
requiring that xqFn, yqFn, and tqFn, (q=0,1,2, n
=0,1,2,3) of each term be separately equal to zero, a
system of algebraic or first-order ordinary differen-
tial equations is obtained that the parameters must

satisfy,
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dfj

dz
+ 3a�fj − �fj = 0, �8�

fj�dk

dz
+ 2ka�� = 0, �9�

fj� dl

dz
+ 2la�� = 0, �10�

fj�dm

dz
+ 2ma�� = 0, �11�

− fj�da

dz
+ 2�a2� = 0, �12�

− fj�db

dz
+ 2�ab� = 0, �13�

fj�d�

dz
+ ��k + l + sm�b� = 0, �14�

fj�de

dz
+

�

2
��2 + s�b2 − �k2 + l2 + sm2�c2� − 3�f1f2� = 0,

�15�

f1���k2 + l2 + sm2�c4 + �f1
2� = 0, �16�

f2���k2 + l2 + sm2�c0 + �f2
2� = 0, �17�

where j=1,2, f1= f, and f2=g. The constants c0, c2, c4
in Eqs. (15)–(17) are related to the elliptic modulus M
of JEFs [7]. By solving Eqs. (8)–(17) self-consistently,
one obtains a set of conditions on the coefficients and
parameters, necessary for Eq. (1) to have exact
traveling-wave solutions [8]. Note that the solutions
for the normal and anomalous dispersion closely par-
allel each other, the parameter s appearing only in
certain combinations with the parameters k, l, and m
in Eqs. (14)–(17). Nonetheless, they still describe dis-
tinctly different physical phenomena.

We consider the most generic case, in which f and g
are assumed nonzero and ��z� and ��z� are arbitrary.
We also assume k2+ l2+sm2�0 for s=−1; otherwise
the only solution for nonzero � is f=g=0. The follow-
ing set of exact solutions is found:

f = ���3/2f0 exp��
0

z

�dz�, g = �	c0

c4
f, �18�

k = �k0, l = �l0, m = �m0, �19�

� = �0 − ��k0 + l0 + sm0�b0�z

�dz, �20�

0

a = �a0, b = �b0, �21�

e = e0 +
�

2
· ��k0

2 + l0
2 + sm0

2��c2 − 6�	c0c4�

− �2 + s�b0
2��

0

z

�dz; �22�

where �= �1+2a0
0
z�dz�−1 is the normalized chirp

function. The subscript 0 denotes the value of the
given function at z=0. A parameter �= ±1 is intro-
duced in Eqs. (18) and (22) to distinguish the two
present possibilities. It should also be noted that � is
not arbitrary but depends on �, �, and �,

� = − �c4�k0
2 + l0

2 + sm0
2�f0

−2 exp�− 2�
0

z

�dz�� �.

�23�

Hence, in a lossy medium the nonlinearity coefficient
� will grow exponentially.

Incorporating these solutions back into Eqs.
(5)–(7), we obtain the general periodic traveling-wave
solutions to the GNLSE,

u = ���3/2f0 exp��
0

z

�dz��F��� + �	c0

c4

1

F���

	 exp i�a�x2 + y2 + st2� + b�x + y + t� + e�, �24�

where

� = �0 + kx + ly + mt − �k + l + sm�b0�
0

z

�dz. �25�

Apart from the solutions given in Eqs. (18)–(22) one
can alternatively assume that g=0, in which case one
obtains the exact same equations to which Eqs.
(18)–(22) would reduce for �=0. Thus, the parameter
� in Eq. (24) can assume three values: ±1 and 0.

The form of solutions depends on what JEFs are
utilized [14]. The elliptic modulus M varies between
0 and 1. When M→0, JEFs degenerate into trigono-
metric functions, and the periodic traveling-wave so-
lutions become the periodic trigonometric solutions.

Fig. 1. (Color online) Traveling-wave solutions as func-
tions of the propagation distance for a0=0 (without chirp)
and �=0. (a) Intensity �u�2 for F=sn and (b) for F=cn, pre-
sented as functions of k0x+ l0y+m0t and z. Coefficients:
��z�=cos�z�, ��z�=�0=−0.05, M=0.9999, b0=1, e0=0, k0= l0

=m0=1, �0=0.
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When M→1, JEFs degenerate into hyperbolic func-
tions, and the traveling-wave solutions become the
ST soliton solutions [7].

We should note that for M=1 the solutions intro-
duced by Eqs. (5)–(7) describe spatially extended ST
solitons. Even though the amplitude A as a function
of the transverse variable � is localized, it is not when
viewed in the plane of transverse coordinates x and y.
This is easily seen if one rotates the x and y axes
about the z axis for some angle �, to arrive at a set of
new coordinates x� and y�. By choosing the angle as
tan���=−k / l, the variable � will not contain y�, and
by choosing tan���=k / l, it will not contain x�. Thus
the amplitude A will not explicitly depend on y� (or
x�) and the soliton will be extended along the y� axis.
Hence, the solutions obtained with the present
method cannot be of the light bullet type.

We display some of the traveling-wave and ST soli-
ton solutions for the normal dispersion, taking the
diffraction/dispersion coefficient � to be of the form
�=�0 cos�kbz� and the gain/loss coefficient � to be a
small negative constant. This choice leads to alter-
nating regions of positive/negative values of both �
and �, which are required for an eventual stability of
soliton solutions. In Figs. 1 and 2 we depict the peri-
odic wave solutions made up from the single F func-
tions sn and cn, without and with the chirp, for �=0.
Figures 3 and 4 repeat the same sequence of plots as

Fig. 2. (Color online) Traveling-wave solutions with the
chirp as functions of the propagation distance. The setup
and parameters are the same as in Fig. 1 except for a0
=0.1.

Fig. 3. (Color online) Soliton solutions without chirp. The
setup and parameters are as in Fig. 1 except for M=1.
Figs. 1 and 2 but show the ST soliton solutions in-
stead.

In conclusion, we have solved analytically the
�3+1�-dimensional GNLSE with distribution diffrac-
tion, dispersion, nonlinearity, and gain for both the
normal and anomalous dispersion. A number of exact
traveling-wave solutions are found, and exact spatio-
temporal soliton solutions are obtained.
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