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We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are
novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well.
BIC appears as an excited confined dot state and energetically above the bottom of a well subband
continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well
are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures,
exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor quantum dots exhibit full 3D confinement for
carriers, giving a few bound integrable states with a discrete spec-
trum below the barrier, and free non-integrable states with contin-
uum spectrum above the barrier. Quantum dots are often referred
to as “artificial atoms” due to their discrete part of spectrum and
discrete optical resonances arising from transitions between bound
orbital states. Both atoms and quantum dots can be ionized, when
electrons gain sufficient energy to escape the binding potential,
and subsequently occupy free states – in vacuum in the case of
atoms or bulk in the case of quantum dots.

However, boundedness and discreteness of an orbital state in
quantum dots do not come necessarily together. We show in this
Letter that novel semiconductor nanostructures, so called quan-
tum rods, exhibit bound excited state with an energy embedded in
the continuum of other free electronic states, above the ionization
threshold. This is a so called bound state in continuum (BIC). There
are various types of BIC reported since the foundation of quantum
mechanics, but none of them were reported for atomic or con-
densed matter systems. In what follows, we state only a few. The
first prediction originates back to 1929 when von Neumann and
Wigner showed such a possibility by mathematical construction of
a bounded potential accommodating a BIC [1]. This issue was revi-
talized by Stillinger and Herick [2] pointing out, 46 years later, that
a BIC could occur in some specific molecular systems. The first
artificial semiconductor nanostructure accommodating the bound
state above ionization threshold, was reported in Ref. [3]. This

* Corresponding author. Tel.: +44 7587029902.
E-mail address: elnpr@leeds.ac.uk (N. Prodanović).

bound state was argued to be a consequence of Bragg reflection
due to the superlattice. Even though above the barrier, this state
wasn’t surrounded by a continuum of states and it was strictly
speaking a quasi-bound state with free motion in the lateral direc-
tion. Some theoretical proposals and proofs for the BIC existence
were reported for more complex quantum mechanical systems. For
example, coupled system of electrons and nuclei in molecules [4]
was considered. BIC, as an quantum mechanical interference effect
can occur in various abstract models. Some examples of theoreti-
cal abstract systems that support BIC were reported in Refs. [5–10].
Experimentally, only photonic crystal systems with the BIC were
reported [11,12]. A theoretical design of one-dimensional photonic
heterostructure, supporting the BIC was provided in Ref. [13].

In what follows, we briefly describe the geometrical and com-
positional properties of quantum rods, and based on that we pro-
vide proof for BIC existence. The type of BIC which occurs in quan-
tum rods is somewhat different from the majority of BICs reported
in the literature. The most similar system supporting the BIC was
reported by Robnik et al. [14], and one could say that the BIC re-
ported here represents the 3D generalization of the 2D potential
theoretically constructed in [14]. The rest of the Letter is dedicated
to the discussion of possible interesting features arising from BIC
existence, together with available experimental data and conclud-
ing remarks.

2. Quantum rods

Quantum rods are elongated InGaAs quantum dots embedded
in a InGaAs quantum well sandwiched by two GaAs bulk regions.
Details of the QR fabrication can be found in Refs. [15–17]. A sim-
plified model for geometric and compositional properties of these

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.05.051
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Fig. 1. Simplified geometric model of a quantum rod. Cylindrical symmetry is as-
sumed, so the entire structure can be depicted within the z–ρ plane. Indium con-
tent of the dot region is larger than in the well region, i.e. x < y.

nanostructures is presented in Fig. 1. This structure consists of
GaAs/InGaAs quantum well of width h over the region between
−h/2 and h/2. The quantum dot is positioned within the quan-
tum well so that the bulk region is above and below the dot in the
z-direction and the quantum well is surrounding the rod in the
radial direction. The entire structure is optically active giving the
combined features of dot, well and the bulk as it is obvious from
PL measurements [16,18]. The height of the rod and the width of
the surrounding well are the same. This simplified model assumes
that entire structure is cylindrically symmetric, even though such
strict symmetry hasn’t been reported. However, the general con-
clusions that follow do not depend on the exact shape of the rod
basis. Therefore, we choose the circular shape of the basis in order
to simplify theoretical consideration. The quantum rod has higher
In content then the surrounding quantum well which makes the
dot energetically deeper than the surrounding well.

3. Bound state in the continuum

One can naively expect that the quantum rod would accommo-
date bound states only below the quantum well barrier in the ra-
dial direction. However, due to bulk confinement in the z-direction,
bound states could also appear with energies above the well bar-
rier where also well continuum states are present giving the BIC.
Such a situation resembles the one from Ref. [3] where a bound
state occurs above the barrier of a superlattice, but it isn’t sur-
rounded by continuum states because the state itself is an impurity
state in the superlattice, spaced from the continuum superlattice
bands. Also, such a BIC is strictly speaking a quasi-bound state.
We prove that in the case of a quantum rod, such state above
the barrier is indeed surrounded by the continuum and is indeed
bound for a wide range of parameter space.

Existence of the BIC in quantum rods is purely due to the inter-
play of the combined well and dot confinement. In order to prove
this statement, consider the idealized quantum rod structure pre-
sented in Fig. 1. The quantum rod is considered isolated from the
other quantum rods. We assume cylindrical symmetry of the en-
tire structure, and the value of the embedding bulk barrier is set to
infinity. The assumption of infinitely high bulk walls does not af-
fect the general conclusion since the same conclusion follows from
the full 8-band k · p model where the values for all barriers in the
structure were taken with precise offsets and included strain ef-
fects. Now it becomes clear that this simplified model of realistic
quantum rods presents the 3D generalization of the 2D potential
constructed by Robnik et al. [14] in order to obtain the BIC, with
the quantum well as escaping channel. However, it was pointed
out in the same reference that existence of BIC in such potential
is sensitive to perturbation, especially the one which might break
the parallel geometrical shape of escaping channel. That shouldn’t
be a problem in this case, since the existence of quality quantum
well seems very eminent, and the walls of quantum well escaping
channel can be considered parallel to the infinity.

Fig. 2. Illustration of the energy span where a BIC can occur. The effective po-
tential Ueff for the remaining one-dimensional radial eigenproblem is given for
l = 0 and n = 1,2. For n = 1 continuum states or quasi-bound well states oc-
cur for E > Ub + �U . For n = 2 bound states might occur for E < Ub + 4�U ,
whereas continuum states occur for E > Ub + 4�U . Therefore the excited bound
state in the well quasi-band continuum might occur for energies in the range
Ub + h̄2π2/2mw h2 < E < Ub + 2h̄2π2/mw h2.

In this simple model we solve one spinless electron single-band
envelope function equation in polar coordinates:(

h̄2

2
∇ 1

me(r)
∇ + Ec(ρ) + Ez

c(z)

)
Ψ (r) = EΨ (r) (1)

where

Ec(ρ) =
{

0 for ρ < ρ0
Ub for ρ > ρ0

and

Ez
c(z) =

{
0 for − h

2 < z < h
2

∞ for z < − h
2 or z > h

2

Values of the effective mass me(r) are md and mw in the dot and
the well respectively. In the bulk, where the value of the poten-
tial is set to infinity, the value of the effective mass is unnecessary.
The potential offset between dot and the well region is Ub . Pa-
rameters ρ0 and h are the radius and the height of the QR. Due
to infinite bulk barrier and cylindrical symmetry, one can sepa-
rate the variables of the wavefunction Ψ (r) = Φ(φ)Z(z)R(ρ). Fur-
thermore, the solutions for Φ(φ) and Z(z) are Φl(φ) = 1√

2π
eilφ

and Zn(z) =
√

2
h sin (nπ

h (z + h
2 )) where we introduce good quan-

tum numbers l and n, integer and positive integers respectively.
The remaining Schrödinger-like equation in the radial direction
reads:

− h̄2

2

1

ρ

d

dρ

ρ

me(ρ)

d

dρ
Rnl(ρ)

+
(

Ec(ρ) − E + h̄2

2me(ρ)

(
n2π2

h2
+ l2

ρ2

))
Rnl(ρ) = 0 (2)

We provide the full solution to Eq. (2) in Appendix A. In order
to maintain the simplicity, we will demonstrate the existence of
the BIC by considering only the case with l = 0 and n = 1,2.

The effective potential for the last eigenproblem in Eq. 2 is
the expression given in brackets. The effective potential for n = 1
is Ueff(ρ) = Ec(ρ) + �U (ρ), where �U (ρ) = h̄2π2/2me(ρ)h2 and
for n = 2 it is Ueff(ρ) = Ec(ρ) + 4�U (ρ). The effective potential
for l = 0 and n = 1,2 is given in Fig. 2. Note that the effective
mass depends only on the radial coordinate since the value of the
effective mass in bulk is irrelevant due to infinite potential.

For n = 1 continuum states or quasi-bound well states occur
for E > Ub + h̄2π2/2mwh2. For n = 2 bound states might occur
for E < Ub + h̄22π2/mwh2, whereas continuum states occur for
E > Ub +2h̄2π2/mwh2. Therefore, the excited bound state for n = 2
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in the well quasi-band continuum for n = 1 (above the ionization
threshold) might occur at an energy between Ub + h̄2π2/2mwh2 <

E < Ub + 2h̄2π2/mwh2. Note that the first bound states for l = 0,
n = 1,2 are so called s-like and p-like states as often referred to in
literature. We give the numerical example of this p-like BIC in the
next section.

4. Numerical results

In our previous work [19] we have calculated detailed elec-
tronic structure of the realistic quantum rods grown in [16] by us-
ing the 8-band k · p method with strain effects included. In this
Letter we will use one-band model derived in previous chapter in
order to demonstrate the existence of BIC and 8-band results will
be used as a supporting reference.

For the fabricated rods reported in Ref. [16], the In content in
the dot and the well is typically 0.45 and 0.16, respectively, and
their radius was estimated to be around 5 nm. For such a structure
we have extracted the value of dot-well band offset Ub = 120 meV,
using the full 8 band k · p model with strain effects included [19].
The height of the rods from Ref. [16] is in the range 10–40 nm.

In the following, all energies are referenced to the bottom of
the conduction band of the rod material. For the typical rod height
of 10 nm, the continuum for n = 1 starts at 182 meV, and the p-
like bound state for n = 2 is below the n = 2 continuum, starting
at 356 meV. The splitting between s-like ground state and p-like
first excited state (which is the BIC) is 200 meV. For the same
rod, but with 15 nm height, we find 2 additional bound states, for
l = 0 and n = 3 and 4, which are also embedded in the contin-
uum. There are no discrete states solutions for l > 0. By increasing
the rod height we generally get more bound states in the con-
tinuum, since new bound states with higher values of n appear.
However, the energy of all bound states gets lower with increas-
ing the quantum rod height [19], and consequently bound states
with the lowest n might sink under the n = 1 continuum, ceasing
to be BIC. Also, by increasing the rod radius, additional states may
appear with higher value of quantum number l. These states may
also become BIC.

Energy diagram of a 10 nm tall rod calculated by 8-band model
is presented in Ref. [19]. Energy diagram clearly show the exis-
tence of the BIC. The higher the rod, the higher is the excited dot
state embedded in continuum. For the 10 nm tall rod, the split-
ting between ground state and the bound state in the continuum
is 150 meV. Higher value of s–p splitting is due to infinite po-
tential barrier in growth direction which was realistically taken to
be finite in 8-band model. In this work we used one-band model
with infinite barriers as a default model in order to get insight in
physics arguments of the BIC existence.

Therefore, we proved the existence of the bound state in con-
tinuum as a sole consequence of combined well-dot confinement,
and for a wide range of structure parameters, especially the ad-
justible rod height.

5. Discussion

The above consideration shows that BIC occurs for higher val-
ues of the quantum number n, i.e. BIC has at least one node in
the growth direction. The quantum rod must be sufficiently tall in
order to support at least two bound states (s-like and p-like) local-
ized in the dot due to the growth confinement, i.e. with quantum
number n > 0. With increasing quantum number n, the effective
potential Ueff(ρ) = Ec(ρ)+�U (ρ) might become a barrier instead
of a well, since md < mw . Therefore, the upper bound on a value

of n for which BIC exists is imposed n < h
π

√
Ub

h̄2
mw md

mw −md
where mw

and md are effective masses of the well and the dot respectively.

We also conclude that confinement in the growth direction has to
be stronger than the confinement in the radial direction caused
by the shallower well. At the same time, well subbands may have
energies lower than the bulk barrier, opening the possibility that
their energy equals the energy of the excited bound state of the
dot.

In similar nanostructures, quantum dots in a quantum well
(DWELL), this effect does not exist. Conventional quantum dots
have very low height to diameter aspect ratio and an excited
bound state is guided by the radial confinement, i.e. the excited
bound states have nodes in the radial direction and there is no
bound state with nodes in the growth direction. Therefore, energy
of such an excited state cannot be higher than the well barrier
in the radial direction. One thus concludes that quantum rods are
unique semiconductor nanostructures with 3D bound state in con-
tinuum as a consequence of their distinct features: high value of
height-to-diameter aspect ratio and existence of the shallower sur-
rounding well.

We have previously shown in Ref. [19] that only the growth-
polarized light can excite an electron from the ground dot state
in the conduction band to the first excited dot state which can be
set to be BIC for particular heights of the rod. This is so called
s–p-like optical transition. Such a transition is expected to be a
single broadened line. We argue that homogeneous broadening is
expected to be high due to effective interference of the continuum
with the bound state via phonons. We also argue that asymmet-
rical lineshape of such optical resonance should be expected, also
a consequence of interference of the continuum and p-like bound
state along the resonant s–p transition. However, we do not expect
that asymmetrical lineshape is observable due to high broadening
and other resonances.

Intraband resonances of quantum rods were investigated in
Ref. [17], where the rods were charged with several electrons,
enough to completely fill the 3D confined states below the well
barrier. Authors then used growth-polarized radiation to excite
electrons, and they recognized a clear difference between well
and dot resonances. The leading rod resonance comes from tran-
sition from excited and fully charged rod states to unoccupied
states higher in the conduction band. However, authors in Ref. [17]
argued that electron–electron interaction in fully charged rods
shifts the bound electronic states to higher energies. Detailed the-
oretical examination of that situation is required due to electron–
electron interaction which is responsible for perforation of the 2D
electron gas, i.e. continuum. Nevertheless, the short lifetime of
the BIC via fast scattering into the well subband was indicated
in Ref. [17]. It is intuitively clear that such fast scattering occurs
due to the availability of the continuum of free states around the
energy of the BIC.

Altogether, one can conclude that carriers from the bound
quantum rod state can be efficiently scattered into the continuum
of the well by strong optical resonance due to ground state-BIC
transition and coupling between the BIC and surrounding contin-
uum. The similar effect, where strong optical resonance can trigger
ionization from bound-like state to continuum state where carriers
can freely move was explained in Ref. [20] for the case of 1D su-
percrystal formed of the vertically stacked self-assembled quantum
dots. Specifically, first supercrystal miniband occurs in the barrier
gap and second one in the conduction band. Optical transitions be-
tween these two minibands are strong since those minibands were
formed of s-like and p-like states respectively. Therefore, this struc-
ture, if constructed as solar cell, exhibits increased efficiency due
to strong transitions between first miniband burried in the barrier
gap and second miniband buried within the conduction band con-
tinuum. In addition, strong optical transitions between below-the-
barrier and above-the-barrier bound states were observed experi-
mentally in Ref. [3] in a Bragg-confined quantum well structure.
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Fig. 3. Illustration of the polarization-independent terahertz photodetector. In this
geometry, the electric field due to the bias on contacts is in the lateral direction.

These exotic optical properties of the BIC could allow experi-
mental observation of the BIC and associated effects. The simplest
version of such an experiment is based on doped structures with
up to one electron per rod. In such a case, intraband optical tran-
sitions at low temperatures are limited to the transitions from
the ground state. One could measure the absorption of far-infrared
light in such doped quantum rods at low temperatures for two lin-
early polarized directions of incident light. We have also shown in
Ref. [19] that radially polarized light can excite the electron from
the same ground dot state to the first well subband. This transition
is not expected to be a single broadened line due to the continuum
of the well subband, but resonances are expected to start at an en-
ergy corresponding to the bottom of the first subband of the well.
If these resonances for the radially polarized radiation were at
lower energy than the first resonance for the growth-polarized ra-
diation, this would present a clear evidence that the excited bound
state has a higher energy than the minimum of the well subband,
proving the existence of BIC.

Finally, we will briefly discuss a possible application of this ef-
fect. If an electron, excited into the BIC, efficiently scatters into
the well subband, as indicated in Ref. [17], then a radially di-
rected electric field can be used for efficient transport of carriers
in the lateral direction. Strong optical resonance for the growth-
polarized radiation is due to bound-to-bound transition and effi-
cient transport can occur via radially free state channels around
the excited bound state. On the other hand, for radially polarized
incident radiation, carriers are excited directly into the well sub-
band [19], from which they can be easily extracted by a lateral
electric field. Therefore, strong resonance and efficient transport
can be obtained for either polarization of the incident light, paving
the way for polarization-independent terahertz detector. Such a
detector is schematically depicted in Fig. 3. Contacts are positioned
so to provide a lateral electric field. Upon absorption of the inci-
dent radiation the electron concentration in the well increases and
leads to a photocurrent. However, strong reverse process was in-
dicated in Ref. [21] that carriers in the conduction band of the
well and bulk also efficiently scatter into the rod which can de-
grade the effect of detection. Therefore, this proposition for the
efficient photodetector utilizing bound-to-BIC transition still needs
to be carefully examined.

6. Conclusion

In summary, we proved that quantum rods can accommodate
the excited normalizable state, energetically embedded in the con-
tinuum of the subband of the quantum well embedding it, where
the electrons can be ionized into. We proved that existence of such
states is entirely due to the interplay of two different types of
confinement, namely the dot 3D confinement and the well confine-
ment in the growth direction. We indicated that QRs are unique
structures with this exotic mathematical property. As recently re-
alized structures, quantum rods have not been extensively studied

experimentally, and we expect that interesting dynamical features
due to the combined properties of bound and free states could
arise.
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Appendix A. Full solution to the model

In this appendix we provide the full solution to the radial equa-
tion (2). It can be rewritten as

ρ2 d2 R(ρ)

dρ2
+ ρ

dR(ρ)

dρ
+ ((

kn
d/w

)2
ρ2 − l2

)
R(ρ) = 0 (A.1)

where the radial wavenumber depends on quantum number n only
and is defined as

(
kn

d/w

)2 = 2md/w

h̄2

[
E − Ec,d/w − h̄2n2π2

2md/wh2

]
(A.2)

Subscripts d and w refer to the dot and well domain, respec-
tively. All material parameters are constant within each of these
regions. For a fixed n, the wavenumber squared for the dot region

(kn
d)

2 is positive in the range of energies E > h̄2n2π2

2mdh2 . However, the

wavenumber squared for the well region (kn
w)2 is negative in en-

ergy interval E < Ub + h̄2n2π2

2mw h2 .

Therefore, the solution for an energy in the interval h̄2n2π2

2mdh2 <

E < Ub + h̄2n2π2

2mw h2 reads

Rnl(ρ) =
{

C1 Jl(k
n
dρ) for ρ < ρ0

C2 Kl(κ
n
wρ) for ρ > ρ0

(A.3)

where we used the standard Bessel function notation and intro-
duced (κn

w/d)
2 = −(kn

w/d)
2 which is positive real number for the

considered energy interval. The Bessel function of the second kind
Yl and modified Bessel function of the first kind Il are absent from
the solution due to their divergent behavior in corresponding do-
mains. Boundary conditions at ρ = ρ0 are the continuity of radial
wavefunction and continuity of its derivative divided by effective
mass, and lead to homogeneous system of linear equations in C1
and C2 which has a solution if

κn
w

mw
Jl
(
ρ0kn

d

) d

dρ

(
Kl

(
ρ0κ

n
w

)) = kn
d

md
Kl

(
ρ0κ

n
d

) d

dρ

(
Jl
(
ρ0kn

d

))
(A.4)

By solving this transcendent equation one obtains the discrete
energy spectrum for fixed n and l and those solutions are num-
bered with index j. Eq. (A.4) has to be solved in the energy range
h̄2n2π2

2mdh2 < E < Ub + h̄2n2π2

2mw h2 , but further narrowing of this range ex-

ists for l �= 0. Taking into account the condition that energies of
discrete levels have to be above the minima of effective potential
one can show that narrowed energy range for solving Eq. (A.4) is

h̄2

2md
(n2π2

h2 + l2

ρ2
0
) < E < Ub + h̄2n2π2

2mw h2 .

Each discrete energy defines the radial wavenumbers knj
w/d

and κ
nj
w/d which do not depend explicitly on l (only implicitly,
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via the solutions for discrete spectrum). The corresponding radial
wavefunctions are

Rnlj(ρ) =
⎧⎨
⎩

C1 Jl(k
nj
d ρ) for ρ < ρ0

C1
Jl(k

nj
d ρ0)

Kl(κ
nj
w ρ0)

Kl(κ
nj
w ρ) for ρ > ρ0

(A.5)

where the C1 is determined by normalization.

For the remaining range of energies, i.e. E > Ub + h̄2n2π2

2mw h2 the
spectrum is continual and for each energy the corresponding radial
wavefunction is

RnlE(ρ) =
{

C1 Jl(k
n
dρ) for ρ < ρ0

C2 Jl(kn
wρ) + C3Yl(kn

wρ) for ρ > ρ0
(A.6)

By using the same boundary and normalization condition one
can obtain the constants C1, C2 and C3. There are infinitely many
continuum states for any energy counted by quantum number l,
in contrast to discrete part of the spectrum where boundary condi-
tions do not allow solutions to exist for values of quantum number
l higher than some critical value. Such upper bound to the quan-
tum number l depends also on quantum number n. For increasing
value of n, the upper bound of l decreases and eventually there
will be no discrete states for some critical value of quantum num-
ber n.

Consider now the general case of discrete states with quan-
tum numbers n = qn and l = ql . Such states can occur in the

energy range h̄2

2md
(

q2
nπ2

h2 + q2
l

ρ2
0
) < E < Ub + h̄2q2

nπ2

2mw h2 . (It is implicitly

assumed that qn and ql are small enough so h̄2

2md
(

q2
nπ2

h2 + q2
l

ρ2
0
) <

Ub + h̄2q2
nπ2

2mw h2 .) We want to find the conditions for which the con-
tinuum with quantum number n = p can embed the given bound
state. The continuum with quantum number n = p exists for ener-

gies E > Ub + h̄2 p2π2

2mw h2 . Therefore, if Ub + h̄2 p2π2

2mw h2 < h̄2

2md
(

q2
nπ2

h2 + q2
l

ρ2
0
),

then a bound state with quantum numbers n = qn and l = ql can
occur in the continuum of quantum number p in the range of en-

ergies h̄2

2md
(

q2
nπ2

h2 + q2
l

ρ2
0
) < E < Ub + h̄2q2

nπ2

2mw h2 .

On the other hand, if Ub + h̄2 p2π2

2mw h2 > h̄2

2md
(

q2
nπ2

h2 + q2
l

ρ2
0
) then bound

state in the continuum occurs for energies satisfying Ub + h̄2 p2π2

2mw h2 <

E < Ub + h̄2q2
nπ2

2mw h2 .
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Relationship between electron-LO phonon and electron-light interaction in quantum dots
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The relationship between the Frölich electron-LO phonon interaction and the electron-light interaction in the
conduction band of quantum dots (QDs) based on polar semiconductors is investigated and used to parametrize
the intersublevel polaron lifetime. Based on this, the ratio of the optical gain cross section and nonradiative
lifetime is described in terms of the QD geometrical and compositional parameters, which is important for
possible intraband lasing transitions in QDs.
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I. INTRODUCTION

In the last two decades, quantum dots have attracted
considerable attention as potential candidates for improved
lasing properties compared to their quantum well counterparts.
The modified density of states due to the 3D quantum
confinement increases the efficiency of lasing in comparison to
the standard 1D confined structures, i.e., the quantum wells.1,2

Experimental evidence that the system with truly discrete
states should have a lower threshold current comes from the
extremely low threshold currents observed in quantum-well-
based quantum cascade lasers in the strong magnetic field.3,4

In Refs. 5 and 6 it was suggested that the dominant transition
observed in the PL spectra is the transition between s-like
and p-like states, which was based on numerical calculation
of electronic states and optical matrix elements within the
dipole approximation. There have been several reports on the
observed intraband photoluminscence based on the s-p-like
transitions in the quantum dot cascades.5–7 Room temperature
intraband photoluminiscence was observed in Ref. 8. However,
lasing has not yet been observed.

Several theoretical proposals have been made for an
intersublevel quantum dot cascade laser. They are either 2-level
systems utilizing the s-p-like resonant transition for lasing9–11

or 3-level systems12 with the lasing transition between higher
excited states in the quantum dots (QDs). The resonant s-p-like
transition might be used for lasing in future designs of the QD
intersublevel emitter. If not, we will here restrict considerations
to this transition and the derived theory can be applied to other
cases with a few modifications.

This resonant s-p-like transition requires a detailed inves-
tigation in terms of the radiative and nonradiative transition
strengths. In order to obtain lasing, the strength of the radiative
transition has to overcome population inversion losses due to
nonradiative transitions. Therefore, the theoretical description
of radiative and nonradiative relaxation processes is crucial,
and it would be convenient to provide a theoretical insight
which incorporates both nonradiative and radiative transitions.

The dipole approximation of the electron-radiation cou-
pling has been widely accepted and used for the absorption and
emission processes in various semiconductor nanostructures.
The dipole approximation assumes that the light wavelength
is substantially larger than the dot size, and therefore the
electromagnetic field can be considered as spatially constant.

On the other hand the main source of nonradiative tran-
sitions comes from the electron-phonon coupling. Phonons
behave as waves in the same manner as photons, and their
second quantization is performed analogously.

The dominant electron-phonon interaction is Frölich in-
teraction of electrons and longitudinal optical (LO) phonons.
The Frölich interaction can be viewed as interaction of an
electron and electromagnetic wave induced by dipole-like
LO phonon vibrations. This sets up an analogy between the
electron-phonon and the electron-photon interactions. The
fundamental difference is that wave vectors of the relevant
phonons are larger than those of photons and the dipole
approximation does not hold for phonons.

Detailed theoretical predictions on the key nonradiative
relaxation processes in the QD structures caused by Frölich
interaction have evolved, relying on an increasing amount
of available experimental data. First, it was thought that
due to the discrete nature of the electronic structure and
the nearly constant energy of LO phonons, the so-called
phonon bottleneck would occur.13 However, a great amount
of experimental data showed the absence of this effect.14,15

Magneto-optical experiments in Refs. 16 and 17 showed
that QDs behave like complex condensed matter systems
where electrons and phonons interact strongly via polar Frölich
coupling, thus forming quasiparticles, so-called polarons.
Therefore, the simple picture of weak electron-phonon interac-
tion was not appropriate.18,19 The most prominent theoretical
justification for a short lifetime of excited carriers in QDs has
been presented in Refs. 15 and 20, where the lattice anhar-
monicity perturbation enables the energy exchange between
different polaron modes, thus enabling relaxation toward the
thermodynamical equilibrium.

The electron-phonon interaction remains the fundamental
factor governing excited carrier nonradiative relaxation in
QDs. The main aim of this work is to develop a simple model to
establish a relationship between the radiative and the nonradia-
tive transition strengths of carriers in QDs. The basis for it is a
similar physical electromagnetic interaction between electrons
and phonons, and electrons and photons. We will elaborate
the relationship between these two interactions, and a short
review of finite polaron lifetime theory will follow together
with a model for optical gain and absorption coefficients. The
model will then be used to derive important conclusions on
the geometrical and compositional optimization of QDs as
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possible active media. We will also underline the important
role of state-of-the-art postgrowth fabrication modifications
of QDs such as rapid thermal annealing21 or quantum rod
elongation22,23 in future optimizations.

II. THE RELATIONSHIP

Since we are intrested only in s-p-like resonant coupling
we introduce a reduction of the one-electron subspace into
only the ground and the first excited electron states. Those
electronic states will be further labeled with |ψa〉 and |ψb〉, or
shortly |a〉 and |b〉, with energies Ea and Eb.

In this two-level system, the most important parameter re-
garding the electron-light interaction in dipole approximation
is coordinate matrix element Rab = ∫

d3rψ (a)∗(r)r̂ψ (b)(r)
and will be referred to as a “dipole coupling vector.” On the
other hand, the same parameter for the Frölich interaction of
the electron with the LO phonon mode with wave vector k is
Hk

ab = ∫
d3rψ (a)∗ eik·r

k
ψ (b) and will be referred to as a “Frölich

coupling function” (FCF) on wave vector k. The main aim here
is to find a relationship between the dipole coupling vector Rab

and Frölich coupling function Hk
ab.

In quantum dots, due to confinement, the Frölich coupling
function falls rapidly to zero even for relatively small values
of wave vector k. It behaves as a distribution function with
p-orbital-like shape with the maximum value in the limit k →
0. With the aim of estimating this value, one has to expand the
expression for the Frölich coupling function as

Hk
ab =

∫
d3rψ (a)∗ cos k · r

k
ψ (b) + i

∫
d3rψ (a)∗ sin k · r

k
ψ (b)

= 1

k

∫
d3rψ (a)∗ψ (b) + iek ·

∫
d3rψ (a)∗rψ (b)

− k

2

∫
d3rψ (a)∗ (ek · r)2 ψ (b)

− i
k2

6

∫
d3rψ (a)∗(ek · r)3ψ (b) + · · · , (1)

where the second equation represents the Taylor series of sine
and cosine functions, and ek = k

k
.

Given that electronic states |ψa〉 and |ψb〉 are states with
a dominant optical transition—i.e., the intensity of the dipole

coupling vector between these two states, Rab, is significant—
then, in most cases, one concludes that states ψ (a) and ψ (b) have
well-defined and opposite parity. Therefore, in such a case, the
first term in Eq. (1) vanishes and one gets

Hk
ab = i

(
ek · Rab − k2

6

∫
d3rψ (a)∗(ek · r)3ψ (b) + · · ·

)
.

(2)

In the limit k → 0 expression (2) becomes

Hk
ab = ek · Rab. (3)

Hence, the maximum of the scalar field Hk
ab is proportional to

the intensity of the dipole coupling vector, and is at k → 0.
It should be pointed that the FCF is singular at k = 0,

and also the vector k does not have a defined direction, and
therefore the expression ek · Rab is not defined. However, the
factor ek · Rab indicates that even for small k the distribution
Hk

ab has a strongly anisotropic behavior. For k pointing in
the direction of the dipole coupling vector, the FCF exhibits
the weakest negative slope. This slope is increasing with
increasing angle between k and the FCF and decays rapidly
to zero when k becomes almost perpendicular to the dipole
coupling vector. In the limit where k is exactly perpendicular,
the FCF is zero. All these features prove that the FCF has a
p-orbital-like shape. This was indeed expected, since the FCF
is essentially a Fourier transform of an even function.

One can demonstrate these statements by taking a simple
example of a hard-wall cuboidal quantum dot where it is
possible to calculate analytically Hk

12 between the ground and
the first excited state. The results for the quantum box of height
20 nm and square basis side of 15 nm are presented in Fig. 1(a)
in the kx-kz plane without losing generality. The FCF behaves
in the same way in the direction kx as in ky , for a square base
case.

Therefore, we can model the Frölich coupling function by
a bell-shaped distribution function, with the maximal value
at k → 0 proportional to the intensity of the dipole coupling
vector and multiplied by the ki

k
, where i denotes the direction
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FIG. 1. (Color online) (a) The Frölich coupling function for a hard-wall box calculated in the kx-kz plane. The height of the dot is 20 nm
and the square basis side is 15 nm. (b) The Frölich coupling function modeled by a Gaussian with fitted line width inversely proportional to the
dot dimensions of the hard-walled QD. The whole Gaussian is multiplied by the cosine of the angle between k and kz.
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of the dipole coupling vector. This model gives∣∣Hk
ab

∣∣ = |Rab| kz√
k2
x + k2

y + k2
z

I(k), (4)

where I(k) is the anisotropic distribution function with
maximum I(0) = 1. Therefore, we have parametrized the FCF
via two factors. One is the dipole coupling vector Rab which
is a well-known spectroscopic quantity, and the second is the
distribution function with the property I(0) = 1. All details of
the quantum dot are hidden in the width and line shape of this
function. We will show later that the most important quantity
regarding nonradiative relaxation is the integral of the squared
absolute value of distribution function. This is why the exact
line shape has a limited significance. On the other hand, we
will show that widths of the distribution functions are closely
related to the size of the quantum dot in the corresponding
direction.

III. POLARON STATES

Electrons and LO phonons are in a strong-coupling regime
in the polar semiconductor quantum dots.16,24 The full Hamil-
tonian to be considered accounts for the Frölich coupling
between electrons and LO phonons, i.e.,

H = He + Hph +
√

e2h̄ωLO

2V

(
1

ε∞
− 1

εst

)

×
∑
ij k

Hk
ij â

+
i âj (b̂k + b̂+

−k), (5)

where He is the electronic part of the Hamiltonian, Hph is
the phonon part of the Hamiltonian, b̂k and b̂+

k are phonon
annihilation and creation operators, and âi and â+

j are the
corresponding operators for electrons. It has been argued
that one has to diagonalize this full Hamiltonian in order
to obtain agreement with results obtained in magneto-optical
experiments.15–17

The diagonalization procedure from Ref. 19 has been
adopted here. The Hamiltonian, Eq. (5), commutes with the
electron number operator N̂ and therefore can be solved in
each subspace for a constant number of electrons. Therefore,
the one-electron limitation is introduced here together with the
two-level system explained above.

The eigenstates of the trivial case of the Hamiltonian
without electron-phonon interaction is a simple uncorrelated
eigenbasis formed by the direct product of a pure electronic
eigenstates and pure phonon eigenstates. When it comes to
the full Hamiltonian, as has been proved in Refs. 17 and 19,
only a finite number of LO modes couples with a finite
number of electronic states in the nondispersive phonon modes
approximation. For two-level electronic systems only three
LO modes are considered. Their further orthonormalization25

and proper unitary rotation give three new modes which
are coupled to a two-level system with one electron. Only
one mode couples the s-p resonant transition to the classical
emission or absorption of one phonon and will be denoted as
B1. The second mode couples the s-p resonant transition with
the self-translation which gives rise to the Franck-Condon
factors.19 It will be denoted as B

γ

2 where the parameter γ

represents translation. The third mode is properly translated
so it does not couple to the resonant s-p transition in the one-
electron case and can be omitted from further consideration.

Further space reduction was obtained in Ref. 19 by
introducing the rotating wave approximation, by choosing
only the coupling states differing by the detunings δ± =
Eb − Ea ± h̄ωLO. The first state has the electron in state b

and “certain phonon configuration.” The second state has
the electron in state a and the same phonon configuration,
with only one additional phonon in mode B1 and “translated”
mode B

γ

2 with the same occupation number. The relationship
between these translated and initial modes is determined by
general Franck-Condon factors. By neglecting the polaronic
shift terms, it is possible to obtain approximate analytical
solution of any such 2 × 2 Hamiltonian. Thus, the basis
considered is

|2′〉 = ∣∣b; n0
1; nγ

2

〉
, |3′〉 = ∣∣a; n0

1 + 1; n0
2

〉
,

where n1 = n2 = 0. We additionally take two adjacent states
into account, namely the ground state a with zero phonons
(i.e., uncorrelated ground state) and its coupling state b with
one phonon in mode B1 and the “translated” mode B

γ

2 with
the same occupation number:

|1′〉 = ∣∣a; n0
1; n0

2

〉
, |4′〉 = ∣∣b; n0

1 + 1; nγ

2

〉
.

The superscript at the phonon modes denotes translation of
the mode from the bulk one. Enumeration of the basis states is
made to order the states according to their increasing energy;
i.e., we consider the case where the detuning is δ− < 0.

The solution of this model is also given in Ref. 19 and it
reads

|1〉 =
√

1

2

(
1 − δ+

R+

)
|4′〉 +

√
1

2

(
1 + δ+

R+

)
|1′〉,

|2〉 =
√

1

2

(
1 − δ−

R−

)
|2′〉 −

√
1

2

(
1 + δ−

R−

)
|3′〉,

|3〉 =
√

1

2

(
1 + δ−

R−

)
|2′〉 +

√
1

2

(
1 − δ−

R−

)
|3′〉,

|4〉 =
√

1

2

(
1 + δ+

R+

)
|4′〉 −

√
1

2

(
1 − δ+

R+

)
|1′〉,

where R+ =
√
δ2
+ + 4|Fγ

n Cab|2 and R− =
√
δ2
− + 4|Fγ

n Cab|2 are
the Rabi splittings, while F

γ
n = 〈n|n〉γ is the Franck-Condon

factor and Cab = ∑
q |Mab(q)|2 is a normalization constant

used to normalize the mode B1. If one assumes zero energy of
the state |1′〉 the eigenenergies of this polaron model are

E1 = 1
2 (δ+ − R+), E2 = 1

2 (δ+ − R−),

E3 = 1
2 (δ+ + R−), E4 = 1

2 (δ+ + R+).

In conclusion to this section, the most important quantity,
directly responsible for formation of the coherent polaron
modes, is the normalization constant Cab. In terms of the FCF
this normalization constant reads

Cab = e2h̄ωLO

16π3

(
1

ε∞
− 1

εst

)∫
d3k

∣∣Hk
ab

∣∣2
(6)

195435-3
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and will be further referred to as the Frölich coupling constant.
By using the relation (4), the Frölich coupling constant
becomes

|Cab|2 = e2h̄ωLO

16π3

(
1

ε∞
− 1

εst

)
|Rab|2S, (7)

where

S =
∫

d3k
k2
z

k2
x + k2

y + k2
z

I2(k) (8)

will be further on referred to as the coupling integral constant.
We have deconstructed the Frölich coupling constant for

any quantum dot via factors containing the dipole coupling
vector and integrals of the distribution function. Due to this
integral, the precise shape of this distribution function becomes
unimportant, and only its linewidth remains as a crucial factor
determining the value of the coupling integral constant S.

IV. INFLUENCE OF QD GEOMETRY AND COMPOSITION

In the following we give a quantitative description of the
influence of the QD confinement on the value of expression
(6). Consider first the distribution function. Anisotropy of this
function stems from the dimensional anisotropy of the dot.
Thus, for anisotropic QDs the linewidth of such a distribution
function varies with the direction in k space.

The Frölich coupling function can be thought of as a Fourier
transform of the product of wave functions in the ground and
excited state divided by k. By varying the dot dimensions we
can shrink or expand the envelope wave functions. This can be
modeled by

ψ(x,y,z) → √
αxαyαzψ(αxx,αyy,αzz). (9)

Using these scaled wave functions in the Frölich coupling
function, and taking a particular direction, e.g., the “x”
direction (i.e., setting ky = kz = 0), one concludes that the

FCF has the behavior

Hab(kx,0,0) → 1

αx

Hab

(
kx

αx

,0,0

)
. (10)

However, the prefactor 1
αx

is already included in the scaling
of the dipole coupling vector, and therefore only the scaling of
the distribution function width has to be considered further. By
increasing the dot size in the chosen direction one can decrease
the distribution function width in that direction. However, this
trend remains up to some minimal, critical size in a particular
direction. Beyond this point, the envelope wave function does
not shrink any further, but instead starts leaking outside the
dot. In the hard-wall example, it is possible to use a Gaussian
without a normalization prefactor as a distribution function.
The results of such a model are presented in Fig. 1(a). The
width of the Gaussian is inversely proportional to the dot
extension in the corresponding direction. The modeling by
the Gaussian curve is also the exact solution for a parabolic
QD (see Appendix of Ref. 19).

For calculations with better accuracy we use an 8-band k · p
method with strain effects included to calculate the Frölich
coupling function and demonstrate its dependence on the dot
size.11,18,26,27 In Figs. 2(a) and 2(b) we present the calculated
FCF for lens-shaped dots of height 8 nm, indium content 1,
and radius 22 nm. The second dot is twice as high, 16 nm,
and we note that FCF has accordingly shrunk twofold in this
direction. The In content in the QD also affects the width of
the distribution function. By decreasing the In content one
decreases the QD potential well and the confinement. The
wave functions then expand and the FCF consequently shrinks,
and so does the distribution function. This is demonstrated in
Figs. 3(a) and 3(b), where two geometrically identical QDs
(cylinder shaped) have different In content, of 1 and 0.6,
respectively. We note that FCF in Fig. 3(b) is slightly narrower
than that in Fig. 3(a). It is expected that the maximal possible
width of the distribution function in terms of QD depth occurs
for the hard-wall QD, since it has infinite potential well. The
opposite limit occurs in bulk, where the width is zero; i.e., the

k
x
 [m−1]

k z [m
−

1 ]

0 2 4 6 8 10
x 10

8

0

2

4

6

8

10

x 10
8

(a)

k
x
 [m−1]

k z [m
−

1 ]

0 2 4 6 8 10
x 10

8

0

2

4

6

8

10

x 10
8

(b)

FIG. 2. (Color online) FCF for two different lens-shaped cylindrically symmetric QDs calculated in the kx-kz plane by the 8-band k · p
method with strain effects included. Indium content in both dots is 1, radius is 22 nm, and their height is (a) 8 nm and (b) 16 nm.
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FIG. 3. (Color online) (a) FCF for two different cylinder-shaped QDs calculated in the kx-kz plane by the 8-band k · p method with strain
effects included. Indium content in dots is (a) 1 and (b) 0.6, and their radius and height are 22 nm and 12 nm, respectively, in both cases.

wave function is a pure plane wave. It is difficult to predict
a more accurate dependence of the width of the distribution
function, but a monotonic behavior is expected between these
two limits.

In summary, we have introduced four parameters: αx,αy,αz,
and σ . The first three parameters measure the relative QD
extension in a specified direction, and the parameter σ is an
increasing function of the In content in the QD. By varying
these geometrical parameters the distribution function evolves
as

I(kx,ky,kz) → I
(

αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)
(11)

and consequently the coupling integral constant evolves as

S →
∫

d3k
k2
z

k2
x + k2

y + k2
z

I
(

αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)
, (12)

which gives

S → σ 3

αxαyαz

∫
d3k

k2
z(

αz

αx

)2
k2
x + (

αz

αy

)2
k2
y + k2

z

I(k)

= σ 3

αxαyαz

S ′. (13)

Equation (13) describes the variation of the coupling integral
constant in terms of quantum dot geometric and composition
parameters. The largest contribution comes from the prefactor.
Coupling integral constant S is slightly different from S ′; i.e.,
it differs only by the “cosine part.” In the case of an isotropic
enlargement of the QD size, the “cosine part” in the integrals
remains unchanged and therefore so do the constants S and S ′.

V. LIGHT ABSORPTION AND STIMULATED EMISSION

The polaron ground state is |1〉 with the dominant compo-
nent being the electron ground state. In the case of δ− < 0, the
first excited polaron state is |2〉. As expected, the dominant
component of that state is the first excited electron state,

which enables efficient optical excitation of that polaron state
from the ground state. Therefore, when dealing with optical
excitation, we will omit the polaronic nature of the carriers in
QDs and will derive expressions for the quantities of interest
with pure electronic notation. Later, we will only replace the
electronic notation with the corresponding polaronic notation.
Let the system be described semiclassically, with particular
interest in estimating the transition rate between the lower
state |a〉 with energy Ea and the higher state |b〉 with energy
Eb. Within this semiclassical approach, Fermi’s golden rule
transition rate can be used to find the coefficients of absorption
and stimulated emission gain in the active medium. The
optical cross section gives the absorption line and gain when
multiplied by the population difference. With the “−e r̂ · E”
interaction the expression for optical cross section reads28

σ ε
ab(ω) = 4π |e|2ω

nε0cm
2
0

|Rab · ε|2g(Eb − Ea ∓ h̄ω), (14)

where g(Eb − Ea ∓ h̄ω) is the normalized distribution func-
tion (e.g., Gaussian), recovering the inhomogeneous broaden-
ing due to the size inhomogeneity of the quantum dot ensemble
and ε is the light polarization unit vector. Constants e, m0, n,
and c are electron charge and mass, refractive index of the
quantum dot, and speed of light. The sign “–” corresponds to
absorption and “ + ” to emission.

VI. NONRADIATIVE POLARON LIFETIME

After excitation, the relaxation of nonequilibrium polarons
is enabled by anharmonic perturbation of the crystal. So far,
this has been the most reliable theoretical explanation of
the finite excited carrier lifetime proposed in Ref. 29. This
potential acts only on the phonon factor in the polaron state.
Besides the zero-phonon component in the excited polaron
state, there is also a one-phonon component responsible for
nonradiative relaxation of the excited polaron due to crystal
anharmonicity potential. Therefore, the nonradiative decay
rate has to be proportional to the absolute squared value of
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the weights of the relevant components:

�(Ei) = 1

4
�ph(Ei)

(
1 + δ+

R+

)(
1 + δ−

R−

)
. (15)

The quantity �ph (Ei) represents the bare decay rate of phonons
which would have polaron energies driven by anharmonicity
potential:

�ph(Ei) = 2π

h̄

∑
j

|〈j |Va|3′〉|2. (16)

The summation is performed over all possible decay channels
of mode B1 with one phonon. Detailed discussion on decay
channels and the derivation of analytical expression for
�ph(Ei) can be found in Ref. 29.

It was pointed out in Ref. 20 that a strong inhibition of
this mechanism occurs at lower values of the energy splitting
between the electronic ground and excited states. In other
words, the squared detuning δ2

− becomes significantly larger
than the squared Frölich coupling constant, leading to a
simplified linearized ratio of detuning and Rabi splitting:

1 + δ−
R−

≈ 2

∣∣Fγ
n Cab

∣∣2

δ2−
. (17)

Furthermore, by using an additional approximation δ+
R+

≈ 1

and F
γ
n ≈ 1, which holds for small values of the parameter γ ,

one can write

�(Ei) = �ph(Ei)
|Cab|2

δ2−
. (18)

Therefore, the Frölich coupling constant is directly propor-
tional to the lifetime of the excited carrier in the quantum dot.

VII. LASING EFFICIENCY

In order to consider a transition as a possible lasing
transition, both the radiative and nonradiative lifetimes are
important. The longer the nonradiative lifetime, the higher is
the likelihood of photon emission. Thus, we define a figure
of merit for such a transition as the ratio of the optical
cross section and the nonradiative transition rate for the light
polarized along the dipole coupling vector Kab(ω) = σab(ω)

�(Ei )
.

By using Eqs. (14) and (18) the lasing figure of merit
becomes

Kab(ω) = 64π4g(Ei ∓ h̄ω)

nε0cm
2
0h̄

2ωLO
(

1
ε∞

− 1
εst

) δ2
−

S(Ei)

Ei

�ph
. (19)

The inhomogeneous broadening g(Ei ∓ h̄ω) clearly affects
this laser efficiency coefficient, via the optical cross section.
Increasing the inhomogeneous broadening width will decrease
the laser efficiency for a specific frequency of light. The ratio
Ei

�ph
is proportional to 1

En
i

, where n is an integer depending on
the active disintegration channel. A detailed discussion on this
subject is presented in Ref. 29, but the general conclusion is
that a decrease of polaron s-p-like splitting Ei will lead to
improved lasing efficiency. Dot enlargement and a reduced In
content also lead to a decrease of the quantity S, as explained
in the previous section. Furthermore, the squared detuning δ2

−
then increases and leads to improved lasing efficiency.

It is clear now that novel postfabrication techniques such as
rapid thermal annealing21 or quantum rod elongation22,23 could
produce structures with higher lasing efficiency coefficient.
One can enlarge the dot, or reduce the In content by using
those techniques. In Ref. 20, it has been demonstrated that
the nonradiative polaron lifetime is increased by rapid thermal
annealing. However, we have shown here that this does not
affect adversely the radiative lifetime, thus increasing the
overall figure of merit (19).

VIII. CONCLUSION

In summary, in an ideal symmetric case, the FCF was
parametrized with the dipole coupling vector (optical matrix
element) and the distribution function whose widths were
related to geometrical and compositional properties of the
quantum dot. Based on such parametrization we have estab-
lished a direct relationship between nonradiative lifetime and
optical gain for a possible lasing transition in self-assembled
quantum dots based on polar semiconductors. This was further
used to derive an appropriate figure of merit for the lasing
transition, which depends directly on geometrical parameters
of the dot and on the level spacing. Enlargement of the quantum
dot and reduction of In content in the dot lead to a higher
figure of merit and both can be achieved by rapid thermal
annealing. Novel structures such as quantum rods can be
elongated in the growth direction, leading to a higher figure of
merit.

Certainly, going to the extreme with such tailoring of dot
structure will eventually bring in additional effects which
may deteriorate lasing, and were not here accounted for. As
the level spacing decreases, the thermal backfilling sets in,
reducing the population inversion. Furthermore, the difficulty
of selective electron injection into the excited state becomes
more prominent as it gets close to the ground state.

Therefore, one has to solve the full system of rate
equations in order to model the quantum-dot-based quantum
cascade laser properly. The aim of this work was primarily
to study the radiative versus nonradiative lifetimes, and to
describe this problem via the minimum possible number of
parameters. We also aimed to simplify the description of the
Frölich coupling between confined electron states in the QD
conduction band. The important parameters in this coupling
have been deconstructed as much as possible to experimentally
measurable spectroscopic quantities such as level spacing and
dipole coupling vector.
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Strain-dependent eight-band k � p method is used to analyze the electronic structure and intraband

optical transitions in self-assembled InGaAs quantum rods in the terahertz range. The calculation

of absorption spectra for the growth- and in-plane-polarized radiation shows some similarities to

those of quantum well and single quantum dot structures, augmented with contribution from

transitions between the dot and quantum well states. The influence of rod height on the electronic

structure and the intraband absorption spectra is also investigated. It is found that the energy of

maximal terahertz absorption can be tailored by the rod height for both in-plane and in-growth

polarized radiation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692069]

I. INTRODUCTION

Semiconductor quantum dots are continuously attracting

significant research interest, because their properties can be

engineered, via their structural parameters, allowing the

design of dots with electronic and optical properties suited to

a particular application. In many cases, they are expected to

offer better performance than similar devices based on

quantum wells and wires. The growth of such structures is

typically in the Stranski-Krastanov mode, which produces

self-assembled dots with the height-to-diameter aspect ratio

well below one and without a precise controllability of their

size.

Novel quantum nanostructures—quantum rods or quan-

tum posts—have recently been realized.1–4 In contrast to

self-assembled quantum dots with typical heights of a few

nanometers, quantum rods can be grown with heights up to

several tens of nanometers. They have quite large aspect

ratios, the controllability of which is achieved by alternating

deposition of very short (of the order of monolayer) layers of

InAs and GaAs. Subsequent intermixing of InAs and GaAs

leads to InGaAs quantum rods with large and precisely tuna-

ble aspect ratio. Recent experiments on carrier capture

dynamics in quantum rod structures5 suggest that quantum

rods may be very promising for future device applications.

There is also a very recent report6 that charged quantum rods

embedded in a quantum well matrix give rise to a

“perforated” electron gas. Additional growth control by

using different arsenic sources has been reported.7,8

It is, therefore, of interest to develop a full theoretical

description of electronic and optical properties, which would

enable the purpose engineering of quantum rod–based struc-

tures. Initial work in this area has focused on calculation of

energy levels and interband optical properties,1,2,9 as well as

theoretical investigation of dominant physical effects affect-

ing their interband optical properties.10 We have recently

performed preliminary work on calculation of intraband

(intersubband) absorption in the THz spectral range.11 Fol-

lowing the recent experimental observation and theoretical

analysis of terahertz ionization of highly charged quantum

posts,6 in this work, we focus on detailed simulations of THz

intraband optical absorption of polarized radiation at

extremely low and liquid nitrogen temperatures. Within this

scope, it suffices to consider the rod electronic structure

alone, neglecting the formation of polaron states discussed in

Ref. 12, because the spectrum of polaron states is not signifi-

cantly different from a pure electronic spectrum in terms of

optical probing.

We first briefly describe the strain-dependent eight-band

k � p model for the electronic structure and the absorption

cross sections calculation. The results are also compared to

those obtained within the simple effective mass model, the

latter being quite useful for qualitative insight.

II. THEORETICAL MODEL

A. Electronic structure: Eight band k � p model

The electronic structure of quantum rods is calculated

within the eight-band envelope function k � p model.13–17

The strain distribution was found within the continuum

mechanical model,18 with the calculation based on the finite

element method.19

As for the rod cross section, both the cylindrical5,6,20

and square-based1 shapes were reported. Yet, in our previous

study of InGaAs quantum dots,21 we have shown that the

intraband absorption spectrum is essentially the same for

truncated square-based pyramids and truncated cones. This

indicates that the details of the base shape (square versus

circle) are not very important and have assumed the cylindri-

cally shaped rods in our simulations, which should capture

the essential features of an intraband absorption spectra of

rods with different cross sections. Such an approximation isa)Electronic mail: elnpr@leeds.ac.uk.
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further supported by the fact that, as described in Sec. II B-

Sec. IV, the main features of bound-to-bound optical

transitions are the same in the simple effective mass particle-

in-a-box model for a square-based rod and in the full simula-

tion with a cylindrical rod, and it is even less likely that the

properties of unbound states are significantly affected by the

exact shape of the rod base.

With the cylindrical shape of rods assumed, the axial

approximation21 was used. The Hamiltonian eigenvalue

problem was then solved using the orthonormal function

expansion, where the basis was formed from the direct prod-

uct of Bessel functions in the radial direction and plane

waves in the growth (z) direction. The cylindrical symmetry

of the rods introduces a good quantum number (mf ), describ-

ing the z� component of the total quasi-angular momentum,

which takes half-integer values.21,22 The optical transition

selection rules then allow only the transitions with Dmf ¼ 0

in the case of z� polarised radiation and jDmf j ¼ 1 for the

in-plane, e.g., x� polarised radiation.

The calculated electronic structure is then used to find

the intraband absorption spectra. The case of T ¼ 0 has been

investigated previously,11 assuming that only the ground

state is occupied (the two-fold degeneracy of jmf j states then

implies that no more than two electrons can be present in the

quantum rod). In this work, we consider the lattice tempera-

tures of either 0 K or 77 K. The latter case allows thermal

population of higher states and absorption from these states

as well. The inhomogeneity of the quantum rod ensemble

(fluctuations of rod size and deviations of the base shape

from perfect circular or square) gives contribution to transi-

tion linewidths and is taken into account by assuming a

Gaussian line shape with a standard deviation r equal to

10% of the transition energy, i.e., r ¼ 0:1ðEf � EiÞ.
Under equilibrium conditions, a transition in the quan-

tum rod has the effective absorption cross-section,

r�ði! f Þ ¼ 2p�h

~n�0cE

hijĤ 0jf i
A

�����
�����
2

1

r
ffiffiffiffiffiffi
2p
p

� exp �

�
E� ðEf � EiÞ

�2

2r2

0
B@

1
CAHif ; (1)

where i and f denote the initial and final state and ~n the re-

fractive index. The dipole perturbation Ĥ
0 ¼ e

m0
p̂ � A�

depends on the incident radiation magnetic vector potential

A and its polarization unit vector �, and Hif is the difference

of the initial and final state population,

Hif ¼
1

exp
ðEi � EFÞ

kbT
þ 1

� 1

exp
ðEf � EFÞ

kbT
þ 1

;

where EF is the Fermi level, determined by the average num-

ber of electrons in a rod.

B. Effective mass model

For a simple picture of phenomena observed in the

detailed calculation, we also give a simple effective-mass

model of the electronic structure, dipole matrix elements,

and optical cross-sections for states confined in the dot or in

the well embedding the dot.

Consider a cuboidal quantum dot embedded in an infi-

nite potential barrier with a square base of side length a and

height d. Envelope functions of its eigenstates are

Wiðx; y; zÞ ¼
2
ffiffiffi
2
p

a
ffiffiffi
d
p sin

xni
xp

a

� �
sin

yni
yp

a

 !
sin

zni
zp

d

� �
(2)

and the corresponding energies,

Ei ¼
p2�h2

2m�a2
ððni

xÞ
2 þ ðni

yÞ
2Þ þ p2�h2

2m�d2
ðni

zÞ
2: (3)

Similarly, in an infinitely deep quantum well, the eigenstates

are

Wkx;ky;nðx; y; zÞ ¼
ffiffiffi
2
p

a
ffiffiffi
d
p eikxxeikyysin

znp
d

� �
(4)

and the corresponding energies

Ekx;ky;n ¼
�h2

2m�
ðk2

x þ k2
yÞ þ

p2�h2

2m�d2
n2; (5)

where ðkx; kyÞ is the in-plane wave vector and the quantum

number n counts the subbands.

In order to use Eq. (1), one requires the momentum ma-

trix element pif ¼
Ð

Wip̂Wf dr. For light polarization,

� ¼ �xiþ �zk, where z is the growth and x the in-plane direc-

tion, the momentum matrix elements are straightforwardly

found as

px
if ¼

4i�h
/x

if

a
for ðni

x � nf
xÞ odd

0 for ðni
x � nf

xÞ even

;

8<
: (6a)

pz
if ¼

4i�h
/z

if

d
for ðni

z � nf
zÞ odd

0 for ðni
z � nf

zÞ even

;

8<
: (6b)

where

/x
if ¼ �xdni

ynf
y
dni

zn
f
z

ni
xnf

x

ðnf
xÞ2 � ðni

xÞ
2
;

/z
if ¼ �zdni

xnf
x
dni

ynf
y

ni
zn

f
z

ðnf
zÞ2 � ðni

zÞ
2
:

All selection rules are included in Eqs. (6a) and (6b).

For the quantum well surrounding the dot, the only non-

zero matrix element is

pz
kx;ky;n;k0x;k

0
y;m

¼
4i�z

�h

d
dkxk0xdkyk0y

mn

m2 � n2
for ðm� nÞ odd

0 for ðm� nÞ even

:

8><
>: (7)
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III. NUMERICAL RESULTS AND DISCUSSION

A. Electronic structure

The electronic structure of quantum rods was calculated

using the 8-band k � p envelope function model. The rod mate-

rial composition and geometric parameters were taken in ac-

cordance with the literature data. The rod diameter was taken

to be 10 nm,1 and the rod height was varied from 2.5 nm to

60 nm, which covers the typical range of quantum rod

heights.1,2 The InAs/GaAs short-period superlattice, away from

the quantum rod, transforms into an InGaAs alloy quantum

well layer with In content of 16%1 during the structure growth.

The In content in the rod is approximately 45%.1 The profile of

the cylindrically symmetric structure in the z – r plane is sche-

matically shown in the inset of Fig. 1, and the conduction band

edge profile in the growth direction for r ¼ 0 (which includes

the hydrostatic strain-induced shift) is shown in Fig. 1. The

structure can be considered as a quantum well with the z axis as

the growth direction and with the potential getting deeper in

the radial direction, up to the rod radius of r ¼ 5 nm.

The electronic structure of 60-nm- and 10-nm-high rods

is displayed in Fig. 2, together with the wavefunction moduli

squared for a number of relevant states. The electronic states

can be classified as either free or non-free, according to

whether their energies are above or below the barrier in the

growth direction.

Numerical calculations were performed in the subspace

defined by basis functions corresponding to the closed box

around the whole structure, and these solutions make a dis-

crete set. For quasi-bound and free states, this description is

clearly only approximate, but one can still expect that such

discretisation, in fact, samples the continuum (including the

resonances) of the open system and should be able to capture

the variation of optical transition matrix elements with the

transition energy. All non-free states can be further divided

into three subgroups. The first subgroup, labeled with A in

Fig. 2, includes states completely localized in the dot, which

exist only due to the dot. Their total energies do not have to

be lower than the barrier in the radial direction, as is the

case, e.g., for state A4 for the 60-nm-high rod or state A2 for

the 10-nm-high rod (a part of their energy comes from quan-

tisation in the z-direction). Since the In content–related bar-

rier in the radial direction is about 30% lower than in the

growth direction, these states behave like bound states in an

infinite dot, described by Eq. (2). Increasing nz increases the

number of nodes in the growth direction. The quantum num-

ber mf plays a role similar to quantum numbers nx and ny.

FIG. 1. The conduction band profile, including the hydrostatic strain poten-

tial, for a 30-nm-tall quantum rod. The structure layout in the z� r plane is

shown in the inset.

FIG. 2. Energy diagrams for quantum rods with 10 nm height (upper) and

60 nm height (the lower diagram). Different types of states have different

(but height-independent) labels. The lower part of the figure shows various

types of states (wavefunction structures) appearing in the quantum rods.

Solid (dashed) double-arrowed lines indicate the dominant transitions for the

z-(in-plane) polarized radiation.
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According to Eqs. (6a), (6b), and (7), only the transitions

between the bound dot states, i.e., from (the only signifi-

cantly populated) mf ¼ 1
2

and mf ¼ � 1
2

into higher states

(observing the selection rules), can significantly contribute to

absorption of radially polarized radiation. Dot states with

higher values of mf are absent.

Within the simple effective-mass model, those states

would be described by the quantum numbers nx ¼ 1 and

ny ¼ 1. For taller rods, the energy difference between these

bound states decreases (Eq. (3)). This can be also seen from

Fig. 2, where states A1, A2, and A3 in 60-nm-high rods have

energies lower than the radial barrier, but in the 10-nm-high

rod, the p-like bound state A2 is far above the s-like A1, with

energy higher than the radial barrier. This is a very interesting

feature. State A2 is bound, although its energy is in the sub-

band continuum. This indicates that an electron optically

excited into A2 state might be efficiently extracted by a lateral

electric field, which will be discussed later on. The third state,

A3, does not exist in the 10-nm-high rod, since the number of

bound states in the well and the dot is reduced by decreasing

the height of the dot, i.e., by decreasing the well width.

The second subgroup of non-free states appears for ener-

gies higher than the radial barrier, and these states are com-

pletely localized outside the rod. Their properties are

determined by the well and will be hereafter called well states.

These states are, actually, quantum well bound states behaving

like plane waves in the radial direction and can be classified

into subbands according to Eq. (4) and Eq. (5). Among the well

states, one can recognize states from the same subband, because

they look similarly, i.e., have the same number of nodes in the

growth direction and similar wave-like behavior in the radial

direction. Therefore, B, C, and D in Fig. 2 denote the 1st, 2nd,

and 3 rd subband in the growth direction. All these states

behave like plane waves in the radial direction. Figure 2 shows

that increasing the quantum number mf gives states lined up

along a parabolic “subband”. This is fully analogous to the

wave in the radial (x or y) direction and its parabolic dispersion

with kx and ky in a simple infinitely deep well.

The same as for the dot states, the energy difference

between quantum well states within different subbands, but

with the same mf , decreases as the rod height increases (Eq.

(5)). There are also a larger number of subbands in the well,

causing complicated state ordering for taller rods. The den-

sity of states increases, leading to interlacing of states from

different subbands (Fig. 2).

The third subgroup of non-free states, denoted as mixed

states, are those which are only partially localized in the dot.

For example, one of those states is labeled as the E0-state in

Fig. 2. These largely delocalised states are denoted as E, F,

and G and also form bands in the same way as B, C, and D

states do, but their behavior in the radial direction is differ-

ent. States E, F, and G are not homogeneous waves in the ra-

dial direction, although they are not localized either.

Furthermore, their energy depends only mildly on the quan-

tum rod and quantum well parameters. The state E0 behaves

as the ground state for the quasi-subband E. We also note

that states F0 and G0, as ground states for subbands F and G,

could be added on the diagram, but they are not labeled in

Fig. 2, since their exact nature is less clear.

There also exist non-free states labeled as H for the

10-nm-high rod and as I for the 60-nm-high rod in Fig. 2.

Those states are partially localized outside the rod, but their

shape is still largely influenced by the rod. Some of those

states have no nodes in the growth direction, like H states, or

one node, like I states, which indicates the order of their

quantization. It is difficult to find a precise qualitative

description or unambiguous classification of these states.

To conclude, by varying the height of the quantum rod

structure, one can tune the energy spacing between various

bound states. The spacing between consecutive dot bound

states decreases with increasing the rod height. The same

applies to the spacing between consecutive well states with

the same mf , but from different subbands. All that affects the

ordering of states and enables tunability of absorption spec-

tra for light polarized in the growth direction.

B. Intraband absorption spectra

All intra-subband transitions for in-plane, i.e., radially

polarized radiation are forbidden (see Eq. (7)). From Eqs.

(6a), (6b), and (7), it is clear that the momentum matrix ele-

ments depend only on the size of the structure in the direc-

tion of the light polarization, which, within the range of

structures considered here, means that the absorption of

z-polarized radiation will vary.

The lowest bound dot state is the ground state of the sys-

tem and, except in the case of very long rods (e.g., 60 nm),

the next couple of states belong to the first well subband,

which can accommodate a number of electrons, due to their

continuous nature. Assuming that the number of electrons

per rod is small enough that only the ground dot state and the

lowest subband states are significantly populated, the Fermi

level is very close to the first subband minimum and the tran-

sitions from these states will give the major contribution to

the total absorption.

What matters for a good photodetector performance are

the transitions from the populated initial states to low-lying

free states (resonances), because electrons in the latter can

efficiently contribute to the current if the structure is biased.

Yet, the cross-sections of these transitions may be very small

compared to those for bound-to-bound transitions, according

to Eq. (1), and this issue has to be investigated separately.

1. Absorption of z-polarized radiation

The absorption is strong only for transitions between op-

posite parity states, as is clear from the simple effective mass

model (Eqs. (6b) and (7)). For example, according to

Eq. (6b), one expects that the dominant matrix element for

z-polarized radiation will be between the ground state with

ni
x ¼ 1, ni

y ¼ 1, and ni
z ¼ 1 (s-like state) and nf

x ¼ 1, nf
y ¼ 1,

and nf
z ¼ 2 (the p-like, also dot state, with a good overlap

with the initial state), as the calculation indeed gives. The

same rule applies to transitions between the well subbands,

i.e., the matrix element is large for the transition between

n ¼ 1 and n ¼ 2 states (Eq. (7)). As shown in Fig. 2 (solid

double-arrowed lines), the dominant dipole matrix elements

are usually between states of type A with opposite parity,

e.g., A1 � A2, and between subbands B and C or C and D.
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Increasing the dot height decreases both the momentum ma-

trix element squared and the state spacing, and the latter de-

pendence is stronger than the former, because it acts both

explicitly and via the energy-dependent linewidth, resulting

in increasing cross-section. This is predicted by both the full

k � p and the simple effective mass model.

At higher temperatures, transitions from higher states of

the quantum dot can also significantly contribute the total

absorption, as they become increasingly populated. How-

ever, the absorption peak positions hardly change, because

main additional transition, which was not active at T ¼ 0 K,

comes from the well states, and their spacing appears to be

approximately the same as for the dot states.

Taller rods have a smaller state spacing, i.e., reduced

transition energies of bound-to-bound transitions. Therefore,

the absorption tunability for z-polarized radiation is achieved

by changing the rod height for sufficiently tall rods, accom-

modating both an s-like and a p-like bound state.

This explains the cross-section for taller quantum rods

calculated using Eq. (1), shown in Figs. 3 and 4. At T ¼ 0 K,

only the transitions from the dot ground, bound state, into

the higher dot bound state exist (assuming a maximum of

two electrons per dot). This is why a single peak appears for

any height, shifting to lower frequency as height increases.

At elevated temperatures, e.g., T ¼ 77K, an additional tran-

sition occurs from the first well subband, but at similar ener-

gies as transitions from the bound state. Therefore, Figs. 3

and 4 are generally similar. However, one can see from Fig.

4 that the absorption peak for the 60-nm-high rod decreases

at elevated temperature, due to thermal population of the

upper state. Clearly, taller rods with their small state spac-

ings are more strongly affected by temperature.

The most interesting feature of intraband spectrum in

this case is that, for a range of values of rod height, the domi-

nant s� p-like transition excites electrons into the quantum

well continuum. These electrons can be efficiently extracted

by a lateral electric field, thus providing a basis for the design

of a lateral-extraction photodetector. The advantage of such a

photodetector would be a strong bound-to-bound absorption

and an efficient continuum-like extraction of electrons. How-

ever, more detailed studies of electron transport are required

before any more reliable conclusions can be made.

In the case of bound-to-continuum absorption, which can

generate vertical photocurrent, the situation is quite different.

Usually coming from transitions between non-subsequent

states (in respect to size-quantization in the z-direction), this

absorption may be quite small. The transition energy from the

lowest bound to the barrier continuum state slowly decreases

with increasing rod height. For larger matrix elements, one

needs shorter rods, also evident from simple effective-mass

model. For instance, the resonant bound-to-continuum

absorption peak in the (rather flat) 2.5-nm-high quantum rod

is comparable to bound-to-bound absorption. For higher rods

(> 10 nm), however, bound-to-continuum absorption peaks

are not observable on the same scale as bound-to-bound ones,

due to the decreased values of momentum matrix elements,

increased energy separation, and increased linewidth, which

all lead to small absorption strength.

However, for extremely short rods, such as 2.5 nm

(typical height of conventional quantum dots), the dominant

transition for growth-polarized radiation is of bound-to-

continuum type. These structures are not typical “rods”, and

the results for them are given only for the sake of compari-

son between rods and conventional quantum dots.

2. Absorption of in-plane polarized radiation

The important issue in quantum well intraband photodetec-

tors is that there is no absorption of in-plane polarized radiation,

as is clear from Eq. (7). The quantum rod structure may have

non-zero absorption of in-plane polarized radiation, e.g., based

on transitions from the dot bound states with the quantum num-

ber mf ¼ 1
2

into well and mixed states with mf ¼ � 1
2
.

The detailed examination of dominant optical matrix ele-

ments in the structure shows that transitions between bound

states in the dot and higher well or mixed states, for the

in-plane polarization, are more prominent than “intra-dot”

transitions. With transitions between the subband states being

forbidden, all absorption will come from transitions from the

first bound state of the dot, with bound-to-bound transitions

much stronger then bound-to-continuum transitions. The

FIG. 3. Absorption cross-section for transitions from the ground state for z-

polarized radiation at T ¼ 0 K with one electron per rod. The absorption for

the 2.5-nm-tall dot comes from the bound-to-continuum transition, since

such a short dot can accommodate only one bound state. Absorption in taller

rods comes from bound-to-bound transitions and follows the trend as the rod

height varies.

FIG. 4. Absorption cross-section for z-polarized radiation at T ¼ 77 K with

one electron per rod.
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bound-to-bound absorption peak can be tuned by changing

the rod height, and results are shown in Fig. 5. Dominant

transitions from the dot ground state are indicated with

dashed double-arrowed lines in Fig. 2. Dominant bound-to-

bound transitions in this case are transitions between A1 and

B or E0 states.

The in-plane-polarized radiation can excite electrons

into the well states. In contrast to the case of growth-

polarization, the excited electrons are here already highly

delocalized and easily extractable by lateral electric field.

We conclude that a polarization-independent intraband lat-

eral photodetector might be designed and optimized by a

proper choice of rod height.

It is clear that the problem of small absorption strength

for in-plane polarized radiation, compared to z-polarization,

arises due to widely spread wavefunction of the mixed final

state, which reduces the overlap with the initial dot bound

state. The absorption peaks of bound-to-continuum transi-

tions are also tunable with the rod height, same as in the case

of z-polarization. Calculations show that the corresponding

optical matrix elements increase with increasing dot height,

in contrast to the case of z-polarization. For example, the first

resonant bound-to-continuum transition in a 30-nm-high

quantum rod has the transition matrix element similar to the

bound-to-bound one at 3 THz, cf. Figure 5, and the situation

remains like that down to the rod heights of �10 nm, though

not at 2.5 nm.

The opposite “direction” of the absorption peaks tuna-

bility for the two polarizations generally makes it possible to

engineer the structure (find suitable rod height and diameter)

so to get optimal functionality for both directions of incident

radiation in the THz frequency range.

IV. CONCLUSION

In summary, a detailed strain-dependent eight-band k � p
method was used to analyze the electronic structure and

intraband optical properties of self-assembled quantum rods.

It was found that their optical properties strongly depend on

rod height, with an amount of tunability in terahertz fre-

quency range, which enables engineering of these structures

for optoelectronic applications. General features of the

absorption of z-polarized radiation are that it inherited prop-

erties of both an isolated quantum dot and a quantum well.

The fact that p-like dot state is embedded in the well subband

gives rise to the possibility of using the s� p-like transitions

in photodetection. The absorption of in-plane polarized radi-

ation, which is due to electron transitions from the ground

(dot-bound) state to the well states, is a benefit offered by

this type of structures, in contrast to quantum wells. Such

excited electrons can be efficiently extracted by lateral elec-

tric field, paving the way toward a polarization-independent

lateral intraband terahertz photodetector.
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L. H. Li, S. P. Khanna, and E. H. Linfield, J. Appl. Phys. 109, 123526

(2011).
9T. Saito, H. Ebe, Y. Arakawa, T. Kakitsuka, and M. Sugawara, Phys. Rev.

B 77, 195318 (2008).
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We present an optimization procedure for the design of InAs/AlInAs quantum well (QW) based

up-converter for silicon solar cells. By utilizing nonlinear optical effects in QW structures, the

up-conversion of low energy photons for which the silicon (Si) is transparent, into higher energy

photons that can be absorbed by a Si solar cell, is achieved. Due to lack of the III-V material com-

binations that can provide a large enough conduction band offset to accommodate three bound

states required for the optimal operation, we explore the possibilities of using continuum part of

the spectrum as the third state. Optimization of the up-converter is performed by maximization of

the second order susceptibility derived from the density matrix formalism. Our procedure is based

on use of the genetic algorithm global optimization tool, as a “driver” routine for the eight-band

k � p Hamiltonian “solver” of the QW electronic structure problem. VC 2011 American Institute of
Physics. [doi:10.1063/1.3641977]

I. INTRODUCTION

One of the major obstacles for high power conversion ef-

ficiency of the sun light with conventional semiconductor

materials is that only photons with energies close to that of

the semiconductor energy gap (Eg) are effectively converted

into electron-hole pairs. Photons with energy lower than Eg

are simply lost (the semiconductor is transparent to them) and

of photons with higher energy (> Eg), only a part, i.e., those

with energy almost equal to Eg are best suited for absorption.

The majority of high energy electrons generated by photons

with > Eg, (hot carriers) decay fast thermally to the conduc-

tion band Fermi level before they can contribute to the output

current. The principal aim here must be to make a better use

of the solar spectrum.1–7 One of the promising concepts is to

place another device, a “light converter,” attached to the rear

(front) of an existing solar cell (SC), to capture photons with

energy below (above) the energy gap of SC and re-emit them

at the higher (lower) energy to match the region where SC

exhibits a very good spectral response. Thus it is possible to

enhance the conversion efficiency of the SC device.8–11 Up or

down conversion can occur in a three-level quantum mechani-

cal systems in a manner that luminescent materials convert

photons by utilizing nonlinear optical effects.

In this paper, we propose utilization of the quantum well

structure, optimized with respect to its nonlinear susceptibil-

ity, as a luminescent material. For a three level system, the

difference between the highest and the lowest bound state has

to be approximately the same as the SC (in our case Si)

energy gap.

A detailed examination of the literature12–14 proved that

it was almost impossible to find well/barrier material combi-

nation among conventional III-V binaries and their alloys;

which can provide for deep enough conduction band offset

to accommodate at least three bound states, sufficiently

spaced for 1.12 eV (Si energy gap) conversion. The main ob-

stacle here was the appearance of indirect bands (originating

from X or L states) in the barrier materials beyond certain Al

concentration in Al containing ternaries. Therefore, the con-

tinual part of the spectrum has to be used instead as the third

state. We have chosen Al0.6In0.4As as a barrier and InAs as a

well material for the design of the optical up-converter. Opti-

mization of the QW based up-converter is performed by

using the genetic algorithm (GA) as a global optimization

tool,15–18 to maximize the second order nonlinear suscepti-

bility by varying the QW structural parameters. The quantum

well electronic states, wavefunctions, and optical dipole ma-

trix elements needed to determine the nonlinear susceptibil-

ity were calculated from the eight-band k � p model that

takes into account conduction to valence band band mixing

as well as the effect of strain.

II. THEORETICAL CONSIDERATIONS

A. Genetic algorithm

Owing to the complexity of the target function of an

up-converter, it would be very difficult to find its global

maximum within given multidimensional domain by using

classical optimization algorithms like downhill simplex or

conjugate gradients19 or specialized methods20 including iso-

spectral transformations of the Hamiltonian.21–23 Therefore

we formulate our method using the global optimization tool

based on the genetic algorithm (GA).24 Genetic algorithm is

a)Author to whom correspondence should be addressed. Electronic-mail:

radovanovic@etf.bg.ac.rs.
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a global optimization search engine for the maximization of

scalar functions, f ðx1; x1;…; xnÞ, of real vector arguments,

ðx1;:::; xnÞ, where n is the number of independent parameters.

The optimization mechanism behind the genetic algorithm

can be understood analogously to the evolution of a biologi-

cal system, i.e., a population of individuals. In such a system,

evolution is interpreted as an optimization of certain fitness

properties of the population.

In GA, the population is represented by a set of points

(xi
1; x

i
1;…; xi

n), in the parameter space, where i ¼ 1…np and

np is the population size. The algorithm starts from an ini-

tial population that is randomly chosen. The average value

of the fitness (target) function in the initial population (for

the initial set of parameters) can be very small, but it is

expected to reach an optimal value through the evolutionary

process (optimization). Starting from this initial population,

the algorithm produces a new generation (“siblings”) in

every subsequent iteration through the process of reproduc-

tion. Reproduction entails selection of two parents from a

previous generation, and this is done stochastically, with

probability proportional to the fitness, i.e., target value of

the individuals in the old generation. The number of itera-

tions in the GA can be fixed and should be set to a high

enough value so that the algorithm may reach a predefined

convergence criteria before termination.

B. Electronic structure model

To calculate the electronic structure of the up-converter,

we have used the 8-band k � p Hamiltonian,25 which at

kk ¼ 0 can be reduced to:

H ¼ G 0

0 G

� �
(1)

with

G ¼

Ecb zð Þ 0
ffiffiffi
2
p

Û �Û

0 Ehh zð Þ 0 0ffiffiffi
2
p

Û† 0 Elh zð Þ Q zð Þ
�Û† 0 Q† zð Þ Eso zð Þ

0
BBBBBBB@

1
CCCCCCCA

and

Û ¼ �hffiffiffiffiffiffiffiffi
6m0

p
ffiffiffiffiffiffi
EP

p d

dz
(2)

QðzÞ ¼ �
ffiffiffi
2
p

fðzÞ (3)

EcbðzÞ ¼ Ec0 þ 2acðzÞ 1� c12ðzÞ
c11ðzÞ

� �
exxðzÞ (4)

Elh=hhðzÞ ¼ Ev0 þ 2avðzÞ 1� c12ðzÞ
c11ðzÞ

� �
exxðzÞ6fðzÞ (5)

EsoðzÞ ¼ Ev0 � DsoðzÞ; (6)

where fðzÞ ¼ �baxðzÞ½1� c12ðzÞ=c11ðzÞ�exx is the shear strain,

Ec0 and Ev0 represent the bottom of the conduction band and

the top of the valence band of the unstrained bulk material,

respectively, and m0 is the free electron mass. Furthermore,

EP is the Kane energy, which is assumed to be z-independent

and to take an average value throughout the structure, Dso is

the spin-orbit splitting energy, bax is the axial deformation

potential, and ac and av are the hydrostatic deformation poten-

tials for conduction and valence band, respectively. Finally,

c11 and c12 stand for the elastic constants of the crystals that

constitute the structure, while exx ¼ ðab � awÞ=aw is the rela-

tive change in the lattice constants at the barrier-well inter-

face, with ab and aw being the lattice constants of the bulk

barrier and well material. The solution of the Hamiltonian

eigenvalue problem:

Ecb 0
ffiffiffi
2
p

U �U

0 Ehh 0 0ffiffiffi
2
p

U† 0 Elh Q

�U† 0 Q† Eso

0
BBBB@

1
CCCCA

/c

/hh

/lh

/so

0
BBBB@

1
CCCCA ¼ E

/c

/hh

/lh

/so

0
BBBB@

1
CCCCA; (7)

can be found in an analytic form for a layered structure.

From Eq. (7), we obtain a Schrödinger like equation for

/cðzÞ

� �h2

2

d

dz

1

m�ðE; zÞ
d

dz
/cðzÞ þ EcbðzÞ/cðzÞ ¼ E/cðzÞ; (8)

with

m�ðE; zÞ ¼ 3m�0ðzÞm0

� ½E� ElhðzÞ�½E� EsoðzÞ� � 2f2ðzÞ
EgðzÞ 2½E� EsoðzÞ þ 2fðzÞ� þ ½E� ElhðzÞ�f g

(9)

where EgðzÞ ¼ Ec0ðzÞ � Ev0ðzÞ, while m�0ðzÞ ¼ EgðzÞ=Ep is

the parabolic effective mass given in Table I. If f ¼ 0,

ab¼aw and Eso ¼ Elh, then Eq. (9) reduces to the well-

known expression for nonparabolic effective mass (Ref.

26): m�ðE; zÞ ¼ m�0ðzÞm0 1þ E� Ec0ðzÞð Þ=EgðzÞ
� �

.

TABLE I. The properties of AlAs and InAs used in calculations of layer

parameters and electronic structure of the convertor (Refs. 12 and 13). VBO

is the top of the valence band within the scale where VBO of InSb is set to

zero.

AlAs InAs

a0 [nm] 0.56611 0.60583

m�0 [m0] 0.15 0.026

Eg [eV] 3.01 0.359

Ep [eV] 21.1 21.5

VBO [eV] �1.33 �0.59

Dso [eV] 0.28 0.39

ac [eV] �5.64 �5.08

av [eV] �2.47 �1

bax [eV] �2.3 �1.8

c11 [GPa] 1250 832.9

c12 [GPa] 534.1 452.6
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The other envelope function components can be

obtained from the solution of Eq. (8) as:

/lhðzÞ ¼
ffiffiffi
2
p
½EsoðzÞ � E� �

ffiffiffi
2
p

fðzÞ
½ElhðzÞ � E�½EsoðzÞ � E� � 2f2ðzÞ

Û/cðzÞ (10)

/soðzÞ ¼ �
½ElhðzÞ � E� � 2fðzÞ

½ElhðzÞ � E�½EsoðzÞ � E� � 2f2ðzÞ
Û/cðzÞ; (11)

and /hhðzÞ is decoupled at kk ¼ 0.

It has been shown in Ref. 27 that the normalization con-

dition for the ith state is given as:

1 ¼ h/c;ij/c;ii þ h/so;ij/so;ii þ h/lh;ij/lh;ii (12)

and the dipole matrix elements read

hwijZjwji ¼ h/c;ijzj/c;ji þ h/so;ijzj/so;ji þ h/lh;ijzj/lh;ji
(13)

where wi and wj are ith and jth eigenstate of the 8-band Ham-

iltonian with components /c;i, /so;i, /lh;i and /c;j, /so;j, /lh;j,

respectively, and Z is the z coordinate operator represented

as Z ¼ zjjIjj (I is the 3� 3 unity operator).

All the equations in this section are derived for kk ¼ 0,

hence Eq. (9) is used to describe the effective mass m�ðE; zÞ,
which includes the nonparabolic correction in addition to the

conduction band-edge mass m�0ðzÞm0. Among the quantities

needed for evaluating the nonlinear optical susceptibility

vð2Þzzz , which is the main goal of this work, are the diagonal

matrix elements q0
ll of the density matrix of the unperturbed

system as described in the next section. These matrix ele-

ments may be found from 8� 8 Hamiltonian for all kk 6¼ 0

via an extremely complex procedure. Therefore we have

used two standard approximations: first, that the dependence

of dipole matrix elements on kk is very weak, so that we may

consequently use their kk ¼ 0 values, and second, that

q0
ll ¼ 1 for l ¼ 1, otherwise q0

ll ¼ 0. In this case, it is suffi-

cient to analyze the 8� 8 Hamiltonian for kk ¼ 0 only.

C. The target function model

If we expose an electronic system such as the optical

converter to the incident radiation with electric field E r; tð Þ,
then the response can be quantified via global polarization

P r; tð Þ of the system. Consequently, we define the linear sus-

ceptibility v (the first term in the response expansion) and

the tensor of nonlinear susceptibility vijk (the second term in

the response expansion) through the relation:

Pi ¼ vEi þ
X

j;k

vijkEjEk: (14)

Our aim here is to derive an expression for the polarization

of electronic system, which depends on quadratic terms of

the electric field, starting from the calculated electronic

structure of the optical converter. Then it would be possible

to obtain the second order susceptibility from such expres-

sion as a target function that will be used in the optimization

process.

We use the density matrix formalism to describe the

electronic system of the optical converter.28 The electric field

of the incident radiation is treated as a perturbation that

excites the electrons to higher states of our QW structure.

New collective electron state is described by the density

matrix whose matrix elements are calculated using the pertur-

bation theory. The susceptibility tensor then reads (Ref. 28):

vð2Þijk ðEp;Eq;Ep þ EqÞ ¼ �
e3 ~q
2

X
lmn

q0
ll

�
(

ri
lnrj

nmrk
ml

½ðEnl � Ep � EqÞ � iCnl�½ðEml � EpÞ � iCml�

þ ri
lnrk

nmrj
ml

½ðEnl � Ep � EqÞ � iCnl�½ðEml � EqÞ � iCml�

þ rk
lnri

nmrj
ml

½ðEmn � Ep � EqÞ � iCmn�½ðEnl þ EpÞ þ iCnl�

þ rj
lnri

nmrk
ml

½ðEmn � Ep � EqÞ � iCmn�½ðEnl þ EqÞ þ iCnl�

þ rj
lnri

nmrk
ml

½ðEnm þ Ep þ EqÞ þ iCnm�½ðEml � EpÞ � iCml�

þ rk
lnri

nmrj
ml

½ðEnm þ Ep þ EqÞ þ iCnm�½ðEml � EqÞ � iCml�

þ rk
lnrj

nmri
ml

½ðEml þ Ep þ EqÞ þ iCml�½ðEnl þ EpÞ þ iCnl�

þ rj
lnrk

nmri
ml

½ðEml þ Ep þ EqÞ þ iCml�½ðEnl þ EqÞ þ iCnl�

)
(15)

where cartesian indexes i; j; k are to be permuted as described

in Ref. 28 (it should also be noted that the z component of

the dipole matrix element is significantly larger than x and y
components29), ~q is the mean value of the electron density in

the structure, q0
ll is the diagonal matrix element of the density

matrix of the unperturbed system, ri
ln is the ith component of

the matrix element between states l and n, Enl is the energy

difference between states n and l, Enl ¼ En � El, Cnl is the

relaxation factor between states n and l, while Ep and Eq are

the relevant photon energies of radiation involved in the non-

linear effect.

Let us consider the QW up-converter with two bound

states: E1 and E2. The energy of the first of two incident

photons, Ep, that take part in the nonlinear effect, has to

match the energy difference between these two bound states

to excite electrons from the first to the second bound state,

Ep ¼ E2 � E1. Furthermore, as a third state involved in the

nonlinear process in Eq. (15), we have to choose a state in

the continuum, Er, because we could not find any suitable

material combination among III–V binaries to support all

bound states. This continuum state is taken as a minimal

energy that still satisfies the transparency condition

TðEÞ ¼ 1. The relaxation of an electron from Er to the

ground state, E1, needs to produce a photon with the energy

that matches the energy of the silicon SC bandgap, i.e.,
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Er ¼ ESi
g þ E1. At the same time, the second incident pho-

ton, Eq, needs to excite the electron from the second bound

state to Er, i.e., Eq ¼ Er � E2. We assume that almost all

electrons in the conduction band of the converter are in the

ground bound state prior to exposing the convertor to the

incident radiation. It is reasonable to expect that such popu-

lation can be obtained by adequate doping of the structure,

while still having enough electrons for optical effects to be

observable. Hence, q0
ll ¼ 1 for l ¼ 1 and q0

ll ¼ 0 for l 6¼ 1 so

that the summation in Eq. (15) over l vanishes and l ¼ 1.

The coordinate matrix element for transitions between con-

tinuous states may be neglected; this implies that the sum-

mation over m in Eq. (15) vanishes as well and m ¼ 2. The

relaxation parameters Cnm between states n and m are taken

to be the same for all bound to continuum state transitions

and are labeled with Cc1, while parameters for bound to

bound state transitions are labeled with C21. It can also be

shown that the dominant term of Eq. (15) is:

vð2Þzzz ðEp;Eq;Ep þ EqÞ ¼ �
e3 ~q
2

X
n>2

z1nzn2z21

� 1

ðEn1 � Ep � EqÞ � iCc1

þ 1

ðEn2 þ Ep þ EqÞ þ iCc1

� �	

� 1

ðE21 � EpÞ � iC21

þ 1

ðE21 � EqÞ � iC21

� �

þ 1

ðE2n � Ep � EqÞ � iC2n
þ 1

ðE21 þ Ep þ EqÞ þ iC21

� �

� 1

ðEn1 þ EpÞ þ iCc1

þ 1

ðEn1 þ EqÞ þ iCc1

� �

(16)

where znm ¼ rz
nm, is the z component of the dipole matrix ele-

ment. Because E2n < 0, E21 > 0, and En1 > 0, the second

term in Eq. (16) can be neglected because it is far from the

resonance. Also, the term ½ðEn2 þ Ep þ EqÞ þ iCc1��1
is

much smaller then ½ðEn1 � Ep � EqÞ � iCc1��1
and can be

neglected too. The polarization and the electric field vectors

are real quantities that imply that nonlinear susceptibility

also has to be a real quantity. Therefore only the real part of

Eq. (16) has to be evaluated. By taking all the previous con-

siderations into account we obtain:

vð2Þzzz ðEp;Eq;EpþEqÞ ¼
e3 ~qz21

2

X
n>2

z1nzn2

� Cc1½ðEp�EqÞ2þ 2C2
21��C21ðEp�EqÞðEn1�Ep�EqÞ

C21½ðEn1�Ep�EqÞ2þC2
c1�½ðEp�EqÞ2þC2

21�

( )

(17)

Because our up-converter design is limited by having only

two bound states, the remaining sum over the continuum

states index n can be transformed into integration:P
n ! ðLz=2pÞ

Ð
dkz, where Lz is the length of the structure.

By using the relation Eðkk ¼ 0Þ ¼ �h2k2
zb
=2m�bðEÞ þ Ub, the

integration in k space can be transformed into integration

over energies of the degenerate continuum states. Here, sub-

script b denotes the barrier layer and Ub is the conduction

band offset between the barrier and the well material. The

final expression for the second order susceptibility, to be

used as the target function in GA, reads:

vð2Þzzz ðEp;Eq;Ep þ EqÞ ¼
e3 ~qffiffiffi
2
p

p�h
z21

ð1
Ub

DðEÞdE

����
���� (18)

where

D Eð Þ ¼

1

2

DE

C21

� �2

þ1

" #
� 1

2

DE

C21

� �
E� Er

Cc1

C21

DE

C21

� �2

þ1

" #

�KðEÞHðEÞ
ðE� UbÞ

dm�bðEÞ
dE

þ m�bðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�bðEÞðE� UbÞ

p
(19)

and

KðEÞ ¼ ~z1Ea
~z2Ea
þ ~z1Eb

~z2Eb
(20)

HðEÞ ¼ Cc1

E� Erð Þ2þC2
c1

; (21)

DE ¼ Ep � Eq (22)

Here, Ea, Eb are the two orthogonal continuum double

degenerate states with energy E. To prevent singularities in

the limit Lz !1, we introduce notation ~z2Ea;b
¼ z2Ea;b

ffiffiffiffiffi
Lz

p

that allows for the factor Lz, arising from the density of con-

tinuum states, to be canceled out with the squared normaliza-

tion factor of the continuum states L�1
z originating from the

expression for KðEÞ. One must also indicate that the function

KðEÞ does not depend on the selection of the basis states in

the double degenerate subspace of the eigenvalue E with

indices a and b.

We must also point out that many body effect have been

neglected in our model, so vð2Þzzz has a linear dependence on

the carrier density ~q. This approximation is valid for very

low carrier densities (implicitly assumed here). For that rea-

son, the numerical results are presented for the quantity

vð2Þzzz=~q, seemingly independent of ~q. For higher values of ~q,

the problem should be analyzed by using many body theory,

as described in detail in Refs. 30–33. Certainly, the calcu-

lated results would quantitatively differ in that case in ac-

cordance with the increase of carrier densities. The exact

determination of vð2Þzzz in the presence of many body effects

will be presented elsewhere.

III. RESULTS AND DISCUSSION

A. Optimization of the QW based up-convertor
structures

To find the optimal QW up-converter design, we have

examined two types of QW structures. The first type is a lay-

ered structure where the Al content is varied independently

in all the layers except the first one (which forms the deepest

part of QW and is made of pure InAs). In each subsequent

optimization, the number of layers was increased to 2, 3,…,
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and overall improvement in the target susceptibility function

was monitored. Those wells will further be referred to as the

“one-step QW” for two layers, “two-steps QW” for three

layers, and so on. The second type of QW structures is also

layered but made of two materials only, Al0:6In0:4As as the

barrier and InAs as the well material. These structures will

be labeled as a “double QW,” “triple QW,” etc.

For every compound layer, the material parameters to be

used in Eq. (7) are obtained by linear interpolation of rele-

vant AlAs and InAs data listed in Table I.12,13 The relaxation

parameter between the bound states is assumed to be

C12 ¼ 0.005 eV, and all the relaxation parameters between

continuum and bound states are taken as Cc1 ¼ 0.02 eV. In

general, the values of relaxation parameters Cm;n depend on

the structural profile, carrier density, and temperature, as

specified in Ref. 34 and may vary significantly (see Fig. 6

therein). The same is to be expected for the structure ana-

lyzed in this work. However, for transitions between two

bound states (1 and 2), we have settled on the typical esti-

mate of 5 meV used in the literature. For bound-continuum

transitions, the linewidths Cc1ðkzÞ and Cc2ðkzÞ are assumed

equal and amount to 20 meV, which is significantly larger

than C12, to account for the dominant effect of transmission

peak width TðkzÞ on line broadening. The exact approach

given in Ref. 34 would undoubtedly yield different and more

precise values of parameters Cm;n, dependent on the wave-

vector component kz, nonetheless, the theory presented in

this work could straightforwardly be adapted for such case.

Optimization of all the structures was performed by the

genetic algorithm. In case of multi-steps QW structures, we

vary the content of Al and the layer width in each of the step

regions. It gives, in total, three free parameters for the one-

step QW, five parameters for the two-step QW, and in gen-

eral, np ¼ 2ns þ 1 parameters, where ns is the number of

steps in the well. The Al mole fraction,x, in the step regions

is limited to x 2 ½0; 0:6�. This still provides structures with

acceptably low strain and direct energy bandgap in the bar-

rier region. The lower boundary for the layer width is set to

one monolayer (�0.3 nm) while the highest value is limited

by the critical layer thickness caused by the strain.35

In case of double QW structures, we vary only the layer

widths of Al0:6In0:4As and InAs, while the boundaries for the

optimization parameters are chosen in the same manner as

for the step QW structures. In this case, the total number of

optimization parameters is np ¼ nl, where nl is the number

of layers in the structure. Optimization was also performed

for the triple QW and QWs with higher number of layers.

In Fig. 1, the evolution of the susceptibility target func-

tion for the step QW is presented. The population (number

of individual quantum wells being tested in each cycle for

optimal value of vð2Þzzz ) is fixed to a typical value of 100, veri-

fied as suitable for problems of this type.18,36 For each gener-

ation, the value shown is selected as the highest among 100

members of the population in the optimization process. Max-

imum generations rule was used as the termination criterion,

implying that GA stops when a specified number of genera-

tions have evolved (in our case 500 generations is sufficient).

As the population evolves, its individuals become more and

more similar, as evident from Fig. 1, and the optimization

process ends after completing 500 cycles, having selected an

optimal individual.

The resulting one-step QW, that correspond to the maxi-

mal susceptibility vð2Þzzz=e~q ¼ 2:185� 10�18cm3 V-2, is shown

in Fig. 2. The layer widths are 2.23 nm and 3.5 nm, and the

Al concentration in the step is 0.55. The energies amount to

E1¼ 0.39 eV, E2¼ 0.95 eV, and Er ¼ 1.51 eV. It should be

noted that in this structure, the widths of all the layers taken

with arbitrary accuracy during the optimization. However, if

we apply the technological constraint that the width of each

layer must be an integer multiple of one monolayer, the tar-

get function reduces to vð2Þzzz=e~q ¼ 0:892� 10�18 cm3 V-2,

which is 2.45 times smaller than in the previous case. This is

still a satisfactory result, and with such modification, the

layer widths become equal to 2.121 nm (7 monolayers) and

3.504 nm (12 monolayers), and Al concentration is 0.55. The

energy spectra are: E1¼ 0.41 eV E2¼ 0.96 eV Er ¼ 1.53 eV.

FIG. 1. The evolution of the scaled target function toward the optimal value.

The vertical axis provides the maximum value of the susceptibility vð2Þzzz per

mean density of the electron charge in the structure e~qð Þ in each cycle of the

genetic algorithm. Each optimal value point referrs to the best individual

among the current population, and the quantity e~q is subject to doping. The

horizontal axis indicates the number of cycles (generations). The population

size is set to 100 individuals, i.e., 100 QWs in each generation, covering the

free parameters space. The maximum number of generations is used as a ter-

mination criterion and 500 generations prove sufficient for a successful opti-

mization procedure.

FIG. 2. The optimized step QW with respect to vð2Þzzz .
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An alternative way to model the up-converter is by

optimizing multi-QW structures with only two different

kinds of materials. In such structures, we can vary only the

widths of the layers and the number of layers is always odd

starting from 3. Optimization procedure based on GA leads

to an optimal double well structure with vð2Þzzz=e~q ¼ 0:993

�10�18cm3V�2, which is presented in Fig. 3. The layer

widths are 1.689/1.022/2.341 nm, the Al concentration is

0.6, while the energies are at E2¼ 0.34 eV E1¼ 0.54 eV,

and Er ¼ 1.46 eV. The maximal susceptibility vð2Þzzz of the

optimized double well structure is 2.2 times lower than that

of the step well. Again, after imposing technological con-

straints and rounding up the width of the layers to the inte-

ger multiple of one monolayer, the value of the target

function reduces 1.15 times to vð2Þzzz=e~q ¼ 0:864� 10�18

cm3V�2. The layer widths are now: 1.515/1.164/2.121 nm,

i.e., 5, 4, and 7 monolayers, respectively, with Al concen-

tration of 0.6, and E1¼ 0.38 eV, E2¼ 0.57 eV, Er ¼ 1.5 eV.

In comparison to the step quantum well, the vð2Þzzz of the opti-

mized double well with layers widths limited to the integer

number of one monolayer has 2.55 times lower value. This

is again an acceptable result, bearing in mind that in an

arbitrarily chosen QW vð2Þzzz can be several orders of magni-

tude lower.

To check out if the structures with larger number of

layers or steps can provide for the increased susceptibility,

we have performed further optimizations of two-step, three-

step as well as triple QW structures. We have observed that

those more complex structures improve the susceptibility for

only �5% when compared to the one-step or double QW

structures. Hence, it is probably not worth the technological

effort to grow structures with increased number of layers due

to negligible improvement of the desired effect. Thus for the

multi-step wells structures, the optimal solution appears to

be a one-step well. Furthermore, for the second type of struc-

tures, the optimal one is the simple double well with three

layers.

We conclude that the optimized QW structure presented

in Fig. 2 has the highest value of the target susceptibility

function among all the layered structures considered here.

To obtain the overall efficiency improvement, it is nec-

essary that the absolute value of the photon flux emitted

from the SC to the converter does not exceed the photon flux

emitted from the converter and absorbed by SC. This implies

that the SC chemical potential lsc should be smaller then the

chemical potential of emitted light from the up-converter lc.

Because the chemical potential of the radiation cannot

exceed the lowest photon energy that forms the radiation, we

have: lc < Ub � E2.8 For the optimized one-step QW,

lc < 0:57 eV, and consequently, we must have lsc < 0:57

eV, if improvement in efficiency is expected.

Unfortunately the proposed QW structures are not deep

enough to satisfy thermodynamical demands. If Ub was

higher then the lsc, lc could have taken higher values and

consequently, the efficiency improvement would be higher.

For values of lc around 0.8 eV efficiency improvement is

around 3%. Also, a higher value of lc gives the possibility

for higher value of lsc which is optimal around 7.2 eV.

B. Analysis of the target function

To gain a better understanding of the requirements for the

optimal structure, we proceed with the analysis of the target

function (Eq. (18)). As presented in Fig. 2, Ep � Eq � 0:56

eV, i.e., DE � 0. From Eq. (19), it can be concluded that for a

small values of DE, the integral function increases. However,

DE determines only the first part of Eq. (19). Therefore, KðEÞ
and HðEÞ must also be examined. Those functions are given

in Fig. 4 for the optimal quantum well structure from Fig. 2.

In the limit Cc1 ! 0, the value of HðEÞ (Eq. (21)) amounts to

pdðE� ErÞ. Thus, for the small values of Cc1, HðEÞ and con-

sequently DðEÞ, have a peak at the energy Er. This peak can

be noticed in Fig. 4, but it is small when compared to the first

peak of the sub-integral function DðEÞ. The first peak is usu-

ally determined by a peak of KðEÞ function, which is always

placed very close to the barrier top. This is somewhat

expected because the continuous states are slow oscillating at

the lower energies part of the continuum spectra. It rises very

fast due to phase fitting and then slowly falls down to zero.

However, there are cases when the peak at Er is dominant.

Such situation occurs when the pack of KðEÞ has smaller val-

ues and while the same functions acquire generally higher

FIG. 3. The optimized double QW with respect to vð2Þzzz .

FIG. 4. Left energy function that explicitly involves bound to continuumma-

trix elements for the optimized step quantum well from Fig. 2. Right:

sub-integral function of the energy for the continuum states of the same QW.
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values toward the infinity. Which peak is dominant should not

be very important for the optimal value of Eq. (18). It turns

out that for all the optimized QWs considered here, the first

peak is always dominant. It suggests that DðEÞ is not strongly

dependent on the parameter Cc1 which cannot be chosen with

high accuracy anyway.

Ideally, for the proposed systems, both peaks should be

at the same energy. This could be obtained for deeper QWs.

The first peak is always very close to the top of the barrier as

indicated in the preceding text. The position of the second

peak is determined by the position of the first bound state. In

the case of deeper QWs, it is expected that the first bound

state is generally around the same position, and therefore Er

is closer to the top of the barrier. As a result, peaks would be

multiplied and integral value would be higher.

IV. CONCLUSION

The optical up-converter for enhancing the silicon solar

cells efficiency based on the InAs/AlInAs asymmetric step

QW structures, taking into account critical layer thickness as

constraint, was proposed and optimized. The optimization

was done by using the genetic algorithm, which leads to the

maximization of target function in the form of second order

susceptibility of the QW, for the light frequencies that are

suited for the desired photon conversion. The second order

susceptibility was derived from the density matrix formal-

ism, while the relevant electron states were calculated using

8-band k�p Hamiltonian.

Ideally, QW up-converter should have three bound

states where desired nonlinear effect would be more effi-

cient. Unfortunately among zinc-blende III-V materials such

QW structure cannot be identified. Therefore, in future work

one should seek a material combination that can provide a

sufficiently deep well. Possible candidates are wurtzite III-N

compounds, which require different modeling. However, the

choice of continuum states as the “third state” has proven

that the optimization may also be done automatically for

nearby continuum states, which would physically improve

the nonlinear effect.
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35S. Tomić and E. P. O’Reilly, IEEE Photonic. Technol. Lett. 15, 6 (2003).
36A. Daničić, J. Radovanović, V. Milanović, D. Indjin, and Z. Ikonić, J.
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Abstract

The Helmholtz equation can be reshaped into a form analogous to the
Schrödinger equation with the term labeled ‘the optical potential’. By following
this analogy, we conclude that there exist certain profiles of optical potentials
which possess bound states of electric field in the continuous part of the
spectrum. One of the methods for generating these specific optical potentials is
the application of supersymmetric formalism which transforms a real (initial)
potential into a family of complex potentials, which all have one bound state
in the continuum. We present general steps of this procedure and illustrate
its use through the example of flat initial optical potential. In this particular
case, conditions are found for the existence of the bound field in continuum,
as well as the expression for the field and the corresponding complex optical
potential in an analytic form. In addition, the approximation of digital grading
is applied to the generated complex supersymmetric optical potential and the
‘bound’ state is calculated. The complex nature and the sharp variations of the
supersymmetric optical potential impose the development of an original and
sophisticated method of digital grading.

PACS numbers: 11.30.Pb, 03.65.Ge, 42.25.Bs

1. Introduction

Von Neumann and Wigner [1] were the first to find that the Schrödinger equation may
have regular solutions which represent bound states in the continuous part of the spectrum.
They have modulated the wavefunction in order to make it normalizable, and then used the
modulating function to extract the potential which supports such states. Herrick and Stillinger
[2–4] have shown that bound states in continuum may exist in atoms and molecules, and also
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pointed to the possibility of an electron in the electric field becoming localized by addition
of a suitable potential. Starting from a separable form of the Hamiltonian, Robnik has also
derived normalizable wavefunctions [5]. While the existence of normalizable eigensolutions
for non-local potentials is rather well explored [6], a systematic approach for local potentials
is still missing. Various techniques have been employed for the wavefunction modulation [7].
In [8], the authors give an experimental demonstration of resonant states in continuum which
are fairly similar in nature to bound states in continuum.

The physical phenomenon of bound states in continuum appears only for particular
potential profiles, either in the quantum mechanical or optical case. In addition to above
techniques for generating these specific potentials which support discrete states in continuous
part of the spectrum, supersymmetric quantum mechanics (SUSYQM) represents a very
efficient method which has primarily been used in quantum mechanical problems, and less
often in optical problems. However, applying SUSYQM to a potential that is real leads to
bound states only on the half-line x ∈ (0, ∞) [9–11], but not the full line. In order to remove
this constraint and generate bound states on the full line, complex potentials are introduced
[12, 13]. This, on the other hand, leads to a specific problem with the practical realization of
these generated complex potentials.

There is, indeed, a close analogy between quantum mechanical and electromagnetic
phenomena. In [14], the existence of bound states in radiation continuum is illustrated in
the example of two parallel gratings and two arrays of thin parallel cylinders, while [15, 16]
show that photonic crystals with defects may have localized states in the continuous part of
the spectrum.

In this paper, we start from the modified form of the Helmholtz equation for the electric
field, which is analogous to the Schrödinger equation (and so are their general solutions), in
order to construct complex optical potentials isospectral with the selected initial one. Each of
the complex optical potentials supports one and only one localized normalizable function of
the electric field in the continuum part of the spectrum. We first give a brief description of the
SUSY procedure, details of which can be found in [12, 13], applied to a quantum mechanical
problem, and then implement it to the case of a flat optical potential. Finally, we present
the somewhat non-standard digital grading approximation of the generated complex potential
and numerical solution for the electrical field function corresponding to it, with satisfactory
similarity to the original solution.

2. Theoretical considerations

Consider a material that is linear and non-homogeneous in the x-direction, described by the
following equations:

−→
D = ε(x)ε0

−→
E

−→
B = μ(x)μ0

−→
H.

(1)

In addition, two practical restrictions are imposed: (1) the EM waves are propagating along
the z-direction and (2) only the TE modes are considered, i.e.

−→
E = E−→ey .

The propagation of monochromatic waves with frequency ω0 is governed by the scalar
wave equation which for the case of the TE modes may be written for the y component of the
electric field:

−∂2E(x, z)

∂z2
− ∂2E(x, z)

∂x2
+

1

μ

dμ

dx

∂E(x, z)

∂x
− ε(x)μ(x)

c2
ω2

0E(x, z) = 0. (2)

2
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This equation is solved by separation of variables, i.e. by taking E(x, z) = E(x)E(z) and
subsequently inserting

E(x) =
√

μ(x)u(x), (3)

into the Helmholtz equation, which thus becomes

−d2u(x)

dx2
+

[
−k2

0ε(x)μ(x) − 1

2μ

d2μ(x)

dx2
+

3

4

1

μ2(x)

(
dμ(x)

dx

)2
]

u(x) = −β2u(x). (4)

where k0 = ω0/c and β is the propagation constant. Furthermore, it is convenient to introduce
a new function called ‘the optical potential’, which is defined as

�(x) = −k2
0ε(x)μ(x) − 1

2μ

d2μ(x)

dx2
+

3

4

1

μ2(x)

(
dμ(x)

dx

)2

. (5)

In this manner equation (4) becomes analogous to the Schrödinger equation − h̄2

2m

d2ψ(x)

dx2 +
U(x)ψ(x) = Eψ(x), and takes the form

− d2u(x)

dx2
+ �(x)u(x) = νu(x) (6)

where ν = −β2. It can easily be shown that the functions 1
μ(x)

dE(x)

dx
and E(x) are continuous

if ε(x) and μ(x) have only finite discontinuities. Hence, the quantities
√

μ(x)u(x) and
1√
μ(x)

du(x)

dx
+ u(x)

2μ3/2(x)

dμ

dx
must also be continuous. The last equation may be rewritten in the

operator form as

N̂u = νu (7a)

N̂ = − d2

dx2
+ �̂. (7b)

The operator N̂ is a Hermitian operator and can be written as

N̂ = Â2Â1 + ν (8)

where ν is an arbitrary eigenvalue of the operator N̂, and the operators Â1 and Â2 are defined
as

Â1 = d

dx
+ Ŵ (9a)

Â2 = − d

dx
+ Ŵ . (9b)

Here the term Ŵ denotes the ‘optical superpotential’:

Ŵ (x) = − 1

uv(x)

duv(x)

dx
. (10)

In this equation,

uv(x) = uv(x)

[
1 + C

∫
(x)

dx

u2
v(x)

]
(11)

is a general solution of the starting eigenproblem for the eigenvalue ν. The presence of the
constant C is an indication of degeneracy of any solution of (4). In standard methods of
solving of equation (4) it is usually assumed that the fields are finite and square integrable
so in some cases the values of C become fixed. In the SUSY procedure applied here, the

3
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nature of (11) is not significant because it is just an intermediate result which will be used for
construction of some other solution of another optical potential with desired properties. Thus,
it is not necessary to impose any restrictions on the complex constant C at this stage. The
central property that is required of the end solution is its square integrability and localization
in space, in spite of the fact that the corresponding eigenvalue belongs to the continuous part
of the spectrum. Hence, the appropriate limitations to the values of C will be enforced once
the final electric field function is obtained.

By following the conventional SUSY procedure we next consider the operator

N̂2 = Â1Â2 + ν = − d2

dx2
+ �̂2. (12)

As the constant C is a complex number here, so is the potential �̂2, and the new operator is
thus non-Hermitian. Yet, it is isospectral to the initial Hamiltonian, with the exception of ν

which is not its eigenvalue. We continue in an analogous manner, by constructing the operator
N̂3:

N̂3 = Â2Â1 + ν = − d2

dx2
+ �̂3, (13)

which is defined via the new optical superpotential:

W(x) = − 1

uv2(x)

duv2(x)

dx
. (14)

Here uv2(x) represents a general eigenvector of the operator N̂2:

uv2(x) = 1

uv(x)

[
ρ +

∫
(x)

u2
v(x)dx

]
(15)

corresponding to the eigenvalue v, where ρ is an arbitrary constant. The operators Â1 and Â2

have the same form as Â1 and Â2, but with the new superpotential W(x) instead of W(x). The
optical potential �̂3 is given by

�̂SS(x) = �̂3(x) = �̂(x) − 2
d2

dx2
[ln(ρ + I (x))] (16)

where

I (x) =
∫

(x)

u2
v(x) dx. (17)

The eigenfunction of the operator N̂3 for the eigenvalue ν is given by

uv3(x) = Cv3
uv(x)

ρ + I (x)
(18)

and for any other eigenvalue νn the corresponding expression reads

u3n = C3n

⎛⎝(νn − ν)un(x) +
uv(x)

[
uv(x) dun(x)

dx
− un

duv(x)

dx

]
ρ + I (x)

⎞⎠ . (19)

Equation (18) can actually be included in this last formula by considering the limit νn → ν.
The term (νn − ν)un(x)would thus vanish, while the limit of the second term in parentheses
can be calculated as (see the appendix for details)

uv(x)
[
uv(x) dun(x)

dx
− un

duv(x)

dx

]
ρ + I (x)

−→ uv(x)

ρ + I (x)
. (20)

4
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All the eigenfunctions within the discrete part of the spectrum of N̂ are localized in space,
in contrast to any of those belonging to the continuum part of the spectrum. The situation
is somewhat different for the operator N̂3 because it may have a localized normalizable
eigenvector even for an eigenvalue from the continuum of N̂ . This will be illustrated
through specific examples. Clearly, the values which are not the eigenvalues of N̂ are not the
eigenvalues of N̂3, either [4].

In this work we consider the following conditions which may have practical relevance:
the initial optical potentials are taken to be purely real and variable within a given interval
(xmin,xmax) but flat (having a constant value C1) outside of this interval. As a result, within the
SUSY treatment we have

uv(x → ±∞) → C2 cos(kx) + sin(kx), (21a)

I (x → ±∞) → x

2

[
C2

2 + 1
]
, (21b)

uv3(x → ±∞) = C2 cos(kx) + sin(kx)

ρ + x
2

[
C2

2 + 1
] , (21c)

�3(x → ±∞) = C1. (21d)

The last expression indicates that the outer (‘flat’) segments of the final structure �3(x) consist
of the same material selected for the construction of the initial profile �(x). If the parameters
C and ρ are chosen so that the function ρ +I (x) has no zeros on the whole domain, then uv3(x)

can be normalized. This will result in certain restrictions imposed on the values of C and
ρ. On the other hand, all the other eigenfunctions from the continuous part of the spectrum
are not localized (except in the limit νn → ν), so the final supersymmetric optical potential
supports only one bound state in continuum.

In the case of supersymmetric transformation via the (initially) bound state (which is not
of interest here), if the parameters C and ρ are both real, the final field can be normalized only
for C = 0. This is the standard SUSY procedure which results in a real optical potential �3(x).
By observing equation (21c) we deduce that, if the constant C = Cr + iCi is real (Ci = 0 and
Cr nonzero), then for any value of ρ one can find a coordinate x at which the denominator
ρ + I (x) becomes equal to zero; hence the field function becomes non-normalizable. If C is
truly complex and ρ is real, the requirement for the normalizability of the field will determine
the acceptable values of these parameters, as will be exemplified below. We will limit our
considerations to ρ ∈ R, without any loss of generality, as the case of complex ρ can be
analyzed in an analogous manner.

It can also be noted (within our model where the initial potential is real) that the reflection
and transmission coefficients remain the same after employing the SUSY formalism. This
is due to the fact that all the states wavefunction corresponding to eigenvalues νn �= ν have
the asymptotic form for x → ±∞ which is the same as the form of the wavefunction of
the initial potential (for x → ±∞). The state corresponding to the eigenvalue ν, as already
demonstrated, has one discrete solution (bound state in continuum) and one non-integrable
solution which diverges as x → ±∞. Therefore, it makes no sense to discuss the transmission
and reflection for the state with the eigenvalue ν of the final potential. Finally, if the initial
potential is real, the absorption is clearly equal to zero; consequently, the absorption in all the
complex final potentials remains zero, which can be expressed by the following equation:∫ ∞

−∞
Im(�ss(x))|uv(x)|2 dx = 0. (22)

At the end of this section, some comments need to be made about the normalization of
the function Ey(x). Contrary to the analogous quantum-mechanical problem, in the optical

5
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domain there is no unique solution. One approach to normalization of Ey(x) is by using the

time-averaged incident power Pin = γ0ε0c
2S

2ω
|E0|2, where Ein = E0 eiγ0x , S is the cross-section

surface and c is the speed of light in vacuum. If Pin is known in advance, assuming that
it remains unchanged in the supersymmetric procedure, it is possible to determine E0 and
thus perform the normalization. This is achievable only for continuous states. In the case
of discrete states (such as the bound state in continuum), the normalization may be carried
out using the method described in [17, 18]. Although it is evident from the above discussion
that the normalization of Ey(x) is not unambiguous, it has no considerable importance to the
problems considered in this paper.

2.1. Construction of the supersymmetric optical potential via a flat initial optical potential

We examine the case of an optically homogeneous medium characterized by the electric and
magnetic permeability ε, and μ, respectively. The selection of the initial potential is made
based on its simplicity—the flat potential is clearly the simplest possible choice. Thus, all
the terms containing derivatives of μ(x) in equation (4) vanish, and the product ε(x)μ(x) is
constant. Certainly, there are many other options for the initial potential, but these would lead
to quite complex (if at all obtainable in an analytic form) expressions for u(x), without adding
noticeably to the quality of the example. The general solution of (4) is then given by

uk(x) = sin(kx) + C cos(kx) (23)

where

k =
√

k2
0εμ − β2. (24)

Clearly, the spectrum of the flat potential is completely continuous for β2 < k2
0εμ. The aim is

to employ the SUSY approach to find the complex potential that accommodates a bound state
at the given eigenvalue. The final function can be express as

uss(x) ∼= C cos(kx) + sin(kx)

ρ + x
2 − sin(2kx)

4k
− C cos2(kx)

k
+ C2

[
x
2 + sin(2kx)

4k

] (25a)

while the superymmetric electric field reads

Ess(x) = √
μuss(x). (25b)

The corresponding supersymmetric optical potential is given by

�ss(x) = −k2
0εμ − 2

d2

dx2

[
ln

[
ρ +

x

2
− sin(2kx)

4k
− C cos2(kx)

k
+ C2

(
x

2
+

sin(2kx)

4k

)]]
.

(26)

It is evident that the fulfillment of the normalizability conditions for the electric field depends
on the denominator of equation (25), which may be separated into real and imaginary parts as

Re(ρ + I (x)) = ρ +
x

2
− sin(2kx)

4k
− Cr cos2(kx)

k
+

(
C2

r − C2
i

) [
x

2
+

sin(2kx)

4k

]
(27a)

Im(ρ + I (x)) = −Ci cos2(kx)

k
+ 2CiCr

[
x

2
+

sin(2kx)

4k

]
. (27b)

If Ci = 0, then Im(ρ + I (x)) = 0 for every x, and Re(ρ + I (x)) has at least one singularity
for any ρ. Further, if Ci �= 0, the equation 0 = − cos2(kx0)

k
+ 2Cr

[
x
2 + sin(2kx0)

4k

]
can be solved

6
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Figure 1. (a) An example of the supersymmetric localized electric field; (b) the corresponding
supersymmetric optical potential, for C = 3 + 3i, ρ = 6 mm, k = 3 mm−1, k2

0εμ = 500 mm−2.

for x0 which cancels out the imaginary part of the system (27), leading to the condition
−ρ �= x0

2 − sin(2kx0)

4k
− Cr cos2(kx0)

k
+

(
C2

r − C2
i

)[
x0
2 + sin(2kx0)

4k

]
for the real part.

The function Ess(x) will be square integrable if the coefficient in front of x in the
system (27) is non-zero, which will be true if [12, 13](

CiCr �= 0 and/or C2
r − C2

i + 1 �= 0
)
.

After defining the acceptable values for C and ρ, it is straightforward to obtain the family
of supersymmetric optical potentials �ss(x, ρ, C) with corresponding bound supersymmetric
electric fields Ess(x, ρ, C) at the eigenvalue ν. One particular case is shown in figure 1.

As expected from equation (21), the limit of the average value of the complex function
�ss(x → ∞) amounts to k2

0εμ = 500 mm−2.

7



J. Phys. A: Math. Theor. 42 (2009) 415304 N Prodanović et al

Numerical results indicate that for lower values of the parameter C and higher values of
the parameter ρ, the optical potential and the electric field have lower surges, while these
become stronger with the increase of C and the decrease of ρ.

The ultimate goal is to enable practical realization, i.e. to construct a photonic crystal with
permittivity εSS(x) and permeability μSS(x) which supports such a bound state in continuum.
Obviously, the most direct approach is to devise a material with εSS(x) and εSS(x) so that the
resultant optical potential emulates the supersymmetric optical potential obtained previously.
There are an infinite number of solutions to this problem. For example, one can apply
the digital grading approximation directly to the supersymmetric optical potential and then
compose very accurately the obtained digitally graded function.

Nevertheless, if we assume μss(x) = const = μss, then according to relation (5) we find

εss(x) = − λ2
0

4π2μss
�ss(x). (28)

We have decided on a nonmagnetic material (μSS = 1) for the following reason: in practical
realizations, it is much easier to find a set of materials with prescribed real and imaginary
parts of the dielectric permittivity, than a set of materials with both the required permittivity
and magnetic permeability at given frequency. Regarding the theoretical design of a photonic
crystal with the bound state in continuum, it is not significantly more complicated to consider
materials with different magnetic permeabilities, as well.

The last expression describes the complex relative permittivity εss(x), which will be
referred to as supersymmetric relative permittivity, proportional to the supersymmetric optical
potential. Apparently, photonic crystal with the relative permittivity ε(x) = εss(x) and the
relative permeability μss = 1 would provide �(x) = �ss, together with the projected bound
state in continuum. Thus, the problem is reduced to constructing the suitable photonic crystal
with ε(x) = εss(x). The approximate solution to this problem may be found by realizing
the calculated supersymmetric relative permittivity via digital grading. The advantage of this
method is that it produces a complex relative permittivity function which is constant by parts
and can therefore be realized by deposition of the layers of homogeneous materials.

2.2. The formalism of digital grading applied to complex supersymmetric relative permittivity

As explained in the previous section, it is necessary to process the complex supersymmetric
relative permittivity by digital grading in order to obtain segments of the structure with
homogeneous composition. The digital grading approximation of a complex function is
somewhat uncommon; therefore, it will be explained here in detail, assuming that the reader
is familiar with the standard digital grading approximation of real functions.

The first step is to define the segment of the structure that will undergo digital grading.
Here we select a domain symmetric around zero, as both the real and the imaginary parts of
the final function are almost symmetric or anti-symmetric. The area selected for digitalization
should not be too wide, in order to ensure the quality of the approximation. The peripheral
parts of the function are ‘flattened’ by taking the average values within particular areas. As
shown in equation (21), the value of the initial (constant) relative permittivity may be taken as a
satisfactory estimate of that flat outer part of the supersymmetric permittivity. Such averaging
of the peripheral area implies that the corresponding field will not be exactly bound, but it will
oscillate with sufficiently small amplitude and frequency.

The second step involves the application of digital grading formalism to both the real and
the imaginary part of the relative permittivity in the previously defined central area, in the
usual manner, as presented in [19–21], with a few modifications.

8
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The conventional digital grading formalism approximates the potentials with only two
values (e.g. the maximum and the minimum of the potential) across the whole domain, with
the strict layout of those two values. In the procedure applied here, three values are used.
This improves the accuracy of the approximation, but complicates the construction of the
obtained structure by increasing the number of constituent materials. Supersymmetric relative
permittivity is a strongly oscillating function around some average value that is almost equal to
the value in bulk or outside of the digitally graded area, so grading with only two values gives
poor results and cannot be utilized. Hence, an additional (medium) value is introduced as the
average value of the function outside of the digitally graded area, namely as in the ‘flattened’
area. The higher and the lower value are defined as in [19–21], as the extrema of the function
over the entire domain.

As described in [19–21], the complete domain is divided into intervals which are then
individually approximated with two different value combinations: the medium and the high
value or the medium and the low value. Those intervals will be from now on referred to as
the common cells. Thus, the common cell represents a standard interval where the graded
approximate function (both the real and the imaginary part) has only two values. The calculated
average of εss(x) determines the pair of values which is selected for each common cell. In
more detail, the medium and the high value are used to describe a particular cell if the average
value of εss(x) within it is greater than the medium value, while the medium and the low value
combination is used in the opposite case.

However, the smallest homogenous units intended for depositions are not the segments
occupied by individual values in each common cell, but the subcells which will be introduced
later.

The width filled with each value within a particular cell depends on the magnitude of the
integral

S =
∫

Cell
|εss(x) − εmed| dx, (29)

where εmed represents one of the two values appearing in a particular cell used as a reference.
In this work, by definition, it is always assumed that εmed corresponds to the medium value as
it is the only value present in each cell. The width of a non-medium value whigh/low, which is
either high or low for a specific cell, is defined by the relation

whigh/low= S

|εmed − εhigh/low| . (30)

The width occupied by the medium value is thus

wmed = d − whigh/low, (31)

where d represents the width of the cells.
Finally, in the third step previously obtained real and imaginary digitally graded functions

are used to compose the complex digitally graded structure. The complex values are
introduced as combinations of real and imaginary values. By combining three real and three
imaginary values, nine different complex values are obtained. If the two-value digital grading
approximation were used, then such combination would provide 2 × 2 complex values.

This procedure entails the division of each common cell into subcells so that exactly one
complex value can be assigned to each subcell, as shown in figure 2.

The whole structure can thus be constructed in practice by the deposition of the layers of
different materials corresponding to each subcell. This implies that each subcell consists of
one specific layer of suitable material chosen from the set of nine different materials if three-
value digital grading is considered, and from the set of four materials if conventional two-value

9
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Common Cells for Real and Imaginary Parts Layers

Common Cell for Real and Imaginary Part

Medium Value of the Imaginary Part

Medium Value of the Real Part

Low Valuel of the Imaginary Part

Low Value of the Real Part

1st Subcell 2nd Subcell 3rd Subcell

R
e

{ε
ss

dg
(x

)}
Im

(x
)}

{ε
ss

dg

x

x

Figure 2. Realization of the complex digitally graded function εssdg. Within one common cell
interval of the digitally graded real and imaginary part, three subcells–subintervals are marked by
dashed lines. The first subcell is characterized by a combination of the low value real part and low
value imaginary part. The second subcell is characterized by a combination of the low value real
part and medium value imaginary part. The third subcell is characterized by a combination of the
medium value real part and the medium value imaginary part.

digital grading is in use. Because all the cells are shared by the real and the imaginary part of
the function (i.e. they characterize both parts at the same time), and each of the cells comprises
only two values of the real or the imaginary part, it is evident that the three subcells in each
cell are sufficient to obtain the satisfactory complex digitally graded function.

3. Numerical examples and discussion

Depending on the selection of values of ν, ε, λ0 and μ for the flat optical potential, various
supersymmetric optical potentials are obtained. One can take for example k = 3 mm−1,
ε = 5, μ = 1, λ0 ≈ 630 μm, where k0 = ω0/c = 2π/λ0 denotes the wavenumber

10
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Im{E(x)} in Digitally Graded Material
Im{E(x)} in Smoothly Graded Material

Re{E(x)} in Digitally Graded Material
Re{E(x)} in Smoothly Graded Material

Figure 3. Comparison of the electric fields in the initial (smoothly graded) optical potential and
the digitally graded optical potential. The initial conditions are the same within the central parts
of the structures, so the differences between the approximated and the ‘accurate’ electric field
functions are very small therein. The biggest difference appears at the end of the domain, which
is here enlarged for clarity.

outside of the digitally graded area (in the homogenous part, which can be considered in
the limit x → ±∞), with the relative permittivity εss = ε and the permeability μss = μ as
�ss(x → ±∞) = −k2

0εμ. The wavenumber k defines the eigenvalue ν for which the SUSY
formalism is employed. The remaining parameters are then calculated as k0 = 10 mm−1,
ν = −β2 = k2 − k2

0εμ = −491 mm−2. In addition, C and ρ are defined so that the
supersymmetric eigenfunction is normalizable:

C = 3 + 3i, ρ = 9 mm. (32)

In the numerical example treated here, three real and three imaginary values of relative
permittivity are calculated:

Re(εhigh) = 5.1513, Re(εmed) = 5, Re(εlow) = 4.9318,

Im(εhigh) = 0.158 71, Im(εmed) = 0, Im(εlow) = −0.155 65.
(33)

The combinations of these values yield nine different homogenous materials whose relative
permittivity values are

εssdg1 = 5.1513 + i · 0.158 71, εssdg2 = 5.1513, εssdg3 = 5.1513 − i · 0.155 65,

εssdg4 = 5 + i · 0.158 71, εssdg5 = 5, εssdg6 = 5 − i · 0.155 65,

εssdg7 = 4.9318 + i · 0.158 71, εssdg8 = 4.9318, εssdg9 = 4.9318 − i · 0.155 65.

(34)

This combination of parameters is not exclusive. The set of parameters given by equation (34)
is just an illustration, and this example is generated so that the values of the real and imaginary
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Figure 4. The results of the digital grading approximation with three values for both (a) the real
and (b) the imaginary part.

parts of dielectric permittivities are within realizable limits, the condition that can obviously
be satisfied by other parameter combinations. As already pointed out, some materials must
have the negative imaginary part of the dielectric permittivity, which categorizes them as
active dielectrics—materials which are nowadays extensively studied and their realization
and characterization are well documented [22–24]. In our opinion, there is an additional
approach to the realization of materials described by equation (34). It relies on (electrically or
optically driven) quantum systems such as the quantum cascade laser, quantum amplifier or
multiple quantum wells (dots), which exhibit different values of dielectric permittivity from
the background permittivity [23, 24]. The sign and magnitude of the real and imaginary parts
of this resultant permittivity depend on the design of the quantum structure in question (e.g.
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Figure 5. Magnified section of the digitally graded supersymmetric relative permittivity (the real
and imaginary part). Two arbitrarily chosen common cells with their subcells are marked by the
dotted lines: the first subcell of the left selected cell is described by the material with the high
imaginary and low real value, namely εssdg7 = 4.9318 + i · 0.158 71; the second subcell of the
left selected cell is represented by the material with the high imaginary and medium real value,
i.e. εssdg4 = 5 + i · 0.158 71; the third subcell of the left selected cell corresponds to the material
with εssdg5 = 5. The first subcell of the right selected cell corresponds to the material with the
high imaginary and high real value, that is εssdg1 = 5.1513 + i · 0.158 71; the second subcell of the
right selected cell is described byεssdg4 = 5 + i · 0.158 71; and finally, the third subcell of the right
selected cell is described by εssdg5 = 5.

on widths of the well and the barrier layers, and on the material composition). For instance,
materials with indices 3, 6 and 9 from equation (34) may be created so as to have predefined
dielectric constants at a given frequency by varying e.g. only the layer widths, within relatively
narrow limits, since these permittivities are quite similar. Apparently, the same applies for the
group of materials with indices 1, 4, and 7, as well as 2, 5 and 8.

Depending on the wavelength of the electromagnetic mode, the dimension of the whole
structure in the x-direction can be varied. The minimal thickness of an individual layer within
the generated structure is limited by the numerical step used in calculations, which is here set
to d = 1 μm. The obtained results are presented in figures 3–5.

4. Conclusion

The SUSY method was used to generate the complex optical potential with a localized electric
field state in the continuum part of the spectrum. The bound state eigenvalue can be chosen
arbitrarily from the continuous spectrum of an initial operator N̂1. The non-Hermitian operator
N̂3, with a complex potential, is then generated as almost isospectral to N̂1, with an exception
of one additional localized state with normalizable eigenfunction. The parameters of the
complex optical potential have to be chosen so as to satisfy the condition of normalizability
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for this electric field function. The obtained smooth structural profile is then processed by the
digital grading technique, adapted to the case of a strongly oscillating complex function of the
real argument. Thus, the values of the complex relative permittivity are approximated so that
the structure may be realized by compiling the layers of homogeneous materials.

Acknowledgments

This work was supported by the Ministry of Science (Republic of Serbia), ev. no. 141006.
VM and JR also acknowledge the financial support from NATO Collaborative Linkage Grant
(reference CBP. EAP.CLG 983316).

Appendix

The new Wronskian function is defined as

W(x) = uv(x)
dun(x)

dx
− un(x)

duv(x)

dx
(A.1)

where uv(x) consists of two linearly independent parts:

uv(x) = uv(x)

[
1 + C

∫
(x)

dx

u2
v(x)

]
= uv(x) + Cuv(x)

∫
(x)

dx

u2
v(x)

= uv(x) + Cũν(x). (A.2)

Thus we obtain

W(x) = uv(x)
dun(x)

dx
− un(x)

duv(x)

dx
+ C

[
ũν(x)

dun(x)

dx
− un(x)

dũν(x)

dx

]
. (A.3)

Further, the function un(x) also comprises two linearly independent parts:

un(x) = un1(x) + un2(x) (A.4)

where limvn→ν un1(x) = uv(x) and limvn→ν un2(x) = ũν(x). Therefore, in the case of νn → ν

and un(x) = un1(x), equation (A.3) amounts to

W(x) = C

[
ũν(x)

duν(x)

dx
− uν(x)

dũν(x)

dx

]
= const q.e.d. (A.5)

while in the other case un(x) = un2(x), it reads

W(x) = uv(x)
dũν(x)

dx
− ũν(x)

du(x)

dx
= const q.e.d. (A.6)

The conclusion is that all the eigenfunctions for νn �= ν which are double-degenerate become
merged into one eigenfunction uν(x) in the limit νn → ν.
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Engineering and Advanced Digitalization of Photonic
Structures with Bound Field in the Continuum

N. Prodanović, V. Milanović and J. Radovanović∗

School of Electrical Engineering, University of Belgrade, Belgrade, Serbia

We describe a method for generation of complex optical potentials which support a bound state of the
electric field in continuous part of the spectrum. It is based on deep analogy between quantum mechanical and
electromagnetic phenomena and relies on the application of supersymmetric quantum mechanics to generate a
smoothly varying complex optical potential, together with the corresponding electric field function for the (single)
localized state. However, the obtained potential profile is generally a strongly oscillating function which requires
additional processing to make it suitable for practical realization. With this goal in mind, i.e. the construction
of a realizable photonic crystal with complex permittivity which supports one bound state in continuum,
we have developed an original scheme of digital grading. It approximates the values of the complex relative
permittivity in such manner that the final structure may be realized by assembling layers of homogeneous materials.

PACS numbers: 11.30.Pb, 03.65.Ge, 42.25.Bs

1. Introduction

Supersymmetric quantum mechanics (SUSYQM) is a
method that can be used to obtain operators which
are almost isospectral, except that one of them has
an additional bound state in continuum. Von Neu-
mann and Wigner [1] found that the Schrödinger equa-
tion may have regular solutions which represent bound
states in the continuum part of the spectrum, and Her-
rick and Stillinger [2–4] have shown that bound states
in continuum may exist in atoms and molecules. How-
ever, while the existence of normalizable eigensolutions
for non-local potentials is rather well explored [5], a sys-
tematic approach for local potentials is still missing.

In addition, there is a close analogy between quantum
mechanical and electromagnetic phenomena. In Ref. [6],
the existence of bound states in radiation continuum is
illustrated on the example of two parallel gratings and
two arrays of thin parallel cylinders. Also, in Ref. [7].
it is shown that photonic crystals with defects may have
localized states in the continuum part of the spectrum.

In this paper, we start from the modified form of the
Helmholtz equation for the electric field, which is analo-
gous to the Schrödinger equation (and so are their gen-
eral solutions), in order to construct complex permittiv-
ity functions which correspond to the selected initial one
in terms of electric field spectrum. Each of the newly
obtained complex permittivity profiles supports one and
only one localized normalizable function of the electric
field in the continuum part of the spectrum. We first
give a short description of the SUSY procedure, de-
tails of which can be found in [8, 9] applied to a quan-
tum mechanical problem, and then implement it to the

∗ corresponding author; e-mail: radovanovic@etf.bg.ac.rs

case of flat permittivity. Finally, we present somewhat
non-standard digital grading approximation of generated
complex permittivity and numerical solution for the elec-
trical field function corresponding to it, with satisfactory
similarity to the original solution.

2. Theoretical framework

Consider electromagnetic (EM) waves propagating
along the x-direction, through a material which is linear
and non-homogeneous in this direction and with constant
magnetic permeability µ = 1. Only linearly polarized
TE modes are considered, i.e. E = Eey which are also
monochromatic, i.e. E(t) = E e iω0t. Starting from the
usual form of the Helmholtz equation and solving it by
separation of variables E(x, y, z, t) = E(x)E(y)E(z)e iω0t

one can show that E(z) = E e iβz, E(y) = const, and
most importantly

d2E(x)
dx2

+ k2
0ε(x)E(x) = β2E(x), (1)

where k0 = ω0/c.
Equation (1) is analogous to the Schrödinger equa-

tion − ~2
2m

d2ψ(x)
dx2 + U(x)ψ(x) = Eψ(x). As described

in Ref. [9], the idea is to construct isospectral operator
− d2

dx2 − k2
0εss(x, ρ, C), with complex constants ρ and C,

by using standard SUSY procedure. The derived for-
mula, as given in [9], reads

εss(x) = ε(x) +
2
k2
0

d2

dx2

[
ln

(
ρ

+
∫

(x)

E2
β(x)

[
1 + C

∫

(x)

dx

E2
β(x)

]2

dx

)]
, (2)

where Eβ(x) is the eigenstate corresponding to a chosen
eigenvalue β2. Thus, the permittivity given by expression
(2) is isospectral to ε(x), and the additional (so-called

(607)
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supersymetric) eigenstate for a chosen eigenvalue, which
was used for the SUSY procedure [9], is given by

Eβss(x)

= Cβss

Eβ(x)
[
1 + C

∫
(x)

dx
E2

β(x)

]

ρ +
∫
(x)

E2
β(x)

[
1 + C

∫
(x)

dx
E2

β(x)

]2

dx
. (3)

It can be proven that if the initial eigenvalue β2 cor-
responds to the continuous part of the spectrum, then
its supersymetric eigenstate is strictly a bound state in
continuum, provided that the appropriate choice of pa-
rameters ρ and C is made [10].

First, we need to choose an initial permittivity with
continuous spectra for generating a new (required) one
with bound state in continuum. The simplest approach
is to choose a “flat” initial permittivity ε. The general so-
lution of (1) is then given by Ek(x) = sin(kx)+C cos(kx)
where k =

√
k2
0ε− β2. Clearly, the spectrum of the flat

permittivity is completely continuous for β2 < k2
0ε. The

aim is to employ the SUSY transform to find a complex
permittivity that accommodates a bound state at the se-
lected eigenvalue. The final electric field function can be
expressed as

Ess(x)

∼ C cos(kx) + sin(kx)

ρ + x
2 − sin(2kx)

4k − C cos2(kx)
k + C2

[
x
2 + sin(2kx)

4k

] , (4)

while the corresponding supersymmetric permittivity is
given by

εss(x) = ε(x) +
2
k2
0

d2

dx2

[
ln

(
ρ +

x

2

− sin(2kx)
4k

− C cos2(kx)
k

+ C2

(
x

2
+

sin(2kx)
4k

) )]
. (5)

The discussion on selecting the appropriate values of pa-
rameters ρ and C is given in Ref. [9], and in the following
numerical example one such choice is illustrated.

The ultimate goal is to enable practical realization, i.e.
to construct a photonic crystal with permittivity ε(x),
given by expression (5), which supports the bound state
in continuum. This can be accomplished by applying the
digital grading approximation directly to the supersym-
metric permittivity and then composing very accurately
the obtained digitally graded function.

3. Digital grading of the complex relative
permittivity

The digital grading approximation of a complex func-
tion is uncommon, therefore it will be explained here in
detail, assuming that the reader is familiar with the stan-
dard digital grading approximation of real profiles.
The first step is to define the segment of the structure

that will undergo digital grading. Here we select a do-
main symmetric around zero, as both the real and the
imaginary part of the final function are almost symmet-

ric or antisymmetric. The peripheral parts of the func-
tion are “flattened” by taking the average values within
particular areas. It can be shown that the value of the
initial (constant) relative permittivity may be taken as a
satisfactory estimate of that flat outer part of the super-
symmetric permittivity. Such averaging of the peripheral
area implies that the corresponding field will not be ex-
actly bound, but it will oscillate with sufficiently small
amplitude and frequency.
The second step involves the application of digital

grading formalism to both the real and the imaginary
part of relative permittivity in previously defined central
area, in the usual manner, as presented in [11], with a
few modifications.

In the procedure applied here, three levels (values) are
used to approximate the final function, instead of only
two values as in Ref. [11]. This improves the accuracy of
the approximation, but complicates the construction of
the obtained structure by increasing the number of con-
stituent materials. Supersymmetric relative permittivity
is a strongly oscillating function around some average
value that is almost equal to the value in bulk or outside
of the digitally graded area, so grading with only two lev-
els gives poor results and cannot be utilized. Hence, an
additional (medium level) is introduced as the average
value of the function outside of the digitally graded area,
namely as in the “flattened” area. The higher and the
lower level are defined as in [11], as the extrema of the
function over the entire domain.

As described in [11], the complete domain is divided
into intervals which are then individually approximated
with two different level combinations: the medium and
the high level or the medium and the low level as shown
in Fig. 1. Those intervals will be from now on referred
to as “common cells”. Thus, the common cell represent
a standard interval where the graded approximate func-
tion (both, the real and the imaginary part) has only
two values or levels. The average value of εss(x) deter-
mines the pair of levels which is selected for each com-
mon cell. In more detail, the medium and the high level
are used to describe a particular cell if the average value
of εss(x) within it is greater than the medium level, while
the medium and the low level combination is used in the
opposite case.

However, the smallest homogeneous units intended for
deposition are not the segments occupied by individual
levels in each common cell, but the subcells which will
be introduced later.

The width of each level within a particular cell depends
on the value of the integral S =

∫
Cell

|εss(x)− εmed|dx
where εmed is the value of one of the two levels ap-
pearing in a particular cell used as reference. In this
work, by definition, it is always assumed that εmed is
the value corresponding to the medium level as it is
the only level present in each cell. The width of a non
medium level whigh/low, which is either high or low for a
specific cell, is defined by the next relation whigh/low =

S
|εmed−εhigh/low| . The width of the medium level is then
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Fig. 1. Realization of the complex digitally graded
function εssdg. Within one common cell interval of dig-
itally graded real and imaginary part, three subcells-
-subintervals are marked by dashed lines. 1st subcell
(red) is characterized by a combination of low level real
part and low level imaginary part. 2nd subcell (yellow)
is characterized by a combination of low level real part
and medium level imaginary part. 3rd subcell (blue)
is characterized by a combination of medium level real
part and medium level imaginary part.

wmed = d−whigh/low, where d represents the width of the
cells.
Finally, in the third step previously obtained real and

imaginary digitally graded functions are used to compose
the complex digitally graded structure. The complex lev-
els are introduced as combinations of real and imaginary
levels. By combining three real and three imaginary lev-
els, nine different complex levels are obtained. If two-
-level digital grading approximation was used then such
combining would provide 2× 2 complex levels.

This procedure entails the division of each common
cell into subcells so that exactly one complex level can
be assigned to each subcell, as shown in Fig. 1. The
whole structure can thus be constructed in practice by
deposition of layers of different materials corresponding
to each subcell. This implies that each subcell consists of
one specific layer of suitable material chosen from the set
of nine different materials if three-level digital grading is
considered, or from the set of four materials if conven-
tional two-level digital grading is in use.

4. Numerical examples and discussion

Depending on the selection of values of β, ε and λ0 for
the flat optical potential, various supersymmetric optical

potentials are obtained. One can take for example: k =
3 mm−1, ε = 5, λ0 = 630 µm, where k0 = ω0/c = 2π/λ0

denotes the wave number outside of the digitally graded
area (in the homogenous part, which can be considered
in the limit x → ±∞), with relative permittivity εss = ε
as Θss(x → ±∞) = −k2

0ε. The wave number k defines
the eigenvalue β for which the SUSY formalism is em-
ployed. The remaining parameters are then calculated
as: k0 = 10 mm−1, β2 = k2

0ε − k2 = 491 mm−2. In ad-
dition, C and ρ are defined so that the supersymmetric
eigenfunction is normalizable: C = 3+ 3i , ρ = 9 mm. In
the numerical example treated here, three real and three
imaginary levels of relative permittivity are calculated:

Re(εhigh) = 5.1513, Im(εhigh) = 0.15871,

Re(εmed) = 5, Im(εmed) = 0,

Re(εlow) = 4.9318, Im(εlow) = −0.15565. (6)
The combinations of these levels yield nine different ho-
mogeneous materials whose relative permittivity values
are

εssdg1 = 5.1513 + i∗0.15871, εssdg2 = 5.1513,

εssdg3 = 5.1513− i∗0.15565, εssdg4 = 5 + i∗0.15871,

εssdg5 = 5, εssdg6 = 5− i∗0.15565,

εssdg7 = 4.9318 + i∗0.15871, εssdg8 = 4.9318,

εssdg9 = 4.9318− i∗0.15565. (7)

This combination of parameters is not exclusive. The
set of parameters given by Eq. (7) is just an illustra-
tion, and this example is generated so that the values of
real and imaginary parts of dielectric permittivities are
within realizable limits, the condition that can obviously
be satisfied by other parameters combinations. As al-
ready pointed out, some materials must have negative
imaginary part of the dielectric permittivity, which cate-
gorizes them as active dielectrics [12, 13]. In our opinion,
there is an additional approach to realization of mate-
rials described by Eq. (7). It relies on (electrically or
optically driven) quantum systems such as quantum cas-
cade laser, quantum amplifier or multiple quantum wells
(dots), which exhibit different values of dielectric per-
mittivity from the background permittivity [12, 13]. The
sign and magnitude of real and imaginary part of this
resultant permittivity depend on the design of the quan-
tum structure in question (e.g. on widths of the well and
the barrier layers, and on the material composition). For
instance, materials with indices 3, 6 and 9 from Eq. (7)
may be created so to have predefined dielectric constants
at a given frequency by varying e.g. only the layer widths,
within relatively narrow limits, since these permittivities
are quite similar. Apparently, the same applies for group
of materials with indices 1, 4, and 7, as well as 2, 5 and 8.

Depending on the wavelength of the electromagnetic
mode, the dimension of the whole structure in the x-
direction can be varied. The minimal thickness of an
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individual layer within the generated structure is limited
by the numerical step used in calculations, which is here
set to d = 1µm. The obtained electric field in the dig-
itally graded structure is compared in Fig. 2 with the
field of the smoothly graded structure, corresponding to
the same eigenvalue. Evidently, the differences are quite
small which confirms the validity of the applied approx-
imation.

Fig. 2. Comparison of the electric fields for the initial
(smoothly graded) permittivity and its digitally graded
equivalent. The initial conditions are the same within
the central parts of the structures, so the differences be-
tween the approximated and the “accurate” electric field
functions are very small therein. The biggest difference
appears at the end of the domain, which is here enlarged
for improved readability.

Undoubtedly, the nature of the problem is such that it
is very difficult to perform an accurate realization of the
obtained results, because domain of the profile is concep-
tually infinite. In addition, the flattening of the periph-
eral areas of the potential converts the truly bound state
into an oscillating one, as already pointed out. Never-
theless, the described procedure allows us to construct a
digitalized structure which is experimentally realizable,
and provides a satisfactory approximation to the theo-
retical prediction.

5. Conclusion

The SUSY method was used to generate complex op-
tical potential with a localized electric field state in the

continuum part of the spectrum. The obtained smooth
structural profile is then processed by the digital grad-
ing technique, adapted to the case of strongly oscillating
complex function of the real argument so that the struc-
ture may be realized by compiling the layers of homoge-
neous materials.
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