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Abstract
Exact extended traveling wave solutions are found for the system of generalized nonlinear
Schrödinger equations for co- and counterpropagating beams with self-phase and cross-phase
modulation. A number of stable periodic solutions are obtained whose signal does not
decrease in time in the absence of externally induced loss.
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(Some figures may appear in colour only in the online journal)

The generalized nonlinear Schrödinger equation (NLSE)
is a generic model that is very important for NL optics,
where it describes full spatiotemporal optical solitons or light
bullets [1–4]. In recent years, there has been tremendous
development in obtaining stable spatiotemporal soliton
solutions for a large number of transverse dimensions [4, 5].
The traveling wave and soliton solutions to the generalized
NLSE in (3 + 1) dimensions ((3 + 1)D) with cubic nonlinearity
were first developed in [6] for anomalous dispersion and then
generalized in [7] to normal dispersion.

Of particular interest is to extend the method of
finding these exact solutions to multicomponent systems.
A system of great interest is the case of two co-
or counterpropagating beams interacting with each other
through Kerr nonlinearity [8]. Such a system is described
by two coupled generalized NLSEs, also known as the
generalized Manakov model [9]. The interaction of two
counterpropagating beams may produce various forms of
instability and bifurcation into more chaotic regimes. It
is of interest to find these exact solutions and then
check their stability by propagating them numerically and
analytically [6, 10]. Here, however, we will only concern
ourselves with finding novel exact solutions; the stability will
be discussed in a subsequent paper. We consider only the
(1 + 1)D case.

In this paper, we generalize the results of [6] and [7] to
the case of two-component co- or counterpropagating beams

in Kerr-like media. We consider the generalized nonlinear
Schrödinger equations for two components, with cross-phase
modulation (XPM) included, in (1 + 1)D:

i ∂zu1 +
β(z)

2
∂2

x u1 + χ(z)
(
|u1|

2 + c|u2|
2
)

u1 = i γ (z)u1, (1)

si ∂zu2 +
β(z)

2
∂2

x u2 + χ(z)
(
|u2|

2 + c|u1|
2
)

u2 = si γ (z)u2,

(2)

which describes a system of two interacting light beams,
u1 and u2, in a medium with Kerr nonlinearity. Here z
is the propagation (i.e. longitudinal) coordinate and x the
transverse variable. All coordinates are made dimensionless
by the choice of coefficients. The functions β, χ and
γ stand for the diffraction/dispersion, nonlinearity and
gain coefficients, respectively. The coefficient s determines
whether the two beams are copropagating (in which case
s = 1) or counterpropagating (in which case s = −1). The
constant c determines the ratio of the coupling strengths of
XPM to the self-phase modulation (SPM).

We assume a general ansatz of the following form:

u1(z, x) = A1(z, x) exp (i B1(z, x)), (3)

u2(z, x) = A2(z, x) exp (i B2(z, x)). (4)
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The forms of A1, A2, B1 and B2 are assumed to be

A1 = f1(z)F(θ) + f2(z)G(θ), (5)

A2 = g1(z)G(θ) + g2(z)F(θ), (6)

θ = k(z)x + ω(z), (7)

B1 = a1(z)x2 + b1(z)x + e1(z), (8)

B2 = a2(z)x2 + b2(z)x + e2(z), (9)

where F and G are two suitable Jacobi elliptic functions
(JEFs) [11] (to be determined) satisfying the following
differential equations:(

dF

dθ

)2

= c0 + c2 F2 + c4 F4, (10)

(
dG

dθ

)2

= d0 + d2 F2 + d4 F4. (11)

The values of the parameters c0, c2 and c4 for each JEF are
given in table 1 of [5].

By applying the F-expansion method and using the
principle of harmonic balance as described in [6], with the
provision that we now treat two components as polynomials
in two JEFs F and G instead of one, we obtain the following
equations for f1, f2, g1, g2, ω, and k:

d f j

dz
+ a1β f j − γ f j = 0, (12)

s
dg j

dz
+ a2βg j − sγ g j = 0, (13)

dk

dz
+ 2ka1β = 0, (14)

s
dk

dz
+ 2ka2β = 0, (15)

dω

dz
+ βkb1 = 0, (16)

s
dω

dz
+ βkb2 = 0, (17)

where j = 1, 2. From equations (14) and (15) one obtains
a1 = sa2 = a and from (16) and (17) one obtains b1 =

sb2 = b.
We proceed to solve equations (12)–(17) to obtain the

following solutions for f j , g j , k, ω, a j and b j :

f1,2(z) = (α)1/2 f1,2 exp

(∫ z

0
γ dz

)
, (18)

g1,2(z) = (α)1/2g1,2 exp

(∫ z

0
γ dz

)
, (19)

k(z) = αk0, (20)

ω(z) = ω0 − αk0b0

∫ z

0
β dz, (21)

a1(z) = sa2(z) = a(z) = αa0, (22)

b1(z) = sb2(z) = b(z) = αb0, (23)

where j = 1, 2 and α = (1 + 2a1,0
∫ z

0 β dz)−1
= (1 +

2a1,0
∫ z

0 β dz)−1 is the chirp function. Note that the chirp
functions for a1 and a2 are identical. When f2 = g1 = g2 = 0,
equations (18)–(22) reduce to those in [6] for the case of a
single 1D beam (N = 1) with ε = 0.

One now needs to find the relationship between f1,0, f2,0,
g1,0 and g2,0, as well as the formula for e. This is determined
from equations which are analogous to those for χ and e
in [6]. In the case of the co- and counterpropagating beams
these equations will induce constraints on the forms of F and
G that we can use, as well as the associated parameters c0, c2,
c4, d0, d2 and d4.

For the equation analogous to the formula for e in [6], we
obtain

de1

dz
+

β

2

(
b2

− kc2
)
= 0, (24)

s
de2

dz
+

β

2

(
b2

− kc2
)
= 0, (25)

and similar formulae with d2 instead of c2. It follows that
c2 = d2 and

e1(z) = e1,0 +
1

2
(c2k2

0 − b2
0)α

∫ z

0
β dz, (26)

e2(z) = e2,0 + s
1

2
(c2k2

0 − b2
0)α

∫ z

0
β dz. (27)

The equations analogous to the algebraic equations for χ

in [6] are
f1

(
βc4k2 + χ f 2

1 + cχg2
2

)
= 0, (28)

f2
(
βd4k2 + χ f 2

2 + cχg2
1

)
= 0, (29)

g1
(
βd4k2 + χg2

1 + cχ f 2
2

)
= 0, (30)

g2
(
βc4k2 + χg2

2 + cχ f 2
1

)
= 0. (31)

Also, an additional set of constraints emerges

3χ f 2
1 f2 + 2cχ f1g1g2 + cχ f2g2

2 = 0, (32)

3χ f 2
2 f1 + 2cχ f2g1g2 + cχ f1g2

1 = 0, (33)

3χg2
1 g2 + 2cχg1 f1 f2 + cχg2 f 2

2 = 0, (34)

3χg2
2 g1 + 2cχg2 f1 f2 + cχg1 f 2

1 = 0. (35)

From equations (28)–(31), one obtains

(c − 1) f 2
1 = (c − 1)g2

2, (36)

(c − 1) f 2
2 = (c − 1)g2

1, (37)

2
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Figure 1. Traveling wave solutions for F = dn and G = nd
constant as functions of time. Intensity (a) |u1|

2 and (b) |u2|
2 is

presented as a function of k0x and z for β(z) = β0 cos �z.
Coefficients: M = 0.99, b0 = 0, e0 = 0, k0 = l0 = m0 = 1, ω0 = 0,
� = 1, β0 = 1, γ = 0, ε = φ = 1 and δ = −1.

from which f1 = ±g2 and f2 = ±g1, or c = 1. However, when
c = 1 a contradiction among the equations is obtained. For
f1 = ±g2 and f2 = ±g1, after some analysis we obtain

c = 3, (38)

g2 = δ f1, (39)

f2 = εg1, (40)

f1

g1
= φ

√
c4

d4
, (41)

where both δ, φ = ±1 and ε = −δ. Also, for nontrivial
solutions we must have c4 6= d4. The combinations of F and G
that satisfy c2 = d2 and c4 6= d4 are (not including symmetries
between F and G): F = sn, G = ns or dc; F = cd, G = ns or
dc; F = dn, G = nd and F = sc, G = cs. In all the cases, we
must have M 6= 1 and M 6= 0 for our solutions to be nontrivial,
where M is the elliptic modulus of the JEFs. Since M = 1
corresponds to the soliton solutions, such solutions are not
provided by the present method.

Thus, we find that only for c = 3 one obtains the traveling
wave solutions of the form given in equations (5)–(9) by
the present method. This, of course, does not preclude the
existence of solutions for other values of c. For example, the
value of c = 1 corresponds to the simple Manakov model. It
is known that the Manakov model is integrable by the inverse
scattering method [9]. As to the feasibility of constructing
materials for which c = 3, in [12] it has been found that
by using periodically poled photorefractive media, one can
eliminate SPM, and since this process can be graded a full
range of real values of c can be achieved.

We now present the traveling wave solutions obtained.
Of most interest are solutions in the case F = dn, G = nd
since for M 6= 1 functions dn and nd do not have singularities
and are therefore physically preferable and experimentally
realizable. We present the results in figure 1. The general
form of the solutions is the same for both co- and
counterpropagating beams. We see that the solutions remain
periodic and do not decay in the absence of loss.

In figure 2, the effects of chirp on the solutions are
displayed. The effects are similar to those described in [6]
for a one-component system, namely a modulation of the
amplitude and a deformation of the wave along the k0x-axis.

Figure 2. Traveling wave solutions as functions of time. The
parameters are the same as in figure 1 except for a0 = 0.1.

Figure 3. Traveling wave solutions as functions of time. The
parameters are the same as in figure 1 except for F = sn and
G = dc.

Finally, in figure 3 a combination of two different types of
functions is presented, giving us novel solutions to the coupled
NLSE, albeit with a singularity.

In conclusion, we have obtained exact traveling-wave
solutions to the two-component (1 + 1)D NLSE with
Kerr nonlinearity and an XPM three times stronger than
the SPM.
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