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Biografija

Dimitrije Stepanenko

Dimitrije Stepanenko je rođen 13. 7. 1974. u Vraǌu, gde je završio osnovnu školu i Gimnaziju. 

Tokom školovaǌa u osnovnoj i sredǌoj školi učestvovao je na takmičeǌima iz fizike i osvojio 

brojne nagrade.  Osvojio je pohvalu na međunarodnom takmičeǌu “First step to Nobel prize in 

physics” koji  je organizovala Akademija nauka Poǉske.   Osvojio je prvu nagradu na državnom 

takmičeǌu iz  fizike  i  bio  je  izabran  u  tim za  međunarodnu  fizičku  olimpijadu  1993.  na  koju 

nacionalni tim nije otišao.

Studirao je  na Fizičkom fakultetu Univerziteta u Beogradu, gde je  1998. godine diplomirao na 

smeru Teorijska i eksperimentalna fizika, sa prosečnom ocenom tokom studija 9.68.  Tokom studija 

radio je u Istraživačkoj stanici Petnica.  

Po diplomiraǌu odlazi na postdiplomske studije na Univerzitet u Bostonu (Boston University) gde 

je proveo dve godine kao stipendista univerziteta (Presidental University Graduate Fellowship).  Od 

2001. nastavǉa postdiplomske studije na Državnom Univerzitetu Floride (Florida State University). 

Doktorat  iz  teorijske  fizike  kondenzovanog  staǌa  odbranio  je  2005.  godine.   Doktorat  je 

nostrifikovan  na  Univerzitetu  u  Beogradu,  rešeǌem  br.  06-613-7554/4-11,  30.  januara  2012. 

Tokom postdiplomskih studija dobio je Dirak-Helmanovu nagradu za teorijsku fiziku 2004. godine. 

Tema naučnog rada tokom doktorskih studija bila je kontrola spinova u kvantnim tačkama.  Razvio 

je  principe korišćeǌa spin-orbitne interakcije  za kontrolu spinova koristeći  električna poǉa kao 

klasične kontrolne veličine.  Tokom studija radio je kao asistent u nastavi i izvođeǌu računskih i 

eksperimentalnih vežbi na dodiplomskim studijama.  Radio je i kao asistent na postdiplomskom 

kursu kvantne mehanike.  Sarađivao je na istraživaǌu u Nacionalnoj laboratoriji za jaka magnetna 

poǉa (National High Magnetic Field Laboratory).   Boravio je u istraživačkim grupama u IBM 

istraživackom  centru  (IBM  T.  J.  Watson  Research  Center)  i  na  Univerzitetu  Ohaja  (Ohio 

University).

Posle doktorata radi na Univerzitetu u Bazelu (Universität Basel),  Švajcarska, u grupama Guida 

Burkarda i Daniela Losa.  Držao je odabrana predavaǌa i računske vežbe na naprednim kursevima 

fizike kondenzovanog staǌa i fizike mnogočestičnih sistema i učestvovao je u nastavi na uvodnim 

kursevima  fizike  i  primeǌene  matematike.   Pored  nastavka   istraživaǌa  kontrole  spinova  u 

kvantnim tačkama, radi na procesiraǌu kvantne informacije u molekularnim magnetima, optičkim 



metodama kontrole nuklearnih spinova u poluprovodničkim nanostrukturama i kvantnom transportu 

šupǉina.  Učestvovao je  u istraživaǌima na projektima Švajcarske nacionalne fondacije  (SNF), 

Evropske komisije na Marie Curie projektu MagMaNet i FP7 projektima MolSpinQIP i ELFOS, 

kao  i u istraživaǌima u oblasti kvantne informacije pod pokroviteǉstvom agencija DOE i IARPA 

Sjediǌenih  Američkih  država.   Pored  istraživaǌa,  na  projektima  MagMaNet,  MolSPinQIP  i 

ELFOS radio je i kao organizator lokalne grupe konzorcijuma na Univerzitetu u Bazelu.  Boravio je 

na Institutu za nanonauke Univerziteta Modena i Regio Emilia u Modeni kao gostujući istraživač.

 



Pregled naučne aktivnosti

Dimitrije Stepanenko

Moć svakog računskog sistema, po tezi  Čurča i Tjuringa (Church-Turing thesis), jednak je moći 

Tjuringove  mašine.   Ova  pretpostavka  omogućuje  zasnivaǌe  teorije  računske  kompleksnosti  i 

predstavǉa granicu razvoja računara.  Za sve do sada poznate fizičke sisteme, osim za kvantne 

računare, pokazano je da zadovoǉavaju ovu granicu.  Zato su na trenutnom stepenu razvoja nauke 

kvantni računari jedina nada za prevazilažeǌe ograničeǌa u performansama računara nametnutih 

Čurč-Tjuringovom tezom.  Među sistemima koji mogu posluziti kao osnova za izgradǌu kvantnih 

računara, spinovi su specifični po tome što su sve  ǌihove osobine inherentno kvantne i opisane 

konačnim  brojem  stepeni  slobode.   Istraživaǌa  kandidata  bave  se  kontrolom  spinova  u 

nanostrukturama za potrebe obrade kvantne informacije.  

Problem kontrole je važan u spinskim sistemima pošto, u limitu slabih i sporo promenǉivih poǉa, 

spinovi  direktno  interaguju  iskǉučivo  sa  magnetnim  poǉima  dok  su  potpuno  neosetǉivi  na 

električna poǉa.  Zato je svaka električna kontrola indirektna i koristi spin-orbitnu interakciju ili 

mnogočestične efekte koji proizilaze iz fermionskih korelacija među elektronskim spinovima.  Sa 

druge  strane,  na  prostornim  i  vremenskim  skalama  karakterističnim  za  nanosisteme,  brzo 

promenǉiva, jaka i lokalna električna poǉa je lakše proizvesti nego odgovarajuća magnetna poǉa. 

Vremenska skala za kvantnu kontrolu mora biti dovoǉno kratka, kako dekoherencija ne bi izbrisala 

kvantne  osobine  računara.   U  principu,  duža  vremena  dekoherencije  su  povezana  sa  maǌim 

sistemima,  pa  svaka  ostvariva  arhitektura  kvantnog  računara  mora  pronaći  ravnotežu  između 

zahteva za laku kontrolu, koji daje prednost većim sistemima i zahteva za kvantnu koherentnost, 

koji  daje  prednost  maǌim.   Kandidatovi  radovi  razmatraju  kontrolu  elektronskih  spinova  u 

kvantnim  tačkama  sa  karakterističnim  dimenzijama  reda  veličine  deset  do  sto  nanometra  i 

molekularnim magnetima sa karakteristicnim dimenzijama od desetog dela nanometra do nekoliko 

nanometra.

Kandidat  je  razvio  proceduru  za  kontrolu  spinova  u  kvantnim tačkama koja  koristi  vremenski 

zavisnu spin-orbitnu interakciju.   Pokazao je  da  je  stepen kontrole  ostvariv ovim sredstvima u 

principu dovoǉan za izgradǌu univerzalnog kvantnog računara baziranog na spinovima u kvantnim 

tačkama.  U ovom predlogu, jedino korišćeno magnetno poje je vremenski nezavisno i konstantno. 

Sva vremenska zavisnost potrebna za kontrolu dolazi od naponskih impulsa dovedenih na elektrode 

koje definišu kvantne tačke.



Postojaǌe procedure za kontrolu spinova pomoću spin-orbitne interakcije, kao i čiǌenica da su 

najnaprednija  eksperimentalna  istraživaǌa  kvantne  kontrole  urađena  u  heterostrukturama  III-V 

poluprovodnika  sa  cink-blend  strukturom  koji  pokazuju  jaku  spin-orbitnu  interakciju  postavǉa 

problem eksperimentalnog određivaǌa forme i jačine ove interakcije.  U kvantnim računarima koji 

ne koriste spin-orbitnu interakciju kao kontrolni mehanizam,  ǌeno prisustvo modifikuje kvantna 

logička kola i zahteva korekcije u ǌihovoj primeni.  Kandidat je predložio eksperimente kojima se 

jačina  i  forma interakcije  mogu odrediti  u  realističnoj  postavci  koja  ukǉučuje i  efekte  spinova 

jezgara u materijalima koji čine heterostrukturu.

Kvantni računari su mogući zahvaǉujući toleranciji na greške u primeni kvantnih logičkih kola. 

Ispravǉaǌe grešaka se postiže kvantnim kodovima za ispravǉaǌe grešaka koji omogućuju tačnu 

primenu kvantnih logičkih kola i u slučaju kada svaka kvantna operacija nosi mogućnost greške. 

Da bi kodovi za ispravǉaǌe grešaka funkcionisali, verovatnoća greske u elementarnim operacijama 

mora biti ispod neke granične vrednosti, koja se kreće između 10-4 za standardne Šorove kodove i 

oko  10-1 za  topološke  kvantne  kodove.   U  svakom  slučaju,  neophondo  je  smaǌiti  početnu 

verovatnoću greške pre primene procedure za ǌihovo ispravǉaǌe.  Pored grešaka koje proističu iz 

nepreciznosti u primeni kontrolnih procedura, kvantna logička kola uvek pokazuju i greške koje su 

posledica dekoherencije.  U kvantnim tačkama, najznačajniji izvor dekoherencije je interakcija sa 

nuklearnim  spinovima.   Kandidat  je  razvio  proceduru  koja  koristi  slaba  kvantna  mereǌna  u 

kvantnoj  optici  sa  kvantnim tačkama za  ublažavaǌe uticaja  nuklearnih  spinova  na  koherenciju 

elektronskih spinova.  Ovaj metod se zasniva na mereǌu fotoemisije iz kvantnih tačaka u režimu 

elektromagnetski  izazvane  transparencije  (EIT)  i  prilagođavaǌu  parametara  eksperimenta 

pretpostavǉenom staǌu nuklearnih  spinova.   Efekat  mereǌa je  priprema nuklearnih  spinova u 

staǌe koje slabo utiče na koherenciju elektronskih spinova.  Na kraju procedure, vreme koherencije 

elektronskih spinova je veće za dva reda veličine od svoje početne vrednosti.

Kvantne osobine spinova, pored skladišteǌa tehnološki značajnih kvantnih informacija, određuju i 

transport  na  nanometarskim  skalama.   Najizrazitiji  kvantni  efekat  u  transportu  su  Aharonov-

Bomove oscilacije provodnosti nanoprstenova u funkciji magnetnog poǉa.  Kandidat je proučavao 

transport kroz poluprovodničke nanoprstenove i spinski zavisne kvantne efekte kod šupǉina u III-V 

poluprovodnicima.  Za razliku od elektrona, šupǉine imaju spin 3/2, koji dozvoǉava anizotropnu 

interakciju  spinova.   Pokazao je  da uticaj  kvantnih diskretnih stepeni  slobode na transport  čini 

mezoskopski transport šupǉina značajno različitim od sličnog transporta elektrona.  Kao posledica 

netrivijalne  i  anizotropne  strukture  spinskih  staǌa,  transportne  osobine  šupǉina  ne  mogu  biti 



određene samo jednim parametrom kao u slučaju elektrona, gde su sve transportne osobine funkcije  

transparentnosti barijere.  Zbog nekompatibilnosti spinski-nezavisnog rasejaǌa i anizotropne spin-

orbitne interakcije, spin šupǉina se ne održava u rasejaǌu na barijeri, čak i kada je sama barijera 

spinski nezavisna.

Iako kvantne tačke omogućuju bogat izbor mehanizama za kontrolu spinova, one imaju i svojih 

mana.  Jedna od ǌih je da su kvantne tačke proizvedene u kompleksnom laboratorijskom postupku, 

tako  da  nisu  identične.   Prirodna  sredina  u  kojoj  spinovi  borave  u  identičnim  okolinama  i 

predstavǉaju identične kubite su molekularni magneti.  Kandidat je proučavao kontrolu spinova u 

molekularnim magnetima  pomoću  električnih  poǉa.   Predložio  je  mehanizam kojim  spinovi  u 

molekularnim magnetima bez simetrije u odnosu na inverziju interaguju sa električnim poǉima. 

Pored  teorijskog opisa  interakcije,  kandidat  je  predložio  eksperimente  bazirane  na  elektronskoj 

spinskoje rezonanci (ESR) u spoǉnim električnim poǉima koji mogu izdvojiti molekule u kojima je 

električna kontrola spina moguća.  

Kratka analiza najznačajnijih radova

Vremenski zavisna spin-orbitna interakcija u implementaciji kvantnih logičkih kola:

• Anisotropic spin exchange in pulsed quantum gates; N. E. Bonesteel, D. Stepanenko, and D. 

P. DiVincenzo, Physical Review Letters 87, 207901 (2001)

• Spin-orbit coupling and time-reversal symmetry in pulsed quantum gates; D. Stepanenko, G.  

Burkard, D. P. DiVincenzo, and Daniel Loss, Physical Review B 68, 115306 (2003)

• Universal quantum computation through control of spin-orbit coupling; D. Stepanenko, N. 

E. Bonesteel, Physical Review Letters 93, 140501 (2004)

Značaj spin-orbitne interakcije u kvantnim logičkim kolima na kvantnim tačkama određen je, sa 

jedne strane, jačinom interakcije koja je oko 10 puta slabija od dominantne izotropne izmenske 

interakcije, i, sa druge strane, zahtevom da verovatnoća greške u primeni kola ne prelazi oko 10 -4. 

Naivna  primena  kvantnog  logičkog  kola  zasnovanog  na  izmenskoj  interakciji  koja  potpuno 

zanemaruje postojaǌe spin-orbitne interakcije dovodi do greške sa verovatnoćom oko 10-2.  Zato je 

neophodno uzeti u obzir spin-orbitnu interakciju pri dizajnu kvantnih logičkih kola sa kvantnim 

tačkama.  



U ovim radovima, problem spin-orbitne interakcije je detaǉno proučen.  Radovi su ukazali da je ona 

značajna zato što u ǌenom prisustvu hamiltonijani spinova na kvantnim tačkama, uzeti u različitim 

trenucima, ne komutiraju.  Pokazano je kako se komutatori vremenski zavisnog hamiltonijana u 

različitim  trenucima  mogu  iskoristiti  da  smaǌe  grešku  u  primeni  kola.   Primenom  razvijene 

procedure, greška koja je inicijalno efekat prvog reda, postaje efekat drugog reda u količniku jačine 

spin-orbitne  i  izotropne  izmenske  inetrakcije.   Pokazano je  da  ovakvo smaǌeǌe greške  može 

nastati kod svih kontrolnih impulsa sa simetričnom vremenskom zavisnošću.  

Daǉa kontrola vremenske zavisnosti kontrolnih impulsa opisana je kvantnim logičkim kolima koja 

nije  moguće  izvesti  samo  pomoću  izotropne  spinske  interakcije.   Razvijen  je  jednostavan 

geometrijski opis skupa kvantnih logičkih kola koja se mogu primeniti kontrolom oblika impulsa. 

Uvedeni su parametri koji kvantitativno određuju dostupna kola, i pokazano je da ovaj skup zavisi 

od asimetrije impulsa i jačine spin-orbitne interakcije.  Pokazano je da je ovaj skup dovoǉan za 

konstrukciju univerzalnog skupa kvantnih logičkih kola, te da je zato primena kontrolnih impulsa 

različitih oblika dovoǉna za funkcionisaǌe kvantnog računara.  Podskup ovoh skupa, koji obuhvata 

kola  generisana  vremenski  simetričnim impulsima je  takođe dovoǉan za  primenu univerzalnog 

skupa kvantnih logičkih kola.  Pošto je uloga kontrolnog parametra prenešena na oblik naponskog 

impulsa, ovakva konstrukcija eliminiše potrebu za kontrolom magnetnih poǉa.  

Višespinski kubiti u kvantnim tačkama:

• Quantum gates between capacitively coupled double quantum dot two-spin qubits; Dimitrije 

Stepanenko, Guido Burkard, Physical Review B 75, 085324 (2007)

• Singlet-triplet splitting in double quantum dots due to spin-orbit and hyperfine interactions; 

Dimitrije  Stepanenko,  Mark  Rudner,  Bertrand  I.  Halperin,  and  Daniel  Loss,  Physical 

Review B 85, 075416 (2012)

• Exchange-based CNOT gates  for  singlet-triplet  qubits  with  spin-orbit  interaction;  Jelena 

Klinovaja, Dimitrije Stepanenko, Bertrand I. Halperin, and Daniel Loss, Physical Review B 

86, 085423 (2012) 

Najmaǌi sistem koji  može pokazati  sve elemente neophodne za kvantnu obradu informacija na 

kvantnim tačkama je dupla kvantna tačka.  U ovom sistemu moguće je definisati kodirane kubite, u 

kojima je osnovna jedinica kvantne informacije sadržana u staǌu dva elektronska spina na paru 

susednih kvantnih tačkaka.  Zahtevi za kontrolu ovakvih kodiranih kubita različiti su od analognih 



zahteva za kubite kodirane u jednom spinu.  

Kandidat  je  razmatrao  karakteristike  duplih  kvantnih  tačaka  bitne  za  kreiraǌe  spletenih  staǌa 

dvospinskih kubita.  Kreiraǌe spletenih staǌa je neophodan korak u kvantnoj obradi informacija. 

Najmaǌi sistem kvantnih tačaka koji omogućava kreiraǌe spletenih staǌa među duplim kvantnim 

tačkama  sadrži  četiri  kvantne tačke.   Dok je  izmenska interakcija  unutar duple  kvantne tačke 

posledica  preklapaǌa  orbitala  vezanih  elektrona,  među  duplim  kvantnim  tačkama  dominira 

dugodometna  Kulonva  interakcija  vezanih  elektrona.   Pokazano  je  da  u  ovakvoj  konfiguraciji 

impulsi  koji  implementiraju  jednokubitne  operacije  na  susednim  duplim  kvantnim  tačkama 

proizvode i komponentu kvantnih logičkih operacija koja se može opisati jedino kao dvokubitno 

kolo.  Otkriveno je da je dvokubitna komponenta određena jednim parametrom, koji je izračunat 

kao  funkcija  geometrije  sistema.   Novootkriveni  parametar  iskorišćen  je  za  konstrukciju 

dvokubitnih kvantnih logičkih kola u paru duplih kvantnih tačaka. 

Drugi način kreiraǌa spletenih staǌa povezan je sa narušavaǌem potpune rotacione simetrije u 

spinskom prostoru.  Kandidat je razmotrio situaciju u kojoj, pored spin-orbitne interakcije, i spinovi 

jezgara u poluprovodničkoj nanostrukturi doprinose narušeǌu ove simetrije.  Pod ovim realističnim 

uslovima, interpretacija eksperimenata u kojima se spin-orbitna interakcija meri pomoću cepaǌa 

degenerisanog energetskog nivoa koji se sastoji od singleta totalnog spina 0 i jednog od tripletnih 

nivoa  sa  totalnim  spinom  1  nije  jednoznačna.   Kandidat  je  analizirao  postavku  ovakvih 

eksperimenata i pronašao teoretski opis pomoću koga se iz niza sistematskih eksperimenata ovog 

tipa  mogu  razlučiti  spin-orbitna  i  nuklearna  komponenta  cepaǌa.   Tako se,  pored  jačine  spin-

orbitne interakcije, određuje i jačina interakcije nuklearnih spinova sa kubitima kodiranim u parove 

jednoelektronskih kvantnih tačaka.

Kvantna optika i priprema nuklearnih spinova:

• Enhancement of electron spin coherence by optical preparation of nuclear spins;  Dimitrije 

Stepanenko, Guido Burkard, Geza Giedke, and Atac Imamoglu, Physical Review Letters 96, 

136401 (2006)

• Optical  preparation  of  nuclear  spins  coupled  to  a  localized  electron  spin;  Dimitrije 

Stepanenko  and  Guido  Burkard,  Proceedings  of  the  4th International  Symposium  on 

Mesoscopic Superconductivity and Spintronics, page 371, (2008) 



Dekoherencija  je  proces  u  kome  kvantne  osobine  fizičkog  sistema,  opisane  netrivijalnim 

statističkim  operatorom,  usled  interakcije  sa  okolinom gube  kvantna  svojstva,  tako  da  postaje 

moguće opisati ih klasičnim raspodelama verovatnoće.  Fizički sistem se može koristiti kao kvantni  

računar  sa  niskom  verovetnoćom  greske  samo  unutar  vremenskog  intervala  koji  je  ograničen 

vremenom  dekoherencije.   Kako  kvantni  kodovi  za  korekciju  greške  zahtevaju  nisku  početnu 

verovatnoću greške, neophodno je eliminisati ili ublažiti dekoherenciju nosača kvantne informacije. 

Kod elektronskih  spinova u  kvantnim tačkama jedan od najznačajnijih  izvora  dekoherencije  je 

interakcija  sa  spinovima  jezgara  poluprovodničkih  materijala  u  kojima  su  elektroni  koji  nose 

spinske kubite.  Karakteristično vreme dekoherencije kubita zavisi od staǌa spinova jezgara.  Na 

primer, potpuna polarizacija spinova jezgara bi u potpunaosti  eliminisala ovakvu dekoherenciju. 

Nažalost,  vreme  dekoherencije  dobija  konačnu  i  brzo  opadajuću  vrednost  kada  polarizacija 

jezgrenih  spinova  opadne  ispod  maksimalne  vrednosti.   Eksperimentalno  dostupne  vrednosti 

polarizacije od oko 0.6-0.8 nažalost ne izazivaju značajno povećaǌe vremena koherencije.

Autor  je  razvio  teoretski  opis  elektromagnetski  izazvane  transparencije  (EIT)  naelektrisanih 

ekscitona  i  elektrona  u  kvantnim  tačkama  fabrikovanim  u  materijalima  koji  sadrže  jezgra  sa 

spinom.  Jezgra, putem Overhauzerovog poǉa, pomeraju energije elektronskih i ekscitonskih nivoa 

koji  učestvuju  u  fenomenu  elektromagnetski  izazvane  transparencije.   Overhauzerovo  poǉe  je 

kvantni operator koji u opštem slučaju nema oštru vrednost u sistemu jezgrenih spinova.  Autor je 

pokazao da mereǌe fotoemisije iz kvantne tačke u režimu EIT predstavǉa slabo kvantno mereǌe 

Overhauzerovog poǉa.  Razvijen je algoritam kojim se informacija dobijena mereǌem vremena u 

kojima  nastaje  fotoemisija  pretače  u  informaciju  o  staǌu  Overhauzerovog  poǉa  jezgara. 

Podešavaǌem parametetara elektromagnetnih poǉa koja izazivaju transparenciju u zavisnosti od 

izmerenih vremena fotoemisije,  spinovi jezgara se mogu dovesti  u staǌe sa uskom raspodelom 

Overhauzerovog  poǉa.   Zatim  je  pokazano  da  jezgra  u  ovakvom staǌu ne  utiču  značajno  na 

dekoherenciju elektrona.

Detaǉni teoretski opis ovakvog pripremnog mereǌa dat je relativno jednostavnom stohastičkom 

jednačinom.   U  idealnom  slučaju  u  kome  su  sve  snage  i  talasne  dužine  pobuđujućih 

elektromagnetnih poǉa dostupne,  svi  detektori  idealno efikasni,  i  sve elektromagnetna  zračeǌa 

idealno  monohromatska,  pokazano  je  da  primena  opisanog  postupka  u  potpunosti  eliminiše 

dekoherenciju usled interakcije sa jezgrima.  Kandidat je pokazao kako odstupaǌa od idealnog 

slučaja daju konačna vremena dekoherencije.  Zakǉučeno je da u realističnim okolnostima ovakav 

način  pripreme  ansambla  jezgrenih  spinova  pokazuje  boǉe  rezultate  od  pokušaja  polarizacije 



jezgara.

Kvantni transport i diskretni stepeni slobode:

• Interference of heavy holes in an Aharonov-Bohm ring; Dimitrije Stepanenko, Minchul Lee, 

Guido Burkard, Daniel Loss,  Physical Review B 79, 235301 (2009)

• Current-conserving  Aharonov-Bohm  interferometry  with  arbitrary  spin  interactions, 

Minchul Lee and Dimitrije Stepanenko; Physical Review B 85, 075316 (2012)

Transport kroz nanoskopske prstenove pokazuje oscilatornu zavisnost od fluksa magnetnog poǉa 

kroz prsten.  Ove Aharonov-Bomove oscilacije su posledica kvantne interferencije elektrona koji 

prolaze kroz dve grane prstena.  Aharonov-Bomove oscilacije u metalima ne pokazuju jake spinske 

efekte.   Nasuprot  tome,  spin-orbitna  interakcija  u  poluprovodničkim  prstenovima  modifikuje 

oscilacije  zahvaǉujući  Aharonov-Kašerovom efektu,  električnom analogonu Aharonov-Bomovog 

efekta.  Kandidat je proučavao transport kroz poluprovodničke prstenove nanometarskih dimenzija 

u kojima niskoenergetska staǌa poseduju netrivijalnu spinsku teksturu.

Za razliku od elektrona sa dominantnom linearnom spin-orbitnom interakcijom, kod šupǉina spin-

orbitna interakcija je proporcionalna trećem stepenu komponenti kvaziimpulsa.  Pokazano je da su 

u  ovom  slučaju  niskoenergetska  staǌa  opisana  spinskom  teksturom  sa  nekolinearnim  osama 

kvantizacije  spinova.   Nasuprot  analognim  staǌima  u  sistemima  sa  linearnom  spin-orbitnom 

interakcijom  ove  teksture  su  energetski  zavisne.   Zato  je  oblik  Aharonov-Bomovih  oscilacija 

šupǉina  različit  od  jednostavnih  periodičnih  oscilacija  elektrona.   Detaǉno  je  proučen  oblik 

oscilacija za dva karakteristična oblika spin-orbitne interakcije: Rašbin oblik izazvan asimetrijom 

vezivaǌa  šupǉina  u  dvodimenzionalni  gas  i  Dreselhausov  oblik  izazvan  asimetrijom  kristalne 

strukture nosećih poluprovodnika.  Pokazano je kako se na osnovu oblika oscilacija može odrediti 

dominantan oblik interakcije.

Pored razvoja praktičnog načina za razlikovaǌe Dreselhausovog od Rašbinog oblika spin-orbitne 

interakcije,  kandidatove  studije  transporta  šupǉina  kroz  poluprovodničke  prstenove  ukazuju  na 

kǉučnu ulogu spinskih tekstura u transportu.  Prostorno-zavisno staǌe spinskih ili uopšteno bilo 

kojih diskretnih unutrašǌih stepeni slobode izaziva interferencione efekte u transportu.  Zato, za 

razliku od slučaja staǌa sa energetski nezavisnom teksturom, transportne osobine prstena nisu date 

samo  verovatnoćom  transmisije.   Pokazano  je  da  opis  provodnosti  kroz  prsten  mora  sadržati 



dodatne  parametre.   Na  osnovu  razvijene  teorije  spinski  zavisnog  transporta  kroz  staǌa  sa 

teksturom, pokazano je da ovakvi sistemi mogu funcionisati kao spinski filteri.  I pored spinski 

nezavisnog rasejaǌa, spin nije odrzan u transportu.

Magnetizam u molekulima i kvantni računari sa molekularnim magnetima:

• Spin-electric  coupling  in  molecular  magnets;  Mircea  Trif,  Filippo  Troiani,  Dimitrije 

Stepanenko, Daniel Loss, Physical Review Letters 101, 217201 (2008)

• Spin-electric effect in molecular antiferromagnets; Mircea Trif,  Filippo Troiani, Dimitrije 

Stepanenko, and Daniel Loss, Physical Review B 82, 045429 (2010)

• Hyperfine-induced decoherence in triangular spin-cluster qubits; Filippo Troiani, Dimitrije 

Stepanenko, and Daniel Loss, Physical review B 86, 161409 (2012) 

U molekularnim magnetima, niskoenergetska staǌa čine multipleti sa dobro definisanim spinskim 

uređeǌem.  Ova staǌa nastaju  kao posledica  jake izmenske interakcije  koja  kod molekularnih 

feromagneta  snižava  energiju  staǌa  sa  najvećim  totalnim  spinom,  a  kod  molekularnih 

antiferomagneta snižava energiju staǌa sa najmaǌim totalnim spinom.  Unutar ovih multipleta, 

staǌa su daǉe opisana  anizotropnim spinskim hamiltonianom, koji  određuje  osnovno staǌe sa 

najvećom ili najmaǌom projekcijom spina na osu kvantizacije.  Niskoenergetska staǌa razdvojena 

su  barijerom  kroz  koju  mogu  tunelovati.   Kvantno  tunelovaǌe  magnetizacije  pokazuje  da  je 

niskoenergetska  dinamika  u  molekularnim  magnetima  kvantna  i  koherentna  tokom  dugih 

vremenskih intervala.

U ovim radovima, kandidat je pokazao da se kvantnim staǌem pojedinih molekularnih magneta 

može manipulisati pomoću spoǉnih električnih poǉa.   Razvijen je opis mehanizma kojim spinovi u 

molekularnim antiferomagnetima interaguju sa električnim poǉem.  Interakcija  je zasnovana na 

nedostatku simetrije  molekula u odnosu na inverziju  i  postojaǌu električnih dipolnih momenta 

hemijskih veza među magnetnim centrima.  Identifikovan je niskoenergetski skup staǌa koji  je 

opisan  projekcijom ukupnog spina i  kiralnošću spinske strukture.   Pokazano je  da se  kiralnost 

ponaša kao pseudospin 1/2,  te da električna poǉa u ravni  molekula interaguju sa kiralnošću ne 

utičući na totalni spin.  U isto vreme, električna poǉa normalna na ravan molekula ne pokazuju 

nikakav uticaj na staǌe molekula.

Rezultati ovih radova upućuju na mogućnost električne manipulacije spinskim staǌima.  Jačina 



interakcije  zavisi  od  detaǉne  strukture  molekula,  koju  nije  moguće  pouzdano  predvideti 

numeričkim metodama.  Zato je predložen niz eksperimenata kojim bi se identifikovali molekuli u 

kojima  postoji  jaka  spin-električna  interakcija.   Pokazano  je  da  su  najizgledniji  kandidati  za 

električnu  manipulaciju  spinovima trougaoni  molekuli  kod kojih  je  antiferomagnetna  izmenska 

interakcija  između  magnetnih  centara  indukovana  nemagnetinim  mostovima  u  ravni  molekula. 

Predložena  je  manipulacija  pomoću  električnih  poǉa  u  blizini  vrhova  skenirajućih  tunelnih 

mikroskopa, ili  pomoću električne komponente kvantizovanog poǉa unutar rezonantnih linijskih 

supǉina.  U oba slučaja, karakteristično vreme manipulacije je dovoǉno kratko u odnosu na vreme 

koherencije spinskih staǌa da omogući kvantnu kotrolu spinova.



Elementi za kvalitativnu analizu
Dimitrije Stepanenko

1.

Pokazateǉi uspeha u naučnom radu

1.1

Nagrade i priznaǌa:

• Presidential  University  Graduate  Fellowship,  Boston  University.   Stipendija  za 

postdiplomske studije na Univerzitetu u Bostonu.  Jedna do dve ovakve nagrade se dodeǉuju 

studentima prirodnih nauka na ovom univerzitetu.

• Dirac-Hellman  award  for  theoretical  physics.   Jedna  nagrada  godišǌe  se  dodeǉuje 

studentima  postdiplomskih  studija  ili  naučnim  saradnicima  na  Državnom  Univerzitetu 

Floride.

1.2

Uvodna predavaǌa na konferencijama i druga predavaǌa po pozivu

Transportne osobine nanostruktura u kojima su nosioci naelektrisaǌa i spina šupǉine pobudile su 

interesovaǌe  istraživača  u  oblasti  spintronike  i  kvantnih  mezoskopskih  fenomena.   Optička 

priprema  nuklearnih  spinova  u  poluprovodnicima  je  zanimǉiva  kako  grupama  koje  se  bave 

kvantnom  optikom,  tako  i  istraživačima  koji  eksperimentalno  ispituju  mogućnost  izgradǌe 

kvantnih  računara.   Električna  kontrola  spinova  u  molekulima  je  pobudila  interesovaǌe  kako 

istraživača  kvantnog  magnetizma,  tako  i  hemičara  koji  pokušavaju  da  sintetišu  molekule  sa 

traženim  svojstvima.  Članovi  kandidatove  grupe  su  zato  održali  uvodna  predavaǌa  na 

konferencijama  iz  oblasti  spintronike,  kvantne  informacije,  fizike  nanosistema,  kondenzovanog 

staǌa i neorganske hemije.  Kandidat je autor sledećih uvodnih predavaǌa i predavaǌa po pozivu:

• Quantum transport  of  heavy  holes  through  an  Aharonov-Bohm ring:   Spin  and  charge 

properties of low-dimensional systems, Advanced ICTP Workshop, Sibiu, Romania, June 

29. – July 4. 2009.

• Spin-electric  coupling  for  quantum  computation  and  quantum  optics:   International 

Conference on Quantum Optics and Quantum Information, Kiev, Ukraine,  May 28 -- June 

1, 2010.

• Interaction  of  molecular  spins  with  electric  fields:   European  Conference  on  Molecular 



Magnetism, Paris, France, November 22 -- 25, 2011.

• Molecular spins and electric fields:  NORDFORSK Nanospintronics Workshop, Borgholm, 

Sweden, June 12 – 14, 2012.

• Optical  preparation  of  nuclear  spins  coupled  to  a  localized  electron  spin:  International 

Symposium  on  mesoscopic  superconductivity  and  spintronics,  NTT  Basic  Research 

Laboratories,  Japan,  February  27  –  March 2,  2006.   Predavaǌe po pozivu na  kome je 

kandidat koautor

Seminari na grupama sa kojima je kandidat sarađivao:

• North Florida condensed matter meeting, Gainesville Florida, 2004.

• North Florida condensed matter meeting, Tallahassee Florida 2005.

• Colloquium of the quantum computing group, IBM T. J. Watson Research Center, Yorktown 

Heights, New York, USA, October 2004.

• Condensed matter seminar, Ohio University, Athens, Ohio, USA, 

• S3 Group Seminar, Instituto Nazionale per la Fisica della Materia, Modena, Italy, 2010.

• 4 th NORDFORSK meeting, Norrköping, Sweden, 2010.

• QSIT Seminar, Joint Colloquium of ETH Zurich and University of Basel, Basel Switzerland,  

2012.

• National  Center  of  Competence in  Research,  Quantum Science  and Technology (NCCR 

QSIT), Arosa meeting, Arosa Switzerland, 2009.

Kandidat je boravio kao gostujući istraživač u sledećim institucijama:

• Physics Department, Ohio University, Athens, Ohio, USA

• IBM T.J. Watson Research Center, Yorktown Heights, New York, USA

• Istituto Nazionale per la Fisica della Materia, Modena, Italy

1.4

Članstva  u  uređivackim  odborima  časopisa,  uređivaǌe  monografija,  recenzije  naučnih 

radova i projekata

Kandidat radi kao recenzent za sledeće časopise:

• Physical Review Letters,



• Physical Review B,

• Physica Status Solidi,

• Europhysics Journal,

• New Journal of Physics,

• Journal of Physics B,

• Applied Physics Letters

2

Razvoj uslova za naučni rad, obrazovaǌe i formiraǌe naučnih kadrova

2.1

Doprinos razvoju nauke u zemǉi

Kandidat  saradjuje  sa  istraživačima  na  Institutu  za  Fiziku  u  Zemunu  koji  se  bave  magnetnim 

osobinam nanočestica.   Nanonauke  spadaju u jedan od prioritetnih  pravaca  u strategiji  razvoja 

nauke u Srbiji.  Kandidatova istraživaǌa upotrebe kvantnih osobina magnetnog uređeǌa u obradi 

kvantnih  informacija,  kao  i  uticaja  električnih  poǉa  na  magnetizam  molekula  predstavǉaju 

otvaraǌe novih oblasti istraživaǌa i otvaraǌe oblasti kvantnog magnetizma u Srbiji.   Kandidat je 

održao seminare o magnetizmu u molekulima i  o kvantnim računarima baziranim na kvantnim 

tačkama u Srbiji, tokom zime 2010.

• Seminar Instituta za fiziku

• Kolokvijum Fizičkog fakulteta

2.2

Mentorstvo  pri  izradi  magistarskih  i  doktorskih  radova,  rukovođeǌe  specijalističkim 

radovima

Kandidat je radio sa studentima postdiplomskih studija i učestvovao u istraživaǌima koja su bila 

deo doktorske teze Mirče Trifa (Mircea Trif) na Univerzitetu u Bazelu.  Istraživaǌa molekularnog 

magnetizma su rađena pod zajedničkim rukovodstvom Daniela Losa i kandidata.

2.3

Pedagoški rad



Tokom studija u Srbiji, kandidat je radio u Istraživačkoj stanici Petnica na programima fizike za 

sredǌoškolce.  Učestvovao je u nastavi na Univerzitetu u Bostonu (Boston University), Državnom 

Univerzitetu Floride (Florida State University) i Univerzitetu u Bazelu (Universität Basel). 

Kao saradnik u nastavi, vodio je računske vežbe i oceǌivao studente na sledećim kursevima:

Boston University:  

• Electricity and magnetism

• Classical mechanics

• Quantum physics

Florida State University:

• Quantum mechanics, postdiplomski kurs

• Experimental particle physics, 1/2 semestra laboratorijskih vežbi

Na  Univerzitetu  u  Bazelu,  pored  računskih  vežbi,  kandidat  je  držao  predavaǌa  iz  odabranih 

poglavǉa na sledećim kursevima:

• Solid state physics

• Mathematical methods of physics

• Advanced condensed matter physics

• Electromagnetism

• Statistical physics

• Many-body theory

• Introduction to nanoscale science

2.4

Međunarodna saradǌa

Istraživaǌa mezoskopskih kvantnih fenomena su zastupǉena na mnogim institucijama, tako da je 

kandidat sarađivao sa mnogobrojnim istraživačima.  Najznačajnija saradǌa ostvarena je sa sledećim 

grupama:

• Nacionalni institut za fiziku materijala (Instituto Nazionale per la Fisica della Materia) i 



Univerzitet Modene i Regije Emilia (Universita degli Studi di Modena e Regio Emilia).  U 

ovim  institucijama  deluje  grupa  istraživača  koja  se  bavi  molekularnim  magnetizmom 

koristeći  eksperimentalne,  numeričke  i  teorijske metode.   Kandidat je  radio na efektima 

električnog poǉa u molekularnim magnetima i dekoherenciji molekularnih spinova.

• Kyung Hee University, Yongin, Korea.  Kandidat je sarađivao na istraživaǌu provodnosti 

šupǉina u nanostrukturama.  U okviru ove saradǌe, ispitivan je uticaj diskretnih stepeni 

slobode na električni i spinski transport, kao i efekti koherentne interferencije provodnih 

puteva u nanoprstenovima.

• Harvard University, Boston, Massachussets, USA.  Kandidat je radio na razvoju kvantnih 

logičkih kola sa spinovima  u kvantnim tačkama, u saradǌi sa grupom Bertranda Halperina. 

U  planu  je  da  ovi  rezultati  budu  primeǌeni  na  eksperimente  u  kojima  bi  se  ostvarila 

kontrola  spinova  pomoću  spin-orbitne  interakcije  i  izmenske  interakcije  elektronskih  i 

nuklearnih spinova.

• T. J. Watson Research Center, Yorktown Heights, New York, USA.  Kandidat je sarađivao sa 

Dejvidom Divinćencom (David  DiVincenzo)  na  problemu kontrole  spinova  u  kvantnim 

tačkama pomoću vremenski zavisne anizotropne interakcije. 

3.

Organizacija naučnog rada 

3.1

Rukovođeǌe projektima, potprojektima i zadacima

Na  Univerzitetu  u  Bazelu,  kandidat  je  od  2007.  do  danas,  pored  lokalnih  projekata  pod 

pokroviteǉstvom Švajcarske nacionalne fondacije (SNF), radio i na projektima koji su finansirale i 

nadzirale  spoǉne  agencije.   Pošto  odsek  za  teorijsku  fiziku  kondenzovanog  staǌa  učestvuje 

istovremeno  u  velikom  broju  projekata,  kandidat  je  preuzeo  organizacione,  upravǉačke  i 

popularizacione poslove na projektima koji su se ticali  ǌegovih istraživaǌa.  Kandidat je pisao 

delove  predloga  projekata  koji  se  odnose  na  ulogu  Univerziteta  u  Bazelu  u  konzorcijumima, 

formulisao planove istraživaǌa, planirao budžet, pisao izveštaje, predstavǉao grupu na sastancima 

konzorcijuma i na sastancima na kojima su sponzori istraživaǌa oceǌivali postignute rezultate i 

planove za daǉi rad.  Kandidat je obavǉao ovakve poslove na projektima MagMaNet, MolSpinQIP 

i  ELFOS  iz  okvirnog  programa  FP7  Evropske  komisije.   U  maǌoj  meri  učestvovao  je   u 

upravǉaǌu projektima koje je finansirala švajcarska nacionalna fondacija (SNF) i Office of the 

Director of National Intelligence Sjediǌenih Američkih Država kroz program IARPA (Intelligence 



Advance Research Projects Activity).  U ovim projektima kandidat je  izveštavao o radu grupe u 

Bazelu.

4

Kvalitet naučnih rezultata

4.1

Uticajnost kandidatovih naučnih radova

Istraživaǌa kandidata bave se kvantnim efektima u mezoskopskim sistemima.  Ova oblast je tesno 

povezana sa osobinama nanostruktuiranih materijala, kvantnom kontrolom i kvantnom optikom.  

Kandidat  je  razmatrao  do  tada  standardno  zanemarivana  odstupaǌa  spinova  od   modela  jake 

izotropne izmenske interakcije.  Otvorio je problem spin-orbitne interakcije u kvantnim logičkim 

kolima i razvio metode koji, sa jedne strane, smaǌuju ǌen uticaj na ponasaǌe spinova i, sa druge 

strane,  omogućuju  korišćeǌe  ove  interakcije  kao  dodatnog  mehanizma  za  kvantnu  kontrolu. 

Razvoj  ovih  metoda je  još  uvek predmet  širokog interesovaǌa,  i  kandidat  nastavǉa ovu liniju 

istraživaǌa.

Interakcije spinova u kvantnim računarima sa brojnim stohastičkim sistemima u okolini postepeno 

uništavaju  koherenciju  spinova,  čineći  ih  nepogodnim za  prenos  i  obradu  kvantne  informacije. 

Kandidat  je  predložio  proceduru  kojom se  kvantno-optički  efekat  elektromagnetno  indukovane 

transparencije  koristi  za  poboǉšaǌe  koherencije  elektronskih  spinova  u  kvantnim  tačkama. 

Dinamika  uspostavǉaǌa  i  narušavaǌa  transparentnosti  opisana  je  kao  slabo  kvantno  mereǌe. 

Razvijena procedura je korišćena u kasnijim studijama uticaja nuklearnih spinova na elektronske 

spinove.  Ilustracija iz jednog od kandidatovih radova izabrana je za rubriku kaleidoskop časopisa 

Physical  Review B,  (sh)to predstavǉa ekvivalent  naslovne strane  časopisa.   Ilustracija  se  može 

videti na adresi: <http://prb.aps.org/kaleidoscope/prb/85/7/075416>.

Na nanometrarskoj skali, kvantni efekti utiču na transport naelektrisaǌa i spina.  Najboǉe proučeni 

kvantni efekat u transportu su Aharonov-Bomove oscilacije u provodnosti prstenova.  Ovaj efekat je 

prvo  otkriven  u  metalnim  strukturama.   U  poluprovodničkim  strukturama  vidǉivi  su  i  efekti 

električnog poǉa koji  su opisani  analognim Aharonov-Kašerovim efektom.   Kandidat  je  razvio 

teoriju provodnosti nanometarskih prstenova u kojima su nosioci naelektrisaǌa šupǉine.  Zbog veće 

vrednosti spina i kubne forme spin-orbitne interakcije, transport šupǉina jako zavisi od diskretnih 



stepeni slobode.  Kandidat je pokazao da provodnost može poslužiti za određivaǌe forme spin-

orbitne interakcije u poluprovodnicima, kao i da provodnost nanostrukture sa šupǉinama zahteva 

opis koji ne može zavisiti od samo jednog parametra kao u slučaju struktura sa elektronima.

Kvantna kontrola zahteva da sistem ostane koherentan tokom dugog vremena dok intearguje sa 

poǉima  koje  je  moguće  kontrolisati  u  eksperimentalnim uslovima.   Ovi  zahtevi  su  u  principu 

protivrečni.  Kvantne tačke su relativno pogodne za manipulaciju, ali nisu identične, te zahtevaju 

prilagođavaǌe  kontrole  procedure  svakoj  tački  ponaosob.   Kandidat  je  razmatrao  kontrolu  u 

molekularnim magnetima kao alternativnim nosiocima kvantne informacije.  Kod ovih molekula 

problem kontrole spinova je teži zato što spinovi ne interaguju direktno sa električnim poǉima. 

Kandidat je predložio mehanizam spin-električne interakcije u molekulima, zasnovan na nedostatku 

simetrije molekula u odnosu na inverziju.  Pokazano je da spinski stepeni slobode u trougaonim 

molekulima interaguju sa električnim poǉima preko kiralnosti spinske teksture u osnovnom staǌu. 

Razmatran je uticaj spin-električnog efekta na osobine molekula merǉive u eksperimentu, razvijen 

je mikroskopski model interakcije na osnovu efektivnog Habardovog modela i predložen način za 

identifikovaǌe molekula pogodnih za manipulaciju.  Studija dekoherencije kiralnih stepeni slobode 

pokazala je da su oni mnogo otporniji na dekoherenciju od ukupnog spina molekula.  Ovi rezultati 

poslužili su kao osnova za dva trenutno aktivna FP7 projekta koje se bave kvantnom kontrolom 

spinova u molekulima.

4.2

Pozitivna citiranost kandidatovih radova

Ukupan broj citata na kandidatove radove je 311, sa 299 citata ne računajući autocitate.  Citati daju 

kandidatov h-faktor 8.  Kandidat je dobio više rezultata koji su otvorili nove oblasti u proučavaǌu 

kvantne kontrole.  U radovima koji se bave vremenski zavisnom kontrolom spina, dekoherencijom 

izazvanom  nuklearnim  spinovima  i  električnom  kontrolom spinova  u  molekulima,  kandidatovi 

rezultati su standardne reference.  

4.3

Ugled i uticajnost publikacija u kojima su kandidatovi radovi objavǉeni

Kandidat je objavǉivao u časopisu Physical Review Letters (četiri rada), najuglednijoj publikaciji 

koja se bavi iskǉučivo fizikom i ravnopravno objavǉuje eksperimentalne,  numeričke i teorijske 

rezultate iz svih oblasti fizike.  Najveći broj kandidatovih radova objavǉen je u časopisu Physical 



Review B, koji je najuglednija publikacija posvećena fizici kondenzovanog staǌa.  Po jedan rad je 

objavǉen u časopisu Inorganica Chimica  Acta,  koji  je  posvećen hemiji  i  u  zborniku radova sa 

međunarodne  konferencije  “4th International  Symposium  on  Mesoscopic  Superconductivity  an 

Spintronics”.  Časopisi  Physical Review Letters i  Physical Review B su vrhunski međunarodni 

časopisi kategorije M21, dok je Inorganica Chimica Acta međunarodni časopis kategorije M23.

4.4

Efektivni  broj  radova  i  broj  radova  normiran  na  osnovu  broja  koautora,  ukupan  broj 

kandidatovih radova, udeo samostalnih i koautorskih radova u ǌemu, kandidatov doprinos u 

radovima

Svi kandidatovi radovi koriste teorijske i numeričke metode i imaju ukupno između dva i pet autora.  

Ukupan broj radova je četrnaest.  Tokom postdiplomskih studija kandidat je objavǉivao radove u 

kolaboraciji sa svojim mentorom i saradnicima van svoje istitucije.  Pored nastavka istraživaǌa 

započetih  na  doktorskim  studijama,  radovi  objavǉeni  posle  doktorata  obuhvataju  nove  oblasti 

kojima  je  kandidat  proširio  svoja  interesovaǌa.   Objavǉivani  su  u  kolaboraciji  sa  studentima 

Univerziteta u Bazelu, spoǉnim saradnicima i vođom grupe za teoriju kondenzovanog staǌa na 

Univerzitetu u Bazelu. 

4.5

Stepen samostalnosti  u  naučnoistraživačkom radu i  uloga u realizaciji  radova u naučnim 

centrima u zemǉi i inostranstvu

Kandidat je razvijao računske i numeričke metode potrebne za rešavaǌe problema i razvijao ideje u 

diskusijama sa  koautorima.   Za  radove koji  se  bave  provodnošću prstenova i  spin-električnom 

interakcijom osnovna  ideja  za  istraživaǌe  potiče  od  kandidata,  dok  su  za  ostale  radove  ideje 

rezultat  diskusija sa koautorima, tako da su zajedničke sa značajnim doprinosom kandidata. Svi 

teorijski rezultati imaju značajan doprinos kandidata, dok je numerički deo posla podeǉen među 

koaotorima.  Oko jedne trećine numeričkih izračunavaǌa su rezultati  kandidata,  dok je  ostatak 

samostalni doprinos ostalih koautora.  Na radovima koji se bave spin-električnim efektom, pored 

doprinosa  u  formulisaǌu  problema,  doprinosa  teorijskom  razmatraǌu  i  numeričkim 

izračunavaǌima, kandidat je još i organizovao podelu rada među koautorima.



Elementi za kvantitativnu ocenu naučnog doprinosa

Pošto se kandidat Dimitrije Stepanenko nakon povratka iz inostranstva bira direktno u zvaǌe viši 
naučni saradnik, prikazani su minimalni uslovi za izbor u zvaǌa naučnog saradnik, višeg naučnog 
saradnika kao i zbirni uslovi za oba zvaǌa.  Nakon toga su prikazani kvantitativni rezultati 
kandidata u dosadašǌem radu i uporedjeni sa zbirnim uslovima za izbor u zvaǌe viši naučni 
saradnik.

Zvaǌe Minimalni broj bodova

Naučni saradnik
Ukupno 16

M10+M20+M31+M32+M33+M41+M42 10

M11+M12+M21+M22+M23+M24 5

Viši naučni saradnik
Ukupno 48

M10+M20+M31+M32+M33+M41+M42 40

M11+M12+M21+M22+M23+M24 28

Zbirno za oba zvaǌa

Ukupno 64

M10+M20+M31+M32+M33+M41+M42 50

M10+M20+M31+M32+M33+M41+M42+M51 50

M11+M12+M21+M22+M23+M24 33

M11+M12+M21+M22+M23+M24+M31+M32+M41+M42 33

Rezultati kandidata

Kategorija M bodova po radu Broj radova Ukupno M bodova

M21 8 11 88

M23 3 1 3

M32 1.5 3 4.5

M33 1 1 1

M34 0.5 14 7

M71 6 1 6

Ukupno 109.5

Poređeǌe minimalnih uslova sa ostvarenim rezultatima kandidata

Zbirno za oba zvaǌa Uslov Ostvareni rezultat

Ukupno 64 109.5

M10+M20+M31+M32+M33+M41+M42 50 96.5

M10+M20+M31+M32+M33+M41+M42+M51 50 96.5

M11+M12+M21+M22+M23+M24 33 91

M11+M12+M21+M22+M23+M24+M31+M32+M41+M42 33 95.5

Ne računajući autocitate, kandidatovi radovi su citirani 299 puta prema bazi ISI Web of knowledge 
(ukupno 311 puta).  Kandidatov h-faktor je 8.



Spisak radova
Dimitrije Stepanenko

Radovi u vrhunskim međunarodnim časopisima (M21)

1. Hyperfine-induced decoherence in triangular spin-cluster qubits; Filippo Troiani, Dimitrije 

Stepanenko, and Daniel Loss, Physical Review B 86, 161409 (2012)

2. Exchange-based CNOT gates for singlet-triplet qubits with spin-orbit interaction; Jelena 

Klinovaja, Dimitrije Stepanenko, Bertrand I. Halperin, and Daniel Loss, Physical Review B 

86, 085423 (2012)

3. Current-conserving Aharonov-Bohm interferometry with arbitrary spin interactions, 

Minchul Lee and Dimitrije Stepanenko; Physical Review B 85, 075316 (2012)

4. Singlet-triplet splitting in double quantum dots due to spin-orbit and hyperfine interactions;  

Dimitrije Stepanenko, Mark Rudner, Bertrand I. Halperin, and Daniel Loss, Physical 

Review B 85, 075416 (2012)

5. Spin-electric effects in molecular antiferromagnets; Mircea Trif, Filippo Troiani, Dimitrije  

Stepanenko, and Daniel Loss, Physical Review B 82, 045429 (2010)

6. Interference of heavy holes in an Aharonov-Bohm ring, Dimitirje Stepanenko; Minchul Lee, 

Guido Burkard, and Daniel Loss, Physical Review B 79, 235301 (2009)

7. Spin-electric coupling in molecular magnets; Mircea Trif, Filippo Troiani, Dimitrije  

Stepanenko, and Daniel Loss, Physical Review Letters 101, 217201 (2008)

8. Quantum gates between capacitively coupled double quantum dot two-spin qubits; Dimitrije 

Stepanenko and Guido Burkard, Physical Review B 75, 085324 (2007)

9. Enhancement of electron spin coherence by optical preparation of nuclear spins; Dimitrije 

Stepanenko, Guido Burkard, Geza Giedke, and Atac Imamoglu, Physical Review Letters 96, 

136401 (2006)



10. Universal quantum computation through control of spin-orbit coupling; D. Stepanenko and 

N. E. Bonesteel, Physical Review Letters 93, 140501 (2004)

11. Spin-orbit coupling and time-reversal symmetry in pulsed quantum gates; D. Stepanenko, N. 

E. Bonesteel, D. P. DiVincenzo, G. Burkard, and Daniel Loss, Physical Review B 68, 

115306 (2003)

Publikacija koja ne ulazi u kvantitativne kriterijume zbog datuma objavǉivaǌa

12*. Anisotropic spin exchange in pulsed quantum gates; N. E. Bonesteel, D. Stepanenko, and 

D. P. DiVincenzo, Physical Review Letters 87, 207901 (2001) 

Rad u međunarodnom časopisu (M23)

1. Quantum computing with molecular magnets; Dimitrije Stepanenko, Mircea Trif, and 

Daniel Loss, Inorganica Chimica Acta 361, 3740 (2008)

Predavaǌa po pozivu sa međunarodnih skupova, štampana u izvodima (M32)

1. Molecular spins and electric fields:  NORDFORSK Nanospintronics Workshop, Borgholm, 

Sweden, June 12 – 14, 2012.

2. Interaction  of  molecular  spins  with  electric  fields:   European  Conference  on  Molecular 

Magnetism, Paris, France, November 22 -- 25, 2011.

3. Spin-electric  coupling  for  quantum  computation  and  quantum  optics:   International 

Conference on Quantum Optics and Quantum Information, Kiev, Ukraine,  May 28 -- June 

1, 2010.

Saopšteǌe sa međunarodnog skupa, štampano u celini (M33)

1. Optical preparation of nuclear spins coupled to a localized electron spin; Dimitrije 

Stepanenko and Guido Burkard, Proceedings of the 4th Symposium on Mesoscopic 

Superconductivity and Spintronics, Atsugi, Japan, in Controllable Quantum States: 



mesoscopic superconductivity and spintronics, page 371 (2008)

Saopštenja sa međunarodnih skupova, štampana u izvodu (M34)

1. Singlet-triplet splitting in double quantum dots due to spin-orbit and hyperfine interactions; 

Dimitrije Stepanenko, Mark Rudner, Bertrand I. Halperin, and Daniel Loss, March Meeting 

of the American Physical Society, Boston, Massachusetts, USA, March 2012.

2. Quantum  control  of  molecular  antiferromagnets:  an  approach  based  on  electric  fields; 

Mircea Trif, Dimitrije Stepanenko, Filippo Troiani, and Daniel Loss, March Meeting of the 

American Physical Society, Portland, Oregon, USA, March 2010.

3. Interference of heavy holes in an Aharonov-Bohm ring; Dimitrije Stepanenko, Minchul Lee, 

Guido  Burkard,  and  Daniel  Loss,  Spring  Meeting  of  the  Deutsche  Physikallische 

Gesselschaft, Regensburg, Germany, 2010.

4. Electric quantum control of spins in molecular magnets; Mircea Trif, Dimitrije Stepanenko, 

Filippo  Troiani,  And  Daniel  Loss,  Spring  Meeting  of  the  Deutsche  Physikallische 

Gesselschaft, Regensburg, Germany, 2010.

5. Quantum transport  of  heavy  holes  through  an  Aharonov-Bohm ring:   Spin  and  charge 

properties of low-dimensional systems; Advanced ICTP Workshop, Sibiu, Romania, June 

29. – July 4. 2009.

6. Spin-Electric  Coupling  in  Molecular  Magnets;  Mircea  Trif,  Filippo  Troiani,  Dimitrije 

Stepanenko,  Daniel  Loss,  March Meeting of  the  American  Physical  Society,  Pittsburgh, 

Pennsylvania, USA, March 2009.

7. Interference  of  heavy  holes  in  an  Aharonov-Bohm  ring;  QSIT  Arosa  Meeting,  Arosa, 

Switzerland, January 2009.

8. Quantum gates between capacitively coupled double quantum dot two-spin qubits; Guido 

Burkard, Dimitrije Stepanenko, March Meeting of the American Physical Society, Denver, 

Colorado, USA, March 2007.



9. Enhancement of electron spin coherence by optical preparation of nuclear spins; Dimitrije 

Stepanenko,  Guido  Burkard,  Geza  Giedke,  and  Atac  Imamoglu,  March  Meeting  of  the 

American Physical Society, Denver, Colorado, USA, March 2007.

10. Quantum gates between capacitively coupled double quantum dot two-spin qubits; Dimitrije 

Stepanenko  and  Guido  Burkard,  71.  Annual  Meeting  of  the  Deutsche  Physikalische 

Gesellschaft  and DPG - spring meeting of  the Division Condensed Matter,  Regensburg, 

Germany, March 2007.

11. Enhancement  of  Electron  Spin  Coherence  by  Optical  Preparation  of  Nuclear  Spins;  D. 

Stepanenko, G. Burkard, G. Giedke, A. Imamoglu, International Conference on Nanoscience 

and Technology, Basel, Switzerland, August 2006.

12. Anisotropic  Spin  Exchange  in  Coupled  Quantum Dots;  Kerwin  Foster,  Layla  Hormozi, 

Dimitrije Stepanenko, and Nicholas Bonesteel,  March Meeting of the American Physical 

Society, Los Angeles, California, USA, March 2005.

13. Control  of  Anisotropic  Spin  Exchange  in  Quantum  Dots;  Dimitrije  Stepanenko,  Layla 

Hormozi,  Nicholas  Bonesteel,  March  Meeting  of  the  American  Physical  Society,  Los 

Angeles, California, USA, March 2005.

14. Spin-orbit coupling and time-symmetric pulsing of quantum gates; D. Stepanenko, N. E. 

Bonesteel, G. Burkard, D. P. DiVincenzo, and Daniel Loss, March Meeting of the American 

Physical Society, Austin, Texas, USA, March 2003.

Publikacija koja ne ulazi u kvantitativne kriterijume zbog datuma objavǉivaǌa

15*. Anisotropic spin exchange in pulsed quantum gates; D. Stepanenko, N. E. Bonesteel, and 

D. P.  DiVincenzo, March Meeting of the American Physical  Society,  Indianapolis,  Indiana, 

USA, March 2002.

Odbraǌena doktorska disertacija (M71)

1. Symmetry  and  control  in  spin-based  quantum computing,  Florida  State  University  and 

National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 2005.  Nostrifikacija 



na Univerzitetu u Beogradu, rešeǌe broj 06-613-7554/4-11,  novembra 2011.

Kandidatovi radovi su citirani 299 puta, ne računajući autocitate (ukupno 311 puta) u  časopisima 

indeksiranim u ISI Web of Science .  Kandidatov h-faktor je 8.
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From: Sergei Kilin <kilin@dragon.bas-net.by>
To: Dimitrije.Stepanenko@unibas.ch

Subject: ICQOQI'2010
Date: Wed,  7 Apr 2010 22:53:19 +0300 (EEST) (04/07/2010 09:53:19 PM)

Dear Dr. Stepanenko,

I am sending you with a great pleasure an official invitation to the XIII
International Conference on Quantum Optics and Quantum Information 2010. It
will be very nice if you join the meeting and deliver an invited talk. I really
hope that you can attend the Conference. 

With my best regards, 

Sergei Kilin 

_________________________________________________

XIII International Conference on Quantum Optics and Quantum Information
(ICQOQI'2010) 
May 28-June 1, 2010, Kyiv, Ukraine
________________________________________________
Dear Dr. Stepanenko,

Organizing Committee of the XIII International Conference on Quantum Optics and
Quantum Information invites you to take part in the activities of the meeting
and deliver an invited talk. 

XIII International Conference on Quantum Optics and Quantum Information
organized by National Academy of Sciences of Ukraine, National Academy of
Sciences of Belarus, Institute of Physics of NAS of Ukraine, M. M. Bogolyubov
Institute for Theoretical Physics of NAS of Ukraine, B.I.Stepanov Institute of
Physics of NAS of Belarus, Ukrainian Physical Society and Belarussian Physical
Society will be held on May 28-June 1, 2010 in the city of Kyiv on the base of
Presidium of NAS of Ukraine.

General idea of the conference is to bring together scientists and engineers
from different fields (optics, atomic and molecular physics, solid state
physics, computer science) which actively contribute to the field of Quantum
Optics and Quantum information.

The traditional style for this Conference is the oral presentations followed by
rather informal discussions during poster sessions. This International
Conference will be the next one of a series of very successful meetings that
were held in Minsk during the last 20 years in 1986, 1988, 1990, 1992, 1994,
1996, 1998, 2000, 2002, 2004, 2006, 2008.

If you have joint projects with quantum optics and quantum information
scientists in the FSU or plan to start such an activity, it is a good chance to
choose this event for your local meeting with colleagues.

Page 1 of 5



The main topics include 

* TRADITIONAL QUANTUM OPTICS PROBLEMS, QUANTUM IMAGING

* MATERIALS AND DEVICES FOR QUANTUM OPTICS AND QUANTUM INFORMATION:
-nanophotonics
-spintronics
-strong optical nonlinearities
-laser sources for quantum cryptography, including single photon sources and
ultrashort lasers
-single photon detectors
-single quantum objects (molecules, atoms, solid state impurities, quantum
dots, electrons, electron and nuclear spins): detection, control and
manipulation

* ENTANGLEMENT
-characterization, creation and detection
-entanglement in many bodies systems
-metrology using entanglement

* BUILDING HARDWARE FOR SCALABLE QUANTUM COMPUTERS
-trapped ions
-atomic systems (optical lattices)
-solid state systems
-photon based quantum information processing

* QUANTUM MEMORY AND QUANTUM REPEATERS

* INTERFACES BETWEEN PHOTONS AND ATOMIC QUBITS

* QUANTUM ALGORITHMS

* QUANTUM SIMULATIONS

* FIBER-BASED AND FREE-SPACE QKD SYSTEMS

Conference language: English.

FOR REGISTRATION, 
please send the following information to the Organizers by E-mail:
icqo2008@basnet.by or by fax: 375 172 84 08 79 by March, 15, 2010:

Family name:
First name:
Affiliation:
Mailing address:
Postal code:
City/Town:
Country:
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Fax (with country code):
E-mail:
Title of the report:

Please also prepare the Abstract of the report (0.5 page) as a plain text or
write it in TeX and send by E-mail by April, 20, 2010.

Usually we publish the reports as full length papers in Optics and Spectroscopy
Journal after the meeting. So, it would be very nice if you keep this in mind
and start preparing the manuscript in advance. Manuscripts should be prepared
in LaTeX format.

ICQOQI'2010 SCHEDULE
The opening session (May 28, 10.00) and the following Plenary Session of the
conference will be held in the conference hall of the Presidium of National
Academy of Sciences of Ukraine. All the other sessions (May 29 - June 1) will
be held in the Conference center of the Hotel Rus, located in the center of
Kyiv. Welcome party will be held on May 28 on a riverboat traveling on the
Dnepr River with beautiful panoramic views of the city. Conference dinner will
take place on May 30 at the restaurant of Hotel Rus. 

ACCOMMODATION
The participants are proposed to be accommodated in Hotel Rus, which offers the
special rates for the conference participants. To book the room in Hotel Rus
the accommodation form, available at the page 
http://reserv.hotelrus.kiev.ua/cc.php  should be filled and sent to the hotel
by fax or email given in the form. There are additional services proposed by
the hotel: airport transfer and buffet lunches during the conference break
between the morning and afternoon sessions. If you are interested in these
services, please fill the corresponding boxes of the form. For safety of the
transfer of your credit card information the proper fields should be filled in
by hand. The accommodation form should be sent before 25th April 2010.

REGISTRATION FEE

Regular registration fee: 260 EURO (if paid by May, 15) or 300 EURO (if paid
after May, 15).

Accompanying persons fee: 185 EURO (if paid by May, 15) or 225 EURO (if paid
after May, 15).

Students' fee: 160 EURO (if paid by May, 15) or 200 EURO (if paid after May,
15).

Members' of Ukrainian, Belorussian and Russian Physical Societies fee: 110 EURO
(if paid by May, 15) or 150 EURO (if paid after May, 15).

The regular conference registration fee covers: the admission to the conference
sessions, the conference materials, the conference welcome party, and the
conference coffee-breaks. The conference Registration fee should be paid by all
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participants including invited and plenary speakers.

Accompanying person's registration fee covers the same points, as the regular
one, except conference materials, and provides a full access to all the
conference activities.

Optional fee include the conference dinner (40 EURO). The full conference fee
is calculated as a sum of Registration fee and Optional fees.

The payment can be done by bank transfer or by credit cards (the details will
be sent additionally).

REGISTRATION FEE PAYMENT
The payment can be done by bank transfer (preferable, see the details below) or
on the conference site. If you need pro-forma invoice for registration fee
payment, please request the Organizers by email icqoqi2010@basnet.by.

REQUISITES FOR BANK TRANSFER:
In the case of bank transfer the conference fee should be sent to the official
partner of the conference, Advanced Laboratory Technologies Europe Ltd. Please
note, that the deadline for bank transfer is May 17, 2010.

ADVANCED LABORATORY TECHNOLOGIES EUROPE LTD.
324-326 Regent Street, Suite 404
London W1B 3HH, UK

Beneficiary Bank: Nordea Bank Danmark A/S
Strandgabe 3
Copenhagen DK-0900
Denmark

SWIFT: NDEADKKK
Sort Code: 2040

Account number 5036306396
IBAN: DK4620005036306396 EUR

Bank charges must be paid by the participant. Please make sure that bank
transaction fees do not reduce the amount of payment. Please indicate your full
name on the bank transfer. If payment is made for more than one person or by a
company, please indicate all names.

For any questions concerning fee payment please contact Mr. Dmitry Melinevsky
(dem@alt.ua), the representative of Advanced Laboratory Technologies Europe
Ltd.

HISTORY OF ICQOQI
The information on traditions and activities of this series of seminars can be
also found in special issues of Optics and Spectroscopy v.82 (1997)
p.813, v.87 (1999) p.533, v.91(2001) No.3,4
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p.813, v.87 (1999) p.533, v.91(2001) No.3,4
v.94(2003) No.5 (http://www.maik.ru/contents/optics/optics5_3v94cont.htm),
v.99(2005) No.2(http://www.maik.ru/contents/optics/optics2_5v99cont.htm ),
v.99(2005) No.3(http://www.maik.ru/contents/optics/optics3_5v99cont.htm ),
v.103 (2007) No.1 (http://www.maik.ru/contents/optics/optics1_7v103cont.htm),
v.103 (2007) No.2 (http://www.maik.ru/contents/optics/optics2_7v103cont.htm),
v.103 (2007) No.3 (http://www.maik.ru/contents/optics/optics3_7v103cont.htm).

Conference Co chairs

Sergei Kilin
Leonid Yatsenko

_______________________________________________________________________ 

Mailing address: 
B.I.Stepanov Institute of Physics 
National Academy of Sciences of Belarus 
Nezavisimosti Avenue 68, 
220072, Minsk 
BELARUS 

Contact Phone: 375 17 284 28 45 
Fax: 375 172 84 08 79
e-mail: icqoqi2010@basnet.by 
For updates visit http://master.basnet.by 
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Second Circular 
 

ECMM2011 
The third European Conference on Molecular Magnetism 

Paris, November 22-25, 2011 
http://www.ecmm-paris2011.u-psud.fr/ 

 
Organized at “Les Cordeliers”, 15, rue de l’école de médecine, 75006, Paris 
(http://www.upmc.fr/fr/culture/patrimoine/sites_historiques/les_cordeliers.html) by 
 

Université Paris Sud 11
Université Pierre et Marie Curie 

Centre National de la Recherche Scientifique 
Université Versailles-Saint Quentin 

European Institute of Molecular Magnetism 
 

 
INVITED SPEAKERS 

(http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique7) 
 

•Andreas Heinrich 
IBM Research Center, Almaden 
United States of America 
http://domino.research.ibm.com/comm/research_people.nsf/pages/heinrich.index.html 
 
•Mikhail Katsnelson 
Institute for Molecules and Materials, Radboud University of Nijmegen 
The Netherlands 
http://www.theorphys.science.ru.nl/people/katsnelson/ 
 
•Stephen Mann FRS 
Centre for Organized Matter Chemistry, University of Bristol 
United Kingdom 
http://www.chm.bris.ac.uk/inorg/mann/webpage.htm 
 
•Jose Antonio Real 
Department of Chemistry, Valencia University 
Spain 
http://www.uv.es/smolmat/index.html 
 
•Dimitrije Stepanenko 
Department of Physics, University of Basel 
Switzerland 
http://quantumtheory.physik.unibas.ch/stepanenko/ 
 
 

INVITED SPEAKERS (Olivier Kahn session) 
Organized under the auspices of the French Academy of Science 

 
•Bruno Chaudret, member of the French Academy of Science 
Laboratoire de Chimie de Coordination du CNRS and Laboratoire de Physique et de Chimie des 
Nano-Objets, Toulouse, France 
http://www.academie-sciences.fr/membres/C/Chaudret_Bruno.htm 
 
•Jean-Jacques Girerd 
Université Paris Sud 11, Institut de Chimie Moléculaire et des Matériaux d’Orsay, Orsay, France 
http://www.icmo.u-psud.fr/Labos/LCI/cv/jjg.php 
 
•Laureate of the Olivier Kahn Award 



 

REGISTRATION 
(http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique10) 

 
Deadline for registration: 30 July 2011 
 
PhD students 
• Conference fee: 210€ 
• Conference fee and conference dinner attendance: 270€ 
 
Post-doctoral researcher 
• Conference fee: 250€ 
• Conference fee and conference dinner attendance: 310€ 
 
Scientist 
• Conference fee: 470€ 
• Conference fee and conference dinner attendance: 530€ 
 
Conference fee includes: Attendance at the sessions, lunches, refreshments throughout 
the meeting, conference bag including book of abstracts, free on-site wifi access 
Please note that accommodation is not included in registration fee 
 

 
ABSTRACT SUBMISSION 

(http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique11) 
 

Deadlines for abstract submission: 
• Oral communication 1 May 2011 
• Poster communication 15 June 2011 

 
Abstract submission is strictly restricted to one per attendee. Submitting more than one 
abstract will cause systematic rejection. Please also note that there will be a limited 
number of presented posters. 
 
 

ACCOMMODATION 
http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique13) 

 
Accommodation is not included in the registration fee. Delegates can book hotel rooms 
around the conference site, which is in the centre of Paris. A list of hotels will soon be 
provided on the website 
 

VENUE 
(http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique12) 

 
The conference site in the centre of Paris at the following address: Les Cordeliers, 15, rue 
de l’école de médecine, 75006, Paris. 
The closet stations are: 
Metro Odéon, Line 4 or 10 
RER B : Saint-Michel or Luxembourg 
RER C : Saint-Michel 

 



 

CONFERENCE PROGRAMM SCHEME 
(http://www.ecmm-paris2011.u-psud.fr/spip.php?rubrique8) 

 

 
 



Prof. Carlo Maria Canali 
Linnaeus University, School of Computer Science, Physics, and Mathematics 

Norra vägen 49, 391 82 Kalmar, Sweden 
 

Phone +46(0)480-446995   Fax +46(0)480-446192   E-mail Carlo.Canali@lnu.se                                                  

Web  http://lnu.se/employee/carlo.canali?l=en 

 

 
 

31/03/2012 

 

Invitation to participate in the 5th Workshop of the NordForsk network: Nanospintronics: 
theory and simulations. 

 

Dear Dr. Stepanenko, 

The NordForsk network on nanospintronics that I coordinate will organize its 5th annual meeting at 
Borgholm on the island of Öland, off the coast of Kalmar, in the period June 12-14, 2012. 

Highlights of the workshop are: (i) studies of individual magnetic impurities in semiconductors, 
which could lead to the realization of a novel class of versatile spin transistors consisting of one 
magnetic atom; (ii) new theoretical approaches studying the time evolutions of individual atomic 
spins (iii) and the recent detection of a special type of “quasi-particles” known as Majorana 
fermions, in semiconductor nanowires attached to superconducting leads. 

More information on the workshop and on the network can be found at: 

http://lnu.se/research-groups/condensed-matter-physics/nanospintronics-network-/workshops/fifth-
nordforsk-nanospintronics-workshop?l=en 

It is my pleasure to invite you to give at talk the workshop. I would be grateful if you could let me 
know by May 16 whether or not you accept this invitation, and the title and abstract of your 
presentation. The network will reimburse living expenses and provide a contribution toward travel 
expenses. 

 

Best wishes,  

 

     Carlo Maria Canali 

mailto:Carlo.Canali@lnu.se�
http://lnu.se/employee/carlo.canali?l=en�
http://lnu.se/research-groups/condensed-matter-physics/nanospintronics-network-/workshops/fifth-nordforsk-nanospintronics-workshop?l=en�
http://lnu.se/research-groups/condensed-matter-physics/nanospintronics-network-/workshops/fifth-nordforsk-nanospintronics-workshop?l=en�
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Session S23 - Quantum Computing I. 
FOCUS session, Thursday morning, March 21 
203, Indiana Convention Center

[S23.008] Anisotropic Spin Exchange in Pulsed Quantum Gates
Dimitrije Stepanenko, N.E. Bonesteel (NHMFL and Dept. of Physics, Florida State University), David
DiVincenzo (IBM Research Division, T. J. Watson Research Center)

The exchange interaction between spins is a promising physical resource for carrying out two qubit
quantum gates in quantum computers. For the idealized case of vanishing spin-orbit coupling, this
interaction has the isotropic form J S_1 \cdot S_2, and the resulting quantum gates can be used for
universal quantum computation with appropriate qubit coding. However, for any realistic implementation,
there will be small anisotropic corrections to this purely isotropic form. When carrying out a quantum
gate by pulsing this interaction, these corrections will not, in general, commute with themselves at
different times. This makes the problem of determining the resulting quantum gate nontrivial. To address
this, we derive an effective Hamiltonian which produces the same quantum gate as a given pulse, but
which does commute with itself at different times. Through a symmetry analysis of this effective
Hamiltonian we show that time-symmetric pulsing of the coupling automatically eliminates several
undesirable terms. Further, we show that well-chosen pulse shapes produce an effectively isotropic
exchange gate which can be used for universal quantum computation.

 Part S of program listing
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Session X19 - Quantum Information Science: Semiconductors I. 
ORAL session, Thursday afternoon, March 06 
Room 11AB, Austin Convention Center

[X19.010] Spin-Orbit Coupling and Time-Symmetric Pulsing of
Quantum Gates
D. Stepanenko, N.E. Bonesteel (Dept. of Physics and NHMFL, Florida State University), G. Burkard,
D.P. DiVincenzo (IBM Research Division, T. J. Watson Research Center), D. Loss (Dept. of Physics and
Astronomy, University of Basel)

We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction
in double quantum dots. Spin-orbit coupling enters as a small spin rotation when electrons tunnel between
dots. For an adiabatic pulse the gate is described by a unitary operator U acting on the four-dimensional
Hilbert space of two qubits. Taking the spin-orbit precession axis to be parallel to \hat z, symmetry
requires that U = \exp-i\lambda(S_1\cdotS_2 + \beta (S_1^x S_2^y - S_1^y S_2^x) + \gamma (S_1^x
S_2^x + S_1^y S_2^y) +\alpha(S_1^z - S_2^z)/2). If \lambda = \pi/2 and \alpha = 0 the gate U_g = U
e^i\pi S_2^z U is independent of \beta and \gamma and, together with single spin rotations, can be used to
form a controlled-not gate. This simple construction is spoiled if \alpha \ne 0. We give a nonperturbative
proof that \alpha = 0 for time-symmetric pulsing. The effect of time asymmetry is studied by numerically
integrating the Schrödinger equation using parameters appropriate for GaAs. We find \alpha = C s r where
s and r are dimensionless measures of spin-orbit coupling and pulse time asymmetry, respectively, and C
is a number of order 1.
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Abstract Submitted
for the MAR05 Meeting of

The American Physical Society

Control of Anisotropic Spin Exchange in Quantum Dots DIM-
ITRIJE STEPANENKO, LAYLA HORMOZI, NICHOLAS BONESTEEL, Dept. of
Physics, NHMFL and MARTECH, Florida State University, KERWIN FOSTER,
Dillard University — To first order in spin-orbit coupling, the exchange interaction
between spins in coupled quantum dots has the form J(S1·S2+~β·(S1×S2)). Recently
we have shown that the ability to control the Dzyaloshinski-Moriya vector ~β is a po-
tentially useful resource for quantum computation.1 Here we study microscopically
the degree of this control for coupled quantum dots in III-V semiconductors. At the
level of the Hund-Mulliken (HM) approximation, in which one orbital is kept per
dot, spin-orbit coupling enters as a small spin precession during interdot tunneling.
~β is proportional to this precession angle, and its dependence on dot parameters
(e.g., interdot distance and dot size) can be strongly enhanced by ferromagnetic
direct exchange. We determine the range of effective ~β values in quantum gates
produced by pulsing the exchange interaction through numerical integration of the
Schrödinger equation. Anisotropy in any particular gate is determined by the pulse
duration, which is limited by decoherence for slow pulses and adiabaticity for fast
pulses. The effects of going beyond the HM approximation, keeping more than one
orbital per dot, are also discussed.

1D.Stepanenko, N.E.Bonesteel, PRL 93, 140501 (2004).

Dimitrije Stepanenko
Dept. of Physics, NHMFL and MARTECH, Florida State University
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Anisotropic Spin Exchange in Coupled Quantum Dots KERWIN
FOSTER, Dillard University, LAYLA HORMOZI, DIMITRIJE STEPANENKO,
NICHOLAS BONESTEEL, Dept. of Physics and NHMFL, Florida State University
— We study the effect of spin-orbit coupling on the exchange interaction between
spins in coupled quantum dots in III-V semiconductors. Our motivatation is re-
cent work showing that spin-orbit induced anisotropic corrections to the isotropic
Heisenberg exchange are potentially useful for quantum computation.1 We show
that ferromagnetic direct exchange enhances the anisotropy of the interaction by re-
ducing the size of the isotropic term — an important effect if these terms are going to
used for quantum computation. If only one orbital is kept per dot (Hund-Mulliken
approximation) the effect of ferromagnetic direct exchange is overestimated for large
dots.2 This can be seen, for example, by noting that the calculated isotropic ex-
change coupling becomes negative in zero magnetic field for some interdot distances,
in violation of the Lieb-Mattis theorem. To reliably estimate the enhancement of
the anisotropy, we therefore work within an approximation in which more than one
orbital is kept per dot, and show that this new approximation is applicable to a
wider range of dot parameters. Apart from the improved reliability of the approx-
imation, adding more orbitals gives new insight into the symmetry of the resulting
interaction.
1D. Stepanenko and N.E. Bonesteel, PRL 93, 140501 (2004).
2G. Burkard, D. Loss, and D.P. DiVincenzo, PRB 59, 2070 (1999).
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Enhancement of electron spin coherence by optical preparation
of nuclear spins DIMITRIJE STEPANENKO, GUIDO BURKARD, University
of Basel, GEZA GIEDKE, Max Planck Institute for Quantum Optics, Garching,
ATAC IMAMOGLU, ETH Zurich — We study a large ensemble of nuclear spins
interacting with a single electron spin in a quantum dot under optical excitation and
photon detection. When a pair of applied laser fields satisfy two-photon resonance
between the two ground electronic spin states, detection of light scattering from
the intermediate exciton state acts as a weak quantum measurement of the effective
magnetic (Overhauser) field due to the nuclear spins. If the spin were driven into a
coherent population trapping state where no light scattering takes place, then the
nuclear state would be projected into an eigenstate of the Overhauser field operator
and electron decoherence due to nuclear spins would be suppressed: we show that
this limit can be approached by adapting the laser frequencies when a photon is
detected. We use a Lindblad equation to describe the time evolution of the driven
system under photon emission and detection. Numerically, we find an increase
of the electron coherence time from 5 ns to 500 ns after a preparation time of 10
microseconds.

Dimitrije Stepanenko
University of Basel
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Quantum gates between capacitively coupled double quantum dot
two-spin qubits GUIDO BURKARD, DIMITRIJE STEPANENKO, University of
Basel — We study the two-qubit controlled-not gate operating on qubits encoded in
the spin state of a pair of electrons in a double quantum dot. We assume that the
electrons can tunnel between the two quantum dots encoding a single qubit, while
tunneling between the quantum dots that belong to different qubits is forbidden.
Therefore, the two qubits interact exclusively through the direct Coulomb repulsion
of the electrons. We find that entangling two-qubit gates can be performed by the
electrical biasing of quantum dots and/or tuning of the tunneling matrix elements
between the quantum dots within the qubits. The entangling interaction can be
controlled by tuning the bias through the resonance between the singly-occupied
and doubly-occupied singlet ground states of a double quantum dot.

Guido Burkard
University of Basel
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Quantum gates between capacitively coupled double quan- tum dot two-spin qubits — •Dimitrije Stepanenko and 
Guido Burkard — Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 
Basel, Switzerland

We study the two-qubit controlled-not gate operating on qubits en- coded in the spin state of a pair of electrons in a 
double quantum dot. We assume that the electrons can tunnel between the two quantum dots encoding a single 
qubit, while tunneling between the quantum dots that belong to different qubits is forbidden. Therefore, the two 
qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find that entangling two-qubit 
gates can be performed by the electrical biasing of quantum dots and/or tuning of the tunnel- ing matrix elements 
between the quantum dots within the qubits. The entangling interaction can be controlled by tuning the bias through 
the resonance between the singly-occupied and doubly-occupied sin- glet ground states of a double quantum dot.
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Electric quantum control of spins in molecular magnets — •MIRCEA TRIF1,
DIMITRIJE STEPANENKO1, FILIPPO TROIANI2, and DANIEL LOSS1 — 1Department of Physics,
University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

— 2CNR-INFM National Research Center S3 c/o Dipartimento di Fisica via G.
Campi 213/A, 41100, Modena, Italy

Single molecule magnets show clear signatures of coherent behavior. The control
of the spins can allow for the quantum information processing and study of
quantum dynamics. Electric fields fields are good for quantum control at the
nanoscale. There are many SMMs and it is hard to predict which ones are
suitable for control. Here, we provide two tools for the search for suitable SMMs.
We analyze the form and mechanisms that lead to spin-electric coupling in the
molecules with the shape of regular polygons. We find that the SEC in triangles
is governed by the modification of the exchange interaction, while in pentagon
the spin-electric coupling proceeds via spin-orbit interaction. The symmetry
analysis leaves the coupling constant undetermined, and we apply a Hubbard
model to single-molecule magnet to find a connection between the spin-electric
coupling and the properties of the chemical bonds in a molecule. We study the
experimental signatures of spin-electric coupling in the standard experiments,
NMR, ESR, and thermodynamics.
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Interference of heavy holes in an Aharonov-Bohm ring — •DIMITRIJE

STEPANENKO1, MINCHUL LEE2, GUIDO BURKARD3, and DANIEL LOSS1 — 1University of Basel,
Basel, Switzerland — 2Kyung Hee University, Yongin, Korea — 3University of
Konstanz, Konstanz, Germany

We study the coherent transport of heavy holes through a one-dimensional ring
in the presence of spin-orbit coupling. Spin-orbit interaction of holes, cubic in the
in-plane components of momentum, gives rise to an angular momentum
dependent spin texture of the eigenstates and influences transport. We analyze
the dependence of the resulting differential conductance of the ring on hole
polarization of the leads and the signature of the textures in the Aharonov-Bohm
oscillations when the ring is in a perpendicular magnetic field. We find that the
polarization-resolved conductance reveals whether the dominant spin-orbit
coupling is of Dresselhaus or Rashba type, and that the cubic spin-orbit coupling
can be distinguished from the conventional linear coupling by observing the four-
peak structure in the Aharonov-Bohm oscillations.
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Spin-Electric Coupling in Molecular Magnets MIRCEA TRIF, De-
partment of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel,
Switzerland, FILIPPO TROIANI, DIMITRIJE STEPANENKO, DANIEL LOSS,
BASEL/MODENA COLLABORATION — We study the triangular antiferromag-
net Cu3 in external electric fields, using symmetry group arguments and a Hubbard
model approach. We identify a spin-electric coupling caused by an interplay be-
tween spin exchange, spin-orbit interaction, and the chirality of the underlying spin
texture of the molecular magnet. This coupling allows for the electric control of the
spin (qubit) states, e.g. by using an STM tip or a microwave cavity. We propose an
experimental test for identifying molecular magnets exhibiting spin-electric effects.

Mircea Trif
Department of Physics, University of Basel,

Klingelbergstrasse 82, CH-4056 Basel, Switzerland
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Quantum control of molecular antiferromagnets: an approach
based on electric fields MIRCEA TRIF, DIMITRIJE STEPANENKO, Univer-
sity of Basel, FILIPPO TROIANI, CNR-INFM National Research Center, Modena,
DANIEL LOSS, University of Basel — Single molecule magnets show clear signatures
of coherent behavior, and have a wide variety of effective low-energy spin Hamilto-
nian suitable for encoding qubits and spin-based quantum information processing.
At the nanoscale, the prefered mechanism for control of quantum systems involves
application of electric fields, which can be locally applied, and rapidly switched. In
this work, we provide the tools for the search for single molecule magnets suitable
for electric control. We analyze the mechanisms that leads to spin-electric coupling
in the molecules with the shape of regular polygons. We find that the spin-electric
coupling in triangular molecules is governed by the modification of the exchange
interaction, while in pentagonal molecules the spin-electric coupling proceeds via
spin-orbit interaction. We apply a Hubbard model to single-molecule magnet to
find a connection between the spin-electric coupling and the properties of the chem-
ical bonds in a molecule. We study the experimental signatures of spin-electric cou-
pling in nuclear magnetic resonance, electron spin resonance, magnetization, electric
polarization, and specific heat of the molecules.

Mircea Trif
University of Basel
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Singlet-triplet splitting in double dots due to spin orbit
and hyperfine interactions DIMITRIJE STEPANENKO, University
of Basel, MARK RUDNER, BERTRAND I. HALPERIN, Harvard Uni-
versity, DANIEL LOSS, University of Basel — We analyze the low-
energy spectrum of a detuned double quantum dot in the presence of
magnetic fields, spin orbit interaction, and nuclear spins, and focus on
the regime of spin blockade. Starting from a realistic model for two in-
teracting electrons in a double dot, we derive perturbatively an effective
two-level Hamiltonian in the vicinity of an avoided crossing between sin-
glet and triplet levels, which are coupled by the spin-orbit and hyperfine
interactions. We evaluate the level splitting at the anticrossing in var-
ious parameter regimes, and show that it depends on two controllable
parameters: the angle between the external magnetic field and the in-
ternal spin orbit field, and on the detuning, as well as on the difference
between nuclear fields in the two dots. We identify a parameter regime
where spin orbit and hyperfine terms can become of equal strength and
propose a protocol for tuning their relative sizes.

X Prefer Oral Session
Prefer Poster Session

Dimitrije Stepanenko
Dimitrije.Stepanenko@unibas.ch

University of Basel

Date submitted: 19 Jan 2012 Electronic form version 1.4



VOLUME 87, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 12 NOVEMBER 2001

2

Anisotropic Spin Exchange in Pulsed Quantum Gates

N. E. Bonesteel and D. Stepanenko
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310

D. P. DiVincenzo
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598

(Received 2 July 2001; published 30 October 2001)

We show how to eliminate the first-order effects of the spin-orbit interaction in the performance of a
two-qubit quantum gate. Our procedure involves tailoring the time dependence of the coupling between
neighboring spins. We derive an effective Hamiltonian which permits a systematic analysis of this
tailoring. Time-symmetric pulsing of the coupling automatically eliminates several undesirable terms in
this Hamiltonian. Well chosen pulse shapes can produce an effectively isotropic exchange gate, which
can be used in universal quantum computation with appropriate coding.

DOI: 10.1103/PhysRevLett.87.207901 PACS numbers: 03.67.Lx, 71.70.Ej, 85.35.Be
The exchange interaction between spins is a promis-
ing physical resource for constructing two-qubit quantum
gates in quantum computers [1–5]. In the idealized case of
vanishing spin-orbit coupling, this interaction is isotropic,
and any Hamiltonian describing time-dependent exchange
between two spin-1�2 qubits, H0�t� � J�t�S1 ? S2, com-
mutes with itself at different times. Thus, the resulting
quantum gate depends on J�t� only through its time in-
tegral — a convenient simplification, particularly because,
when carrying out quantum gates, the exchange interac-
tion should be pulsed adiabatically on time scales longer
than h̄�DE, where DE is a typical level spacing associated
with the internal degrees of freedom of the qubits [3]. In
addition, isotropic exchange alone has been shown to be
sufficient for universal quantum computation, provided the
logical qubits of the computer are properly encoded [6,7].

Given the potential advantages of isotropic exchange for
quantum gates, it is important to understand the effect of
the inevitable anisotropic corrections due to spin-orbit cou-
pling. When these corrections are included, the Hamilto-
nian describing time-dependent exchange is

H�t� � J�t� �S1 ? S2 1 A�t�� , (1)

where

A�t� � b�t� ? �S1 3 S2� 1 S1 ? IG�t� ? S2 . (2)

Here b�t� is the Dzyaloshinski-Moriya vector, which is
first order in spin-orbit coupling, and IG�t� is a symmet-
ric tensor which is second order in spin-orbit coupling
[8]. Although these corrections may be small, they will,
in general, not be zero unless forbidden by symmetry.
For example, Kavokin has recently estimated that b�t�
could be on the order of 0.01 for coupled quantum dots in
GaAs [9].

In this Letter, we construct the quantum gates produced
by pulsing H�t�. This is nontrivial because H�t� typi-
cally does not commute with itself at different times. We
represent the resulting gates using an effective Hamilto-
nian H�t�, which we derive perturbatively in powers of the
07901-1 0031-9007�01�87(20)�207901(4)$15.00
spin-orbit coupling. H�t� is simple to work with because it
does commute with itself at different times. As an applica-
tion of this effective Hamiltonian, we use it to tailor pulse
forms that effectively eliminate any first-order anisotropic
corrections.

The quantum gate obtained by pulsing a particular H�t�
is found by solving the time-dependent Schrödinger equa-
tion i d

dt jC�t�� � H�t� jC�t��, where jC�t�� is the state
vector describing the two spin-1�2 qubits (here, and in
what follows, h̄ � 1). In general this problem cannot be
solved analytically. However, since we expect spin-orbit
coupling to be small, it is natural to attempt a perturbative
solution in powers of b�t� and IG�t�. To do this, it is first
necessary to solve the unperturbed [A�t� � 0] problem
exactly. This corresponds to pulsing the isotropic exchange
interaction, for which the unitary time evolution operator
at time t is

U0�t� � T exp

µ
2i

Z t

2`
J�t0�S1 ? S2 dt0

∂

� exp�2ix�t�S1 ? S2� , (3)

where

x�t� �
Z t

2`

J�t0� dt0. (4)

Here T is the usual Dyson time ordering, and the sec-
ond equality in (3) follows from the fact that isotropic
exchange commutes with itself at different times. The un-
perturbed quantum gate produced by a full pulse is then
U0�t ! `� � exp�2ilS1 ? S2�, where l �

R`
2` J�t� dt

is the pulse strength. This is a well studied class of quan-
tum gates [1]. For l � p the result is a simple swap, and
for l � p�2 it is a “square root of swap” which, in con-
junction with single-qubit rotations, can be used to con-
struct a controlled-not gate [1].

We now consider the effect of the anisotropic cor-
rections A�t�. Given the evolution operator for the
unperturbed system, it is possible to recast the problem
© 2001 The American Physical Society 207901-1
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in the interaction picture by introducing the state
vector jCI�t�� � U

y
0 �t� jC�t�� which satisfies the

Schrödinger equation i
d
dt jCI�t�� � J�t�AI �t� jCI �t��,

where AI�t� � U
y
0 �t�A�t�U0�t�. A formal expression

for the unitary operator describing a full pulse in this
picture is then

UI � T exp

µ
2i

Z `

2`
J�t�AI�t� dt

∂
. (5)

Expanding the exponential in (5) generates the standard
time-dependent perturbation theory expansion for UI in
powers of AI �t�. Returning to the Schrödinger picture,
the unitary operator describing the full quantum gate is
U � exp�2ilS1 ? S2�UI .

Rather than simply carrying out the perturbation expan-
sion for UI , it is useful to parametrize the resulting quan-
tum gate in terms of an effective Hamiltonian of the form

H�t� � J�t� �S1 ? S2 1 A� , (6)

where the time dependence of J�t� is the same as in H�t�,
and A is independent of time. Unlike H�t�, the effective
Hamiltonian H�t� commutes with itself at different times.
Thus, after a full pulse, H�t� yields the quantum gate U �
exp�2il�S1 ? S2 1 A��. Our goal is then to find the
operator A for which U is equal to the quantum gate
produced by a full pulse of H�t�.

Because H�t� is traceless at all times t, the correspond-
ing unitary time evolution operator has determinant 1, i.e.,
U [ SU�4�. Requiring that our effective Hamiltonian pro-
duces the same quantum gate then implies that A must
also be a traceless Hermitian operator. The most general
such operator acting on the Hilbert space of two qubits can
be written

A � b ? �S1 3 S2� 1 S1 ? IG ? S2

1
a

2
? �S1 2 S2� 1

m

2
? �S1 1 S2� , (7)
207901-2
where IG is a symmetric tensor. This can be seen by not-
ing that A is indeed traceless and Hermitian, and has 15
independent real valued parameters, the number of degrees
of freedom for a 4 3 4 traceless Hermitian matrix.

Before proceeding it is instructive to classify the terms in
A according to their symmetry properties under inversion
(S1 $ S2) and time reversal (Si ! 2Si). Under inversion
b and a change sign, while IG and m do not. Since b�t�
also changes sign under inversion this implies that b and
a are first order in spin-orbit coupling, while IG and m are
second order. Under time reversal a and m change sign,
while b and IG are unaffected. We therefore expect that
for time-reversal symmetric pulses, i.e., pulses for which
H�t0 2 t� � H�t� (where t0 is the center of the pulse), a
and m will vanish.

To determine A for a given pulse, we note that the
requirement that U � U implies

T exp

µ
2i

Z `

2`

J�t�AI �t�dt

∂

� T exp

µ
2i

Z `

2`

J�t�AI �t�dt

∂
, (8)

where AI �t� � U
y
0 �t�AU0�t�. Expanding both sides of

(8) to a given order in spin-orbit coupling and equating
matrix elements yields a set of 15 independent equations.
These equations can then be solved for the parameters in
A in terms of J�t�, b�t�, and IG�t�.

We have carried out this calculation to obtain the follow-
ing expressions valid to second order in spin-orbit coupling
[i.e., second order in b�t� and first order in IG�t�]:

a �
1

2 sin�l�2�

Z `

2`
b�t� sin

µ
x�t� 2

l

2

∂
J�t� dt , (9)

b �
1

2 sin�l�2�

Z `

2`
b�t� cos

µ
x�t� 2

l

2

∂
J�t�dt , (10)
m �
1

4l

Z `

2`
J�t1�dt1

Z t1

2`
J�t2� dt2��b�t1� 3 b�t2�� cos�x�t1� 2 x�t2�� 1 2�a 3 b� sin�x�t1� 2 x�t2��	 , (11)

and

IGab �
1
l

Z `

2`
IGab�t�J�t� dt 1

1
4l

Z `

2`
J�t1� dt1

Z t1

2`
J�t2� dt2Iab�t1, t2� sin�x�t1� 2 x�t2�� , (12)

where

Iab�t1, t2� � 2�b�t1� ? b�t2� 2 b
2

2 a2�dab 2 �ba�t1�bb�t2� 1 ba�t2�bb�t1� 2 2babb 2 2aaab� . (13)
The criterion for the validity of these expressions is
that jlbj,jlaj ø 1, where the factor of l is included
because it is the product lA that enters the unitary op-
erator U. It is then apparent that, for any finite b�t�
and IG�t�, our expansion breaks down when l ! 2pn for
n � 61, 62, . . . , because sin�l�2� ! 0 at these points.
However, for l ! 0, while a and b may diverge, la
and lb will always remain finite, and so, provided b�t�
and IG�t� are small, our expansion remains valid in this
limit [10].

As expected from symmetry considerations, we find that
b and a are first order in spin-orbit coupling, while IG
207901-2
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and m are second order. It is also readily verified that for a
time-reversal symmetric pulse the integrals (9) and (11) for
a and m vanish. Thus, these non-time-reversal symmetric
terms are generated only by pulses that are themselves not
time-reversal symmetric.

Given the possibility of using the exchange interaction
alone to perform universal quantum computation [6,7],
which depends crucially on the interaction being as close to
isotropic as possible, a natural questions arises: Is it pos-
sible to ameliorate the effect of spin-orbit induced
anisotropy on exchange-based quantum gates? We show
below that the answer is yes —by carefully shaping
pulses, it is possible to effectively eliminate the first-order
anisotropy terms leaving only a residual second-order
anisotropy.

There are two first-order terms in H�t�, a and b. We
have already seen how to eliminate a. By choosing a
time-reversal symmetric pulse both a and m will vanish
from H�t�. Although b cannot similarly be eliminated, for
appropriate pulse forms it can be effectively eliminated by
performing a local rotation in spin space.

Let S0
2 � IR ? S2 where IR is a rotation matrix con-

structed to eliminate b from H�t� so that

H�t� � J�t� �S1 ? S0
2 1 S1 ? IG 0 ? S0

2� , (14)

where IG 0 is a symmetric tensor. The precise form of this
rotation depends on both b and IG and cannot be expressed
simply. However, up to second order in b, it is given by

IRab � dab 1
X
c

eabcbĉ 2 �b2
dab 2 babb��2 1 O�b3� ,

(15)

and this is sufficient for our purpose of eliminating first-
order anisotropy. Using (15) one finds the residual
anisotropy in (14) is, up to second order in b,

IG 0
ab � IGab 1 �b2

dab 2 babb��2 1 O�b4� . (16)

Thus, in this rotated coordinate system the first-order
anisotropy vanishes and all corrections to the isotropic ex-
change interaction are second order in spin-orbit coupling.

The ability to eliminate b from H�t� by simply rotating
one qubit with respect to the other indicates a procedure
for eliminating the first-order effects of spin-orbit coupling
in any quantum computer that uses tunable exchange for
quantum gates. Suppose that symmetric pulses are used,
so that a � 0, and pulse forms are chosen so that b is
the same for all pulse strengths l. Then, if the qubits in
the computer form a linear array, or any arrangement for
which there are no closed loops of qubits connected by
two-qubit gates, it will be possible to define a local spin-
space coordinate system in which the effective interaction
between any two neighboring qubits has the form (14).
While this procedure does not completely eliminate the
anisotropy, it does reduce it from an effect that is first order
in spin-orbit coupling to one that is second order.
207901-3
To demonstrate how (10) can be used to tailor pulse
shapes that lead to the same b for all pulse strengths l,
consider the family of pulses,

J�t; l� � J0�l�sech2�2t�t�l�� , (17)

where J0�l� and t�l� are, respectively, the pulse height
and width, and the pulse strength is l �

R`
2` J�t; l� �

J0�l�t�l�. To evaluate (10) it is also necessary to know
the time dependence of b�t�. Determining the precise
form of this dependence will require a detailed microscopic
study of the specific realization of the exchange interaction
being considered. Here we take, as the simplest possible
illustrative model, a linear dependence on J�t; l�,

b�t� � b1J�t; l� , (18)

for which the integral (10) can be performed analytically,
with the result

b � b1
4J0�l�

l2
�2 2 l cot�l�2�� . (19)

Also, because these pulses are time-reversal symmetric, (9)
gives a � 0.

Equation (19) can be used to exploit the freedom to
choose J0�l� and t�l�, while keeping J0�l�t�l� � l, to
shape pulses that keep b fixed for different pulse strengths.
For example, if the pulse parameters for l � p (swap) are
fixed to be J0�p� and t�p�, then, for general l, one should
take

J0�l� � J0�p�
2l2

p2

1
2 2 l cot�l�2�

, (20)

and

t�l� � t�p�
p

2l
�2 2 l cot�l�2�� . (21)

These pulse forms are shown in Fig. 1 for various val-
ues of pulse strength l. Note that, as l increases, the
pulse height decreases. This is because b becomes in-
creasingly sensitive to b�t� with increasing l until, in the
limit l ! 2p, the pulse height must go to zero if b is to be
kept constant. Although our perturbation expansion for A
breaks down as l ! 2p, for this example the pulse heights
are chosen so that the parameters in A remain small, and
we are always within the perturbative regime. The pulse
forms defined by (20) and (21) are therefore valid, even
in this singular limit. Of course, in practice, pulses near
l � 2p will be problematic because of the diverging pulse
length.

Once the first-order corrections to H�t� are eliminated,
the residual second-order anisotropy can be found by first
evaluating (12) and then performing the local rotation to
eliminate b. As a specific example, consider the special
case for which the form of the pulsed Hamiltonian is

H�t� � J�t�S1 ? IR�t� ? S2 , (22)
207901-3
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FIG. 1. Pulse forms tailored to produce the same b for dif-
ferent pulse strengths l for the example described in the text.
Of the pulses shown, the narrowest with the highest peak is for
l � p�4. l then increases in increments of p�4 as the peak
height decreases until, for the widest pulse with the lowest peak,
l � 7p�4. As l ! 2p the pulse height goes to zero.

where IR�t� is a time-dependent rotation matrix. Such ro-
tated exchange is, in fact, precisely the form of anisotropy
found microscopically when spin-orbit corrections are in-
cluded in the usual Hubbard model treatment of superex-
change [11,12]. It has also been suggested that this form is
appropriate for localized electrons in semiconductors [9].
In the present context, (22) is of interest because, if the
rotation matrix IR�t� were independent of time, our local
rotation scheme would eliminate anisotropy to all orders,
rather than just to first order in spin-orbit coupling. It is
therefore natural to ask to what degree the fact that IR�t�
depends on time spoils this hidden symmetry.

For the particular form of anisotropic exchange in (22),
the symmetric anisotropy term is, to second order in b�t�,

IGab�t� � 2�b�t�2dab 2 ba�t�bb�t���2 1 O�b�t�4� .
(23)

For this IG�t�, if we continue to take the pulse form
(17) and b�t� from (18) then the expression (12) can be
evaluated analytically. After performing the local rotation
to eliminate b we find, using (16), that the residual
anisotropy in H�t� is

IG0
ab �

8J0�l�2

3l4 �l2 1 6l cot�l�2� 2 12�

3 �b2
1dab 2 b1ab1b� 1 O�b4

1 � . (24)
207901-4
Thus even for the rotated exchange (22), if the rotation
depends on time we are still left with residual second-order
anisotropy after a pulse.

In summary, we have studied the effects of anisotropic
corrections due to spin-orbit coupling on quantum gates
produced by pulsing the exchange interaction between two
spin-1�2 qubits. These quantum gates are parametrized
by an effective Hamiltonian that commutes with itself at
different times and produces the same quantum gate as
a given pulse. Expressions for the various parameters in
this effective Hamiltonian are obtained perturbatively in
powers of spin-orbit coupling and used to shape pulses
that effectively eliminate first-order spin-orbit corrections
to quantum gates. The ability to reduce spin-orbit ef-
fects from first order to second order should be useful for
any quantum computing scheme which relies on isotropic
exchange.

N. E. B. and D. S. acknowledge support from the U.S.
Department of Energy through Grant No. DE-FG02-
97ER45639 and the National Science Foundation through
Grant No. DMR-0103034. D. P. D. is grateful for support
from the National Security Agency and the Advanced
Research and Development Activity through Army Re-
search Office Contracts No. DAAG55-98-C-0041 and
No. DAAD19-01-C-0056.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120
(1998).

[2] B. E. Kane, Nature (London) 393, 133 (1998).
[3] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B

59, 2070 (1999).
[4] X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301

(2000).
[5] R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).
[6] D. Bacon et al., Phys. Rev. Lett. 85, 1758 (2000).
[7] D. P. DiVincenzo et al., Nature (London) 408, 339

(2000).
[8] I. Dzyaloshinski, J. Phys. Chem. Solids 4, 241 (1958);

T. Moriya, Phys. Rev. 120, 91 (1960).
[9] K. V. Kavokin, Phys. Rev. B 64, 075305 (2001).

[10] a and b will diverge as l ! 0 only if J�t� changes
sign. If J�t� is always positive (or always negative), our
expressions for the parameters in A can be simplified by
changing integration variables from t to x � x�t� and using
the fact that dx � J�t�dt. It is then easily seen that a and
b remain finite as l ! 0 for these pulses.

[11] L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys.
Rev. Lett. 69, 836 (1992).

[12] N. E. Bonesteel, Phys. Rev. B 47, 11 302 (1993).
207901-4



A

PHYSICAL REVIEW B 68, 115306~2003!
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We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction
between two single-electron quantum dots. Spin-orbit coupling enters as a small spin precession when elec-
trons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on
the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing
constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in
a simple controlled-NOT construction. Deviations from time-symmetric pulsing spoil this construction. The
effect of time asymmetry is studied by numerically integrating the Schro¨dinger equation using parameters
appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be
proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.
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I. INTRODUCTION

A promising proposal for building a solid-state quantu
computer is based on the notion of using electron sp
trapped in quantum dots as qubits.1 In such a device, two-
qubit quantum gates would be carried out by turning on a
off the exchange interaction between spins on neighbo
dots through suitable pulsing of gate voltages.

When performing such a quantum gate, if nonadiaba
errors2–4 can be safely ignored,5 both the initial and final
states of the two dots will be in the four-dimensional Hilbe
space of two qubits. In the absence of spin-orbit coupli
and neglecting the dipolar interaction between spins, the
tary transformation resulting from such a pulsed excha
gate will necessarily have the form

U5exp2ilSA•SB , ~1!

wherel is a dimensionless measure of the pulse stren
This simple isotropic form is a consequence of symmetry—
spin and space decouple exactly, as they do in the non
tivistic limit, then the system is perfectly isotropic in sp
space. Up to an irrelevant overall phase, gates~1! are the
most general unitary operators with this symmetry acting
a two-qubit Hilbert space.

These isotropic exchange gates are useful for quan
computation. In conjunction with single qubit rotations, th
can be used in a simple construction of a controlled-NOT

gate.1 It has also been shown that, even without single qu
rotations, isotropic exchange gates can be used for unive
quantum computing with proper encoding of logic
qubits.6,7

When the effects of spin-orbit coupling are include
well-isolated single-electron dots will have a twofold Kram
0163-1829/2003/68~11!/115306~9!/$20.00 68 1153
s

d
g

ic

t
,
i-
e

h.
if
la-

n

m

it
sal

,

ers degeneracy and so can still be used as qubits. How
when carrying out a quantum gate the total spin will
longer be a good quantum number. As a result there
inevitably be corrections to the isotropic exchange gates~1!.
Motivated by this fact, a number of authors have conside
anisotropicgates of the form

U5exp2il@SA•SB1b•~SA3SB!

1g„SA•SB2~b̂•SA!~b̂•SB!…#, ~2!

and shown that they have several useful properties. For
ample, in Ref. 8 it was shown that the controlled-NOT con-
struction of Ref. 1 is robust against anisotropic corrections
the form appearing in Eq.~2!. It has also been shown tha
when combined with a controllable Zeeman splitting, ga
~2! form a universal set.9

The anisotropic terms which appear in Eq.~2! are not the
most general corrections to Eq.~1! which can occur when
carrying out an exchange gate in the presence of spin-o
coupling. It is therefore important to ask under what con
tions these corrections can be restricted to have this des
form. The key observation motivating the present work
that, up to an irrelevant overall phase, gates~2! are the most
general two-qubit quantum gates which are both axially sy
metric, i.e., symmetric under rotations about an axis para
to the vectorb in spin space, and symmetric under tim
reversal (Sm→2Sm ,m5A,B). It follows that if these sym-
metries can be maintained throughout the gate operation,
provided nonadiabatic errors can be neglected, the resu
quantum gate isguaranteedto have form~2!. Of course,
symmetry alone cannot determine the values ofl, b, andg.
However, in practice we envision these parameters will
©2003 The American Physical Society06-1
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determined through experimental calibration rather than
croscopic calculation. Therefore we emphasize symmetr
a useful guiding principle.

In this paper we study the effect of spin-orbit coupling
exchange-based quantum gates. For concreteness we
sider a system of two single-electron quantum dots in Ga
The contribution of spin-orbit coupling to the exchange
teraction between localized spins in GaAs has been stu
by Kavokin10 within the Heitler-London approximation, an
by Gor’kov and Krotkov11 who derived the exact asymptot
exchange interaction between hydrogenlike bound state
large separation.

Here we follow Ref. 2 and work within the Hund
Mulliken approximation, keeping one orbital per dot, a
allowing double occupancy. In this approximation, the eff
of spin-orbit coupling is to induce a small spin precess
whenever an electron tunnels from one dot to another.
Hamiltonian governing the two-dot system is therefore a
ally symmetric in spin space with the symmetry axis be
the precession axis of the spin. If the direction of the prec
sion axis does not change while the gate is being pulsed,
the resulting quantum gate will also be axially symmetric

An additional useful symmetry principle, first suggest
in Ref. 12, is that any time-dependent HamiltonianHP(t)
which is time-reversal symmetric at all timest, and which is
then pulsed in a time-symmetric way@HP(t)5HP(2t)#,
will lead to a gate which can be described in terms of
effective time-independent HamiltonianH which is also
time-reversal symmetric. Here we give a proof of this res

Taken together these two results imply that, within t
Hund-Mulliken approximation, if the spin-orbit precessio
axis is fixed and nonadiabatic errors can be ignored, the
tary transformation produced by pulsing the exchange in
action between two quantum dots will necessarily have
desired form~2!, provided the gate is pulsed in a tim
symmetric way.

This paper is organized as follows. In Sec. II we der
the Hund-Mulliken Hamiltonian for a double quantum d
system in the presence of spin-orbit coupling. In Sec. III
develop an effective spin Hamiltonian description which c
be applied to pulsing our double dot system, and we rev
the robust controlled-NOT construction of Ref. 8. The impli-
cations of time-symmetric pulsing are then studied in S
IV, and in Sec. V we present numerical results showing
effect of small time asymmetry of the pulse. Finally, in Se
VI we summarize the results of the paper.

II. HUND-MULLIKEN HAMILTONIAN

We consider a system of two laterally confined quant
dots with one electron in each dot. For concreteness we
sume the dots are formed in a two-dimensional electron
~2DEG! realized in a GaAs heterostructure.

The system is modeled by the Hamiltonian

H5T1C1HSO. ~3!

Here T1C is the Hamiltonian studied in Ref. 2, whereT
5( ihi with
11530
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A~r i ! D 2

1V~r i !, ~4!

andC5e2/eur12r2u is the Coulomb repulsion between ele
trons. We take the 2DEG the dots are formed in to lie in
xy plane, and for GaAs we takem50.067me and e513.1.
For completeness we include a vector potentialA
5(2y,x,0)B/2 which couples the orbital motion of the ele
trons to a uniform magnetic fieldB5Bẑ. We will see in Sec.
III that this orbital coupling does not affect any of our arg
ments based on time-reversal symmetry, while a nonz
Zeeman coupling does.

As in Ref. 2 lateral confinement of the dots is modeled
the double-well potential,

V~x,y!5
mv0

2

2 S 1

4a2
~x22a2!21y2D . ~5!

This potential describes two quantum dots sitting at
points (x,y)5(6a,0). In the limit of large separation the
dots decouple into two harmonic wells with frequencyv0.

Spin-orbit coupling enters the Hamiltonian through t
term

HSO5 (
i 51,2

V~k i !•Si , ~6!

where\k5 p2e/cA. Time-reversal symmetry requires tha
V(k) is an odd function ofk, V(k) 52V(2k). ThusV is
nonzero only in the absence of inversion symmetry.

For definiteness, we take the 2DEG in which the dots
formed to lie in the plane perpendicular to the@001# struc-
tural direction, which then points along thez axis. However,
we allow thex axis, which is parallel to the displaceme
vector of the two dots, to have any orientation with respec
the @100# and @010# structural axes. To describe the depe
dence ofV on k it is then convenient to introduce unit vec
tors ê[110] and ê[1̄10] which point in the@110# and @ 1̄10#
structural directions, respectively, and definek[110]5k
•ê[110] and k[1̄10]5k• ê[1̄10] . We then have, following
Kavokin,10

V~k!.~ f D2 f R!k[110]ê[1̄10]1~ f D1 f R!k[1̄10]ê[110] . ~7!

Here f D is the Dresselhaus contribution13,14 due to the bulk
inversion asymmetry of the zinc-blende crystal structure
GaAs, andf R is the Rashba contribution15 due to the inver-
sion asymmetry of the quantum well used to form the 2DE
These quantities depend on details of the 2DEG confin
potential and so will vary from system to system.

It was pointed out in Ref. 16 thatHSO has a special sym
metry whenf D56 f R . This can be seen directly from Eq
~7!. Whenf D5 f R ( f D52 f R) the direction ofV is indepen-
dent ofk and is fixed to be parallel toê[110] (ê[1̄10]). The full
Hamiltonian ~3! is then invariant under rotations in spi
space about this axis. We will see below that this special c
has a number of attractive features.
6-2
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In the limit of decoupled dots, and ignoring spin-orb
coupling, the single-electron ground states will be the Fo
Darwin ground states centered at (x,y)5(6a,0),

f6a~x,y!5Amv

p\
e2mv[(x7a)21y2]/2\e6 iay/2lB

2
. ~8!

Here v5Av0
21vL

2 is the frequency of the magneticall
squeezed oscillator wherevL5eB/2mc is the Larmor fre-
quency andl B5A\c/eB is the magnetic length. In zer
magnetic field, the size of these wave functions is set by
effective ‘‘Bohr radius’’aB5A\/mv0.

The Fock-Darwin states can be orthogonalized to ob
the Wannier states

FA5
1

A122Sg1g2
~fa2gf2a!, ~9!

FB5
1

A122Sg1g2
~f2a2gfa!, ~10!

where S5^f2aufa& and g5(12A12S2)/S. We can then
introduce second quantized operatorscA

†
a (cAa) and cB

†
a

(cBa) which create~annihilate!electrons in the statesFA
andFB with spin a5↑,↓.

In the Hund-Mulliken approximation we keep one orbit
per dot and allow for double occupancy. This amounts
restricting the full Hilbert space of the problem to the s
dimensional Hilbert space spanned by the states

uS1&5
1

A2
~cA↑

† cB↓
† 2cA↓

† cB↑
† !u0&, ~11!

uS2&5
1

A2
~cA↑

† cA↓
† 1cB↓

† cB↑
† !u0&, ~12!

uS3&5
1

A2
~cA↑

† cA↓
† 2cB↓

† cB↑
† !u0&, ~13!

uT2&5cA↓
† cB↓

† u0&, ~14!

uT0&5
1

A2
~cA↑

† cB↓
† 1cA↓

† cB↑
† !u0&, ~15!

uT1&5cA↑
† cB↑

† u0&. ~16!

In terms of second quantized operators, the Hu
Mulliken Hamiltonian acting in this space, up to an irre
evant overall additive constant, can be written

HHM5 (
a,b5↑,↓

2@cA
†

a~ tHdab1 iP•sab!cBb1H.c.#

1V~SA•SB13/4!1UH~nA↑nA↓1nB↑nB↓!. ~17!

Here
11530
-

e

in

o
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Sm5
1

2 (
a,b5↑,↓

cm
†

asabcmb ~18!

is the spin operator on sitem5A,B,

V5^S1uCuS1&2^T0uCuT0& ~19!

is the ferromagnetic direct exchange,

UH5^S2uCuS2&2^S1uCuS1& ~20!

is the Coulomb energy cost of doubly occupying a dot, a

tH5^FAuhuFB& ~21!

is the interdot tunneling amplitude.
The only contribution from spin-orbit coupling is the ma

trix element

iP5^FAuV~k!uFB&5^FAu
1

\ S px2
e

c
AxD uFB&h,

~22!

where

h5~ f D2 f R!cosuê[1̄10]1~ f D1 f R!sinuê[110] . ~23!

Hereu is the angle thex axis makes with the@110# structural
direction. This term introduces a small spin precession ab
an axis parallel toP through an anglef52 arctan(P/tH)
when an electron tunnels between dots.

It is convenient to express the spin-orbit matrix eleme
asP5slSO where

s5
A~ f D2 f R!2cos2u1~ f D1 f R!2sin2u

aB \v0
~24!

is a dimensionless measure of the strength of spin-orbit c
pling. As stated above,f D and f R depend on details of the
potential confining the electron to the 2DEG. Thusu, f D ,
and f R are all parameters that, in principle, can be enginee
to control the value ofs. For example, ifu50 thens5u f D
2 f Ru/(aB\v0). Thus, for this orientation of the dots, if it is
possible to design a system in whichf D5 f R , s can be made
to vanish. Even if such perfect cancellation cannot
achieved, minimizing the differencef D2 f R will reduces.

In what follows we leaves as a free parameter. We est
mate that for GaAs quantum dotss,0.1 for typical
parameters.10 The remaining contribution to the matrix ele
mentP is then

lSO5
\v0

2

12g2

122Sg1g2

d

b
e2d2b(221/b2)ĥ, ~25!

whered5a/aB is a dimensionless measure of the distan
between dots,b5A11vL

2/v0
2, and ĥ5h/h. The geometry

of our model system is shown schematically in Fig. 1.
In what follows we envision pulsing quantum gates

varying the distanced between dots as a function of time. I
doing this, we will assume that throughout the pulse the v
ues of f D and f R do not change. If this is the cases will be
constant and all of the time dependence ofP will be due to
6-3
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lSO. In addition, the direction of the vectorP will not change
as a function of time. The HamiltonianHHM will therefore
be invariant under rotations in spin space about a single fi
axis parallel toP throughout the pulse. We will refer to suc
a pulse as having axial symmetry.

It is important to note that this axial symmetry is appro
mate. In generalf D and f R will depend on time as the gate
pulsed, though in principle the system can be engineere
minimize this effect. Also, for generalf D and f R the appear-
ance of only one vector in spin space is a consequenc
restricting the Hilbert space to one orbital per dot. If mo
orbitals are included then more spin-orbit matrix eleme
will appear in the Hamiltonian, corresponding typically
different spin-precession axes, thus breaking the axial s
metry. However, as shown above, iff D56 f R then the full
Hamiltonian ~3! is axially symmetric—thus for this specia
case all spin-precession axes will be parallel and axial s
metry will not just be an artifact of the Hund-Mulliken ap
proximation. In Sec. V we discuss the effect deviations fr
axial symmetry will have on our results.

Given an axially symmetric pulse, it is convenient to ta
the z axis in spin space to be parallel toP. For this choice,
the statesuT1& and uT2& decouple, each having energyV.

Another useful symmetry ofHHM is invariance under
cAa→cB,2a and cBa→cA,2a . This transformation change
the sign of the statesuS1&, uS2&, and uT0&, while leaving
uS3& invariant. It follows that the stateuS3& also decouples
with energyUH . The matrix representation ofHHM in the
remaining nontrivialuT0&, uS1&, uS2& basis is then

HHM5S V 0 22iP

0 0 22tH

2iP 22tH UH

D . ~26!

III. EFFECTIVE SPIN HAMILTONIAN

We now consider pulsing the HamiltonianHHM by vary-
ing the distance between the dots, the barrier height, or s
combination of the two, in such a way that the two electr
spins interact for a finite period of time, but are well sep

FIG. 1. Sketch of the GaAs double quantum dot system con
ered in this paper. There is one electron per dot, and the dot s
ration is 2a. The dots are taken to lie in the plane perpendicula
both the@001# axis and an applied magnetic fieldB. The displace-
ment of the dots makes an angleu with the @110# axis. Due to
spin-orbit coupling electron spins precess about an axis parallelP
when tunneling between dots.
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rated at the beginning and end of the pulse. We assume
initial state of the system is in the four-dimensional Hilbe
space describing two qubits, i.e., the space spanned by
singly occupied statesuS1&,uT0&,uT2&, and uT1&. As the
pulse is carried out, the eigenstates ofHHM at any given
instant in time can be grouped into four low-energy sta
separated by a gap of orderUH from two high-energy states
If the pulse is sufficiently adiabatic on a time scale set
;\/UH , the amplitude for nonadiabatic transitions whic
would leave the system in the excited stateuS2& at the end of
the pulse can be made negligibly small.5 If this condition
holds, the final state of the system can also be assumed
in the four-dimensional Hilbert space of two qubits. We w
see that this condition is easily achieved in Sec. V.

One way to theoretically study the effect of such a pu
would be to first reduceHHM to an effective anisotropic spin
Hamiltonian acting on the four-dimensional low-energy H
bert space and then consider pulsing this effective mode12

The problem with this approach is that any such effect
spin Hamiltonian will only be valid if the pulse is adiabati
not only on the time scale\/UH , but also on the much
longer time scale set by the inverse of the small energy s
tings within the low-energy space due to the spin-orbit
duced anisotropic terms. However, it is precisely the no
diabatic transitions induced by these terms which give rise
the quantum gate corrections we would like to compute.

Although we may not be able to define an instantane
effective spin Hamiltonian during the pulse, we can defi
one which describes the net effect of a full pulse. This de
nition amounts to parametrizing the quantum gate produ
by the pulse as

U5e2 i tH, ~27!

whereU acts on the four-dimensional Hilbert space of t
initial and final spin states.H is then an effective spin Hamil
tonian, i.e., it can be expressed entirely in terms of the s
operatorsSA andSB , andt is a measure of the pulse dura
tion. Note the definition oft is arbitrary because it is the
producttH which determinesU. Here, and in the remainde
of this paper, we work in units in which\51.

If we assume exact axial symmetry throughout the pu
the effective spin Hamiltonian must be invariant under ro
tions about thez axis in spin space and must also leave t
statesuT1& anduT2& degenerate. The most general such s
Hamiltonian, up to an irrelevant additive term proportional
the identity operator, is

tH~l;a,b,g!5lS SA•SB1
a

2
~SAz2SBz!

1b~SAxSBy2SAySBx!

1g~SAxSBx1SAySBy! D , ~28!

and we denote the corresponding quantum gate as

U~l;a,b,g!5e2 i tH(l;a,b,g). ~29!

Whena50, this is precisely gate~2! for bi ẑ.

d-
a-

o
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The controlled-NOT construction originally proposed in
Ref. 1 is based on the sequence of gates

Ug5U~p/2;0,0,0!eipSAzU~p/2;0,0,0!, ~30!

where U(p/2;0,0,0)5exp2i@(p/2)SA•SB# is a square root
of swap gate. The controlled-NOT gate is then

UCNOT5ei (p/2)SAzei (p/2)SBzUg . ~31!

Remarkably, it was shown in Ref. 8 that ifl5p/2 anda
50 this construction is robust against theb and g correc-
tions, i.e., the gate

Ug5U~p/2;0,b,g!eipSAzU~p/2;0,b,g! ~32!

is independent ofb andg.
For completeness, we briefly review the arguments

Ref. 8. Due to axial symmetry, the action of the ga
U(l;a,b,g) on the statesuT1& anduT2& is trivial and inde-
pendent ofa,b, andg,

U~l;a,b,g!uT6&5e2 il/4uT6&. ~33!

We can then introduce a pseudospin description of the
maining space, whereuS1& is pseudospin down anduT0& is
pseudospin up. The action of the gateU(l;a,b,g) on this
pseudospin space is a simple rotation,

U~l;a,b,g!⇒eil/4e2 ib•t/2, ~34!

where b5l(a,b,g11) and the components oft
5(tx ,ty ,tz) are pseudospin Pauli matrices. At the sa
time, the action of the single qubit rotation enteringUg is

eipSAz⇒ i tx . ~35!

Thus to show that the controlled-NOT construction is in-
dependent ofb and g if a50 we need only show that th
product

e2 ib•t/2txe
2 ib•t/2 ~36!

is independent ofb and g if a50. This condition has a
simple geometric interpretation. It is the requirement tha
rotation about an axis parallel tob, followed by a 180° ro-
tation about thex axis, and then a repeat of the initial rotatio
must be equivalent to a simple 180° rotation about thex axis.
This will trivially be the case if the vectorb5l(a,b,g
11) lies in theyz plane. Thus, ifa50, this condition is
satisfied and the Controlled-NOT construction is exact. Con
versely, ifaÞ0 the construction is spoiled.

IV. TIME-REVERSAL SYMMETRY

In this section we prove the following general result. A
time-dependent HamiltonianHP(t) which is time-reversal
symmetric for all t, and for which the time dependence
itself symmetric, i.e.,HP(t02t)5HP(t01t) for all t, will
generate a unitary evolution operatorU5exp2itH whereH
is a time-independent effective Hamiltonian which is a
time-reversal symmetric. We then show that this theorem
plies that the parametera, which spoils the controlled-NOT
11530
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construction described in Sec. III, is equal to zero for tim
symmetric pulsing.

The time-reversal operation for any quantum system
be represented by an antiunitary operatorQ.17 An orthonor-
mal basis$uMi&% for the Hilbert space of this system is the
said to be a time-symmetric basis if

QuMi&5uMi& ~37!

for all i.
For any HamiltonianH acting on a stateuMi& in this basis

we can write

HuMi&5(
j

^M j uHuMi&uM j&. ~38!

Under time reversalH is transformed intoQHQ21. Using
the invariance of the$uMi&% basis and the antiunitarity ofQ
we can then also write

QHQ21uMi&5QHuMi& ~39!

5Q(
j

^M j uHuMi&uM j& ~40!

5(
j

^M j uHuMi&* uM j&. ~41!

Comparing Eqs.~38! and~41! leads to the conclusion that i
H is time-reversal symmetric, i.e.,H5QHQ21, then the
Hamiltonian matrix is purely real in the$uMi&% basis, while
if H is antisymmetric underQ, i.e.,H52QHQ21, then the
Hamiltonian matrix is purely imaginary.

Since H is real in the$uMi&% basis if and only ifH is
time-reversal symmetric it follows that the unitary opera
U5exp2itH is self-transpose, i.e.,U5UT, if and only if H
is time-reversal symmetric.

Now consider a time-dependent pulse described by
HamiltonianHP(t). We assume thatHP(t) is time-reversal
symmetric at all times, i.e.,HP(t)5QHP(t)Q21 for all t.
The corresponding unitary evolution operatorU which
evolves the system from timet I to tF can be written as

U5 lim
N→`

U~ tN!U~ tN21!•••U~ t2!U~ t1!, ~42!

where

U~ t i !5e2 iDtHP(t i ) ~43!

with Dt5(tF2t I)/N and t1[t I and tN[tF .
SinceHP(t i) is time-reversal symmetric, the above arg

ments implyUT(t i)5U(t i) when U(t i) is expressed in the
time-symmetric basis$uMi&%. Thus, in this basis, we have

UT5 lim
N→`

@U~ tN!U~ tN21!•••U~ t2!U~ t1!#T ~44!

5 lim
N→`

UT~ t1!UT~ t2!•••UT~ tN21!UT~ tN!

~45!

5 lim
N→`

U~ t1!U~ t2!•••U~ tN21!U~ tN!. ~46!
6-5
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For a time-symmetric pulseHP(t i)5HP(tN112 i) and so
U(t i)5U(tN112 i). This allows us to reverse the order of th
operators in Eq.~46! which then implies

UT5U. ~47!

Thus if we writeU in terms of an effective Hamiltonian,

U5e2 i tH, ~48!

the matrix elements ofH must be real in the time-symmetri
basis.H must therefore be time-reversal symmetric, i.e.,H
5QHQ21.

To apply this theorem to the present problem we take
time-reversal operator for our two-electron system to be

Q5eipSAyeipSByK. ~49!

Here the antiunitary operatorK is defined so that when ac
ing on a given state it takes the complex conjugate of
amplitudes of that state when expressed in the Hu
Mulliken basis defined in Sec. II. Note that this basis is co
structed using the Fock-Darwin states, and if a magnetic fi
is present these states will be necessarily complex va
when expressed in the position basis. As defined here,
antiunitary operatorK only takes the complex conjugates
the amplitudes in the Hund-Mulliken basis,it does not take
the complex conjugate of the Fock-Darwin states themsel.
Thus, if a magnetic field is present,Q should be viewed as
an effectivetime-reversal symmetry operator. This is a tec
nical point which does not affect any of our conclusio
~provided the Zeeman coupling can be ignored—see belo!.
The key property that we will need in what follows is th
spin changes sign under time reversal, and it is readily v
fied that for our definition ofQ,

QSmQ2152Sm ~50!

for m5A,B even in the presence of a magnetic field.
Under Q, the Hund-Mulliken basis states transform

follows,

QuSi&5uSi& for i 51,2,3, ~51!

QuT0&52uT0&, ~52!

QuT1&5uT2&, ~53!

QuT2&5uT1&. ~54!

The statesuSi& therefore form a time-symmetric basis for th
singlet states. A time-symmetric basis for the triplet state
given by

uT̃0&5 i uT0&, ~55!

uT̃a&5
1

A2
~ uT1&1uT2&), ~56!

uT̃b&5
i

A2
~ uT2&2uT1&), ~57!
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all of which are eigenstates ofQ with eigenvalue11.
The matrix representation ofHHM in the time-reversal

invariant uT̃0&, uS1&, uS2& basis is

HHM5S V 0 22P

0 0 22tH

22P 22tH UH

D , ~58!

which is real, reflecting the effective time-reversal symme
of HHM . Note that this would not be the case ifHHM in-
cluded the Zeeman coupling of electron spins to an exte
magnetic field. While for typical field strengths the Zeem
coupling is small,2 for some parameters it can be compara
to the spin-orbit corrections considered here. If this is
case our conclusions following from effective time-revers
symmetry will no longer be valid. Of course in zero ma
netic field exact time-reversal symmetry is guaranteed.

We now consider pulsing a time dependentHHM(t) adia-
batically so that, according to the arguments of Sec. III,
resulting gate can be parametrized by an effective s
Hamiltonian H. Since at all timest the Hund-Mulliken
Hamiltonian is time-reversal symmetric, if the pulse itself
time symmetric, i.e.,HHM(t)5HHM(2t) where we take the
center of the pulse to be att50, then the above theorem
implies that the effective spin HamiltonianH will also be
time-reversal symmetric. ThusH5QHQ21, and since
QSmQ2152Sm this impliesH must be quadratic in the spi
operators, and soa50. The resulting gate will therefore
have the desired form~2!.

For completeness we also consider here the case of t
antisymmetric pulsing. IfHP(t)52HP(2t) then

U~ t !5e2 iDtHP(t)5eiDtHP(2t)5U~2t !21, ~59!

and the resulting quantum gate is

U5 lim
N→`

U~ t1!U~ t2!•••U~ tN/2!U~ tN/2!
21

•••

U~ t2!21U~ t1!2151. ~60!

The net effect of any time-antisymmetric pulse is thus sim
the identity transformation.

V. MODEL CALCULATIONS

We have seen from symmetry arguments that tim
symmetric pulsing of an axially symmetric Hamiltonia
such asHHM when f D and f R are constant, which is itsel
time-reversal symmetric at all times, will automatically pr
duce a gate of form~2!, provided the pulse is adiabatic s
that the initial and final states of the system are in the fo
dimensional Hilbert space of two qubits. It is natural to th
ask what the effect of the inevitable deviations from tim
symmetric pulsing will be on the resulting gate. To inves
gate this we have performed some simple numerical sim
tions of coupled quantum dots.

In our calculations, we imagine pulsing the dots by va
ing the dimensionless distanced between them according t
6-6
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d~ t !5d01S t

t1rt D
2

. ~61!

Hered0 is the distance at the point of closest approach,t is
a measure of the pulse duration, andr is a dimensionless
measure of the time asymmetry of the pulse. This form
scribes the generic behavior of any pulse for times near
pulse maximum (t50). Note that for largeutu, and for r
Þ0, the distanced(t) will saturate, and has a singularity fo
negativet. We have takenr to be small enough so that th
dots decouple long before this leads to any difficulty.

For our calculations, we work in zero magnetic field a
take\v053 meV andd051, corresponding toa.20 nm at
closest approach. The resulting time dependences of the
rameters inHHM are shown in Fig. 2. Note that the spin-orb
matrix element plotted in this figure isl SO, while the spin-
orbit matrix element appearing inHHM is P5slSOẑ, wheres
is the dimensionless measure of spin-orbit coupling int
duced in Sec. II.

For a given pulseHHM(t) we integrate the time-
dependent Schro¨dinger equation to obtain the evolution o
eratorU for the full pulse. If the pulse is adiabatic then th
matrix elements ofU which couple the singly occupied state
uS1& anduT0& to the doubly occupied stateuS2& can be made
negligibly small.5 The quantum gate is then obtained by si
ply truncatingU to the 434 matrix acting on the two-qubi
Hilbert space. By taking the log of this matrix we obta
tH5 i ln U and thus the parametersl,a,b,g. Note that
when calculating lnU, there are branch cuts associated w
each eigenvalue ofU, and as a consequencetH is not
uniquely determined. We resolve this ambiguity by requiri
that as the pulse height is reduced to zero andU goes con-
tinuously to the identity thattH→0 without crossing any
branch cuts.

FIG. 2. Time dependence of matrix elements appearing in
Hund-Mulliken description of a double quantum dot when the d
placement of the dots is varied according to Eq.~61! with d051.
Results are for GaAs parameters in zero magnetic field with\v0

53 meV and are plotted vs the dimensionless quantityt/t for two
values of the time-asymmetry parameter,r 50 ~solid line! and r
50.1 ~dashed line!.
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We fix the pulse widtht by requiring that if we turn off
spin-orbit coupling (s50) we obtain al5p/2 pulse, i.e., a
square root of swap. For the parameters used here we
this corresponds to takingt523.9/v0.5 ps. We have
checked that these pulses are well into the adiabatic reg
The magnitudes of the matrix elements coupling singly
cupied states to the doubly occupied stateuS2& are on the
order of u^S1uUuS2&u;1026 and u^T0uUuS2&u;s1026.

Oncet is fixed, there are two parameters characteriz
each pulse,s and r, and four parameters characterizing th
resulting gate,l, a, b, andg. The transformation propertie
of these parameters under parity~P! and time reversal~T! are
summarized in Table I. These properties follow from the fa
that ~i! under time reversalSm→2Sm and r→2r , while P
5slSOẑ is invariant, and~ii! under paritySA↔SB and P→
2P, while r is invariant. Note that, as defined in Sec. II, th
parameters is positive. Here we allows to change sign when
the direction of the vectorP is reversed, thus under parit
s→2s.

These symmetry properties imply that ifs andr are small,
the parameters of the effective Hamiltonian will be giv
approximately by

a.Cars, ~62!

b.Cbs, ~63!

g.Cgs2, ~64!

l.l01Cls2, ~65!

where the coefficients should be of order 1. For the pulses
consider herel05p/2.

The results of our calculations are shown in Fig. 3. Ea
point corresponds to a separate numerical run. The plots
l, b, and g show their dependence ons when r 50. The
dependence of the parametera on pulse asymmetry is show
by plottinga/s versusr. For thes values we have studied, u
to usu50.1, the numerical results fora/s are essentially in-
dependent ofs for a givenr. These results are clearly con
sistent with the above symmetry analysis.

Now consider carrying out a controlled-NOT gate using
the scheme reviewed in Sec. III. For this construction
work it is necessary thatl5p/2. In our calculations we have
fixed t so thatl5p/2 for s5r 50. Thus, when spin-orbit
coupling is included

l.p/21Cls2. ~66!

e
-

TABLE I. Symmetry properties of the pulse parametersr ands,
and gate parametersl, a, b, andg under parityP and time rever-
sal T.

r s l a b g

P 1 2 1 2 2 1

T 2 1 1 2 1 1
6-7
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In order to keepl5p/2 it will therefore be necessary t
adjust the pulse widtht slightly to correct for spin-orbit
effects.

The central result of this paper is summarized by
equation

a.Cars. ~67!

As shown in Sec. III, any nonzeroa will lead to corrections
to the Controlled-NOT construction. For time-symmetri
pulsesr 50 and these corrections will vanish. Equation~67!
can then be used to estimate the errors due to any time a
metry of the pulse, and to put design restrictions on the
lowed tolerance for such asymmetry.

It is important to note that while the results presented h
are for a specific model, all of the key arguments are ba
on symmetry and so are quite general. Given any tim
reversal invariant two-qubit system with axial symmetry,
pulsed adiabatically in a time-symmetric way the result
gate will have form~2!.

While nearly perfect time-symmetric pulsing can presu
ably be achieved with sufficiently accurate pulse control,
expect that exact, or nearly exact, axial symmetry will
more difficult to realize. The results of this paper give so
useful design guidelines for achieving this goal. For e
ample, we have shown that within the Hund-Mulliken a
proximation axial symmetry is maintained provided the ra
f D / f R is kept constant throughout the pulse. As pointed
in Sec. III, however, even if quantum dots can be enginee
so that this is the case, corrections beyond the Hu
Mulliken approximation will still, in general, lead to devia
tions from exact axial symmetry. Only when the special co
dition f D56 f R is satisfied will the full Hamiltonian
describing the system be axially symmetric. Achieving t

FIG. 3. Parameters appearing in the effective spin Hamilton
derived from pulses depicted in Fig. 2. The parametersa, b, andg
are shown as functions ofs for the caser 50 ~time-symmetric
pulses!. Fora the quantitya/s is plotted vsr. We have verified that
the ratioa/s is essentially independent ofs for all values we have
considered (usu<0.1).
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special condition is therefore the ideal case to strive for
perimentally in order to guarantee axially symmetric qua
tum gates.

Even if perfect axial symmetry cannot be achieved, tim
symmetric pulsing will still restrict the resulting gate to b
invariant under time reversal. Thus, up to an irrelevant ov
all phase, this gate will necessarily have the form

U5exp2il~SA•SB1b•~SA3SB!1SA•IG•SB!. ~68!

HereIG is a symmetric tensor which will, in general, devia
from the axial form of theg term in Eq.~2! leading to cor-
rections to the controlled-NOT construction. However, be
causeIG is even under parity it will still be second order i
spin-orbit coupling,12 and thus the deviations from Eq.~2!
will also be second order. We conclude that even in the
sence of exact axial symmetry, the corrections to
Controlled-NOT construction will be second order in spin
orbit coupling, rather than first order.

VI. CONCLUSIONS

In this paper we have studied spin-orbit corrections
exchange-based quantum gates, emphasizing symmetry
ments. In particular, we have shown that adiabatic tim
symmetric pulsing of any Hamiltonian which~i! describes
two well-defined spin-1/2 qubits at the beginning and end
the pulse,~ii! is time-reversal symmetric at all times durin
the pulse, and~iii! is axially symmetric in spin space with
fixed symmetry axis, will automatically produce a gate
form ~2!. Together with single qubit rotations, forl5p/2
this gate can then be used in a simple Controlled-NOT con-
struction. This result is quite general.

As a specific example we have studied a GaAs dou
quantum dot system within the Hund-Mulliken approxim
tion. In this approximation spin-orbit coupling enters as
small spin precession when an electron tunnels between d
If the direction of this precession axis is constant through
the pulse the resulting gate will be axially symmetric a
have form Eq.~29!. The deviation of this gate from the de
sired gate~2! is then characterized by a single dimensionle
parametera which spoils the Controlled-NOT construction.
Using symmetry arguments, as well as numerical calcu
tions, we have shown thata.Casr wheres and r are, re-
spectively, dimensionless measures of spin-orbit coup
and time asymmetry of the pulse. Thus time-symmetric pu
ing (r 50) ensures the anisotropic corrections will have t
desired form.

In any system without spatial inversion symmetry, sp
orbit coupling will inevitably lead to anisotropic correction
to the exchange interaction between spins. According to
rent estimates,18 fault-tolerant quantum computation will re
quire realizing quantum gates with an accuracy of one par
104. Thus, even if spin-orbit coupling is weak, the design
any future quantum computer which uses the exchange in
action will have to take these anisotropic corrections in
account. We believe the symmetry based analysis prese
in this paper provides a useful framework for studying the
effects.

n

6-8



na
-
e
e

.
m
e

F,

SPIN-ORBIT COUPLING AND TIME-REVERSAL . . . PHYSICAL REVIEW B 68, 115306~2003!
ACKNOWLEDGMENTS

D.S. and N.E.B. acknowledge support from the Natio
Science Foundation through NIRT Grant No. DMR
0103034. D.P.D.V. is supported in part by the National S
curity Agency and the Advanced Research and Developm
ys

ev

B

11530
l

-
nt

Activity through Army Research Office Contract No
DAAD19-01-C-0056. He thanks the Institute for Quantu
Information at Cal Tech~supported by the National Scienc
Foundation under Grant No. EIA-0086038! for its hospitality
during the initial stages of this work. D.L. thanks Swiss NS
NCCR Nanoscience, DARPA, and ARO.
ev.

K.
1D. Loss and D.P. DiVincenzo, Phys. Rev. A57, 120~1998!.
2G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B59, 2070

~1999!.
3G. Burkard, D. Loss, D.P. DiVincenzo, and J.A. Smolin, Ph

Rev. B60, 11404~1999!.
4X. Hu and S. Das Sarma, Phys. Rev. A61, 062301~2000!.
5J. Schliemann, D. Loss, and A.H. MacDonald, Phys. Rev. B63,

085311~2001!.
6D. Bacon, J. Kempe, D.A. Lidar, and K.B. Whaley, Phys. R

Lett. 85, 1758~2000!.
7D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.

Whaley, Nature~London!408, 339~2000!.
8G. Burkard and D. Loss, Phys. Rev. Lett.88, 047903~2002!.
9L.-A. Wu and D. Lidar, Phys. Rev. A66, 062314~2002!.

10K.V. Kavokin, Phys. Rev. B 64, 075305 ~2001!;
cond-mat/0212347.
.

.

.

11L.P. Gor’kov and P.L. Krotkov, Phys. Rev. B67, 033203~2003!.
12N.E. Bonesteel, D. Stepanenko, and D.P. DiVincenzo, Phys. R

Lett. 87, 207901~2001!.
13G. Dresselhaus, Phys. Rev.100, 580~1955!.
14M.I. Dyakonov and V.Yu. Kachorovskii, Fiz. Techn. Poluprov.20,

178 ~1986! @Sov. Phys. Semicond.20, 110 ~1986!#.
15E.L. Rashba, Fiz. Tverd. Tela~Leningrad! 2, 1224 ~1960!

@Sov. Phys. Solid State2, 1109~1960!#; Y.A. Bychkov and E.I.
Rashba, J. Phys. C17, 6039~1984!.

16J. Schliemann, J.C. Egues, and D. Loss, Phys. Rev. Lett.90,
146801~2003!.

17For an excellent discussion of time-reversal symmetry see,
Gottfried,Quantum Mechanics~Addison-Wesley, Reading, MA,
1989!, pp. 314–322.

18D. Aharonov and M. Ben-Or, quant-ph/9906129~unpublished!.
6-9



VOLUME 93, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S week ending
1 OCTOBER 2004
Universal Quantum Computation through Control of Spin-Orbit Coupling

D. Stepanenko and N. E. Bonesteel
National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32310, USA

(Received 12 March 2004; published 29 September 2004)
140501-1
We propose a method for quantum computation which uses control of spin-orbit coupling in a linear
array of single electron quantum dots. Quantum gates are carried out by pulsing the exchange
interaction between neighboring electron spins, including the anisotropic corrections due to spin-orbit
coupling. Control over these corrections, even if limited, is sufficient for universal quantum compu-
tation over qubits encoded into pairs of electron spins. The number of voltage pulses required to carry
out either single-qubit rotations or controlled-NOT gates scales as the inverse of a dimensionless measure
of the degree of control of spin-orbit coupling.

DOI: 10.1103/PhysRevLett.93.140501 PACS numbers: 03.67.Lx, 71.70.Ej, 73.21.La
Several quantum computation schemes are based on
using the spin-1=2 degrees of freedom of electrons or
certain nuclei as qubits [1–3]. For example, in the pro-
posal of Loss and DiVincenzo [1], qubits are taken to be
spins of single electrons trapped in quantum dots. Here
we present a method for using spin-orbit coupling in such
a system to perform universal quantum computation.

In many spin-based quantum computation schemes
two-qubit gates are carried out by switching on and off
the exchange interaction between neighboring spins [4,5].
For perfectly isotropic exchange, these two-qubit gates
conserve total spin and so have too much symmetry to
form a universal set; i.e., they cannot be used to carry out
arbitrary unitary transformations on single-spin qubits.
A universal set can be realized if single-spin rotations are
possible [1], but it is generally believed these will be
harder to achieve than two-qubit gates. An attractive
alternative is to use an encoding scheme for which iso-
tropic exchange alone is universal [6]. This requires en-
coding logical qubits into three or more spins [7,8].

Spin-orbit coupling leads to anisotropic corrections to
the exchange interaction [9] which, under certain condi-
tions elaborated on below, retains a residual rotational
symmetry about a fixed axis. For many purposes these
corrections are innocuous. The resulting exchange gates
still form a universal set when combined with single-spin
rotations [10,11]. And, through a combination of pulse
shaping and locally defined spin quantization axes, they
can be made effectively isotropic, although in general
only to second order in spin-orbit coupling, so that
exchange-only encoding can be used [12,13].

The partial reduction in symmetry, from isotropic to
axial, can also simplify the requirements for universal
quantum computation. In [14] it was shown that the XY
interaction is universal for qubits encoded into only two
spins, provided there is a third ancillary spin for each
qubit. And in [15] it was shown that any axially symmet-
ric anisotropic corrections, when combined with single-
spin rotations about an axis perpendicular to the symme-
try axis of the exchange, can be used to construct a
universal set of gates for unencoded qubits.
0031-9007=04=93(14)=140501(4)$22.50 
In this Letter we propose a new method for quantum
computation based on the ability to control the spin-orbit
induced anisotropic corrections to the exchange interac-
tion in a linear array of GaAs quantum dots. Our proposal
requires encoding logical qubits into pairs of neighboring
spins, similar to the encoding used in [16–18]. However,
unlike these proposals, which require an inhomogeneous
Zeeman field in addition to exchange, our proposal em-
ploys only the spin-orbit corrected exchange interaction.

Spin-orbit coupling is a relativistic effect which occurs
because an electron moving in an electric field experi-
ences a magnetic field which couples to its spin. In solids,
the k-dependent spin splitting due to spin-orbit coupling
is described by the Hamiltonian HSO � ��k� � S, where
k and S are, respectively, crystal momentum and spin.
Time-reversal symmetry implies ��k� � ����k�; thus
� � 0 only in the absence of inversion symmetry. For a
(001) two-dimensional electron gas (2DEG) in GaAs
there are two sources of inversion asymmetry contribut-
ing to �. Taking kx and ky to be along the [100] and [010]
crystal axes, respectively, the Dresselhaus contribution,
�D � fD��kx; ky; 0�, is due to the bulk inversion asym-
metry of the zinc blende structure of GaAs, with coupling
fD inversely proportional to the square of the width of
the 2DEG [19], and the Rashba contribution, �R �

fR�ky;�kx; 0�, is due to the structural inversion asymme-
try of the quantum well forming the 2DEG [20].

In the Hund-Mulliken description of two quantum dots,
one Wannier orbital is kept per dot. Let t denote the
tunneling amplitude between these orbitals in the absence
of spin-orbit coupling. The effect of HSO is to induce a
small spin precession during this tunneling. If the dots lie
in the (001) plane and are aligned in the [110] direction,
the precession axis is fixed to be along the �110� direction
[21]. The precession angle, , then satisfies

tan

2
� s

a0!0���
2
p
t
h
1j�kx � ky�j
2i; (1)

where 
i is the Wannier state associated with dot i, and
2004 The American Physical Society 140501-1
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s �
fD � fR
a0!0

(2)

is a dimensionless measure of the strength of spin-orbit
coupling. Here a0 and !0 are, respectively, the linear size
and level spacing of a single isolated dot.

If the spin precession axis is fixed during gate opera-
tion, and the z axis in spin space is chosen to be parallel to
this axis, exchange gates in the presence of spin-orbit
coupling will have the form [11]

U12��;�;�; �� � e�i�H; (3)

where

H � S1 � S2 �
�
2
�Sz1 � S

z
2� � ��S

x
1S

y
2 � S

y
1S

x
2�

���Sx1S
x
2 � S

y
1S

y
2� �

1
4: (4)

Here � is the integrated strength of the dominant isotropic
part of the interaction, and the parameters �, �, and �
characterize deviations from perfect isotropy. The con-
stant�1=4 inH corresponds to a particular choice for the
overall phase of U which will be convenient in what
follows. For small s, � � C�s, � � C�s, and � � C�s2

[11]. C� and C� are both of order 1 and depend on the
shape and duration of the voltage pulse, though they
cannot in general be set to 0. For a generic pulse, C� is
also of order 1 but, because � is odd under time reversal, it
can be set to 0 by time-symmetric pulsing [12].

We envision two methods for controlling these aniso-
tropic corrections. One is to control the width and shape
of the potential confining the electrons to the 2DEG, thus
controlling fD and fR, and hence s. For fD � fR [22], s
can even be set to zero. The other is to control the
coefficientsC�,C�, andC� by pulse shaping, as described
above (see also [12]). Using these methods, it should be
possible to achieve a continuous range of gates of the
form (3), corresponding to small values of the parameter
s. To ensure approximate axial symmetry, we assume a
linear array of (001) quantum dots aligned along the
�110� direction, as shown in Fig. 1. Note that corrections
beyond Hund-Mulliken (i.e., involving more than one
orbital per dot) will lead to deviations from perfect axial
symmetry and will be a source of error. Here we assume
these corrections are small enough to be ignored.
[110]

1 2 3 4 [110],z

FIG. 1. Four quantum dots forming two neighboring logical
qubits, 12 and 34. The dots lie in the (001) plane and are aligned
along the [110] direction. The spin-orbit induced spin preces-
sion axis is parallel to the �110� direction. Exchange gates
between spins within a logical qubit are used for single-qubit
rotations. Two-qubit gates are carried out using exchange gates
acting on spins 2 and 3.
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Because of axial symmetry, the total Sz quantum num-
ber of this array will be conserved. It follows that the
gates (3) cannot form a universal set if single spins are
chosen to represent qubits. We therefore adopt the two-
spin encoding scheme of [16–18]. To describe this encod-
ing, we associate a pseudospin space with every nearest-
neighbor pair of spins i and i� 1 spanned by the states

jSii;i�1 �
1���
2
p �j"i#i�1i � j#i"i�1i�; (5)

jT0ii;i�1 �
1���
2
p �j"i#i�1i � j#i"i�1i�; (6)

where jSii;i�1 is pseudospin up and jT0ii;i�1 is pseudospin
down. The Hilbert space orthogonal to this pseudospin
space is then spanned by the states jT�ii;i�1 � j"i"i�1i and
jT�ii;i�1 � j#i#i�1i. Given our phase convention, the gates
(3) leave this space invariant,

Ui;i�1��;��jT�ii;i�1 � jT�ii;i�1; (7)

and so are entirely determined by their action on the
pseudospin space,

Ui;i�1��;�� � ei�=2e�i���
�i;i�1�=2: (8)

Here �����;�;��1� and the components of � � ��x;
�y; �z� are Pauli matrices, with the superscript �i; i� 1�
indicating that they act on the pseudospin space associ-
ated with spins i and i� 1. These gates then correspond
to pseudospin rotations through the angle
� � ��1� 2�� �2 � �2 � �2�1=2 � ��O�s2�; (9)

about an axis parallel to �.
In what follows we assume time-symmetric pulsing, so

that � � 0 for all gates. The available pseudospin rotation
axes will then lie in the yz plane. Allowing nonzero �
through time-asymmetric pulsing does not appreciably
simplify any of our constructions. Given the ability to
control the remaining anisotropic terms � and �, either
through direct control of s, or through pulse shaping,
there will be a continuous range of available rotation
axes. For a given rotation angle, �, these axes will sweep
out a wedge shape in the yz plane as shown in Fig. 2. The
degree of control of spin-orbit coupling is then charac-
terized by the angular size of this wedge, which we
denote  m. We expect that  m will depend weakly on �
and will be on the order of the largest possible value of jsj.
Note that the wedge of allowed rotation axes need not
include the z axis, corresponding to s � 0, although as
noted above it may be possible to achieve this through
cancellation of the Dresselhaus and Rashba contributions.

For logical qubits encoded into the pseudospin spaces
of dots i and i� 1, with i odd, and computational basis
states j0Lii;i�1 � jSii;i�1, and j1Lii;i�1 � jT0ii;i�1 (see
Fig. 1), we now show how pseudospin rotations can be
used to perform single-qubit rotations and controlled-NOT

(CNOT) gates, thus providing a universal set of quantum
gates [23].
140501-2
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FIG. 2. Rotation axes in the pseudospin space of two neigh-
boring spins. The wedge lying in the plane perpendicular to x
and sweeping out the angle  m contains rotation axes which can
be achieved using time-symmetric pulses and control of spin-
orbit coupling. Successive # rotations about n̂1 and n̂2, with
n̂1 � n̂2 � cos , result in a 2 rotation about the x axis. The
effect of errors in the rotation angles, $1 and $2, on the net
rotation axis is also shown. Here ẑ0 k �n̂1 � n̂2� and ŷ0 � ẑ0 � x̂.
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Consider an arbitrary rotation about the x axis. This
operation can be performed by a sequence of # rotations
about available axes lying in the wedge. Figure 2 shows
two such axes, n1 and n2, making an angle  �  m. A #
rotation about n1 followed by a # rotation about n2 then
results in a 2 rotation about the x axis. The sense of this
rotation can be reversed by reversing the order of the #
rotations. Since a continuous range of axes within the
wedge is available, a rotation about the x axis through
an arbitrary angle  can be carried out by an even
number, 2�=�2 m�� � 2, of # rotations, where �x� de-
notes the greatest integer function of x. The standard
Euler construction can then be used to generate arbitrary
single-qubit rotations, with the number of pulses required
growing as 1= m as  m goes to zero.

As  m is reduced, this construction also becomes in-
creasingly sensitive to errors. To see this, let the rotation
angles about n1�2� be #� $1�2�, where $1�2� are errors. If
we take the z0 axis to be parallel to n1 � n2 and the y0 axis
parallel to ẑ0 � x̂ then the composition of these two
rotations will yield an overall 2 �O�$2= � rotation
about an axis deviating from the x̂ axis by an angle $1 �
$2 in the y0 direction and �$1 � $2�=2 in z0 direction (see
Fig. 2). Thus, the larger  m is, the more robust this
construction is against errors.

Now consider the two logical qubits shown in Fig. 1. A
two-qubit gate between the 12 qubit and the 34 qubit can
be carried out by a sequence of pulses acting on spins 2
and 3. Because the pseudospin space of spins 2 and 3 does
not correspond to a logical qubit, rotations in this space
140501-3
will, in general, mix in noncomputational states resulting
in leakage errors. To avoid such errors, the net unitary
transformation must be diagonal in the f"1#2"3#4; "1#2#3"4;
#1"2"3#4; #1"2#3"4g basis of the four spins. The most general
unitary operator of the form (8) for which this is the case
consists of a rotation about the x axis in pseudospin space.
It follows that the net gate must be of the form

U23��;�� �
Y

k

U23��k;�k� � ei��=2�e�i��=2���2;3�x ; (10)

where � �
P
k�k is the net phase and � is the rotation

angle about the x axis produced by the sequence of
rotations f�kg. Note that both � and � are defined mod-
ulo 4#.

The gate (10) can be expressed in terms of operators
acting on the logical qubits as follows:

U23��;�� � ei��=4�ei��=4���1;2�x ��3;4�x ei��=4���1;2�x ei��=4���3;4�x :

(11)

By casting this gate in its canonical form [24], it can be
shown to be equivalent to a CNOT gate, up to single-qubit
rotations, if and only if

� �
X

k

�k � �2n� 1�#: (12)

Below we outline two procedures for simultaneously
satisfying (10) and (12).

For the first procedure, let Rx�#� be a # rotation about
the x axis. Using the single-qubit rotation scheme de-
scribed above, this rotation can be performed through a
sequence of 2n � 2�#=�2 m�� � 2 rotations about avail-
able axes. If A��� is then a � rotation about a particular
available axis lying in the yz plane, the sequence of
rotations A���Rx�#�A��� will have the form (10) with
� � �2n� 1�# regardless of the value of �. According
to (9) the contribution of Rx�#� to the total phase � will
then be 2n#�', where'�O�s2= m� �O�s�. To satisfy
(12) we therefore require � � #=2�O�s�, where the
O�s� adjustment must be chosen so that � � #=2�'=2
for A��� and thus � � �2n� 1�#. This procedure is
similar to those proposed in the two-spin encoding
schemes of [15–18]. The main difference is that in these
constructions the Rx rotation is generated by an inhomo-
geneous Zeeman field, whereas in ours it is generated
entirely by a sequence of exchange gates corresponding
to# rotations in the wedge of available axes. Again, as  m
goes to zero, the number of required pulses scales as 1= m
and the construction becomes increasingly sensitive to
errors.

The second procedure requires more pulses in the limit
of small  m but is simpler and less susceptible to error.
The idea is to perform a sequence of 2# pseudospin
rotations about any available axis or axes and use the
spin-orbit induced mismatch between � and � to accrue
the extra # phase required to satisfy (12). The resulting
gate will then have the form (10) with � � 2n#, where n
140501-3
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FIG. 3. Proposed CNOT construction. Each line corresponds
to a logical qubit. U��;�� is defined in (10) with � � �2n�
1�#. The value of � depends on the procedure used to carry out
the CNOT. H � ��x � �z�=

���
2
p

is a Hadamard gate and Rx� � is
a single-qubit rotation about the x axis through an angle  
equal modulo 2# to �����=2.
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is the number of 2# rotations. According to (9), for the ith
rotation the corresponding phase factor will be �i �
2#� (i, where (i �O�s2�. For a sequence to satisfy the
constraint (12) the sum of all phases, and hence

P
i(i,

must be an odd multiple of #. Given control of spin-orbit
coupling, there will be a continuous range of achievable (
values for each 2# rotation, with (1 < (< (2, where
(1; (2 �O�s2�. If this range includes 0, then (12) can
always be satisfied with �#=(max� � 1 rotations, where
(max � max�j(1j; j(2j�. If this range does not include 0 it
will still always be possible to satisfy (12) with, at most,
�(max=�(2 � (1�� � 2� �#=(max� rotations.

Regardless of which procedure is used, single-qubit
gates acting on logical qubits 12 and 34 are required to
complete the CNOT construction. One procedure for doing
this is shown in Fig. 3.

Initialization can be performed by switching on the
interaction between pairs of spins forming logical qubits
and cooling. If s is set to 0 for this initialization, logical
qubits will equilibrate to j0Li. If s cannot be set to 0, they
will equilibrate to a state which can be rotated to j0Li.
Readout can be performed using a modified version of the
scheme proposed by Kane [2]. By switching on tunneling
between dots forming a logical qubit, and raising the
voltage of one dot so that it becomes doubly occupied if
and only if the final state is a singlet, the qubit measure-
ment can be converted to a charge measurement which
can be performed using a single electron transistor. If the
spin-orbit induced spin precession cannot be turned off
during this process, it will not correspond to a measure-
ment in the fj0Li; j1Lig basis, but rather a measurement
along a pseudospin axis nearly parallel to z. Again this
does not cause any fundamental problems.

To carry out fault tolerant quantum computation, it
must be possible to perform 105 gates within the spin
decoherence time, *s [25]. In GaAs quantum dots, with
pulse times of 1 ps [4] and *s � 10 's [26], we estimate
 m must be greater than 0.1 to do this. Given estimates of
the size of anisotropic exchange in GaAs [9], we believe
this is feasible.

To summarize, we propose a method for quantum
computation based on controlling the spin-orbit induced
140501-4
anisotropic corrections to the exchange interaction, with
the degree of control characterized by the parameter  m.
For two-spin encoding of logical qubits, single-qubit
rotations and CNOT gates can be carried out with the
number of pulses for each scaling as 1= m for small  m.
For this scheme to be useful it is clearly desirable to
design a system for which  m is as large as possible.

This work is supported by the National Science
Foundation through NIRT Grant No. DMR-0103034.
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We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot
under optical excitation and photon detection. At the two-photon resonance between the two electron-spin
states, the detection of light scattering from the intermediate exciton state acts as a weak quantum
measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent
population trapping state without light scattering, the nuclear state is projected into an eigenstate of
the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that
this limit can be approached by adapting the driving frequencies when a photon is detected. We use a
Lindblad equation to describe the driven system under photon emission and detection. Numerically, we
find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 �s.

DOI: 10.1103/PhysRevLett.96.136401 PACS numbers: 71.70.Jp, 03.67.Pp, 78.67.Hc
FIG. 1 (color online). Three-level system. State 1 (2) is a spin-
up (-down) conduction-band (EC) electron, with splitting
g�BBtot � �hz, where �hz is the z component of the nuclear
(Overhauser) field fluctuations. State 3 is a trion with Jz0 � 3=2.
Two laser fields with frequencies !p and !c are applied near the
13 and 23 resonances with detunings �1;2. For a �� circularly
polarized excitation (along z0), both transitions are allowed for
� � 0 and transitions to the Jz0 � �3=2 states are forbidden.
Inset: Structural axis z0, leading to a splitting in EV and spin
quantization axis z k Btot in EC where cos� � z � z0 < 1.
Introduction.—Single electron spins localized in small
artificial structures, such as semiconductor quantum dots
(QDs), have become available and to a large extent control-
lable [1–4]. Of particular interest is the phase coherence of
electron spins as single quantum objects, both from a
fundamental physics point of view and because of their
potential use as quantum bits (qubits) for quantum infor-
mation processing [5,6].

A number of physical mechanisms that lead to the
gradual reduction of the quantum phase coherence (deco-
herence) of the electron spin have been analyzed [7]. It has
been established experimentally [2–4] and theoretically
[8–13] that, in a GaAs QD, the predominant decoherence
mechanism is the hyperfine coupling to the nuclear spins in
the host material. For an unpolarized ensemble of N nuclei
and an effective hyperfine interaction energy A, the de-
phasing time in a weak magnetic field is T�2 � 1=������
N
p

=A, where � is the width of the distribution of nuclear
field values hz parallel to the field. In a typical GaAs QD
with A� 90 �eV or A=g�B � 3:5 T [14], the number of
Ga and As nuclei (spin I � 3=2) is N � 5� 105 and T�2 �
5 ns; this value is supported by the experimental evidence
[4,15]. The T�2 decay originates from nuclear ensemble
averaging and can be prolonged by narrowing the nuclear
spin distribution [12]. Another strategy is to polarize the
nuclear spins [8], but this requires a polarization close to
100% which is currently not available [12]. Two schemes
have been proposed to achieve a narrowing of the nuclear
spin distribution, based on electron transport [16] and gate-
controlled electronic Rabi oscillations [17].

Here we analyze an optical scheme for nuclear spin
preparation that makes use of spin-flip two-photon
(Raman) resonance in a driven three-level system (TLS),
in analogy to electromagnetically induced transparency
(EIT) in atoms [18,19]. The lowest electronic states in a
06=96(13)=136401(4)$23.00 13640
QD formed in a III-V semiconductor (e.g., GaAs) that are
optically active under �� circularly polarized excitation
are the Zeeman-split ground state of a single localized
conduction-band (EC) electron and the negatively charged
exciton (trion) jXi, i.e., two electrons (spin up and down)
plus one valence band heavy hole (hh) with angular mo-
mentum Jz0 � �3=2 (Fig. 1). The J � 3=2 sector in the
valence band is split into light hole and hh states along the
axis z0 of strong QD confinement. Here we assume excita-
tion from the hh (Jz0 � �3=2) subband only. The axis z in
1-1 © 2006 The American Physical Society
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EC is parallel to the total magnetic field Btot, and we
assume that the axes z and z0 enclose an angle � > 0.
The spin-up and -down states in EC are then j"i 	 j"iz �
cos
��j"iz0 � sin
��j#iz0 and j#i	 j#iz� cos
��j#iz0�
sin
��j"iz0 . Two circularly polarized (��) continuous-
wave lasers at the frequencies !p � !X �!" ��1 and
!c � !X �!# � �2 stimulate the transitions between j"i
and jXi and between j#i and jXi, while the trion with Jz0 �
�3=2 is not excited.

The narrowing of the nuclear field distribution � is based
on light scattering in a TLS, where two long-lived (spin)
states are coupled resonantly to an excited state that decays
by spontaneous emission. When the two lasers satisfy
exact two-photon resonance � � �1 ��2 � 0, one of
the eigenstates of the system is a superposition of the
two spin states with a vanishing excited state jXi compo-
nent. The TLS at � � 0 is driven to this dark state with a
vanishing light scattering rate [19]. The population of jXi
and, thus, the photon scattering rate is nonzero for � � 0.
In the presence of the nuclear spins, this resonance moves
to � � �hz, where �hz is the deviation of the nuclear field
(along z) from its mean hhzi. The absence of photon
emission during a waiting time t constitutes a weak mea-
surement of the quantum operator �hz. In the limit t! 1,
it becomes a strong measurement, projecting the nuclear
state onto j�hz � 0i (width � � 0), thus eliminating elec-
tron decoherence due to the fluctuating field �hz.

Model.—The Hamiltonian for the TLS coupled to nuclei
is H � H0 �Hint �Hhf , where H0 � �
@!z=2��z �
@!XPX, with �i � �i � 0, the block-diagonal 3� 3 ma-
trix with the Pauli matrix �i in the upper left corner and 0
elsewhere, and PX � jXihXj � 
001�T
001�. The spin
splitting is given as @!z � g�BBtot � jg�BB� hhij, the
sum of the external magnetic and the mean nuclear fields.
The nuclear (Overhauser) field operator is h �

PN
i�1 AiIi,

where Ai � aiv0j�
ri�j2, and �
ri� denotes the electron
wave function at the position ri of the ith atomic nucleus,
v0 is the volume of the unit cell, and ai is the hyperfine
coupling strength for the nuclear species at site i. The
classical laser fields in the rotating wave approximation
(RWA) are described by [19] Hint � �pei!ptjXi�
h"j ��cei!ctjXih#j � H:c: The coupling of the electron
spin to the quantum fluctuations of h is described byHhf �

� 1
2�h ��, where �h � h� hhi. In the rotating frame

~�
t� � U
t��
t�, with U
t��e�i!ptP"�e�i!ctP# �PX,
where P" � j"ih"j and P# � j#ih#j, we find ~H
t� � U
t��
H
t� � @!pP" � @!cP#�U
t�y and, up to a constant (we
drop the tilde and use H for the Hamiltonian henceforth),

H
t� � �
@

2

� 0 �p

0 �� �c

�p �c ��

0
B@

1
CA� @

2
�hz�z �H?; (1)

where � � �1 ��2. The hyperfine flip-flop terms H? �
@
�h���eit
!p�!c� � �h���e�it
!p�!c��=4 are oscillat-
ing rapidly at the frequency !p �!c � g�BBtot=@� �
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and can be neglected in the RWA [20], leading to a block-
diagonal Hamiltonian H � diag
H1; H2; . . . ; HK�, with

Hk � �
@

2

�hkz � � 0 �p

0 ��hkz � � �c

�p �c ��

0
B@

1
CA; (2)

where �hkz for k � 1; 2; . . . ; K are the eigenvalues of the
operator �hz and K � 
2I � 1�N is the dimension of the
nuclear spin Hilbert space. The state of the TLS combined
with the nuclear spins is described by the density matrix �,
which we divide up into 3-by-3 blocks �kk0 and which
evolves according to the generalized master equation [19]

_� � L� 	
1

i@
H;�� �W�; (3)

with the Hamiltonian equation (1) and the dissipative
term W��

P
��";#�X�
2��X��X���XX����XX�=2�P

��#;X	�
2������������������=2, where �ij �
�ij � 1 � jiihjj. The rate �X� describes the radiative de-
cay of jXi into � � j"i; j#i, while 	� is the pure dephasing
rate of state � � j#i; jXi with respect to j"i. Since H is
block-diagonal, Eq. (3) leads to the closed form

_� kk0 �
1

i@

Hk�kk0 � �kk0Hk0 � �W�kk0 : (4)

The diagonal blocks obey the familiar Lindblad equation,

_� kk � Lk�kk; Lk � �iHk; �� �W�: (5)

Stationary state.—We start with the factorized state
�0 � 
0 � �0, with arbitrary initial density matrices 
0

and �0 �
P
kk0�kk0 j�h

k
zih�h

k0
z j of the TLS and the nuclear

ensemble, where j�hkzi are eigenstates of �hz. We assume a
Gaussian �kk � 
2���1=2��1 exp�
�hkz�

2=2�2�, with the
width � � �0 � A=

����
N
p

, plotted as a solid line in Fig. 2(a).
For our numerics, we choose A � 90 �eV, N � 5� 105,
corresponding to �0 ’ 0:13 �eV ’ 0:2@�, with � � 1 ns,
and a sample of n� K states (n� 4000) [21]. Because of
the hyperfine coupling, the TLS and the nuclei are en-
tangled in the stationary state �� �

P
kk0 ��kk0 � j�h

k
zih�hk

0

z j
with _�� � L �� � 0. We derived an analytical expression for
the 3-by-3 diagonal blocks ��kk of �� as a function of all
parameters, including �hk.

Evolution of the observed system.—In order to enhance
the electron-spin coherence, we aim at narrowing the
nuclear spin distribution �kk. For a Gaussian distribution,
this amounts to decreasing the width �, thus increasing the
electron coherence time t0 ’ 1=2�. Ideally, we would
perform a projective measurement P on the nuclear spins,
P ��kkP / �
�h

k
z � ��. A successive approximation of P is

achieved by monitoring the photon emission from the QD.
The longer the period t during which no photon is emitted,
the higher is the probability for �hz to be at the two-photon
resonance, �hz � �.

To describe the state of the system conditional on a
measurement record, we use the conditional density matrix
1-2
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FIG. 2. Conditional evolution of the nuclear spin distribution
�
�hkz� � �kk. (a) During the first period t1 without photon
emission, the initial Gaussian distribution (solid line) develops
a peak at the two-photon resonance (dashed line). (b) Change of
�
�hz� after emission at t1 (solid line), until before emission
time t2 of the second photon (dashed line). The two-photon
resonance � is shifted to the position of the left maximum
(adaptive technique). The depleted region around �hkz � 0 de-
velops at t1. (c) Analogous situation between t11 and t12.
(d) �
�hz� is obtained after a total time of 10 �s.
Inset: Magnification of peak in (d). The width of �
�hz� is
reduced by a factor of � 100 compared to the initial width in
(a). The parameters are �c � �p � 0:2 ns�1, � � 0, �X" �
�X# � 1 ns�1, and 	# � 	X � 0:001 ns�1.
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�c. In the absence of photon emission, �c obeys Eq. (5)
with Lk replaced by Lk � S, where the collapse operator
S describes spontaneous emission of the state jXi into j"i
and j#i with rates �X" and �X# [22],

_� c
kk � 
Lk � S��ckk; S� �

X

��";#

�X���X��X�: (6)

We have numerically calculated �c in the absence of
emitted photons for a duration t. We plot the updated
distribution �kk from � � Tr��c as a dashed line in
Fig. 2(a). We find that the a posteriori �kk is concentrated
around the two-photon resonance. As the off-diagonal
elements (coherences) of � are constrained by positivity,
j�kk0 j �

����������������
�kk�k0k0
p

, they are also reduced by the narrowing
of �kk. This process is eventually stopped by a photon
emission.

Photon emission.—The stationary emission rate is [22]

�em � TrS ��
t� � �
X

k


�kk�XX�kk; (7)

where � � �X" � �X#. The average photon number during
time t is hNphi � t�em, and the a priori probability for
Nph � 0 is, according to Poissonian statistics, Pdark
t� �
exp
��emt�. The waiting time distribution for photon
emissions is pwait
t� � ��1

em exp
��emt� with mean hti �
��1

em . The narrowing of �kk, Eqs. (6) and (7), leads to a
decreasing �em and an increasing hti.
13640
With Eq. (7), we find the update rule for � upon photon
emission, �0 � Tr�S�

c=TrS�c, or

�0kk �
�kk
�kk�XXP
j
�jj
�jj�XX

; (8)

where �kk and 
�kk�XX � hXj�kkjXi are taken before the
emission. The population in the Overhauser field �hz
corresponding to the two-photon resonance �hz � � is
depleted by the photon emission [Fig. 2(b), solid line].

Adaptive technique.—The stationary, isolated TLS at the
two-photon resonance is in a dark state. However, the
coupling to the nuclei introduces a nonzero probability
for occupation of jXi and for photon emission. Since the
detection of a photon provides information about �hz, the
photon emission does not necessarily signify a failed at-
tempt to narrow the nuclear field distribution but can be
used as an input for the next weak measurement with ad-
justed frequencies of the driving lasers, !0p � !p � �=2
and !0c � !c � �=2, so that the new two-photon reso-
nance condition is �hz � �0, where �0 � �� � while
�0 � �. We choose � such that the new resonance with
the Overhauser field lies in one of the two maxima �hmax

z
formed after the photon emission; see Fig. 2(b). This
situation is described by Eq. (2) with the substitution �!
�� �hmax

z . The adaptive technique also works by chang-
ing only one of the laser frequencies. Right after the photon
emission, the TLS is in one of the single electron states j "i
or j #i. Within a time 1=�, much faster than any nuclear
time scale, the system will reach the new stationary state.
The photon emission from the QD can again be monitored,
leading to an enhanced nuclear population at the new
resonance [Fig. 2(b), dashed line], thus further narrowing
the nuclear distribution. Repeating this procedure leads to a
nuclear width that is limited only by the width of the EIT
resonance [Figs. 2(c) and 2(d)].

Electron-spin decoherence.—The electron-spin coher-
ence is quantified using the expectation value of the raising
operator S�
t� in a state jx�i that is prepared perpendicular
to the total field Btot and is freely precessing about the
fluctuating nuclear field �hz, hS�
t�i 	 hx�jS�
t�jx�i. We
obtain hS�
t�i � 
@=2�

P
k�kk exp
it�hkz�, which we plot in

Fig. 3 at various stages in an adaptive optical measurement
scheme. As the off-diagonal elements �kk0 for k � k0 do not
enter hS�
t�i and Eq. (4) decouples, these results are valid
for any �0 consistent with the chosen Overhauser field
probability distribution. We make a Gaussian fit hS�
t�i /
exp
�t2=t20� for short times t and plot the coherence time t0
as a function of the total waiting time in Fig. 4. This is the
main result of our theoretical analysis: The repeated ob-
servation of the QD photon emission and adaptation of the
laser frequencies !c and !p after each photon emission
leads to a pronounced enhancement of the electron coher-
ence time, for the realistic parameters chosen, from t0 �
5 ns to �500 ns within a total observation time of 10 �s.
1-3
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FIG. 3 (color online). Electron coherence function
jhS�
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0�ij vs electronic precession time t calculated
from �
�hz� in Fig. 2 after emission of the nth photon (n �
1; 6; . . . ; 26). The initial decay is approximately Gaussian.
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Imperfect detectors.—We cannot expect to have perfect
photon detectors at our disposal; therefore, we discuss here
the case of a detector with efficiency e < 1. For an imper-
fect detector, Eq. (6) becomes _�ckk � 
Lk � eS��ckk, re-
flecting that photons are detected with probability e. We
have numerically analyzed the case of e � 10% (other
parameters as above) and find t0 � 460 ns after a some-
what longer preparation time t � 50 �s. This is still much
shorter than the time after which the nuclear spin decays,
around 0.01 s due to higher-order hyperfine flip-flop terms
[17], but possibly longer due to Knight-shift gradient ef-
fects. Nuclear flip-flop processes occur on a time scale of
�100 �s [14] but are ineffective in changing hz in a
magnetic field that enforces nuclear spin conservation
and, thus, preserve hz for short-range flip-flops while
long-range flip-flops are suppressed by the Knight-shift
gradient. This picture is supported by the observed slow
(*1 s) decay of polarized nuclear spins in contact with
donors in GaAs [23]. While a quantitative theory for the
relevant time scale of nuclear spin decay due to nuclear-
0 2 4 6 8 10
t [µs]

0

200

400

600

t 0 
[n

s]

FIG. 4. Characteristic time t0 of the initial Gaussian decay of
jhS�
t�ij=jhS�
0�ij in Fig. 3 as a function of the optical prepa-
ration time t, averaged over 50 numerical runs (error bars
indicate the standard deviation).
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dipole interactions is missing, the arguments given above
suggest that our picture of a slow decay is reasonable.

Conclusions.—We find that it is possible to efficiently
enhance the quantum phase coherence of an electron spin
in a QD surrounded by a large ensemble of nuclear spins by
a continuous weak measurement of the Overhauser field
using optical excitation at a two-photon resonance of the
TLS formed by j"i, j#i, and jXi. An intriguing question is
whether the electron-spin coherence can be enhanced by a
quantum Zeno type effect to the point where it is ultimately
determined by spin-orbit interaction: Since the reservoir
correlation time of dominant electron-spin decoherence
due to flip-flop terms of the hyperfine interaction is
�1 �s, this would most likely require high efficiency
detection of the scattered photons.
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We study the two-qubit controlled-NOT gate operating on qubits encoded in the spin state of a pair of
electrons in a double quantum dot. We assume that the electrons can tunnel between the two quantum dots
encoding a single qubit, while tunneling between the quantum dots that belong to different qubits is forbidden.
Therefore, the two qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find
that entangling two-qubit gates can be performed by the electrical biasing of quantum dots and/or tuning of the
tunneling matrix elements between the quantum dots within the qubits. The entangling interaction can be
controlled by tuning the bias through the resonance between the singly occupied and doubly occupied singlet
ground states of a double quantum dot.
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I. INTRODUCTION

The spin 1/2 of a single electron trapped in a quantum dot
�QD� is a promising candidate for a carrier of quantum in-
formation in a quantum computer.1 To perform a quantum
computation, we need to have all the unitary operations from
some universal set of quantum gates at our disposal.2 One
such universal set consists of all the single-qubit quantum
gates and a two-qubit controlled-NOT �CNOT� quantum gate.
Quantum computation over the single-spin qubits with the
logical states corresponding to the spin orientations �↑� and
�↓� can, in principle, be achieved using an external magnetic
field or with g-factor engineering for the single-qubit opera-
tions and with the time-dependent isotropic exchange inter-
action Hex�t�=J�t�S1 ·S2 for manipulating a pair of qubits en-
coded into spins S1 and S2.1

Control of electron spins in quantum dots is in the focus
of many intense experimental investigations. Manipulation
of pairs of electron spins using the tunable isotropic ex-
change interaction has already been demonstrated in several
experiments.3–5 Such control was used in a study of the QD
spin decoherence due to the hyperfine coupling to the sur-
rounding nuclear spins, where the splitting between the sin-
glet states with the total spin Stot=0, where Stot=S1+S2, and
the triplet states with Stot=1 was used to turn the singlet-
triplet mixing caused by the hyperfine interaction on and off.
An important result of these studies is that the coherence
time of an electron spin in a quantum dot is very long if the
decoherence due to the interaction with the nuclear spins can
be suppressed. The spin coherence times can be improved by
the manipulation of nuclear spins,6–8 in principle, allowing
for elaborate sequences of operations to be performed.
Single-spin control is based on the local manipulation of the
magnetic field or g factor1 or on electron-spin-resonance
methods9,10 and has only recently been demonstrated
experimentally.11

The difficulty of single-spin control has inspired a number
of proposals for quantum computation based on the encoding
of qubits into more than one spin. These encoding schemes
reduce the requirement on the control over electron spins,
but have the drawback of introducing so-called leakage er-
rors, in which the state of encoded qubit “leaks” out of the
set of computational states. Standard error-correction proce-

dures can be modified to prevent this kind of error.12 A uni-
versal set of quantum gates operating on qubits encoded into
states of three quantum dot spins with equal total spin quan-
tum numbers can be implemented through control of the iso-
tropic exchange coupling Hex alone.13–15 Control over inter-
actions that are symmetric only with respect to rotations
about a fixed axis in spin space allows for the construction of
a universal set of quantum gates that operate over qubits
encoded into a pair of spins. One such encoding is into the
orthogonal states �↑↓� and �↓↑� of two spins 1/2. A universal
set of quantum gates over such qubits can, in principle, be
performed by the control over Hex, with the anisotropy pro-
vided by an external static homogeneous magnetic field and
a site-dependent g factor.16,17

We consider a variant of the two-spin encoding where the
logical zero �0L� and the logical one �1L� quantum states are
the singlet and the triplet with zero projection of the total
spin to the symmetry axis z �Sz

tot=0�; e.g., for lateral QDs,
the z axis is the normal to the plane of the heterostructure,

�0L� =
1
�2

��↑↓� − �↓↑�� ,

�1�

�1L� =
1
�2

��↑↓� + �↓↑�� .

These qubits can be manipulated by an axially symmetric
interaction to produce a universal set of quantum gates. The
interaction with an inhomogeneous Zeeman field and the iso-
tropic exchange,16,17 the interaction with an inhomogeneous
Zeeman field and an anisotropic spin-orbit coupling,18 and
the spin-orbit coupling alone19 were all proposed as a way of
producing a universal set of quantum gates operating on
singlet-triplet two-spin qubit �Eq. �1��. Recently, it was sug-
gested that an architecture based on singlet-triplet qubits in-
dividually addressed using the isotropic exchange interaction
and inhomogeneous magnetic field and coupled through
Coulomb interactions of the electrons is scalable and, in
principle, realizable.20

In this paper, we study a particular realization of entan-
gling two-qubit gates between singlet-triplet qubits �Eq. �1��,
where each qubit is represented by a pair of tunnel-coupled
single-electron quantum dots, as proposed in Ref. 20. In this

PHYSICAL REVIEW B 75, 085324 �2007�

1098-0121/2007/75�8�/085324�12� ©2007 The American Physical Society085324-1

http://dx.doi.org/10.1103/PhysRevB.75.085324


realization, the double quantum dots are separated by a bar-
rier, which is impenetrable for the electrons, so that the qu-
bits are coupled exclusively through the Coulomb repulsion
of electrons, while the exchange terms between electrons on
different double quantum dots vanish. The setup of this
double-double quantum dot �DDQD� is illustrated in Fig. 1.

The Coulomb interaction is spin independent, leading to
an isotropic interaction JS1 ·S2 between tunnel-coupled spins
S1 and S2. The anisotropic correction to this interaction is
dominated by the spin-orbit coupling induced term J� · �S1

�S2�+O����2�. The relative strength of the anisotropic inter-
action in quantum dot systems is estimated to be ���
�0.1–0.01.21,22 The influence of the anisotropic corrections
can be reduced in specific implementations of the quantum
gates.23,24 Coupling of singlet and triplet states in a DQD
induced by the anisotropy would introduce errors in a quan-
tum gate operation at the rate of approximately ���2 for a
generic implementation of the entangling gates and at the
rate ��4� if the methods of Ref. 24 are applied. In our study
of a two-qubit gate operation, we will only consider the case
of isotropic interaction and neglect the weak anisotropy. In
this case, transitions between spin-singlet and spin-triplet
states on a DQD are forbidden. Due to this spin symmetry,
the four-electron Hamiltonian is block diagonal,

H = diag�HSS,HST,HTS,HTT� . �2�

The nonzero blocks Hab, where a ,b=S ,T, act on the states in
which electron pairs on each DQD are either in the singlet
�S� or in a triplet �T� state of the total spin Stot=0 or Stot=1.

Our main results are the effective low-energy spin inter-
action and a scheme to perform a two-qubit CNOT gate in an
electrically controlled DDQD system. The effective low-
energy spin interaction in this setup has the form

H = J�SLI · SLO + SRI · SRO� + Ee�SS�	SS� . �3�

Two pairs of spins, SLI and SLO on the left �L� qubit and SRI

and SRO on the right �R� qubit �see Fig. 1�, interact via the

isotropic exchange interaction of strength J and the entan-
gling interaction of strength Ee that shifts the energy of the
singlet-singlet state. We show how the entangling two-qubit
quantum gates for universal quantum computation can be
performed through the electrical control of Ee.

The triplet states with Sz
tot=0, ±1 are degenerate in the

absence of a magnetic field. A uniform magnetic field B,
pointing along the z axis normal to the plane of QDs, causes
a Zeeman splitting g�BB ·S between the Sz

tot=0 states and the
states with Stot=1, Sz

tot= ±1. Our results apply to both the
isotropic �B=0� and the anisotropic but axially symmetric
�B�0� case if we take the Sz

tot=0 state to represent the qubit
�1L� state.

A two-qubit quantum gate can, in principle, be performed
by adiabatically varying the tunneling amplitude t and the
bias � within the DQD. A generic voltage pulse will modify
the electrostatic potential in the quantum dots. We use the
tunneling amplitude and the bias to describe this potential. In
a more general approach, the new potential would be calcu-
lated as a solution to the electrostatic problem with external
voltages specifying the boundary conditions. However, the
wave functions of electrons are well localized at the posi-
tions of the quantum dots, and the parameters t and � capture
the possible variation of the electron Hamiltonian. In a naive
picture, the tunneling and bias are controlled by separate
electrodes. Another important issue is independent control
over the two parameters. In principle, a change in the gate
potentials will modify both parameters. The control will,
however, be approximately independent as long as the quan-
tum dots are well separated. In practice, it is much simpler to
change the bias � while t remains fixed.27 The control param-
eters � and t have to vary slowly on the time scale set by the
energy splitting between the states of a given spin configu-
ration. During the gate application, the orbital components of
the S and T states are different due to the Pauli principle that
forbids the electrons in a spin triplet to share their orbital
state �see Fig. 2�. As opposed to t and � that are determined
by gate voltages and can be changed more or less at will, the
Coulomb interaction is set by the geometry of the system and
therefore fixed. We show how the control of the parameters t
and �, or even � alone, can nevertheless be used to imple-
ment entangling two-qubit gates on encoded singlet-triplet
qubits through its influence on the Coulomb terms.

When an adiabatic gate is applied, the lowest-energy state
in each block Hab, of energy Eab, where a ,b=S ,T �see Eq.
�2��, acquires a phase �ab=
ti

tfEab�t��dt� /�. The energy Eab

becomes time dependent through the time dependence of the
parameters t and � in the interval ti� t�� tf. The resulting
interaction is described by an effective four-dimensional
two-qubit Hamiltonian acting in the space spanned by the
lowest-energy states �SS�, �ST�, �TS�, and �TT� in the corre-
sponding blocks Hab, and has the form of Eq. �3�.

In the regime of strong bias, ��−U�� t, where U is the
on-site Coulomb repulsion, we investigate the DDQD system
using perturbation theory. For the case of arbitrary bias �, we
numerically diagonalize the Hamiltonian �Eq. �2��. We show
that the two-qubit quantum gate can be operated by tuning
the bias � so that the amplitude of the doubly occupied state
in the lowest-energy spin singlet becomes appreciable. In

FIG. 1. �Color online� Double-double quantum dot �DDQD�
setup. The four single-electron quantum dots are aligned along a
fixed direction. The spins of the electrons on two quantum dots,
inner �I� and outer �O�, separated by a distance 2a1 encode a qubit.
Two such double quantum dot �DQD� qubits, left �L� and right �R�,
at the distance 2a2 are separated by an impenetrable barrier. The
tunneling matrix element t within the DQDs carrying the qubits and
the bias � of the inner dots with respect to the outer are equal on
both DQDs and can be electrically tuned. The Coulomb interaction
between the DQD is represented by the capacitor C.
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this “on” state with a large double occupancy amplitude,
entanglement is generated between the two-spin qubits. The
entanglement generation is suppressed in the “off” regime
with weak bias and tunneling. Therefore, the generation of
entanglement between the two two-spin qubits encoded into
DDQD can be efficiently controlled using the bias � alone.
Together with the single-qubit operation, this control is suf-
ficient for universal quantum computing.

This paper is organized as follows. In Sec. II, we intro-
duce our model of the DDQD system, followed by the dis-
cussion of the control through voltage pulses. In Sec. III, we
focus on the case of the strongly biased ���−U�� t� DDQD
system and calculate the interaction between the qubits. The
constraint of the strong bias is lifted in Sec. IV, where we
numerically find the interaction between the qubits, valid at
an arbitrary bias �. In Sec. V, we outline the construction of
a CNOT gate based on the resources for the control over a pair
of qubits deduced from the results of Secs. III and IV. Our
results are summarized in Sec. VI. The technical details of
the calculation are collected in the Appendix.

II. MODEL

For the purpose of finding the effective low-energy spin
Hamiltonian, the excited orbital states of single quantum dots
can be neglected, leading to the Hund-Mulliken �HM� ap-

proximation with one orbital per dot.9,25 In the HM approxi-
mation, the state space of the two-electron system in a
double quantum dot �DQD� encoding the left �q=L� or the

right �q=R� qubit is spanned by three singlet basis states, �S̄�,
�DI�, and �DO�, and one triplet basis state, �T0�,

�S̄� =
1
�2

�cqI↑
† cqO↓

† − cqI↓
† cqO↑

† ��0� , �4�

�DI� = cqI↑
† cqI↓

† �0� , �5�

�DO� = cqO↑
† cqO↓

† �0� , �6�

�T0� =
1
�2

�cqI↑
† cqO↓

† + cqI↓
† cqO↑

† ��0� , �7�

where ck is the annihilation operator for an electron in the
state k= �qk , pk ,sk� on the qubit qk=L ,R, with position pk

= I ,O, where I stands for inner and O for outer quantum dot
within a qubit, and spin sk= ↑ ,↓. The vacuum �0� is the state
of empty QDs.

In the standard notation, the singlet states of a DQD are
denoted by ��n ,m�S�, where n is the number of electrons on
the left QD and m is the number of electrons on the right

QD. Our singly occupied singlet is then expressed as �S̄�
���1,1�S�. The doubly occupied singlet states on the left,
q=L, DQD are �DI����0,2�S� and �DO����2,0�S�. On the
right, q=R, DQD the definitions are reversed, �DI�
���2,0�S� and �DO����0,2�S�.

The orbital states annihilated by ck approximate the
ground states of the single-particle Hamiltonian,

H1 = �
i

1

2m
pi −

e

c
A�ri��2

+ V�ri� , �8�

describing an electron in the magnetic field B=��A and
confined to the system of quantum dots by the electrostatic
potential V. The quantum dots form in the minima of this
potential, which is locally harmonic with the frequency �0.
The ground states of H1 localized in these wells are the trans-
lated Fock-Darwin states.9

The HM Hamiltonian is of the generic form

H = t�
k,l

�	qk,ql
	sk,sl

cqkIsk

† cqkOsk
+ H.c.�

− � �
k,pk=I

ck
†ck +

1

2 �
klmn

	kl�VC�mn�ck
†cl

†cncm. �9�

The intra-DQD tunneling term 
t preserves the electron
spin. The bias � of the inner �pk= I� QDs with respect to the
outer �pk=O� QDs is taken to be symmetric; i.e., the energy
of both inner dots is lowered by the same amount. The two-
body Coulomb interaction is denoted by VC. Near the center
of the quantum dot, the electrostatic potential is approxi-
mately harmonic and we assume that the wave functions of
the electrons annihilated by the operators ck are well approxi-
mated by the orthogonalized Fock-Darwin ground states.

FIG. 2. �Color online� Two-qubit quantum gate. �a� When the
inner quantum dots of the two double quantum dots system are

strongly biased ��� Ũ+ t�, the ground state is the doubly occupied
inner dot. Due to the Pauli principle, only the spin singlets �S� can
tunnel into the doubly occupied states on their DQDs. As the bias �
is reduced, the states again become degenerate. �b� A quantum gate
is performed by sending a bias pulse ��t��. Each qubit state �ab�
acquires a phase �ab=
−�

� Eab�t��dt� /�, where Eab�t�� is the ground-
state energy of the Hamiltonian at time t� reduced to the appropriate
spin subspace, resulting in a two-qubit quantum gate.
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The impenetrable barrier that separates the DQDs im-
poses the conservation of the number of L�R� electrons,
n̂L�R�=�p=I,O;s=↑,↓n̂L�R�ps, where n̂qps=cqps

† cqps. The n̂L�R� con-
serving terms, proportional to the interaction matrix elements
	kl�VC�mn� in Eq. �9�, where the indices k , l ,m ,n denote the
single QD ground states, can be divided into intra-DQD
terms where qk=ql=qm=qn and inter-DQD terms that satisfy
qk�ql and qm�qn. All the other terms, e.g., the ones that
annihilate two electrons on the left �L� DQD and create two
on the right �R� DQD, violate the conservation of the elec-
tron numbers and therefore vanish.

A. Interaction within a double quantum dot

The terms for the interaction within a DQD in Eq. �9�
were discussed in Ref. 9. They renormalize the one-body

tunneling matrix element t→ tH= t+ 	S̄�VC�DI�O�� /�2, intro-
duce the on-site repulsion U= 	DI�O��VC�DI�O�� of two elec-
trons on the same QD, and cause transitions between the two
doubly occupied DQD states with the matrix element X
= 	DI�O��VC�DO�I��. Also, the Coulomb interaction on a DQD

contributes V+= 	S̄ �VC � S̄� to the electrostatic energy of the
symmetric and V−= 	T0�VC�T0� to the antisymmetric singly
occupied orbitals of two electrons in a DQD,9 giving rise to
a direct exchange interaction between spins. As a result, the
electrons on a DQD are described by an extended Hubbard
model with the isotropic exchange interaction,9

J = V− − V+ −
UH

2
+

1

2
�UH

2 + 16tH
2 , �10�

where UH=U−V++X is the effective on-site repulsion.

B. Interaction between the double quantum dots

The Coulomb interaction between the DQDs produces
three new classes of direct terms in the Hamiltonian, while
the exchange terms between the DQD vanish due to the im-
penetrable barrier.

In the first class are the terms proportional to the number
operators n̂qpsn̂q̄p�s�, describing the electrostatic repulsion of

the electrons in states qps and q̄p�s�, where L̄=R and R̄=L.
For a pair of identical DQDs, there are three such terms: the
interaction of a pair of electrons on the inner QDs, UN
= 	qIs , q̄Is��VC�qIs , q̄Is��, the interaction of an electron on
the inner QD of one DQD and an electron in the outer QD
of the other DQD, UM = 	qIs , q̄Os �VC �qIs , q̄Os�, and the
interaction of electrons on the outer QDs, UF
= 	qOs , q̄Os �VC �qOs , q̄Os� �Fig. 3�a��.

In the second class are the terms proportional to

n̂qpscq̄p�s�
† cq̄p̄s�, where Ī=O and Ō= I. These terms describe

the spin-independent correction to the tunneling matrix ele-
ment in the q̄ qubit due to the interaction with an electron in
the state qps. The two parameters that determine the tunnel-
ing corrections are Tp�= 	qps , q̄p�s� �VC �qp̄s , q̄p�s��, and are
due to the interaction with an electron in the p�= I ,O orbital
in the other DQD �Fig. 3�b��.

The terms in the third class are proportional to
cqps

† cqp̄scq̄p�s�
† cq̄p̄s� and describe the processes in which elec-

trons in both DQD tunnel simultaneously �Fig. 3�c��. The
two independent matrix elements for these processes are XS
= 	qps , q̄ps� �VC �qp̄s , q̄p̄s��, describing the tunneling from
the inner to the outer orbital in one DQD and from the outer
to the inner in the other, and XD= 	qps , q̄p̄s� �VC �qp̄s , q̄ps��,
describing the simultaneous tunneling into inner or outer or-
bitals in both DQDs. For the system in zero magnetic field,
these two matrix elements are equal, XS=XD.

C. Control of the interaction

In order to describe the influence of the intra-DQD tun-
neling t and the bias � on the spectrum of the DDQD, we
have to model the dependence of the Hamiltonian on these
external parameters. In an experiment, both t and � are con-
trolled by applying voltages to the electrodes that define the
quantum dots. The exact form of the voltage-dependent
DDQD binding potential was studied using the Schrödinger-
Poisson equation,26 but here we do not attempt to calculate
the dependence of the Hamiltonian �Eq. �2�� on � and t from
first principles.

Instead, we adopt a quartic double-well model for the
potential of a DQD centered at �±a2 ,0� of the form9

V�x,y� =
m�0

2

2 � 1

4a1
2 ��x  a2�2 − a1

2�2 + y2� , �11�

where m is the electron effective mass, 2a1 is the distance
between the approximately harmonic wells in a DQD, and
2a2 is the distance between the DQD double-well minima. In

FIG. 3. �Color online� Effects of the direct Coulomb interaction
between double quantum dots �DQDs�. All the exchange terms be-
tween the DQDs vanish due to the impenetrable barrier. �a� The
Coulomb repulsion between the electrons on different double quan-
tum dots contributes to the energy of the system. In the case of
identical DQDs separated by an impenetrable barrier, there are three
such contributions, coming from the electrons in orbitals that are
near �UN�, at a medium distance �UM�, or far apart �UF�. �b� The
tunneling matrix elements within a DQD are renormalized by TI or
TO due to the interaction with an electron on the inner or the outer
dot of the other DQD. �c� The interaction enables the correlated
hopping processes in which electrons simultaneously tunnel in both
DQDs. In one such process, the electrons tunnel to the same side
�either left or right� with the matrix element XS. In the other corre-
lated hopping process, electrons simultaneously tunnel into the in-
ner or outer quantum dots of their double quantum dots with the
matrix element XD.
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the limit of well separated dots, a1,2�aB, where aB is the QD
Bohr radius given by aB

2 =� /m�0, and near the local minima
of the quartic potential well at �±a2±a1 ,0�, the potential is
approximately harmonic with the frequency �0. The Fock-
Darwin ground-state wave functions in this harmonic poten-
tial centered at �xc ,0� and in the magnetic field B normal to
the plane of the dots, described in the symmetric gauge by
the vector potential A=B�−y ,x ,0� /2, are

�xc
�x,y� =�m�

��
e−m���x − xc�2+y2�/2�+im�Lxcy/�, �12�

where �L=eB /2mc is the electron Larmor frequency and �
=��0

2+�L
2 is the resulting confinement frequency with both

electrostatic and magnetic contributions. We will use the
magnetic compression factor b=� /�0 to measure the
strength of the magnetic field, consistent with the notation in
Ref. 9.

The translated single-electron Fock-Darwin states
�±a2±a1

�x ,y� define the state space of the variational HM
approximation for a DDQD. The tunneling matrix element
between the Fock-Darwin ground states in the local minima
of the potential �Eq. �11�� is our control parameter t,9

t � 	�±a2+a1
�H1��±a2−a1

� =
3

8

S

1 + S2� a1
2

aB
2 +

1

b
� , �13�

where S= 	�±a2+a1
��±a2−a1

�=exp�−d1
2�2b−1/b�� is the over-

lap between the Fock-Darwin ground states in a DQD and
d1=a1 /aB is the distance between the QDs within the DQD
in the units of the QD Bohr radius.

As t is changed by external voltages, we assume that the
overlap S between the oscillator states remains consistent
with the relation in Eq. �13�, which is valid for the double-
well potential V. All the Coulomb matrix elements can be
expressed in terms of S so that after solving Eq. �13� for the
overlap, they become functions of t �see the Appendix�. The
bias � is modeled as an energy shift of the orbitals, so that
the inner pk= I orbitals have their energy reduced by �.

The two-qubit gates are applied by time-dependent tuning
of the tunneling matrix element t and/or the bias � in the
DQDs using voltage pulses. In a typical experiment, the con-
trol of the QD energies through � is much easier to achieve
than the control over tunneling matrix element t.27 The rea-
son behind this is that the energy bias is linear in applied
voltage, while the tunneling is typically exponential.

The structure of the energy levels is particularly simple in
the limit of zero tunneling t=0. In this limit, the eigenstates
are the Hund-Mulliken basis states �Eqs. �4�–�7��. Their en-
ergies are determined by the bias �, the external magnetic
field B, and the direct Coulomb interaction that is set by the
device geometry. A drastic change in the structure of the
DDQD spectrum as a function of bias � appears at the cross-
ings of the lowest-energy singlet states within a DQD. Each

of the singlet states �S̄�, �DI�, and �DO� is lowest in energy for
some values of the bias � �Fig. 4�. A crossing occurs when
either the positive bias overcomes the effective on-site repul-

sion Ũ, making the state with both electrons in an inner dot
�DI� the lowest in energy, or the negative bias makes �DO� the

lowest in energy �see Fig. 5�. We use the effective on-site

repulsion Ũ to emphasize the fact that it includes not only the
repulsion of two electrons in the same dot, denoted by U, but
also the energy of the interaction with the electrons on the
other DQD. We will also use two special values of the effec-
tive on-site repulsion, U±. Due to the dependence of the ef-
fective on-site repulsion on the state of the other DQD, the
lowest-energy singlet-singlet DDQD state can consist of dif-

FIG. 4. �Color online� Illustration of the double quantum dot
energy levels as a function of the bias �. The energy of the singlet
state with doubly occupied outer quantum dot, �DO�, is independent

of the bias. The energies of the singly occupied singlet, �S̄�, and the
singly occupied triplet, �T0�, state are lowered with the increasing
bias as they have a contribution of −2� from the biased inner quan-
tum dots. The energy of the singlet with doubly occupied inner
quantum dots, �DI�, is lowered with the increasing bias faster than

the energy of �S̄� and �T0� state due to the bias contribution of −4�.
When the tunneling t is zero, the lowest-energy levels cross at the
bias U±, leading to a drastic change of the effective spin interaction.
For nonzero tunneling, the levels anticross, but the effective spin
interaction still changes significantly when we tune the system from
one side of the anticrossing to the other.

FIG. 5. Bias dependence of the double-double quantum dot
�DDQD� ground state. �a� When the bias � of the inner quantum
dots with respect to the outer ones is weaker than the effective

on-site Coulomb repulsion Ũ, the charge configurations of the
lowest-energy singlet and triplet states consists of singly occupied

orbitals. �b� When �� Ũ, the lowest-energy singlet has a doubly
occupied inner quantum dot, while the orbital state of the lowest-
energy triplet remains unchanged.
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ferent singlets on the two dots, as in �S̄ ,DI� and �DI , S̄�. In the
strong-bias regions, the lowest-energy singlets are doubly oc-
cupied states. For �−U+� t, the lowest-energy singlet is
�DIDI�, and for U−−�� t, the lowest-energy singlet is
�DODO�. The second doubly occupied singlet state is sepa-
rated by an energy gap ��2�� from the lowest-energy state.

III. STRONG BIAS

To develop an intuitive picture of the operation of an en-
tangling two-qubit gate and the mechanisms for its control,
we consider the simple case of strong bias. We show how the
switching between the strong-bias regime ��−U+� t� and the
weak-bias regime, in which the dominant interaction is the
on-site repulsion, provides us with control over the entan-
gling interaction Ee. The boundary of the strong-bias regime
considered here is set by U+= �3UN−2UM −UF−2V−

+2U� /2. A similar strong-bias regime with the lowest-energy
singlet �DO ,DO� exists for U−−�� t, where U−= �3UF

−2UM −UN−2V−+2U� /2, but we do not consider it here in
detail. In both of these regimes, a wide energy gap �2 ��� to
the second doubly occupied state allows us to neglect that
state. This approximation reduces the dimensions of the
Hamiltonian blocks Hab �Eq. �2�� and allows for a perturba-
tive solution.

Since the only available DQD states in the strong-bias

regime are the triplet, �T0�, and two singlets, �S̄� and �DI�, the
HTT block of Eq. �2� is one dimensional, HST and HTS are two
dimensional, and HSS is four dimensional. For the present
discussion of the strong-bias regime, we choose the zero of
the energy scale at 4��−2�+U+2V++UN+2UM +UF, set-
ting the expectation value of the energy of four singly occu-
pied QDs with the DQDs in the electron singlet states to

zero, 	S̄ , S̄�H�S̄ , S̄�=0. Using the expressions for the Hamil-
tonian matrix elements given in the Appendix, we find the
matrices of the Hab blocks �a ,b=S ,T�. The energy of the
�TT� state is then

ETT = 2�V− − V+� . �14�

The two-dimensional blocks HTS and HST are related by the
symmetry under exchange of the double quantum dots L↔R

and in the bases ��S̄ ,T0� , �DI ,T0�� and ��T0 , S̄� , �T0 ,DI��, and
have the identical matrix form

HTS = HST = V− − V+ + � 0 �2tS

�2tS VD − �
� , �15�

where tS=−tH+TS is the renormalized hopping matrix ele-
ment and VD=U−V++UN−UF is the electrostatic energy
cost of doubly occupying the pk= I state in the presence of
the triplet DQD. With our choice of the zero of the energy
scale, the ground-state energies of HST and HTS are

EST = ETS = V− − V+ +
1

2
�VD − �� −

1

2
��VD − ��2 + 8tS

2.

�16�

From the energies EST and ETS, we extract the isotropic
exchange part of the low-energy four-spin Hamiltonian �Eq.
�3�� as

J = ETT − EST = ETT − ETS. �17�

The resulting exchange interaction strength is

J = V− − V+ −
1

2
�VD − �� +

1

2
��VD − ��2 + 8tS

2. �18�

Comparing this result with the case of an unbiased isolated
double quantum dot �Eq. �10��, we see that the effect of the
strong bias � and the presence of another DQD behind the
impenetrable barrier is the change of the effective on-site
repulsion to the value VD−� and a reduction of the effective
tunneling matrix element because of the large gap to the
excited doubly occupied state. As a consequence of this gap,
the isotropic exchange in the limit of noninteracting DQDs
and weak tunneling is J=V−−V++2tH

2 / �U−V+−��, with the
hopping contribution reduced to half of the result expected
from the standard Hubbard model in the unbiased case,
4tH

2 /UH.9

The four-dimensional block HSS in the basis

��S̄ , S̄� , ��S̄ ,DI�+ �DI , S̄�� /�2, �DI ,DI� , ��S̄ ,DI�− �DI , S̄�� /�2, �
is

HSS =�
0 2tS 2XD 0

2tS VD − � + 2XS 2tI 0

2XD 2tI EDD 0

0 0 0 VD − � − 2XS

� ,

�19�

where tI is the tunneling matrix element renormalized by the
spectator DQD in the doubly occupied state, and

EDD = 2U + 3UN − 2UM − UF − 2V+ − 2� �20�

accounts for the repulsion energy of four electrons in the
pk= I orbitals and the bias � �see the Appendix�. Due to the
symmetry with respect to exchange of the DQDs, L↔R, the

antisymmetric state ��S̄ ,DI�− �DI , S̄�� /�2 decouples from the
other, symmetric, states.

In the limit of large and positive bias, ��−VD�� tS/I ,XS/D,
all the tunneling and correlated hopping terms in the Hamil-
tonian HSS can be taken to be small. The unperturbed Hamil-
tonian is then diagonal and the ground-state energy is EDD.
This situation is relevant because all the small terms are pro-
portional to the overlap S of the localized states in the quan-
tum dots, which is small for weakly tunnel-coupled QDs, and
we can reach this regime by applying external voltage to
make ��−VD� large enough.

Operating the system in the strong-bias regime causes a
qualitative change to the effective low-energy Hamiltonian
by turning on the entanglement generating term Ee in Eq. �3�,

Ee = ETT − 2EST + ESS. �21�

For a weak bias and in the absence of tunneling, the en-
tanglement generating Ee term is zero, as can be checked

from the energies of the states �S̄ , S̄�, �T0 , S̄�, and �T0 ,T0�,

DIMITRIJE STEPANENKO AND GUIDO BURKARD PHYSICAL REVIEW B 75, 085324 �2007�

085324-6



given in the Appendix. This is not true in the case of a strong
bias, where the entangling interaction of the strength Ee
=UN−2UM +UF�0 is present even if the tunneling terms are
zero. In the strong-bias regime, the conditions for Ee=0 are
tI= tS, XS=XD, and EDD=2�VD−��. While the first two con-
ditions are satisfied when there is no tunneling, the third is
independent of the tunneling. It is only satisfied in the limit
of long distance between DQDs, a2�a1 �see Fig. 1�. The
tunneling causes a second-order correction to ESS,

ESS = EDD +
4tI

2

EDD − �VD − ��
+

4XD
2

EDD
, �22�

and the corresponding correction to Ee.
28 Since the basic

control mechanism relies on turning the entangling interac-
tion on and off in the Ee�0 and Ee=0 regimes, the control is
robust against small imperfections. For example, if the quan-
tum dots are not identical or the distances between the QDs
within two DQDs are different, the value of Ee would
change, but it could still be turned on and off using external
voltages.

We have calculated the matrix elements of the Coulomb
interaction using the basis of single-electron Wannier states
obtained by orthogonalizing the Fock-Darwin ground states
centered at the quantum dot positions, following Ref. 9. The
resulting matrix elements can all be expressed in terms of the
distances between the quantum dots and the tunneling matrix
element t between QD in DQD. These results are summa-
rized in the Appendix. Together with Eqs. �3�, �18�, and �22�,
they provide a model of the low-energy Hamiltonian of a
pair of qubits realized on a DDQD in the strong-bias regime.
This model can describe a two-qubit quantum gate realized
by adiabatically switching the value of the control parameter
� so that the qubit goes from the weak-bias regime to the
strong-bias regime and back.

In an array of DQDs, where each encodes a qubit, a quan-
tum gate can be applied by bringing the pairs of neighboring
qubits that we would like to entangle into the Ee�0 regime,
while keeping Ee=0 for all the other pairs. Each QD can play
the role of either an inner or an outer QD, depending on the
neighbor with which the entanglement is created. The Hamil-
tonian �Eq. �3�� and the gates generated by it are invariant
under the interchange of the inner and outer QDs within a
qubit.

In summary, the interaction of the DQDs causes a change
in the parameters of the extended Hubbard model coupling
strength �Eq. �10�� so that the energies and hopping matrix
elements on one DQD depend on the state of the other. Also,
the processes in which the hopping of electrons on the two
DQDs is correlated and mediated by the direct Coulomb in-
teraction become possible �see Fig. 3�. The coupling between
the DQDs causes an effective spin interaction that deviates
from the form of exchange-coupled qubits, adding the entan-
gling term Ee to Eq. �3�. This deviation creates the entangle-
ment between the two qubits. The generation of entangle-
ment can be efficiently controlled by changing the bias �.

IV. GENERAL BIAS

The study of a DDQD system in the strong-bias regime
presented in Sec. III allows for a simple perturbative solution

and offers an insight into the mechanism of entanglement
generation. However, it lacks sufficient predictive power for
a general analysis of a realistic two-qubit quantum gate:
When switching on and off the entangling interaction, a con-
tinuous voltage pulse is applied, and the system undergoes a
smooth transition from the strong-bias regime to the unbi-
ased �or merely biased� regime and vice versa. During this
transition, the system has to pass through an intermediate
weak-bias regime where the perturbative expansion �Eq.
�22�� breaks down.

In this section, we calculate the full HM Hamiltonian of
the four quantum dots, including both �DI� and �DO� states.
This calculation allows us to predict the quantum gate gen-
erated by an arbitrarily shaped adiabatic pulse of the control
parameters t and �. The main difference in the system’s de-
scription is that now we take into account both doubly occu-
pied states �DI� and �DO� in each DQD. Therefore, we are
working in the entire Hilbert space of the HM approxima-
tion, and the strong-bias requirement is not important. Now,
HTT is one dimensional, HST and HTS are three dimensional,
and HSS is nine dimensional.

Following the discussion of Sec. III, the effective low-
energy spin Hamiltonian H �Eq. �3�� is determined by the
energies Eab, where a ,b=S ,T, of the lowest-energy states of
a given spin configuration. Due to the L↔R symmetry, H is
the sum of the isotropic exchange terms and the entangling
term. We proceed by calculating the matrix elements of the
Hamiltonian as a function of the tunneling matrix element t
and the bias �. The results of this calculation are given in the
Appendix. Numerical diagonalization of the resulting Hamil-
tonian gives the energies Eab for each of the blocks Hab,
where a ,b=S ,T. Finally, we extract the effective low-energy
Hamiltonian parameters J and Ee using Eqs. �17� and �21�.

The dependence of the isotropic exchange coupling on the
bias J��� is illustrated in Fig. 6. In the zero-tunneling limit,
we can identify three regions of qualitatively different behav-
iors of J���. For strong and negative bias, ��U−, corre-
sponding to the �DODO� lowest-energy singlet state, the iso-
tropic exchange coupling is decreasing linearly with the bias.
In the intermediate region, U−���U+, the exchange cou-
pling is absent. For strong and positive bias, U+��, the ex-
change coupling grows linearly with �. The asymmetric
placement of the J=0 plateau is a consequence of the differ-
ent repulsion energies of the electrons in the inner and outer
QDs. As the tunneling is turned on, the isotropic exchange
couplings become larger due to the mixing of the doubly
occupied states in the plateau region. For a zero magnetic
field, the coupling J is positive. In a finite field, there is a
region with negative J, consistent with the analysis of Ref. 9
and the experimental findings of Ref. 29.

A plot of the entanglement generating interaction Ee is
given in Fig. 7. The zero-tunneling value of Ee shows a
structure determined by the Coulomb energies of the basis
states �Eqs. �4�–�7��. In a wide plateau of small bias, the
entangling interaction vanishes because all of the lowest-

energy states of definite spin are products of �S̄� and �T0�.
Since the direct exchange interaction V−−V+ is zero in the
absence of tunneling, those two states are equal in energy.
When the bias overcomes the on-site repulsion, the lowest-
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energy states of HSS, HST, and HTS change. The degenerate

lowest-energy states of HSS are either �S̄DI� and �DIS̄�, in the

region of large bias on the right of the plateau, or �S̄DO� and

�DOS̄�, in the region of smaller bias to the left of the plateau.

Simultaneously, the analogous states with �S̄� replaced by
�T0� become the lowest-energy states in HST and HTS. In
these two regions, Ee is a linear function of �, Ee=UN−UF

−U−� on the left and Ee=−UN+UF−U+� on the right of the
plateau. When the absolute value of the bias is even higher,
the lowest-energy state in HSS is �DIDI� for a very strong and
positive bias and �DODO� for a very strong and negative bias.
These regions are characterized by an �-independent Ee
=UN−2UM +UF for large ���. The values U± for the bias � at
which the changes in zero-tunneling lowest-energy states oc-
cur depend on the geometry of the device, described by the
distances 2a1 and 2a2 �Fig. 1� and the quantization energy
��0, and correspond to the changes in behavior of the ex-
change coupling strength J.

The zero-tunneling case shows a desirable feature in that
Ee, the quantity that determines the entanglement between
the qubits, can be switched on and off by tuning �. However,
the regions of different Ee cannot be reached by adiabatic
pulses in the t→0 limit. Turning on the tunneling t between
the QDs will introduce transitions between previously dis-
connected regions, and the adiabatic gates become possible.
The simple t=0 picture of the entanglement generated by a
difference in Coulomb energies is perturbed by the transi-
tions. It is no longer possible to turn off Ee throughout the
plateau region by a change in � alone. In the plateau region,
Ee is generically nonzero, but small. Therefore, in order to
turn off the entangling interaction when t is kept constant, it
is desirable to keep t small and to tune � to a value where
Ee=0.

V. QUANTUM GATE OPERATION

For a quantum gate applied by the time-dependent Hamil-
tonian �Eq. �2��, with the parameters t and � changing adia-
batically on the time scale set by the energy gap between the
states within the blocks Hab, the applied gate is determined
by the splittings between the lowest-lying states in each of
the subspaces of the definite spin. If the energies of the
lowest-energy states in singlet-singlet, singlet-triplet, triplet-
singlet, and triplet-triplet subspaces are ESS�t�, EST�t�
=ETS�t�, and ETT�t�, respectively, the gate applied by an adia-
batic pulse starting at the time ti and finishing at tf will be
U=diag��SS ,�ST ,�TS ,�TT�, with the phases

�ab = exp −
i

�
�

ti

tf

Eab�t�dt . �23�

With the ability to turn the entangling interaction on and off
and perform single-qubit gates, it is possible to perform a
CNOT gate on a pair of qubits encoded into spin states of
DQD. We consider a quantum gate implemented by first
adiabatically turning on the entangling interaction for a pe-
riod �on, and then again adiabatically switching to the Hamil-
tonian with the entangling interaction off for the time inter-
val �off. The lowest-energy states in each of the SS, ST, TS,
and TT subspaces will acquire a phase dependent on the
control parameters � and t and the pulse durations. In the on
state, the Hamiltonian that describes the ground states in all

FIG. 6. �Color online� Isotropic exchange coupling J as a func-
tion of the bias �. In the regions of strong positive and negative
bias, the exchange coupling is approximately linear J
 ���. In the
intermediate region, the exchange is zero in the zero-tunneling limit
and becomes nonzero as the tunneling is turned on. The coupling J
is always positive in the absence of a magnetic field. The external
magnetic field drives J to negative values in a relatively wide range
of values of the tunneling matrix element and bias. The confinement
energy of the quantum dots is chosen to be ��0=3 meV, which
corresponds to a quantum dot Bohr radius aB=20 nm in GaAs. The
distances between the dots are chosen to be 2a1=1.6aB and 2a2

=3aB.

FIG. 7. �Color online� Entangling interaction Ee as a function of
bias. The plots correspond to different values of the tunneling ma-
trix elements t within the double quantum dots in the absence of a
magnetic field and in an external magnetic field of B=2 T. The t
=0 plot indicates the regions of different lowest-energy singlets and
the positions of crossings. The strength of the entangling interaction
Ee can be changed significantly by tuning the bias � at a fixed
tunneling matrix element t. Parameters used in this plot are the
same as in Fig. 6.
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the spin subspaces is, up to a constant, Hon
=diag�Ee ,Jon,Jon,2Jon�, where Ee is the strength of the en-
tangling interaction in the on regime and Jon is the corre-
sponding exchange coupling. After the DDQD was in the on
state for the time �on, the applied gate is

Uon = exp − i
�on

�
Hon. �24�

Similarly, during the subsequent period of duration �off when
the entangling interaction is set to zero, the applied gate is

Uoff = exp − i
�off

�
Hoff, �25�

where Hoff=diag�0,Joff ,Joff ,2Joff� in analogy with the on re-
gime. The resulting gate is

U = UoffUon = exp − i�
� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 2�
� , �26�

where ��=Jon�on+Joff�off is the integrated strength of the
exchange coupling in DQD and ��=Eon�on is the integrated
strength of the entangling interaction.

The CPHASE gate, which is equivalent to CNOT up to
single-qubit rotations, is obtained when the gate parameters
satisfy �=m� and �=n�, for an odd integer m and an arbi-
trary integer n. In order to complete a CNOT, we follow a
pulse of on-state Hamiltonian of the duration �on=m�� /Ee
by a pulse of the off-state Hamiltonian with the duration
�off=��n�−Jon�on/�� /Joff. The resulting gate is diag�−1,
−1,−1,1�=−CPHASE, for odd n and diag�−1,1 ,1 ,1�, which
is equal to CPHASE with the X gate applied to both qubits
before and after U. For any integer n,

CPHASE � �� � ��U�� � �� , �27�

where �=exp�i��1+ �−1�n��x /4�. In order to complete the
CNOT, we apply the one-qubit Haddamard gates H= �X
+Z� /�2 to the target qubit both before and after the entan-
gling gate U. The entire construction can be represented as

CNOT = �1 � H��� � ��U�� � ���1 � H� . �28�

Note that the CNOT construction necessarily involves the
single-qubit rotations about pseudospin axes different from z.
Such operations can be performed using the asymmetric bias
within a DQD that encodes the qubit in an inhomogeneous
external magnetic field.27 The entangling part of a CNOT gate
can be performed by pulsing the bias � only and keeping the
tunneling t constant. Therefore, control over the bias � and
the availability of an inhomogeneous magnetic field are suf-
ficient for the universal quantum computing with two-spin
qubits.

VI. CONCLUSION

We have analyzed two-qubit gates in a pair of qubits, each
encoded into singlet and triplet states of a DQD and coupled

by Coulomb repulsion. A two-qubit CNOT gate, which to-
gether with the single-qubit rotations forms a universal set of
quantum gates, can be performed by tuning the bias of the
inner dots with respect to the outer ones. We identify the
entangling interaction strength Ee as a quantity that has to be
controlled in order to implement a CNOT with the aid of
single-qubit rotations.

The dependence of Ee on the externally controllable bias �
and the tunneling matrix element t shows that it can, in prin-
ciple, be turned on and off by changing � alone, if suffi-
ciently low values of t are available.

The largest change in Ee comes from a tuning of the sys-
tem through the resonance between the singly occupied state
and the doubly occupied state on a DQD. At the side of the
resonance with a singly occupied ground state, and far from
the resonance, the entangling interaction Ee is caused by
inter-DQD correlation and is small. On the other side of the
resonance, with a doubly occupied DQD ground state, the
entangling interaction is caused by the direct Coulomb repul-
sion and it is much stronger. Two-qubit gates necessary for a
universal set of gates can be performed by switching be-
tween the strong and weak entanglement generation regimes
using voltage pulses.
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APPENDIX: HUND-MULLIKEN 16Ã16 HAMILTONIAN

The full Hund-Mulliken Hamiltonian is block diagonal
due to the symmetry of the interactions with respect to arbi-
trary rotations in spin space. In reality, this symmetry is bro-
ken by the weak spin-orbit coupling interaction that we have
neglected. The blocks are the one-dimensional HTT, the two
three-dimensional HTS and HST, and the nine-dimensional
HSS, where T stands for a triplet and S for a singlet state on
a DQD. In this appendix, we present the matrices of these
blocks as functions of the system geometry and the control
parameters.

There is only one TT state and its energy is

HTT = ETT = 2V− + UN + 2UM + UF − 2� . �A1�

The three-dimensional blocks HTS and HST are related by the
symmetry operation of exchanging the DQD, and if we

choose the basis ��T0 , S̄� , �T0 ,DI� , �T0 ,DO�� for the TS and

��S̄ ,T0� , �DI ,T0� , �DO ,T0�� for the ST subspace, they can both
be represented by the matrix

HTS = HST = � CTS �2tS
�2tS

�2tS CTI X

�2tS X CTO
� . �A2�

The nine-dimensional block of singlet states, in the direct
product basis composed out of the two-electron states �Eq.
�4�–�6��, is
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HSS =�
CSS �2tS

�2tS
�2tS 2XD 2XS �2tS 2XS 2XD

�2tS CSI X 2XS �2tI 0 2XD �2tI 0

�2tS X CSO 2XD 0 �2tO 2XS 0 �2tO

�2tS 2XS 2XD CIS �2tI
�2tI X 0 0

2XD �2tI 0 �2tI CII X 0 X 0

2XS 0 �2tO
�2tI X CIO 0 0 X

�2tS 2XD 2XS X 0 0 COS �2tO
�2tO

2XS �2tI 0 0 X 0 �2tO COI X

2XD 0 �2tO 0 0 X �2tO X COO

� . �A3�

We do not antisymmetrize with respect to the permutations
of electrons that belong to different quantum dots and have
nonoverlapping orbital wave functions. The matrix elements
of the Hamiltonian that describe the Coulomb interaction
within a DQD �intra-DQD terms�, U, t, X, V+, and V−, were
analyzed in Ref. 9. The inter-DQD elements depend on the
following matrix elements of the Coulomb interaction be-
tween the product states of the �qps� electrons localized in
the qubit q and the quantum dot p and having a spin s:

XS = 	LIs,RIs��VC�LOs,ROs�� , �A4�

XD = 	LIs,ROs��VC�LOs,RIs�� , �A5�

TO = 	LOs,ROs��VC�LIs,ROs�� , �A6�

TI = 	LIs,RIs��VC�LIs,ROs�� . �A7�

In zero magnetic field, we find that XS=XD.
The off-diagonal elements are determined by

tS = TO + TI − tH, �A8�

tI = 2TI − tH, �A9�

tO = 2TO − tH, �A10�

and the diagonal elements are given by

CTT = 2V− + UN + 2UM + UF − 2� , �A11�

CTS = V+ + V− + UN + 2UM + UF − 2� , �A12�

CTI = V− + U + 2UN + 2UM − 3� , �A13�

CTO = V− + U + 2UM + 2UF − � , �A14�

CSS = UN + 2UM + UF + 2V+ − 2� , �A15�

CSI = 2UM + 2UF + U + V+ − 3� , �A16�

CSO = 2UM + 2UF + U + V+ − � , �A17�

CII = 4UN + 2U − 4� , �A18�

CIO = 4UM + 2U − 2� , �A19�

COO = 4UF + 2U , �A20�

where the symmetry with respect to exchange of the DQDs
leads to CAB=CBA, where A ,B� �T ,S , I ,O�.

To represent the matrix elements in terms of the system
parameters, the single QD quantization energy ��0, tunnel-
ing matrix element within an isolated DQD t, the bias �, and
the interdot distances a1 and a2, we have to adopt a model
for the binding potential of a DQD and the orbitals of Hund-
Mulliken approximation. We assume that the QD orbitals are
Wannier functions obtained by orthogonalization of the
Fock-Darwin ground states centered at the positions of the
QDs within a DQD, �a2±a1 ,0� and �−a2±a1 ,0�. The Wan-
nier orbitals are of the generic form

�Wq,I� = N���q,I� − g��q,O�� , �A21�

�Wq,O� = N�− g��q,I� + ��q,O�� , �A22�

where ��q,I�O�� is the Fock-Darwin ground state on the dot
belonging to the qubit q=L ,R and the inner �I� or outer �O�
QD �Eq. �12��. The Wannier orbitals are determined by
the overlap of these wave functions, S= 	�q,I ��q,O�
=exp�−d1

2�2b−1/b��, through the mixing g= �1−�1−S2� /S
and normalization constant N=1/�1−2gS+g2.

The Coulomb interaction matrix elements for the DQD
centered at ±a2= ±d2aB and QDs within a DQD displaced by
±a1= ±d1aB from the center of the DQD are then expressed
as

UN = cN4� f�d2 − d1,0� + 2g2�1 + S2�f�d2,0�

+ g4f�d1 + d2,0� + 2S2g2f�d2,d1�

− 4gS f�d2 −
d1

2
,
d1

2
� + g2f�d2 +

d1

2
,
d1

2
��� ,

�A23�
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UF = cN4� f�d2 + d1,0� + 2g2�1 + S2�f�d2,0�

+ g4f�d2 − d1,0� + 2S2g2f�d2,d1�

− 4gS f�d2 +
d1

2
,
d1

2
� + g2f�d2 −

d1

2
,
d1

2
��� , �A24�

UM = cN4��1 + g4�f�d2,0� + g2�f�d1 + d2,0�

+ f�d1 − d2,0� + 2S2�f�d2,0� + f�d2,d1���

− 2gS�1 + g2� f�d2 +
d1

2
,
d1

2
� + f�d2 −

d1

2
,
d1

2
��� ,

�A25�

TO = cN4�S�1 + 3g2�f�d2 +
d1

2
,
d1

2
�

+ �g4 + 3g2�f�d2 −
d1

2
,
d1

2
��

− �g + g3���1 + S2�f�d2,0� + S2f�d2,d1��

− gf�d2 + d1,0� − g3f�d2 − d1,0�� , �A26�

TI = cN4�S�1 + 3g2�f�d2 −
d1

2
,
d1

2
�

+ �g4 + 3g2�f�d2 +
d1

2
,
d1

2
��

− �g + g3���1 + S2�f�d2,0� + S2f�d2,d1��

− gf�d2 − d1,0� − g3f�d2 + d1,0�� , �A27�

XS = cN4��S2 + 2g2 + g4S2�f�d2,0�

+ g2�f�d1 + d2,0� + f�d1 − d2,0� + 2S2f�d2,d1��

− 2S�g + g3� f�d2 +
d1

2
,
d1

2
� + f�d2 −

d1

2
,
d1

2
��� ,

�A28�

XD = cN4�S2�1 + g4�f�d2,d1� + g2�f�d1 + d2,0� + f�d2 − d1,0�

+ 2�1 + S2�f�d2,0�� − 2S�g + g3�

� f�d2 +
d1

2
,
d1

2
� + f�d2 −

d1

2
,
d1

2
��� , �A29�

in terms of the overlaps of the harmonic oscillator wave
functions S, the mixing factor g, and the function

f�d,l� = �b exp�− ��d,l��I0„��d,l�… , �A30�

where ��d , l�=bd2− �b−1/b�l2. We use the contraction factor
b=� /�0 to measure the magnetic field strength. The overall
strength of the Coulomb interaction is set by c
=�� /2e2 /���0aB, where e is the electron charge, � is the
dielectric constant, and ��0 is the single isolated QD quan-
tization energy.9

To model the dependence of the matrix elements on the
externally controllable tunneling matrix element t, we use the
connection between the tunneling and the overlap S=S�t�
that holds for the quartic double well, Eq. �13� and assume
that it holds throughout the gate operation.
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We study the triangular antiferromagnet Cu3 in external electric fields, using symmetry group argu-

ments and a Hubbard model approach. We identify a spin-electric coupling caused by an interplay

between spin exchange, spin-orbit interaction, and the chirality of the underlying spin texture of the

molecular magnet. This coupling allows for the electric control of the spin (qubit) states, e.g., by using an

STM tip or a microwave cavity. We propose an experimental test for identifying molecular magnets

exhibiting spin-electric effects.

DOI: 10.1103/PhysRevLett.101.217201 PACS numbers: 75.50.Xx, 03.67.Lx

Single-molecule magnets (SMMs) [1] have emerged as a
fertile testing ground for investigating quantum effects at
the nanoscale, such as tunneling of magnetization [2,3], or
coherent charge transport [4–6], or the decoherence and the
transition from quantum to classical behavior [7]. SMMs
with antiferromagnetic coupling between spins are espe-
cially promising for the encoding and manipulation of
quantum information [8–11], for they act as effective two-
level systems, while providing additional auxiliary states
that can be exploited for performing quantum gates. Intra-
and intermolecular couplings of SMMs can be engineered
by molecular and supramolecular chemistry [12], enabling
a bottom-up design of molecule-based devices [13].

While the properties of SMMs can be chemically modi-
fied, the fast control required for quantum information
processing remains a challenge. The standard spin-control
technique is electron spin resonance (ESR) driven by ac
magnetic fields BacðtÞ [7]. For manipulation on the time
scale of 1 ns, Bac should be of the order of 10�2 T, which,
however, is difficult to achieve. The spatial resolution of
1 nm, required for addressing a single molecule, is also
prohibitively small. At these spatial and temporal scales,
the electric control is preferable, because strong electric
fields can be applied to small regions by using, for ex-
ample, STM tips [14,15], see Fig. 1(a). Also, the quantized
electric field inside a microwave cavity can be used [16–
19] to control single qubits and to induce coupling between
them even if they are far apart. Electric control of spins has
been studied in multiferroic materials [20] and semicon-
ductor spintronics [21], focusing on the control of a large
number of spins and producing macroscopic magnetization
and spin currents. Here, we are interested in control over a
single molecular spin system.

We identify and study an efficient spin-electric coupling
mechanism in SMMs which is based on an interplay of spin
exchange, spin-orbit interaction (SOI), and lack of inver-
sion symmetry. Spin-electric effects induced solely by SOI
have been proposed [22] and experimentally demonstrated
[23] in quantum dots. However, these SOI effects scale

with the system size L as L3 [22], making them irrelevant
for the much smaller SMMs. Thus, additional ingredients-
such as broken symmetries- must be present in SMMs for
an efficient coupling between spin and applied electric
field.
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FIG. 1 (color online). (a) Cu3-triangle exposed to an electric
field EðtÞ created by, e.g., an STM-tip. For E ¼ 0, the exchange
couplings, represented by the thickness of Cu-Cu bonds, are
equal (light triangle). A finite E affects the (super-) exchange
coupling in a directional way (dark triangle). (b),(c) Low-energy
S ¼ 1=2 states of Cu3 in a magnetic field B, with the zero-field
SOI splitting �SO ¼ 1 K. Light (red) and dark (blue) lines
represent the states with � ¼ þ1ð�1Þ. If B k z (b), the transi-
tions induced by E (thin arrows) conserve Sz; for B 6k z (c), these
transitions result in a change of spin orientation (thick arrows).
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In the following, we demonstrate the possibility of such
spin-electric effects in SMMs by focusing on a specific
example, namely, an equilateral spin triangle, Cu3 [24]. In
this SMM, the low-energy states exhibit a chiral spin
texture and, due to the absence of inversion symmetry,
electric fields couple states of opposite chirality.
Moreover, SOI couples the chirality to the total spin, and
thus an effective spin-electric interaction eventually
emerges.

Spin-electric coupling.—At low energies, the Cu3 can be
described in terms of an effective spin Hamiltonian. There,
the states are labeled by the quantum numbers of three
spins-1=2 si (one for each Cu2þ ion), and the orbital states
are quenched. The (super-) exchange and SOI are then
expressed as Heisenberg and Dzyaloshinski-Moriya inter-
action of spins, [24],

H0 ¼
X3

i¼1

Jiiþ1si � siþ1 þ
X3

i¼1

Diiþ1 � si � siþ1: (1)

The D3h symmetry of the triangle implies several relations
between the coupling constants [25]. We neglect the in-
trinsic deformation of Cu3 triangle that makes one of the
sides slightly shorter. Since Jpq � 5 K and jDpqj � 0:5 K,

the Heisenberg terms determine the gross structure of the
energy spectrum, and the Dzyaloshinski-Moriya terms the
fine one. In particular, since Jpq > 0, the ground state

multiplet has total spin S ¼ 1=2, and the gap to the first
excited S ¼ 3=2 quadruplet is �H � 3J=2. The S ¼ 1=2
subspace is spanned by the symmetry-adapted states
j�;Mi, i.e.,

j�1;þ1=2i � ðj#""i þ ��j"#"i þ ��j""#iÞ=
ffiffiffi
3

p
; (2)

j�1;�1=2i � ðj"##i þ ��j#"#i þ ��j##"iÞ=
ffiffiffi
3

p
; (3)

with �� ¼ e�i2�=3, that are simultaneous eigenstates of the
chirality operator Cz and of Sz (total spin), for the respec-
tive eigenvalues � and M. Here, we have introduced the
chirality C with components

Cx ¼ ð�2=3Þðs1 � s2 � 2s2 � s3 þ s3 � s1Þ; (4)

Cy ¼ ð2= ffiffiffi
3

p Þðs1 � s2 � s3 � s1Þ; (5)

Cz ¼ ð4= ffiffiffi
3

p Þs1 � ðs2 � s3Þ: (6)

They satisfy ½Ck; Cl� ¼ i2�klnCn and ½Ck; Sl� ¼ 0, and act
as Pauli matrices in the j� ¼ �1i bases.

Next, we study the effect of an electric field E on the
Cu3-spins using general symmetry group arguments. The
low-energy jE0�; S ¼ 1=2i (jA0

2; S ¼ 3=2i) spin-orbital
states form two E0 (four A0

2) irreducible representations
(IRs) of D3h, with the S ¼ 1=2 states lower in energy
[24,25]. The states jE0�; Szi transform in the same way as
the chiral states j� ¼ �1; Szi, Eqs. (2) and (3), with orbi-
tals localized on the Cu ions corresponding to the triangle

vertices. An electric field E couples to Cu3 via eE �R,
where e is the electron charge, and R ¼ P

3
j¼1 rj. The Z

component of R transforms as A0
2 IR, while the compo-

nents X� ¼ �X þ iY in the Cu3 plane transform as the
two-dimensional IR E0. From the Wigner-Eckart theorem,
it follows that the only nonzero matrix elements of R are
ehE0þ; SzjX�jE0�; Szi ¼ ehE0�; SzjXþjE0þ; Szi ¼ 2id, with
d real denoting the electric dipole coupling. The resulting
coupling between the E-field and chirality in the spin-
Hamiltonian model takes the compact form �HE ¼ dE0 �
Ck, where E0 ¼ Rzð�ÞE is rotated by � ¼ 7�=6� 2�
about z, and Ck ¼ ðCx; Cy; 0Þ.
To emphasize that the spin-electric effect derived above

is based on exchange, we reinterpret our results in terms of
spin interactions. In an equilateral triangle, and in the
absence of electric field, the spin Hamiltonian is given by
Eq. (1) with equal exchange couplings Ji;iþ1 � J. Using
then Eqs. (4) and (5), we find

�HE ¼ 4dE

3

X3

i¼1

sin½2ð1� iÞ�=3þ ��si � siþ1; (7)

where � is the angle between an in-plane E-field and the
vector r12 pointing from site 1 to 2. This form of �HE

shows that the E-field lowers the symmetry by introducing
direction-dependent corrections to the exchange couplings
Jiiþ1. E.g., if � ¼ �=2, �J23 ¼ �J31 � �J12. Intrinsic de-
formation of the molecule can be described as an internal
electric fieldEmol, giving Eq. (7) withE ! EþEmol. The
lack of inversion symmetry is crucial for the linear spin-
electric coupling, since the electric field E is odd under
inversion, and the spin is even.
Next, we turn to the SOI. The most general form of

SOI allowed by the D3h symmetry reads, HSO¼P3
i¼1½�k

SOTA00
2
sizþ�?

SOðTE00
þs

i�þTE00�s
iþÞ�, where �?

SOð�k
SOÞ

is the effective SOI coupling constant for the A00
2 - (E

00�-)
irreducible representation, and TA00

2
(TE00

�) is the correspond-

ing irreducible tensor operator in the orbital space [25].
Using again symmetry group arguments, we find that the
SOI Hamiltonian acting in the S ¼ 1=2 subspace reads

�HSO ¼ �SOCzSz, where�SO ¼ �k
SO. The states are there-

fore split into two Kramers doublets jE0�; Sz ¼ �1=2i and
jE0�; Sz ¼ �1=2i. Using Eq. (6), �HSO can be reduced to
the Dzyaloshinski-Moriya interaction, given in Eq. (1).
The coupling to a magnetic field B is given by B � ��g � S,
with the Bohr magneton absorbed in the ��g-tensor. Because
of theD3h-symmetry, ��g is diagonal with components gxx¼
gyy¼g? in the Cu3-plane and gzz ¼ gk normal to it.

Combining �HE and �HSO, we finally obtain the effec-
tive low-energy Hamiltonian in the presence of SOI and
electric and magnetic fields,

Hspin
eff ¼�SOCzSzþg?B? �SþgkBzSzþdE0 �Ck: (8)

From this we see that an in-plane E-field causes rotations
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of the chirality pseudospin. To illustrate the role of B, we
focus on the case E k r31, giving �HE ¼ �dECx. For
B k z, the eigenstates coincide with those of Sz, and thus
E will not induce transitions between j�; 1=2i and
j�;�1=2i, but will do so in subspaces of given M; see
Fig. 1. ForB 6k z, instead, the system eigenstates forE ¼ 0
are no longer eigenstates of Sz, and thus the electric-field
induced transitions result in spin flips; see Fig. 1(c).

The form of spin Hamiltonian, Eq. (8), is set by sym-
metry alone, but a microscopic evaluation of electric dipole
coupling d requires an ab initio approach which is beyond
the scope of this work. However d can be directly accessed
in experiments, e.g., by standard ESR measurements in
static electric fields; see Fig. 2. We can estimate d, jEj and
the spin-manipulation (Rabi) time resulting from Eq. (8) as
follows. For d between dmin ¼ 10�4eR12 and dmax ¼ eR12

and for E 	 102 kV=cm, obtainable near an STM tip, see
Fig. 1(a), the Rabi time is �Rabi 	 0:1–103 ps. The condi-

tion dE 
 �H for the validity of H
spin
eff in Eq. (8) provides

another lower bound on the spin-manipulation time,
namely �min

Rabi 	 10 ps. The spin control is not affected by

the time-independent Emol.
Hubbard approach.—In order to gain further insight

into the interplay between the exchange interaction and
the electric field E, we introduce an Ns-site Hubbard
model of the triangular spin chain, with Cu ions repre-
sented by the sites on the vertices and the bridging
atoms by sites on the sides, see Fig. 3(a). The correspond-

ing Hamiltonian reads, HH ¼ P
i;	½ðUi=2Þni;	ni;�	 þ

�ini;	 þ ðtiiþ1c
y
i;	ciþ1;	 þ H:c:Þ�, whereUi is the repulsion

on site i, tiiþ1 the hopping matrix element, 	 ¼" , # , andP
i;	n

	
i ¼ Ne. The coupling of the system to E is

HE ¼ eE �X
i;	

½ni;	ri þ ð~riiþ1c
y
i;	ciþ1;	 þ H:c:Þ�: (9)

In the single-site terms, the expectation value of the
electron position r in the Wannier state j�ii is identified
with the ion position ri ¼ h�ijrj�ii. The two-site terms
describe the electric-field assisted hopping of electrons

between neighboring sites, with ~riiþ1 ¼ h�ijrj�iþ1i ¼
ð
k

iiþ1 þ 
?ez�Þriiþ1, and riiþ1 ¼ riþ1 � ri. We now fo-

cus on the two main mechanisms giving antiferromagnetic
coupling, namely, direct exchange and superexchange
(models A and B, Fig. 2(a)] for jtijj 
 Ui. In both cases,

the low-energy subspace (S0) is defined by the states (j
0i)
where the magnetic ions at the triangle vertices are singly
occupied. For E ¼ 0, the projection of these states onto S0

(j�0
1�8i) coincides with the S ¼ 1=2 and S ¼ 3=2 eigen-

states of the Heisenberg Hamiltonian. The degeneracy in
the S ¼ 1=2 multiplet is lifted by E.
In Fig. 3(b), we show the overlap between the projected

ground state j�0
1i and the jS ¼ 1=2; S12 ¼ 0; 1i states for a

given Sz as function of the direction of E (angle �). The
results coincide with the ones from Eq. (7), for both models
A and B. In addition, we find that the splitting (�21 �
E2 � E1) between the two lowest energies varies by less

than 5% with �, in agreement with H
spin
E that predicts no

�-dependence at all.
In Fig. 3(c) we isolate the contribution to �21 arising

from the single- and two-site terms. All these contributions
scale linearly with jEj for every �. The dependence of �21

on t, however, is model dependent. In particular, in model
A, the contributions to �21 arising from the single- and
two-site terms scale as ðt=UÞ3 and ðt=UÞ, respectively, and
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FIG. 2 (color online). Low-energy spectrum of the unde-
formed Cu3 molecule. (a) Energy levels of the Cu3 molecule
in an in-plane magnetic field Bk (black solid line), split as a static
in-plane electric field Ek is turned on (dashed red line and dotted
blue line). (b) The electric dipole coupling d is given by the slope
of energy levels as a function of Ek in a constant magnetic field

[vertical lines in (a)]. Intrinsic deformation gives E !
EþEmol, allowing to measure Emol as the field E at which
the levels cross.

FIG. 3 (color online). (a) Hubbard models A and B of the spin

triangle. Model A: Ne ¼ Ns ¼ 3, ti ¼ t, Ui ¼ U, and �i ¼

k
iiþ1 ¼ 0. Model B: Ne ¼ 9, Ns ¼ 6, 
k

iiþ1 ¼ 0, 
?
iiþ1 ¼ 
,

ti ¼ t, �3k�2 � �3k0�1 ¼ �, U3k�2 �U3k0�1 ¼ U (k, k0 ¼ 1, 2,
3). (b) Overlap between the projected ground state of HH þHE

(j�0
1i), and the eigenstates of s1 � s2 with S12 ¼ 0 (squares) and

S12 ¼ 1 (triangles), as function of the angle � between the
triangle side 1–2 and an in-plane E. The filled (empty) symbols
correspond to the A (B) model, whereas the dotted lines give the
components of the �HE ground state. In both models, t=U ¼ 0:1,
eRE=U ¼ 2:5� 10�2, and 
 ¼ 0:1. (c) Dependence of �21 on
the amplitude E, for E k y and eREmax=U ¼ 2:5� 10�2. Filled
(empty) symbols refer to the A (B) model, and squares (tri-
angles) to 
 ¼ 0:1 (
 ¼ 0) two-site contributions.
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d ¼ 4tje~ry12j=U. Analogous power-law dependences are
found in model B, where the single-site (two-site) contri-
bution scales as ðt=UÞ4 (ðt=UÞ3, and two-site terms domi-
nate in both models. Additional mechanisms, such as the
relative displacements of the ions, can contribute to the
coupling between spin and electric field.

Spin coupling to cavity electric fields.—Exchange cou-
pling of SMMs has been demonstrated in dimers [26]. The
use of this short-range and (so far) untunable interaction
requires additional resources for quantum information pro-
cessing [27]. Efficient spin-electric interaction, on the
other hand, provides a route to long-range and switchable
coupling between SMM qubits. In particular, microwave
cavities are suitable for reaching the strong-coupling re-
gime for various qubit systems [16–19]. Here, we propose
to use such cavities to control single SMMs and, moreover,
to couple the spin qubits of distant SMMs placed inside the
same cavity.

The interaction of a single SMM with the cavity field
reads, �HE ¼ dE0

0 �Ckðby þ bÞ, where E0
0 is the rotated

electric field of amplitude jE0j /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!=V

p
inside the cav-

ity of volumeV [17], and b is the annihilation operator for
the photon mode of frequency !. The low-energy
Hamiltonian of N SMMs interacting with the cavity

mode is Hs-ph ¼
P

jð�SOC
ðjÞ
z SðjÞz þB � ��g � SðjÞ þHðjÞ

intÞ þ
!byb, where

HðjÞ
int ¼ dE0ðei’jCðjÞ� þ e�i’jCðjÞ

þ Þðbþ byÞ; (10)

with CðjÞ
� ¼ CðjÞ

x � iCðjÞ
y and ’j ¼ 7�=6� 2�j. In the ro-

tating wave approximation Hs-ph reduces to the well-

known Tavis-Cummings model [28] when the spins are

in eigenstates of SðjÞz , and B k z. However, if B 6k z it is
possible to couple both chiralities and total spins of distant
molecules. Typically, the electric fields in cavities are
weaker, jE0j 	 1 V=cm for @! 	 0:1 meV [19], than
the ones near STM tips, thus giving �Rabi 	
0:01–100 �s. Obviously, decreasing the cavity volume
V would give shorter �Rabi. Coupling of distant SMMs
can be controlled by tuning two given molecules in and out
of resonance with the cavity mode, e.g., by applying addi-
tional local electric fields. For example, when B ¼ 0 the
coupling constant between distant molecules is J 	
d2E2

0=ð�SO �!Þ, with the typical chirality flipping time

0:05–500 �s. Further effects such as the state transfer
between stationary and flying qubits, or the SMM-photon
entanglement, can be observed in a system described by
Hs-ph.

In conclusion, we find an exchange-based mechanism
that couples electric fields to spins in triangular molecular
antiferromagnets. While our results are derived for Cu3,
analogous symmetry arguments are expected to apply to

other molecular magnets that lack inversion symmetry,
such as V15 [29], Co3 [30], Dy3 [31], Mn12 [2,3], etc.
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Electric control of the coupling between the spins is shown to enable two-qubit quantum gates in
polyoxometalates.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Information processing using quantum mechanics, or more spe-
cifically quantum computing, is among the most prominent fields
of science in the last 15 years. The motivation behind this effort
comes both from the technological appeal of new and better com-
puters and from the fundamental scientific questions about the
nature of information and the physical limits on our ability to pro-
cess it. Quantum mechanics enters this discussion with under-
standing that an abstract information is always embedded in
some real world objects and therefore it is governed by the laws
of nature which are quantum [1]. From the point of view of tech-
nology, the appeal of quantum computers comes from the fact that
there are problems that are tractable on quantum computers
which are believed to be intractable on classical ones. The most fa-
ll rights reserved.

. Stepanenko).
mous such problem is factoring of integers into their prime factors
[2], suggesting that quantum computers may be intrinsically more
powerful than classical ones.

Conceptually, a computer is any machine that can manipulate
information following a predefined set of instructions. Quantitative
description of the computational power of different computers is
the main problem of complexity theory, a branch of computer sci-
ence. A similar problem, asking whether mathematics can be done
by following a predefined set of rules was stated by Hilbert [3]. The
negative answer to this problem, provided by Turing [4], and inde-
pendently by Church [5], has created the field of computer science
and paved the way to the realization of modern computers.

The relevance of quantum computing outside computer science
stems from the so-called Church–Turing thesis. This conjecture
claims that the resources needed to solve any problem are
essentially the same on any computer. If the Church–Turing thesis
is true, all the fascinating development of computing machines
is simply due to the improved technology, and not due to any
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fundamental difference in the basic organization of the computing
machine. It is believed (but not proven) that a quantum computer
does not obey the Church–Turing thesis.

Powerful computers that cannot be built are useless, and it is
crucial to know whether the model of a quantum computer de-
scribes a machine that can be built, and how such a machine can
be built. Based on our current knowledge of quantum mechanics
it is possible to build a quantum computer. However, the realization
of such a machine seems to be a hard task. There have been several
proposals for implementing a quantum computer. The purpose of
this article is to review the possibilities for quantum information
processing in molecular magnets. We will look into requirements
for a quantum computer, the DiVincenzo criteria [6], and describe
the possibilities for satisfying them in molecular magnets.
2. Quantum computer, similarities and differences with the
classical computer

Quantum computers are model devices that process informa-
tion encoded in quantum states. The model of a quantum com-
puter is built in analogy to a classical computer. It consists of a
collection of quantum two-level systems that store the quantum
information. In that sense a qubit is analogous to a bit in a classical
digital computer. The quantum state of a single qubit,
jwi ¼ aj0i þ bj1i, is an arbitrary normalized linear combination of
the logical basis states j0i and j1i. The state of N qubits is, in anal-
ogy to the spin state of N spin-1/2 particles,

jWi ¼
Xx¼f11...1g

x¼f00...0g
axjxi; ð1Þ

an arbitrary superposition of the 2N basis states in which every qu-
bit is in one of the computational basis states.

As in classical computers the computation is a transformation
from an initial state at the beginning of the computation, j00 . . . 0i,
to the final state that encodes the result. This transformation is car-
ried out in a series of operations. For the quantum computer the
operations are unitary operations on the state (1). Every quantum
operation U can be decomposed into a series of operations Ui acting
on a single, ith, qubit and Uij acting on a pair of qubits, i and j [7]. This
allows one to measure the complexity of a quantum computation by
counting the elementary operations needed to perform it. From the
practical point of view, this reduction to the single- and two-qubit
quantum gates is an immense simplification, because the direct n-
qubit operation would require control of an n-qubit interaction.
Therefore, the control over interaction of single qubits with external
fields, leading to single qubit quantum gates, and over the interac-
tion of pairs of qubits, leading to two-qubit quantum gates is suffi-
cient for an arbitrary quantum computation.

During computation, the evolution of the state of a quantum
computer is governed by quantum gates applied to the qubits.
Any interaction with the qubit environment other than the con-
trolled application of the quantum gates produces errors. Similar
error generating processes are suppressed in classical digital com-
puters, because small changes in signal levels within digital com-
puter circuitry do not alter the information. It is not possible to
make the quantum information digital without losing the advan-
tage of a quantum computer over the classical one. Recovering
from the errors using redundant coding, used for classical commu-
nication over noisy channels does have a direct quantum extension
to the quantum error correcting codes [8]. Quantum error correc-
tion works only if the probability of error in a gate operation is be-
low some threshold value �th. The value of �th depends on the actual
form of the errors and the estimates are �th � 10�2—10�6. In a qubit
with coherence time T2, this puts an upper limit on the switching
time sswitch of quantum gates

sswitch

T2
6 �th: ð2Þ

The low value of the threshold requires long coherence times of the
qubits and short switching times of the gates.

At the end of the computation the result is read out by measur-
ing the state of the qubits. Quantum computation produces an-
swers that are encoded in well-defined computational states and
the readout requires only the measurement of few qubits.

By looking at the requirements posed on the quantum com-
puter we arrive at five DiVincenzo criteria: for a working quantum
computer we must have

� a well-defined two-dimensional subspace that is well isolated
and scalable, i.e. it must be easy to add an extra qubit to the
computer,
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� a procedure to prepare the qubits in an initial state, like
j00 . . . 0i,

� an implementation of one- and two-qubit quantum gates,
� coherence times long enough compared to switching time to

allow for the error correction to be efficient,
� the possibility to measure the qubits at the end of computation.

These criteria describe the minimal set of requirements for any
quantum computing implementation. We would like to emphasize
that all of the criteria from the list must be met in a single device at
the same time and in the same experiment. A more detailed over-
view of the requirements a quantum system must satisfy in order
to perform quantum computation can be found in [9].
3. Qubits in many-spin systems

A qubit can be encoded in any two-dimensional state space,
regardless of the system that it describes. Quantum computation
can also be done on systems with the larger dimension of the state
space, like three-dimensional qutrits. Such encodings do not bring
additional advantage in computational power over qubit encoding,
and we will not discuss them.

Molecular magnets are systems of interacting magnetic atoms,
and to a very good approximation can be described as a set of
interacting spins [10]. Given the complexity of the underlying
interactions between the magnetic ions, we can naively expect that
the control over a molecular magnet would be much more difficult
than the control over qubits with a natural two-dimensional state
space, like the electron spin. It is only due to clear separation of en-
ergy scales and the high symmetry of the molecule that the low-
energy behavior is comparatively simple and, at least in principle
controllable. At the root of this simplification is the fact that the
strongest interaction in the system, Coulomb repulsion, is spin-
independent. The low-energy manifold of states is then well
approximated as a multiplet of the fixed total spin. Within this
manifold, the molecule is described by the spin Hamiltonian of a
large spin. In order to use a single molecule as a qubit it is then
necessary to isolate a two-level subsystem for encoding the quan-
tum information.

When the exchange coupling in a molecule is antiferromag-
netic, the ground state as a rule is a multiplet of the lowest total
spin. This can lead to a true spin-1/2 ground state multiplet. In that
case the symmetry of the molecule becomes crucial and the result-
ing low-energy behavior of the system is to a large extent deter-
mined by the symmetry alone.

The problem of encoding a qubit into a system of interacting
spins, analogous to the spins in molecular magnets, was studied
in antiferromagnetic spin clusters [11]. A coupled spin system a
lowest-energy multiplet of the total spin 1/2, Stot ¼ 1=2, retains
the main advantage of the natural spin-1/2 encoding since the
energy gap to the excited states prevents the qubit state from
leaking out of the computational space. While the description
of the state in terms of individual spins is not simple, its sym-
metry assures that the interaction with the external fields is eas-
ily controlled. The advantage of the cluster of spins over the
single spin comes with the increased size of the qubit. Quantum
control over larger qubits does not require engineering of the
external fields on prohibitively short length scale. The overhead
comes as a modest increase in control complexity and in coher-
ence times.

As an example that illustrates the simplification of the control,
we consider the case of two coupled large spins with anisotropic
single-spin Hamiltonians

H ¼ Js1 � s2 þ kz s2
1;z þ s2

2;z

� �
: ð3Þ
Two large spins s1 and s2 interact via exchange and show single-
spin anisotropy. The low-energy eigenstates have a general form

j0ð1Þi ¼
Xs1

m1¼�s1þ1

a0ð1Þ
m1

m1;
1
2
�m1

����
�
: ð4Þ

Note that the symmetry under rotations about the anisotropy axis z
has drastically simplified the states (4) which include only a multi-
plet of a constant Stot

z , since ½H; Stot
z � ¼ 0. The effective interaction, de-

rived from the full system at low energy still has a simple form:

H� ¼ J�s
I � sII: ð5Þ

We see that the effective interaction H� is just the exchange in the
space of cluster spins sI and sII, with a new coupling constant J�.
Therefore, the problem of control is shielded from the complexities
of the actual interaction and amounts to the control of a single
parameter J�ðtÞ, in analogy with exchange-coupled quantum dots
[12].

For a generic spin system at low energy, the spin interaction is
not of the isotropic form (5). The point-group symmetry of the
molecule is smaller than the spherical symmetry and the spin–or-
bit coupling introduces anisotropy in the effective spin interaction.
The effects of anisotropy on quantum gates can be suppressed
using appropriately designed time-dependence of the control
pulses [13], or used to produce quantum gates unavailable in the
systems with isotropic interaction [14].
4. Grover quantum search algorithm in molecular magnets

The most striking advantage of quantum computers over classi-
cal ones is the exponential speedup with respect to the best known
classical algorithm, as in the factoring problem. There are, how-
ever, other problems where quantum computers offer a different
kind of advantage. One such problem is the so-called quantum
search. In the standard version of the problem we are given a data-
base that is not ordered in any way, and asked to retrieve a specific
element from it. We can visualize this as searching through a
phone book in order to find the name corresponding to a given
telephone number. In the classical case, the best strategy is to suc-
cessively retrieve and check one element after another. On average,
the item will be found after N=2 queries of the database, where N is
the number of entries. In the quantum version of the problem, we
are allowed to use quantum queries and ask for the superpositions
of the database entries. Using the Grover algorithm [15], the task of
finding the item is accomplished using Oð

ffiffiffiffi
N
p
Þ queries. This speed-

up is not as spectacular as the speedup in the factoring problem.
The advantage is seen in going from a higher to a lower order poly-
nomial. However, it can be proved (and it is almost obvious) that
there is no classical search algorithm that scales better than linear
in the size of the database, while we do not know how efficient is
the best classical algorithm for factoring.

A related search problem, also posed and solved by Grover [16],
is the quantum version of the ‘game of twenty questions’. In the
classical game we are allowed to query the database about all
the entries at once, and the only constraint is that the answer to
every question must be either yes or no. For example, we can ask
if there is an element we are looking for among the first N=2 data-
base elements. Such questions can be answered only if the data-
base is ordered. In the classical case, the search needs at least
� log2N queries. A truly surprising result is that the quantum ver-
sion of this search can be completed in a single quantum query.
The price for this great reduction of the number of queries is in
the queries complexity.

Quantum search algorithm requires an oracle, the computing
element that can recognize the elements we are searching for,
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and it requires that the oracle be quantum. That means that the
oracle performs a unitary transformation:

Ojxi ¼ ð�1Þf ðxÞjxi; ð6Þ

where jxi is a computational basis state (1) that addresses the data-
base entry, and the function f is defined by f ðxÞ ¼ 1 if the element is
the one we are searching for, and f ðxÞ ¼ 0 otherwise. In words, the
computational basis states that encode solutions to the search prob-
lem are marked by the oracle which changes their sign. The search
proceeds by applying the Grover iteration that after �

ffiffiffiffi
N
p

repeats
produces a solution to the search problem. The essential part of
the Grover iteration that cannot be applied in a classical settings
is the application of the oracle to the state:

jWmixi ¼
1ffiffiffi
2
p j0i þ j1ið Þ
� ��N

; ð7Þ

which represents the query of all of the registers at once. Note that
the oracle still only needs to recognize the solution to the search
problem. It does not know how many solutions are in the data-
base, nor what their nature is. In contrast to factoring, the Grover
search algorithm does not require entanglement for its operation
[17].

In the most powerful application the Grover quantum search
algorithm enables retrieval of a record from a database using a sin-
gle quantum query. This astonishing speedup requires some
knowledge about the solutions to the search problem that is not
present in its standard statement, and comes at a price of the query
being more complex. Therefore, a system that allows for a complex
quantum query is valuable as a memory element. The molecular
magnets are capable of supporting this kind of Grover query [18],
thanks to the strong anisotropy present in the molecular magnets
low-energy manifold. Molecular magnets can therefore serve as
memory elements with large information density and potentially
short access time.

Taking a look at the mixed state jWmixi, we can immediately see
where the complexity of a quantum query lies. It has to access all
the records in a database at once. In a molecular magnet the differ-
ent states correspond to the different energy levels of a large spin.
A query would then proceed through accessing all the transitions
between the different states in a controllable fashion. If the levels
were equidistant, as in Heq ¼ �hxeqSz, all the transition frequencies
between the neighboring levels would be equal, and it would be
impossible to access each transition separately.

Molecular magnets have an advantage of a highly anisotropic
spin Hamiltonian with nonequidistant energy levels. A typical spin
Hamiltonian reads

Hspin ¼ Ha þ V ; ð8Þ

where Ha ¼ �AS2
z � BS4

z , ðA	 B > 0Þ represents the spin anisotropy
with the easy axis along z, and V ¼ glBH � S is the Zeeman coupling
between the external magnetic field B and the spin S. In addition to
(8), the molecular magnet experiences tunneling between
jmi-states, and the spin-phonon coupling. At low temperatures,
and in the bias field regime glBdHz > Emm0 , where Emm0 are the tun-
nel splittings between jmi-states, the tunneling and spin-phonon
interaction are suppressed. Spin evolution is then controlled by Ha

and V .
Using two kinds of ac magnetic fields that give rise to the ‘low’

and ‘high’ Zeeman coupling term [18]

V lowðtÞ ¼ glBH0ðtÞ cosðx0tÞSz; ð9Þ

VhighðtÞ ¼
Xs�1

m¼m0

glBHmðtÞ
2

eiðxmtþUmÞSþ þ e�iðxmtþUmÞS�
	 


; ð10Þ
where the ‘low’ field corresponds to the linear polarization of the
field along the easy axis that causes the transitions that do not
change the quantum number m, and the ‘high’ transitions corre-
spond to left circular polarization r� and cause transitions with
Dm ¼ �1. Right circular polarization rþ would cause Dm ¼ þ1 tran-
sitions, and the choice of circular polarization allows selective
addressing of the states in just one of the wells Sz > 0, or Sz < 0,
when starting from the large spin with maximal projection on the
z-axis.

Under the influence of the combined driving VðtÞ ¼ V lowðtÞþ
VhighðtÞ, and with rectangular pulse shape (HkðtÞ ¼ Hk, if
�T=2 < t < T=2, HkðtÞ ¼ 0 otherwise), the molecular magnet tran-
sition amplitudes are given by the S-matrix, given in a perturbation
series as

S ¼
X

j

SðjÞ; ð11Þ

where the transitions involving n photons of different frequencies
are

SðnÞm;s ¼
X

F

Xm
2p
i

glB

2�h

� �n
Qs�1

k¼mHkeiUk Hm�m0
0 pm;sðFÞ

ð�1ÞqF qF!rsðFÞ!xn�1
0


 dðTÞ xm;s �
Xs�1

k¼m

xk � ðm�m0Þx0

 !
: ð12Þ

Here, the nth order S-matrix is given in terms of the external control
fields, parameterized in terms of Hk, H0, and Uk, and the constants
qF, rsðFÞ, and pm;sðFÞ that all depend on a particular tunneling path
F. The Dirac delta function of the duration T assures energy conser-
vation between the initial and final states.

Procedure for writing in a state into a molecular magnet con-
sists of sending in a single ESR pulse that will bring a magnet from
the initial state jmi ¼ j � si to the final state:

jf i ¼
Xs

m¼m0

Xn

j¼0

SðjÞm;sjmi: ð13Þ

where the S-matrix has to be calculated up to nth order. Due to the
resonance condition being different for different levels, it is possible
to adjust the frequencies so that the amplitudes of all the states jmi
in (13) are of comparable modulus. This would not be possible in a
system with an equidistant spectrum where the population of high-
er levels has to proceed through higher order perturbation with all
the perturbative terms coming into resonance at the same fre-
quency. In an actual molecular magnet, like Mn12, the frequencies
would lie in a range between 20 and 300 GHz and the ratio between
the largest and the smallest field strength at different frequencies
would be �30.

To find the capacity of a single molecular magnet to store infor-
mation, we can assume that each molecule can store two digits,
one for each circular polarization of the write and read pulse. Each
digit can be in one of N ¼ 2s�1 states, which for s ¼ 10 ðMn12Þ is
2:6
 105. The total time of a full write–read cycle is sc ¼ 10�10 s.
Therefore, molecular magnets can be used as a dense and efficient
memory device.
5. Quantum computing with electrically gated molecular
magnets

The control over quantum operations can be the most involved
requirement for a quantum computer. There is no single best way
to apply quantum gates valid for every qubit, and each qubit type
requires a specific control mechanism. The molecular magnets
stand out among other proposed qubits by combining the size that
is much larger than the atomic systems and much smaller than
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solid-state devices such as quantum dots. The magnetic properties
of molecular magnets can be changed in a wide range during
chemical synthesis. A wide variety of available molecules promises
that there are many potentially interesting systems for quantum
computing applications among them.

In solid-state settings, the qubits based on spin typically show
longer coherence times than the charge-based qubits. The paradig-
matic way of producing a solid-state qubit is to isolate an island of
electrons in a piece of semiconductor and contact it by metallic
electrodes. When the island is small enough, typically 10–
100 nm, voltages on electrodes can control the number of electrons
in the island, all the way to single electron regime and the empty
island. In these regimes, the energy of the electron is quantized
due to confinement in a small volume, and these structures are
called quantum dots, or artificial atoms. This procedure of prepar-
ing an electronic system with a discrete set of energy levels by
carving it out of a piece of semiconductor is a typical top-down ap-
proach. The drawback of such an approach is that each and every
quantum dot has to be lithographically defined, and the scalability
of such structures can be an issue. The top-down production gives
quantum dots with different electrostatic confinement, and spins
can feel such differences through spin–orbit coupling. The molecu-
lar magnets are designed from bottom up, using synthetic chemis-
try and starting from identical atoms. Quantum computers that
consist of a coupled set of molecular magnets is guaranteed to have
all of its qubits identical.

If the spin of a molecular magnet represents a qubit, the quan-
tum computer can be realized as a set of qubits connected in a
cluster [11]. The interaction of qubits is mediated by the interven-
ing binding groups. This kind of control is exhausted once the mol-
Fig. 1. Numerical evaluation of the average fidelity of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

quantum gate as a
function of the gate time sgate and the ratio of indirect exchange coupling J1 between
the vanadyl groups and the coupling of vanadyl groups to the central core JC. The
solid lines track the gate parameters that lead to an ideal gate in the approximation
of the direct control of nC.
ecules are assembled. Application of a quantum gate requires
control over spins while the gates are applied, at very fast time
scales. Such time scales favor electrical over magnetic control, be-
cause it is generically much easier to produce electric fields that
vary on very short time scales than it is the case with magnetic
fields. Strong electric fields can be applied to molecular magnets
using a scanning tunneling microscope tip, or by coupling the mol-
ecule to a strip-line [19].

An experimental setup for applying the two-qubit gates on
spins in a molecular magnet cannot be directly deduced from the
solid-state counterpart. The reason for this is that the spin coupling
in a molecular magnet is mostly determined by its chemistry, and
reacts very weakly to the external fields that are under experimen-
tal control on the short time scales characteristic for the quantum
gates. As an example of a two-qubit system, we can consider a
polyoxometalate molecule ½PMo12O40ðVOÞ2�

q� [20,21] that consists
of a central mixed-valence core based on the ½PMo12O40� Keggin
unit [22], capped by two vanadyl groups containing two localized
spins. Quite generically, the low-energy spin Hamiltonian of such
a structure has a relatively simple form [21]:

H ¼ �JðnCÞSL � SR � JCðSL þ SRÞ � sC þ ð�0 � eVgÞnC þ UnCðnC � 1Þ=2:

ð14Þ

Here, the first term describes the indirect exchange coupling of the
left ðSLÞ and right ðSRÞ vanadyl group spins, with the coupling
strength JðnCÞ which depends on the number of excess electrons
on the central core nC. The second term describes symmetric cou-
pling of the spin on the central core sC to the vanadyl group spins.
The molecule is also electrostatically coupled to the control gate
voltage Vg, and the orbital energy of an added electron is �0, as de-
scribed by the third term. The last term in (14) describes the Cou-
lomb repulsion energy cost of changing the number of electrons
on the core. For the application of the quantum gates, the crucial
part of the Hamiltonian (14) is the dependence of the exchange cou-
pling between the vanadyl spins on the charge of the core JðnCÞ. The
control over the central core charge allows for implementation of
the exchange gates:

UðkÞ ¼ expð�ikSL � SRÞ; ð15Þ

where the parameter k completely determines the gate. If we
choose to encode the qubits into spin states of the vanadyl groups,

j0i ¼ jSðVOÞ
z ¼ 1=2i; j1i ¼ jSðVOÞ

z ¼ �1=2i; ð16Þ

then one particular exchange gate,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

¼ Uðp=2Þ is sufficient for
universal quantum computation, provided that it can be applied be-
tween any pair of neighboring qubits [12]. Assuming that the ex-
change coupling is negligible for the core in equilibrium
JðnC ¼ 0Þ ¼ 0, and writing the Hamiltonian (14) in the nC ¼ 1 sector
as

H1 ¼ �ðJ1 � JCÞSL � SR �
JC

2
S2; ð17Þ

where S ¼ SL þ SR þ sC is the total spin of the molecule, it can be
shown that the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gate is obtained for the gate time sgate and
the exchange coupling in the nC ¼ 1 sector J1 that satisfy the
relations:

sgate ¼
4p
3

�h
jJCj

m;
J1

JC
¼ sgnJC þ

3
8

1� 4n
m

; ð18Þ

where nð6¼ 0Þ and m are arbitrary integers.
This control scheme assumes that the exchange coupling can be

changed with the required precision. A quick look at (14) implies
that we must also control the charge of the core with high preci-
sion and high temporal resolution. The process of electron tunnel-
ing from the control electrode to the core and back is however
governed by quantum effects and the degree to which it can be
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controlled by an external voltage can be found by solving for the
quantum evolution of the system comprising the molecule and
the electrodes under the influence of time-dependent voltage Vg

(14) [21].
One figure of merit for a real quantum gate is the fidelity

F ¼ Tr½qrealðtf Þqideal�: ð19Þ

Here, qrealðtfÞ is the density matrix of the qubits at the end of the
quantum gate operation at the time tf , qideal is the density matrix
of the involved qubits that were operated upon by an ideal gate,
and the overbar means the average over the initial two-qubit
states. Intuitively, the fidelity is an average overlap of the state
produced by the real quantum gate with the desired state that
an ideal gate would produce. Numerical analysis of the electrically
gated quantum dots shows [21] that the fidelities as large as
F ¼ 0:99 are possible for this implementation of the quantumffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWAP
p

gate (Fig. 1). An important lesson from this exercise is that
the complex structure of the molecule does not necessarily give a
complex interaction of the spins and that due to the constrained
form of the effective interaction the control problem has some de-
gree of robustness.
6. Summary

We have reviewed how the complexities of a generic molecular
magnet, a structure of many interacting spins are tamed by sym-
metry, so that the low-energy properties of a collection of spins
can be controlled by simple means. Molecular magnets offer an
advantage in memory applications due to their highly anisotropic
spectrum, and allow for an application of the Grover search algo-
rithm. Finally we have described a proposal for quantum informa-
tion processing in polyoxometalates that uses electric control over
spins to perform the two-qubit quantum gates.
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Interference of heavy holes in an Aharonov-Bohm ring
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We study the coherent transport of heavy holes through a one-dimensional ring in the presence of spin-orbit
coupling. Spin-orbit interaction of holes, cubic in the in-plane components of momentum, gives rise to an
angular momentum-dependent spin texture of the eigenstates and influences transport. We analyze the depen-
dence of the resulting differential conductance of the ring on hole polarization of the leads and the signature of
the textures in the Aharonov-Bohm oscillations when the ring is in a perpendicular magnetic field. We find that
the polarization-resolved conductance reveals whether the dominant spin-orbit coupling is of Dresselhaus or
Rashba type, and that the cubic spin-orbit coupling can be distinguished from the conventional linear coupling
by observing the four-peak structure in the Aharonov-Bohm oscillations.
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I. INTRODUCTION

Conductance of mesoscopic rings threaded by the mag-
netic flux shows Aharonov-Bohm oscillations1 due to the
phase a quantum state acquires when it winds around the
magnetic flux. An analogous effect in rings made of semi-
conductors with spin-orbit coupling occurs due to the spin
precession as an electron orbits the ring, giving rise to the
Aharonov-Casher phase.2 Both the Aharonov-Bohm and the
Aharonov-Casher effects are manifestations of quantum co-
herence in mesoscopic systems, and provide a way to study
the quantum interference in mesoscopic conductors.3–6 They
lead to universal conductance fluctuations7 and persistent
spin and charge currents.8–10 From a more practical point of
view, the conductance that depends on the magnetic flux in
the case of Aharonov-Bohm effect, or on the strength of
spin-orbit coupling in the case of Aharonov-Casher effect,
paves the way for novel applications in mesoscopic elec-
tronic and spintronic devices. For example, the Aharonov-
Casher phase can be modified by applying a backgate volt-
age to the device and changing the Rashba coupling
constant.11 This enables spintronic devices that require nei-
ther any ferromagnetic materials nor the control over mag-
netic field to operate.11–14

Recently, a number of experimental15,16 and theoretical4

studies have investigated transport of heavy holes in rings.
These studies are relevant because of the strong spin-orbit
coupling of heavy holes confined to the ring,15 and long co-
herence length ��3 �m in carbon-doped GaAs�, making the
interference effects in transport observable. The material pa-
rameters of holes allow for spintronic applications.17 In co-
herent spin-orbit coupled systems, the transport shows an
intriguing interplay of Aharonov-Bohm and Aharonov-
Casher effects.18 Apart from showing strong spin-orbit cou-
pling and long coherence lengths, the heavy holes interact
through a novel form of the spin-orbit coupling that is cubic
in the in-plane components of momentum. This form of spin-
orbit coupling influences the interference effects in transport.

In this work, we study the conductance of a ring of heavy
holes tunnel coupled to two external leads. This is in contrast

to previous studies which consider rings that are strongly
coupled to the leads,4 or are in a diffusive regime and can be
described using semiclassical trajectories,19 or described in a
lattice model.20 Studies of the conduction through quantum
dots embedded in an Aharonov-Bohm ring have focused on
the effects of interaction on the transport,21–23 while we study
the interference of many available paths. In these setups, the
interference effects can be traced to the Aharonov-Bohm and
Aharonov-Casher phases accumulated by a spin experienc-
ing a time-dependent field while moving along a trajectory
through the ring. In the adiabatic limit, this approach leads to
geometric phases.24 On the other hand, in our tunneling
setup, the quantum effects in transport arise from the inter-
ference of tunneling paths through the eigenstates of the ring.
The interference is then related to the magnetic field depen-
dence of the eigenstates of a hole confined to the ring, and
not to the phase accumulated by a spin following quasiclas-
sical trajectory.

The states ��hh� of a heavy hole orbiting a ring can be
described in terms of pseudospin textures. At a position �
along the ring, the heavy-hole state is

����hh� = �+����jz = 3/2� + �−����jz = − 3/2� , �1�

and it determines a unique direction n in the pseudospin
space for which �� ��hh� is an eigenstate of pseudospin pro-
jection to the axis n, i.e., ��hh�� ��n=1�. We identify the
�jz= �3 /2� heavy-hole states with pseudospin 1/2 pointing
in �z direction, ��ez

= �1�. The pseudospin texture associ-
ates the direction n with every point � on the ring �Figs. 1
and 2� so that the states in Eq. �1� can be represented in terms
of spin texture as

����hh� = ei	�����n��� = 1� , �2�

with the texture defined by the position-dependent unit vec-
tor n��� and the position-dependent overall phase 	���. The
textures of heavy-hole eigenstates depend on the hole-orbital
momentum 
 so that the holes arrive at the connecting leads
with different pseudospins, causing an interference pattern in
the resulting conductance.
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In the measurement of conductance as a function of flux
through a semiconductor ring, the Aharonov-Casher effect
manifests itself through an additional structure in the
Aharonov-Bohm oscillations due to spin precession in the
arms of the ring.15 In the approximation of spin-orbit cou-
pling that is linear in momentum, the conductance oscilla-
tions reveal a splitting of Aharonov-Bohm peak in the Fou-
rier transform of resistivity as a function of the external
magnetic field.25 However, the spin-orbit coupling of holes in
III-V semiconductors is, in lowest order, cubic in the hole
momentum.26 In this case, the spin texture of the orbiting
carrier depends on the momentum �see below� and pro-
foundly influences the transport. Therefore, for the carriers
with cubic spin-orbit coupling, the Aharonov-Casher phase
can be controlled by changing the momentum of the carriers,
without the need to modify the coupling constant. This point
is especially important in the structures fabricated in sym-
metric quantum wells where the Rashba coupling is absent,
and the Dresselhaus spin-orbit coupling is given by the crys-
talline structure. Even though the coupling constant is fixed,
due to the cubic form of spin-orbit coupling, the Aharonov-
Casher phase can still be indirectly controlled through the
manipulation of the carrier momentum. In addition, the
Dresselhaus and Rashba terms produce different patterns in
conductance as a function of backgate voltage so that the
conductance in phase-coherent rings reveals the dominant
type of spin-orbit coupling.

The remainder of the paper is organized as follows: In
Sec. II, we describe the confinement of heavy holes to a ring

and derive the effective one-dimensional Hamiltonian. In
Sec. III, we solve for the hole eigenstates and eigenenergies.
In Sec. IV, we introduce the tunneling model of hole trans-
port through the ring. In Sec. V, we present the resulting
differential conductance of the ring. We conclude in Sec. VI.

II. HEAVY HOLES IN A ONE-DIMENSIONAL RING

Heavy holes confined to the two-dimensional hole gas
�2DHG� are described with H=H0+HSO+HZ, where H0
=p2 /2mhh is the standard kinetic term, HZ= �1 /2��BB ·g ·�
is the Zeeman coupling to the magnetic field B, �B being the
Bohr magneton, g the gyromagnetic tensor of the confined
holes, and � the vector of the pseudospin Pauli matrices. We
consider a material with large splitting between heavy holes
and light holes bands, and assume that only the heavy holes
band is populated. The spin-orbit interaction of heavy holes
is, in lowest order, cubic in the in-plane components of the
momentum,26

HSO = �i�p−
3 + �p−p+p−��+ + H.c., �3�

where � and � are, respectively, interaction strengths of
Rashba and Dresselhaus spin-orbit coupling, and O�

=Ox� iOy, �O= p ,��. The pseudospin represents the two
heavy-hole states ��z= �1�= �j=3 /2, jz= �3 /2�. This is in
sharp contrast to the electrons in a two-dimensional electron
gas �2DEG�, where the spin-orbit is in the lowest-order linear
in momentum. Effects of spin-orbit coupling in general de-
pend on the confinement, both to the 2DHG and to the ring.
We will treat the spin-orbit coupling strengths � and � as
free parameters and absorb the influence of the electrostatic
potential that confines the holes to two dimensions into their
values. In particular, if the confinement to two dimensions is
caused by a symmetric potential, the Rashba coupling van-
ishes, �=0. We neglect the orbital effects of the magnetic
fields so that p is the kinetic momentum of the hole.

In order to illustrate the spin structure of ring eigenstates,
we will first solve for the eigenvalues and wave functions of
the heavy holes confined to the ring in the absence of mag-
netic field. Later, we take the magnetic field into account and
find that it causes modification of the quantization condition
and the Zeeman coupling.

The two-dimensional hole gas is confined to the ring by a
radial potential V�r� that has a deep minimum in the interval
a−w /2ra+w /2, where a is the radius of the ring and w
is its width. States of the hole orbiting the ring in the limit of
strong confinement are products of the ground-state radial
wave function in the potential V�r�, and a function of the
angular coordinate ����. For strong radial confinement, the
motion of the hole in the ring is described by an effective
Hamiltonian that depends only on the angular coordinate
along the ring and all the properties of the radial wave func-
tion enter the problem only through the parameters of the
effective one-dimensional Hamiltonian. The description in
terms of the effective one-dimensional Hamiltonian is valid
when both the energy spacing of the 2DHG confinement and
the energy spacing of the radial confinement are much larger
than the energies associated with the motion along the ring.

We find an effective Hamiltonian for the ring by introduc-
ing the confinement potential V�r� in the radial direction in

FIG. 1. �Color online� Hole pseudospin texture of the
Dresselhaus-only eigenstate.

FIG. 2. �Color online� Hole pseudospin texture of the Rashba-
only eigenstate.
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HSO and reducing it to the subspace of the lowest radial
mode, in analogy with Ref. 27. Typically these results were
obtained by introducing a model potential and explicitly cal-
culating the angular Hamiltonian for the lowest radial mode.
The resulting one-dimensional effective Hamiltonian for the
harmonic radial confinement was found for the case of
linear27 and cubic Rashba19 spin-orbit coupling. We note that
generically the solution to the radial problem in an arbitrary
potential can lead to divergences in the effective Hamil-
tonian. This can be avoided by working directly with the
radial wave function in the form of a harmonic-oscillator
ground state. In this work, we employ a different approach,
and calculate the effective Hamiltonian for a general radial
wave function. The resulting effective one-dimensional
Hamiltonian is

H = −
1

2mhha
2��

2 + �i�e3i��F0 + F1�� + F2��
2 + F3��

3 �

+ �ei��G0 + G1�� + G2��
2 + G3��

3 ���−

+ �− i�e−3i��F0 − F1�� + F2��
2 − F3��

3 �

+ �e−i��G0 − G1�� + G2��
2 − G3��

3 ���+. �4�

where G0= i�R0+R1−R2�, G1=−�R1+R2�, G2= i�R2−2R3�,
and G3=−R3; F0= i�R0−3R1+3R2�, F1=−3R1+9R2−8R3,
F2= i�−3R2+6R3�, and F3=R3. The parameters that depend
on the radial confinement are Rj = �r−j�r

3−j�radial, where the ex-
pectation value is taken in the ground-state radial wave func-
tion. The parameters Rj and j=0, . . . ,3 satisfy consistency
conditions that reduce the number of free parameters to two.
We keep the explicit dependence of the independent expec-
tation values in the radial state. The constraints are R2
=R3 /2 and R0=−3R1 /2. The constraints can be proven using
integration by parts in the radial part of the Schrödinger
equation, under the assumption that the radial part of the
wave function vanishes at the origin together with its deriva-
tives up to order 3. We have checked that this conclusion
holds in the limit of a series of potentials that converge to the
hard wall. Also, note that the relation between R0 and R1 is
satisfied for the radial wave functions of the harmonic con-
finement for which R3 diverges.19 We can take the values R0
and R3 as the free parameters of the ring confinement. For a
ring of radius a and width w, R3�a−3 and R0�a−1w−2.

Before embarking on the solution of the one-dimensional
problem, let us briefly discuss the resulting Hamiltonian. De-
pending on the radius and the width of the ring, different
terms in the spin-orbit interaction become more or less im-
portant. Also, we see an enhancement of the spin-orbit ef-
fects in narrow and small rings. We see that the strength of
the spin-orbit coupling terms depends on the width of the
one-dimensional ring w through the parameter 1 / �aw2�. This
means that the spin-orbit coupling terms can be enhanced in
a very narrow ring. In this limit, however, the spin-orbit cou-
pling is effectively linear. Therefore, the effects of the cubic
spin-orbit coupling presented here will be pronounced in the
rings of intermediate widths, and the strength of radial con-
finement that is strong enough for the approximation of the
single radial mode to hold.

III. SPECTRUM AND EIGENSTATES OF THE ORBITING
HOLES

The effective Hamiltonian �Eq. �4�� describes a ring of
heavy holes in the presence of both Dresselhaus and Rashba
spin-orbit interaction, when ��0 and ��0. Our goal is to
understand the role of cubic spin-orbit coupling in transport,
and contrast its effects to the standard linear spin-orbit cou-
pling, experienced by the electrons in a similar configuration.
We will therefore focus on the two limits that allow for
a simple solution, namely, Dresselhaus-only interaction
��=0�, and Rashba-only interaction ��=0� that was previ-
ously studied in Ref. 19. While restricting the domain of
validity of our results, these approximations emphasize the
physical picture of the eigenstates in terms of holes orbiting
the ring, and the associated texture of the hole pseudospin.
Apart from allowing a simple solution and providing a
simple picture of the eigenstates, these two limits are also, in
principle, realizable in practice. In the semiconductor hetero-
structures that confine holes to the 2DHG, the strength of the
Rashba term is governed by the asymmetry of the confining
potential in the direction perpendicular to the 2DHG plane.
For a highly asymmetric potential the Rashba term is domi-
nant, but it vanishes when the holes are confined by a sym-
metric potential well.

A. Dresselhaus (�=0) case

Eigenstates of the effective Hamiltonian �Eq. �4�� are
specified by two quantum numbers, 
= �2n+1� /2, where n is
an integer, and the texture quantum number �= ⇑ ,⇓, which
takes on two discrete values. The Dresselhaus interaction
eigenstates �d are

�
⇑
d = ei
�	cos

�d�
�
2

e−�i/2���+�/2�

sin
�d�
�

2
e�i/2���+�/2� 
 , �5�

�
⇓
d = ei
�	− sin

�d�
�
2

e−�i/2���+�/2�

cos
�d�
�

2
e�i/2���+�/2� 
 , �6�

where the texture angle �d�
� is

�d�
� = tan−1�2mhh�

R3
2/3 �2

3
R0 + 
2 −

5

4
�R3�� . �7�

The states represent a hole that orbits the ring with angular-
momentum 
 and well-defined spin texture. At the point on
the ring with the angle �, the spin-state ��=�0 ��
⇑

d � corre-
sponds to the spin that is tilted by the angle �d�
� from the
normal to the plane of the ring, and the azimuthal angle is
�=�0+� /2 so that the projection of the spin to the plane of
the ring is always tangential to the ring �see Fig. 1�. The spin
state associated with the other texture, ��=�0 ��
⇓�, corre-
sponds to the spin with the tilt angle �−�d, and the same
azimuthal angle. The crucial difference with respect to the
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eigenstates of the ring with linear spin-orbit coupling is that
the texture of the state depends on the momentum quantum
number 
 even in the absence of magnetic fields. Therefore,
the states of different momentum show different spin tex-
tures.

Energies depend on both momentum and the texture,

E
,⇑�⇓�
d =

1

2mhhR3
2/3
2 +

1

4
�




cos �d�
�� . �8�

The pairs of eigenstates ��
,⇑ ,�−
,⇓� form Kramers dou-
blets, E
⇑

d =E−
⇓
d .

B. Rashba (�=0) case

When the spin-orbit coupling is of the Rashba type, the
momentum 
= �2n+1� /2 for integer n is still a good quan-
tum number, and there are still two textures, �=⇑ and �=⇓
for every value of 
. The eigenstates �r are

�
⇑
r = ei
�	cos

�r�
�
2

e−3i/2�

sin
�r�
�

2
e3i/2� 
 , �9�

�
⇓
r = ei
�	− sin

�r�
�
2

e−3i/2�

cos
�r�
�

2
e3i/2� 
 , �10�

with the Rashba texture angle �r�
�

�r�
� = tan−1�2mhh�

R3
2/3 �2

3
R0 + 13

12
−

1

3

2�R3�� . �11�

As for the Dresselhaus case, the eigenstates represent a hole
with well-defined pseudospin texture that orbits the ring. The
texture is however quite different. The pseudospin ��
=�0 ��
⇑

r � is tilted away from the normal to the ring plane by
the angle �r�
� that, in contrast to the Dresselhaus case, can
vary in the full range �r� �0,��, while the Dresselhaus spin-
orbit coupling allows only for �d� �0,� /2�, except for 

=1 /2 and unrealistically large R3. The pseudospin projection
to the plane of the ring, that was always tangential in the
Dresselhaus case, now makes three full rotations on each
orbit �see Fig. 2�. The pseudospin of the opposite texture
��=�0 ��
⇓

r � has the tilt angle �=�−�r�
�, and the same
projection to the ring plane.

Energies in the Rashba case again depend on the momen-
tum and texture

E
,⇑�⇓�
r =

1

2mhhR3
2/3
2 +

9

4
�




cos �r�
�� . �12�

The time-reversal symmetry imposes Kramers degeneracy,
and the states in the Kramers doublet ��
⇑

r ,�−
⇓
r � have the

same energy E
⇑
r =E−
⇓

r .

C. Magnetic field

Our preceding calculation of the eigenstates and eigenen-
ergies did not take into account the interaction of holes with

the magnetic field B. In this subsection, we will find the
spectrum and the eigenstates of a heavy hole in the presence
of a magnetic field normal to the ring. This calculation in-
cludes the change in the quantization condition for the orbital
momentum 
 and the Zeeman term HZ, but neglects the
modification of the lowest energy radial wave function due
to the magnetic confinement. This approximation neglects
the modification of the radial confinement, described by R1
and R3 in Eq. �4� due to magnetic field. This approximation
is valid for weak magnetic fields rc�a that give the cyclo-
tron radius rc much larger than the ring-radius a, as well as
for the magnetic fields of arbitrary strength confined to the
interior of the ring.

The requirement that the wave function of an orbiting
hole is single valued, ��=2� ��
��= ��=0 ��
�� gives the
quantization-condition 
= �2n+1� /2, for integer n. In the ab-
sence of Zeeman coupling, the complete spectrum of the ring
is periodic in the flux with the period �0. This perfect peri-
odicity of the spectrum is broken by the Zeeman interaction.

For the magnetic field in z direction, normal to the plane
of the ring, it is possible to account exactly for the effects of
Zeeman term HZ=bSz, where b=gzz�BB is the magnetic field
in with absorbed Bohr magneton �B and the gyromagnetic
tensor component gzz. For 2DHG the g tensor is highly an-
isotropic, and to a good approximation the only nonzero
component is gzz. Therefore, this approximation is valid also
for the magnetic fields with in-plane components, with the
adjustment that B→ �B ·ez�ez, since only the z component
impacts both the Aharonov-Bohm flux and the Zeeman term.

The Zeeman interaction couples the states of the same
orbital momentum 
 and opposite textures. The energies and
eigenstates in the presence of Zeeman interaction are
��
⇑� , �
⇓��→ ��
+� , �
−�� and �E
,⇑ ,E
,⇓�→ �E
,+ ,E
,−�,
where

E
,� =
1

2
�E
,⇑ + E
,⇓� ��1

4
��
�2 + b2 + b cos ��
���
� .

�13�

The eigenstates in the presence of Zeeman interaction keep
the 
 quantum numbers, but the states of opposite textures
get mixed

�
+�
�
−�

� =	 cos
��
�

2
− sin

��
�
2

− sin
��
�

2
cos

��
�
2


�
⇑�
�
⇓�

� , �14�

where the mixing angle ��
� is

��
� = arccos
1
2��
� + b cos ��
�

�1
4��
�2 + b2 + b cos ��
���
�

. �15�

Here ��
�=E
,⇑−E
,⇓ is the energy difference of the two
states with momentum 
 and opposite textures.

IV. TUNNELING MODEL OF CONDUCTION

We consider a system of heavy holes confined to a ring-
shaped geometry and contacted by a pair of leads �Fig. 3�.
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The lead density of states is assumed to be wide and flat. In
order to elucidate the pseudospin structure of the leads, we
allow for an arbitrary pseudospin density-matrix �S�D� in the
source�drain� lead.

The spin textures revealed in the eigenstates of heavy
holes confined to a ring influence the transport properties
when the ring is coupled to electrodes. For example, the hole
of a given pseudospin entering the ring from the source elec-
trode can propagate via different �
� eigenstates, and arrive
at the drain electrode with different pseudospin orientations.
The pseudospin states at the drain electrode will interfere,
and the probability of transmission will depend on the pseu-
dospin orientations. Since the pseudospin orientations at the
drain electrode depend on the hole-momentum 
 through the
texture of the state �
�, we may expect that the transmission
of the ring, and therefore the resulting conductance will also
depend on the momentum of the incoming hole. This mo-
mentum dependence is absent in the electronic systems
where the texture is determined solely by the spin-orbit cou-
pling constant.28 Therefore, we expect new effects of spin
interference in transport of carriers that are subject to the
cubic spin-orbit coupling.

The interference of heavy holes will be observable if their
coherence length 	coh is longer than the ring circumference
	ring. At the same time, the spin-orbit length 	SO that a hole
must transverse in the ring in order to experience an appre-
ciable pseudospin rotation must be at least comparable to
	ring. The resulting set of constraints 	coh�	ring�	SO can be
achieved in the heavy-hole structures based on carbon-doped
GaAs.15,25

In order to find the transmission through the ring, we
introduce a tunneling Hamiltonian model for the ring
coupled to source and drain electrodes. The tunneling Hamil-
tonian description is valid when the overlap of the electrode
states and the ring states is small, ��k��x��
��x���1 for ev-
ery point x within the system, and every pair of states
�
� ,k��.

The tunneling between either electrode and the ring oc-
curs on the length-scale 	tun that is much shorter than the
spin-orbit length, 	tun�	SO. Therefore, unless there are mag-
netic impurities in the boundary region between the ring and
the leads, the tunneling will preserve the true hole spin, re-

sulting in the hole pseudospin conservation in tunneling, and
the pseudospin independence of the tunneling amplitudes.

The tunneling Hamiltonian reads

HT = HS + HD + HR + HT, �16�

where the three noninteracting Hamiltonians

HS = �
k�

�k�
S sk�

† sk�, �17�

HD = �
k�

�k�
D dk�

† dk�, �18�

HR = �

�

�
�r
�
† r
�, �19�

describe decoupled source electrode, drain electrode, and the
ring. The operators sk��dk�� annihilate a hole of momentum k
and pseudospin �= ↑ ,↓ in the source�drain� electrode, while
the operators r
� and �= ⇑ ,⇓ annihilate a hole in the ring
state �
�. The ring energies �
� are given by Eqs. �8� and
�12�. The tunneling term HT describes processes when a hole
hops from an electrode to the ring and back,

Htun = �
k�,
�

�tk�,
�
S sk�

† r
� + tk�,
�
D dk�

† r
� + H.c.� . �20�

The tunneling matrix elements, tk�,
�
S�D� , are determined by the

details of the potential barrier between the electrodes and the
ring. We are interested in the consequences of nontrivial spin
textures in the transport of holes through a ring. The poten-
tial barrier is due to electric fields, and its influence on the
spin and the hole pseudospin can come only from the spin-
orbit coupling. Here we assume that the holes of arbitrary
pseudospin see the same potential. This assumption is valid
for a potential which is nonzero only in a tunneling region of
the linear dimension much smaller than the spin-orbit length.

Under these assumptions, we can model the tunneling ma-
trix elements as

tk�,
�
S�D� = tk,


S�D��k�S�D���S�D����S�D��
�� , �21�

where the spin- and texture-independent matrix elements
tk,

S�D� describe the tunneling in the absence of spin-orbit cou-

pling, and the spin- and texture-dependent factor is propor-
tional to the overlap of the spin and texture part of the wave
function at the position �S�D� of the source �drain� junction.

The resulting tunneling Hamiltonian Htun is a generaliza-
tion of the Fano-Anderson model29 to the many isolated lev-
els in a continuum with different couplings to the continuum
states in the leads. Since the tunneling term HT in Eq. �20� is
bilinear in the operators that describe the uncoupled system,
it is in principle exactly solvable. However, the exact solu-
tion for the eigenstates is simple and transparent only in the
case of a single level.18,30 The exact solution requires inver-
sion of an N�N matrix, where N is the number of relevant
ring states. Instead of solving for the eigenstates, we calcu-
late the current through the ring using the Keldysh
technique.31

The current through a region coupled to the leads via a
tunneling Hamiltonian was considered by Meir and Win-

S R D

tS tD

FIG. 3. �Color online� Geometry of the ring of heavy holes
coupled to a pair of leads. The heavy holes in the ring �R� experi-
ence the spin-orbit coupling. Due to this coupling, the eigenstates of
holes confined to the ring have a spin texture. The ring is coupled to
the source �S� and drain �D� electrodes via tunneling of holes. The
tunneling is assumed to conserve the hole spin.
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green in Ref. 32. Quite generally, the current is

I =
e

h
� d��fS��� − fD����Tr�GA�DGR�S���� , �22�

where fS�D� are Fermi distribution functions in the source and
drain electrodes, GR�A� are retarded �advanced� Green func-
tions of the ring coupled to the leads, and �S�D� are the es-
cape rates of the ring states to the source �drain� electrode.
The trace is taken over the ring states 
�. At zero-
temperature T=0, the differential conductance g��� for the
carriers of energy � can be directly read off from Eq. �22�
�for finite temperature T, see below� as g���
=Tr�GA�DGR�S����.

The Green functions in frequency space GR�A���� are ex-
pressed in terms of the self-energy as

GR�A���� =
1

�gR�A�����−1 − �R�A����
. �23�

Here, gR�A� is the retarded�advanced� Green function of the
ring. In our noninteracting case, the self-energy �R�A� is
given exactly as a sum of contributions coming from the
excursion of the hole through the electrodes,

�
1�1,
2�2

R�A� ��� = �
k�,L

�tk�,
1�1

L ��gk�
LR�A����tk�,
2�2

L , �24�

where gk�
LR�A���� are retarded �advanced� Green functions of

decoupled leads, being diagonal in k�.
The escape rates �S/D describe the processes in which a

hole escapes from the ring into a lead and gets replaced by
another hole. They are defined as

�
1�1,
2�2

S/D ��� = 2��
k�

tk�,
1�1

S/D �tk�,
2�2

S/D ����� − �k�
S/D� . �25�

The current through the ring is determined by Eqs.
�22�–�25�, once we incorporate the tunneling matrix ele-
ments Eq. �21�. The current will depend on the pseudospin
states in the leads. The effects of the texture in the ring
eigenstates will be visible in the conductance if the states in
the ring are polarized. We thus consider general pseudospin-
density matrices in the source �drain� electrode

�S�D� =
1

2
�1 + PS�D� · �� , �26�

where the direction of PS�D�, defines the axis of partial polar-
ization �PS�D���1 in the source�drain� lead.

We proceed by calculating the current using Eq. �22�, with
the spin-dependent density of states in the escape rates �Eq.
�25��, and assuming that the bands in the leads are wide and
flat. Our calculation is numerical and includes a finite num-
ber �184� of states in the ring. This approach produces results
that do not change in the range of low values of � with the
addition of new levels. Another reason for truncating the
number of levels is the fact that the dispersion relations for
heavy holes in the ring Eqs. �8� and �12� predict unphysical
states that are bound to the ring by strong spin-orbit cou-
pling.

V. DIFFERENTIAL CONDUCTANCE OF A HEAVY-HOLE
RING

In this section, we discuss the influence of nontrivial
pseudospin textures in the eigenstates of the heavy-hole ring
to its conductance. In the tunneling picture, we can distin-
guish two basic sources of the varying conductance. One
source is the discrete spectrum of the ring that in the limit of
weak tunneling produces a series of peaks in the conductance
when the chemical potential of the leads aligns with the dis-
crete energy levels of the ring. As we increase the tunneling
matrix elements the levels broaden due to the coupling to the
leads, and eventually begin to overlap. Interference of the
transitions from the source lead to the drain lead via ring
eigenstates is the second source of variations in the conduc-
tance.

We illustrate the interplay of these two mechanisms that
modify conductance by studying pseudospin-resolved cur-
rent in the ring. Then, we study the polarization-resolved
conductance and show the qualitative differences between
Dresselhaus- and Rashba-coupled holes, which allow for the
determination of the dominant type of coupling.

Magnetic flux threaded through the ring causes Aharonov-
Bohm oscillations in the conductance that are further modi-
fied by the pseudospin textures. The standard technique for
observing these oscillations is by looking for the peaks in the
Fourier transform of the conductance as a function of mag-
netic field that correspond to the period of one flux quantum.
We show that the structure of Aharonov-Bohm oscillations in
direct space, i.e., before the Fourier transform, offers a sig-
nature of the cubic spin-orbit coupling in the form of easily
recognizable four-peak structure in the oscillations. We trace
the emergence of this split-peak structure to dependence of
the energy spectrum of an orbiting hole on the flux through
the ring, and show that the form of the periodic conductance
is drastically different between the cubic and linear spin-orbit
coupling.

The possibility of experimental observation of the
pseudospin-resolved conductance is determined by the
widths of the ring energy levels compared to their splitting.
In our system, the levels broaden due to tunneling. In experi-
ment, an additional thermal broadening will further smear
the conductance peaks. We study the disappearance of
pseudospin-split conductance with temperature, and suggest
the regime favorable for resolving the pseudospin compo-
nents.

In this section, the energy is measured in units of ER, the
energy of 
=1 orbital state in a ring without spin-orbit cou-
pling, ER=�2 /2mhhR3

−2/3. For a typical ring of radius R3
−2/3

�0.5 �m, ER�1 �eV.

A. Level broadening and interference

The dependence of conductivity on the tunnel coupling
strength and carrier energy is illustrated in Fig. 4 which
shows the conductance between unpolarized leads. In the
limit of zero tunneling, �t�→0, the peaks in the conductance
appear at the energies of an isolated ring. As the tunneling is
increased, the levels become broader, due to the tunneling of
holes between the ring and the lead. Our calculation includes

STEPANENKO et al. PHYSICAL REVIEW B 79, 235301 �2009�

235301-6



contributions of an arbitrary number of such “excursions.”
The calculation is done at zero temperature �for the thermal
broadening see below�. With strong enough tunneling, the
broadening of the ring levels leads to their overlap. The re-
sulting conductance in the overlapping region is not a simple
sum of the conductances of pseudospin components. Since
the tunneling involves many ring levels in a coherent way,
the resulting conductance shows a signature of interference.
In Fig. 5, we show the interference term at a fixed tunneling
strength. The conductance g+0 between the pseudospin-

polarized source lead and the unpolarized drain lead �thick
black line� is not equal to the sum of conductances g++

+g+− between the polarized source and drain leads with par-
allel polarizations g++ and the conductance between polar-
ized source and drain lead with the antiparallel polarization
g+− �thin dark blue line�. The difference g+0− �g+++g+−� is
the contribution of the interference term �thin bright red�
line.

B. In-plane spin textures

The conductance between the leads polarized in the direc-
tion normal to the plane of the ring does not show the full
difference between the Dresselhaus- and Rashba-coupling in-
duced textures. Namely, the most striking difference between
the two textures is in the projection of the pseudospin to the
plane of the ring, see Figs. 1 and 2, which is qualitatively
different for the two forms of the cubic spin-orbit coupling.
The in-plane component of the Dresselhaus-only eigenstate
winds once around the z axis as the ring is transversed, and
always stays tangential to the ring. The in-plane component
of the Rashba state, on the other hand, winds three times as
the ring is transversed.

The winding of in-plane polarization is the same for all
the states in the ring and leaves a signature in the conduc-
tance. We calculate the conductance between the fully polar-
ized leads with the polarization vector P in the plane of the
ring, and with the varying position of the drain lead along the
ring, Figs. 6 and 7. We note that the conductance patterns in
the Rashba case show more islands of conductivity at a fixed
carrier energy as the position of the drain lead is encircling
the ring. The reason for the additional islands is that the lead
pseudospin aligns with the in-plane projection of the pseu-
dospin of ring eigenstates at the position of the junction.
Aligned pseudospins increase the conductivity and create the
islands. The in-plane projection of the Dresselhaus eigenstate
pseudospin texture aligns with lead polarization for one junc-
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FIG. 4. �Color online� Tunneling dependence of differential con-
ductance between unpolarized leads with Dresselhaus spin-orbit
coupling ��=0,�=0.3� in the leads. The differential conductance
g��� in units of the conductance quantum G0=h /e is plotted as a
function of the absolute value of the tunneling matrix element be-
tween the states of uncoupled leads of the ring, and the chemical
potential of the leads. At small tunneling, the conductance shows
peaks when the chemical potential of the ring aligns with the energy
levels of the ring. As the tunneling grows, the peaks become wider
and begin to overlap.

0 40 80 120
E [E

R
]

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

g
[G

0]

g
++

+ g
+-

g
+0

- ( g
++

+ g
+-

)

g
+0

FIG. 5. �Color online� When the broadening of the ring levels is
strong enough to produce the overlap of the energy levels, the tun-
neling processes through various states in the ring interfere. Pseu-
dospin textures affect this tunneling. The conductance g+0 between
the pseudospin-polarized source lead and the unpolarized drain lead
�thick black line� is not equal to the sum of conductances g++

+g+− between the polarized source and drain leads with parallel
polarizations g++ and the conductance between polarized source and
drain lead with the antiparallel polarization g+− �thin dark �blue�
line�. The difference g+0− �g+++g+−� is the contribution of the in-
terference term �thin bright �red�� line.
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FIG. 6. �Color online� Conductance between the completely in-
plane polarized source and drain leads for Dresselhaus ��=0, �
=0.3� spin-orbit coupled holes. The position of the source lead is
�S=0, while the position of the drain lead �D varies between 0 and
2�. For each drain position, the differential conductance is plotted
as a function of the ring Fermi energy. The radial structure of the
pseudospin textures is seen in the traces of conductance at a fixed
energy.
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tion position, while this alignment occurs for three positions
in the case of Rashba coupling.

C. Modified Aharonov-Bohm oscillations

Conductance measurements between the polarized leads
and with the control over the chemical potential of the ring
are difficult to achieve. Typical experiments measure the
conductance as a function of the magnetic field that threads a
magnetic flux through the ring and introduces the Zeeman
coupling. In our model of tunneling conductance the
Aharonov-Bohm phase can be incorporated in the boundary
conditions for the ring wave function, using the singular
gauge. This leads to a quantization condition for 
−� /�0,
where � is the flux threaded through the ring, and �0 is the
flux quantum. The effect of the flux is thus the shift of all the

 quantum numbers. As a consequence, the energy levels and
the pseudospin textures change. The new texture angles �d/r

and the new energies E
,� are still given by Eqs. �8�, �7�,
�12�, and �11�, but with the shifted values of the orbital quan-
tum number 
→
+� /�0.

The gross features of the Aharonov-Bohm oscillations can
be understood in terms of a simplified picture based on in-
terference of levels that lie close in energy. The spectra of the
ring in zero magnetic field, and in the presence of weak
spin-orbit coupling consists of pairs of closely spaced Kram-
ers doublets ��
,⇑ ,�−
,⇓� and ��
+1,⇓ ,�−
−1,⇑�. The gap be-
tween these doublets scales as �2��2� for weak Dresselhaus
�Rashba� spin-orbit coupling, while all the other states are
separated by larger gaps that originate from the kinetic-
energy terms and persist in the absence of spin-orbit cou-
pling. Therefore, we can approximately describe the conduc-
tance by transition amplitudes

T = T+,+ T+,−

T−,+ T−,− � , �27�

where the matrix element Ts1s2 stands for the amplitude for a
hole of pseudospin �1 /2 for s1=� in the source lead to

tunnel into the drain lead with the pseudospin �1 /2 for s2
=�. Taking into account only the tunneling through the four
closely spaced levels and in the absence of the flux through
the ring, the transition amplitudes are

T0 = 2 sin�
��cosd0

2
�	 cos

s0

2
i sin

s0

2

i sin
s0

2
cos

s0

2

 , �28�

where s0=�d/r�
�+�d/r�
+1� and d0=�d/r�
�−�d/r�
+1� are
the sum and the difference of the texture angles of the in-
volved states. Similar considerations for the case of a ring
threaded by the magnetic-flux �=�0 /2 equal to half the flux
quantum gives

T1/2 = 2 cos�
��cosd1/2

2
�	 cos

s1/2

2
i sin

s1/2

2

i sin
s1/2

2
cos

s1/2

2

 , �29�

where the relevant sums are now s1/2=�d/r�
+1 /2�+�d/r�

+3 /2� and d1/2=�d/r�
+1 /2�−�d/r�
+3 /2�. The quantum
number 
 is a half of an odd integer and T1/2=0. Therefore,
this simplified description correctly predicts the minima in
conductance when half a flux quantum threads the ring. The
conductance value is zero in this simple model, but it turns
out to be nonzero when the additional levels are included in
the more detailed model. When the additional levels in the
ring are included, the conductance can be nonzero in the ring
threaded by half of flux quantum; see Fig. 8. The currents
transmitted through the ring carry hole polarization, as can
be seen from the figures. The peak in the unpolarized con-
ductance near the energy �=54ER is split, while the polarized
conductance shows a single peak of roughly half the height.
The components of the split peak correspond to pseudospin
components with high polarization up and down, described
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FIG. 7. �Color online� Conductance between the completely in-
plane polarized source and drain leads for Rashba ��=0.3,�=0�
spin-orbit coupled holes. The position of the source lead is �S=0,
while the position of the drain lead �D varies between 0 and 2�.
For each drain position, the differential conductance is plotted as a
function of the ring Fermi energy. Compare with the case of
Dresselhaus spin-orbit coupling.
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FIG. 8. Conductance of the ring threaded by a half of flux quan-
tum. Leads are unpolarized. Note that the conductance is not zero
due to tunneling through off-resonant states. The inset shows the
conductance of the same ring with the same flux, but between po-
larized leads. The peak at �F�55ER shows that the split peak in the
main plot is due to the conductance of the holes of different
polarizations.
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by pseudospin density matrices �Eq. �26�� with P�ez and
P�−ez. This splitting is a clear signature of pseudospin-
dependent transport.

The standard setup for a study of conductance oscillations
as a function of the magnetic field consists of measuring the
conductance at a fixed lead chemical potential and sweeping
the external magnetic field. The conductance then typically
reveals the oscillations with the period TAB=S�0

−1, with S
being the ring surface area and �0 the flux quantum. The
spin-orbit coupling was found to modify these oscillations.15

In our model the conductance is modified due to the presence
of four closely spaced energy levels that correspond to each
peak in the conductance. At zero flux these four levels are the
Kramers doublets ��
,⇑ ,�−
,⇓� and ��
+1,⇓ ,�−�
+1�,⇑�. The
splitting between these pairs in the absence of magnetic field
is of second order in spin-orbit coupling. As the magnetic
flux is threaded through the ring the quartet of levels splits,
with two of the levels with 
�0 gaining energy, and the
levels with 
0 losing it. In addition the Zeeman coupling
splits these levels further. This behavior is in sharp contrast
to the linear spin-orbit coupling case where there are at most
two states of any given energy.

The four-peak structure within the maximum of conduc-
tance in Aharonov-Bohm oscillations represents a signature
of the cubic spin-orbit coupling �see Fig. 9�. The period of
oscillations is equal for both types of coupling, but the shape
of the peaks is drastically different. The four-peak structure

is most visible when the leads are tuned into the vicinity of a
ring energy level. At these energies, in contrast, the linear
spin-orbit coupling produces a single-peak structure.

Fourier spectra of conductance fluctuations were reported
to show the signature of spin-orbit coupling in the diffusive
regime, seen in the splitting of peaks in the Fourier
spectrum.15,16 We have compared the Fourier spectra of our
results in the case of linear and cubic form of spin-orbit
coupling �Fig. 10�. In our tunneling model, the Fourier spec-
tra of the ring with linear spin-orbit coupling differs from the
spectra of the ring with the cubic spin-orbit coupling in the
relative size of the base and higher harmonic. The shape of
the peaks in Fourier spectrum does not show significant dif-
ferences. Therefore, the signature of the cubic spin-orbit cou-
pling is clearly visible in the direct-space Aharonov-Bohm
oscillations, and very hard to discern in the Fourier trans-
form.

D. Thermal broadening

The split peaks in differential conductance as function of
lead chemical potential will be visible is the distance be-
tween the peaks is larger then their width. As an illustration
of the effects of temperature T�0, we will investigate the
broadening of pseudospin-resolved peak at half-flux quan-
tum �=�0 /2 �Fig. 11�. For the parameters we used, the
splitting of the peaks is �3 �eV�30 mK, and requires low
temperatures to resolve. The broadening that impairs resolv-
ing of the split peaks has a temperature-independent contri-
bution due tunneling to the leads, and it is further increased
due to the temperature. We study the thermal broadening of
the conductivity using Eq. �22�, and finding the conductance
g at finite temperatures. We find that the conductance is in-
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FIG. 9. �Color online� Aharonov-Bohm oscillations for different
types of spin-orbit coupling. �a� The conductance of the ring as a
function of the magnetic field shows oscillations with the period
that corresponds to a flux quantum threading the ring for both linear
��red� light� and cubic ��black� dark� spin-orbit coupling, but with
markedly different conductance within a period. �b� and �c� The
four-peak structure �labels 1–4 in �a�� for the cubic spin-orbit inter-
action, and the single-peak structure for the linear spin-orbit cou-
pling can be traced to the magnetic fields at which an energy level
in the ring aligns with the leads �labels 1–4 in �b��. Calculations for
both plots are done for the lead chemical potential of 36ER

�36 �eV, close to an energy level of an isolated ring in the ab-
sence of spin-orbit coupling, Dresselhaus cubic spin-orbit coupling
��=0.3�, and the linear spin-orbit coupling model is derived from
the cubic one by setting R3=0.
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FIG. 10. �Color online� Fourier spectra of the ring conductance
as function of the magnetic field. The upper panel ��black� dark�
shows the conductance spectrum of the ring with cubic spin-orbit
coupling, and the lower panel ��red� light� shows the conductance
spectrum of the ring with linear spin-orbit coupling. The ring radius
is set to R3

−3/2=0.5 �m, and the lead chemical potential is 36ER.
The structure of base frequency and the higher harmonics is the
consequence of the Aharonov-Bohm oscillations. The two cases can
be distinguished by the relative size of the harmonics.
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deed broadened at finite temperatures �Fig. 11�. However, the
visibility of the peaks and the resolution of peaks can be
improved if the peaks are narrower or the splitting is larger.
The peak splitting grows with the absolute value of the mo-
mentum, �
�, and can be observed at higher temperatures if
the momentum of the interfering states is larger. In summary,
the favorable conditions for the observation of pseudospin-
dependent conductance are weak tunneling and low tempera-
tures. Both of these conditions aim at reducing the line width
of the peaks. Another way to resolve the pseudospins is to
perform an experiment with the higher chemical potential in
the leads, and observe the splitting of the higher-energy peak.
These peaks are further separated in energy, due to the cubic
spin-orbit coupling.

VI. CONCLUSIONS

We have investigated the conductance of a mesoscopic
ring of heavy holes tunnel coupled to leads. In the coherent

regime, the transport through the ring is dominated by the
energy spectrum and the pseudospin texture of the orbiting
hole eigenstates. Due to the cubic form of spin-orbit interac-
tion, the pseudospin texture of the hole eigenstates is mo-
mentum dependent, as opposed, e.g., to the electrons with
linear spin-orbit coupling.

The hole transport proceeds through tunneling between
the source and the drain lead via various ring eigenstates,
with the phase of each tunneling path modified due to the
spin texture. The effects of interference between the tunnel-
ing paths are visible in the conductance when the tunnel
broadening is sufficient to make the ring energy levels over-
lap. We have demonstrated that the dominant type of spin-
orbit interaction can be deduced from the pseudospin-
dependent conductance between the polarized leads.

Aharonov-Bohm oscillations appear in the tunneling ap-
proach as a consequence of the evolution the ring spectrum
as the magnetic flux is threaded through the ring. Approxi-
mately periodic evolution of the peaks leads directly to the
approximately periodic conductance oscillations. We have
explained the four-peak shape of the Aharonov-Bohm oscil-
lations in the direct space as a direct consequence of fourfold
near degeneracy of the orbiting hole energy levels. This par-
ticular shape of Aharonov-Bohm oscillations is a signature of
the cubic spin-orbit coupling, but it is not visible in the Fou-
rier transform of the conductance.

The pseudospin splitting of the conductance peaks, caused
by pseudospin textures of the ring eigenstates is clearly vis-
ible at zero temperature and low tunneling, but disappears
when the combined thermal and tunnel broadening becomes
comparable to the size of the splitting.
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FIG. 11. �Color online� Thermal broadening of differential con-
ductance g. Components of the split peak in the differential conduc-
tance �inset in Fig. 8� merge into a single peak as the temperature is
raised. The squares represent the conductance of the ring with stron-
ger tunneling between the leads and the ring, �t�=0.5ER, while the
circles represent the conductivity for weaker tunneling �t�=0.3ER.
Weaker tunnel coupling allows the splitting to be resolved at higher
temperatures.
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Spin electric effects in molecular antiferromagnets
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Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective
low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information
processing. At the nanoscale, the preferred mechanism for the control of a quantum systems is the application
of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the
theoretical tools for identifying molecular nanomagnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modifi-
cation of the exchange interaction and is possible even in the absence of spin-orbit coupling. In pentagonal
molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of
coupling is allowed for both s=1 /2 and s=3 /2 spins at the magnetic centers. Within the Hubbard model, we
find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule,
suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond
orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic
resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of mag-
netization, electric polarization, and specific heat of the molecules.

DOI: 10.1103/PhysRevB.82.045429 PACS number�s�: 75.50.Xx, 03.67.Lx

I. INTRODUCTION

The control of coherent quantum dynamics is a necessary
prerequisite for quantum information processing. This kind
of control is achieved through coupling of the internal quan-
tum degrees of freedom of a suitable microscopic or mesos-
copic system to an external classical or quantum field that
can readily be manipulated on the characteristic spatial and
temporal scales of the quantum system.

The molecular nanomagnets �MNs� �Refs. 1 and 2� repre-
sent a class of systems that show rich quantum behavior. At
low energies, the MNs behave as a large spin or a system of
only few interacting spins. The behavior of this spin system
can be designed to some degree by altering the chemical
structure of the molecules and ranges from a single large spin
with high anisotropy barrier to small collections of ferromag-
netically or antiferromagnetically coupled spins with various
geometries and magnetic anisotropies. This versatility of
available effective spin systems makes the MNs promising
carriers of quantum information.3 While the interaction with
magnetic fields provides a straightforward access to the spins
in an MN, it is preferable to use electric fields for the quan-
tum control of spins since the electric fields are easier to
control on the required short spatial and temporal scales. In
this work, we explore the mechanisms of spin-electric cou-
pling and study the ways in which an MN with strong spin-
electric coupling can be identified.

Quantum behavior of MNs is clearly manifested in the
quantum tunneling of magnetization.4–11 A prototypical ex-
ample of quantum tunneling of magnetization is the hyster-
esis loop of an MN with a large spin and high anisotropy
barrier. The height of the barrier separating the degenerate
states of different magnetization leads to long-lived spin con-
figurations with nonzero magnetic moment in the absence of
external fields. The transitions between magnetization states

in the MN driven through a hysteresis loop occur in tunnel-
ing events that involve coherent change in a many-spin state.
These transitions have been observed as stepwise changes in
magnetization in single-molecule ferromagnets.7,8,12–14 Simi-
lar tunneling between spin configurations are predicted in
antiferromagnetic molecules,15,16 and the observed hysteresis
was explained in terms of the photon bottleneck and Landau-
Zener transitions.17–20 The transitions between spin states are
coherent processes and show the signatures of interference
between transition paths,21–23 as well as the effects of Berry
phase in tunneling.21–27

Spin systems within molecular nanomagnets offer a num-
ber of attractive features for studying the quantum coherence
and for the applications in quantum information processing.3

A wide variety of spin states and couplings between them
allows for encoding qubits. Chemical manipulation offers a
way to modify the structure of low-energy spin states.28 Co-
herence times of up to �3 �s �Ref. 29� which can persist up
to relatively high temperatures on the order of a few kelvin
are sensitive to the isotopic composition of the molecule. A
universal set of quantum gates can be applied in a system of
coupled antiferromagnetic ring molecules, without the need
for local manipulation.30 The presence of many magnetic
centers with the coupled spins allows for the construction of
spin cluster qubits that can be manipulated by relatively
simple means.31 In polyoxometalates, the spin structure of
the molecule is sensitive to the addition of charge, and con-
trolled delivery and removal of charges via a scanning tun-
neling microscope �STM� tip can produce useful quantum
gates.32 Chemical bonds between the molecules can be engi-
neered to produce the permanent coupling between the mo-
lecular spins and allow for interaction between the
qubits.33,34

Sensitivity of molecular state to the addition of charge
was demonstrated in the tunneling through single
molecules35 and used to control the spin state of a MN.36
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Transport studies of the MNs can provide a sensitive probe
of their spin structure.27,37–40

The most straightforward and traditional way of control-
ling magnetic molecules is by applying an external magnetic
field. With carefully crafted electron spin resonance �ESR�
pulses, it is possible to perform the Grover algorithm, or use
the low-energy sector of the molecular nanomagnet as a
dense classical memory.3 Unfortunately, the approaches
based on magnetic fields face a significant drawback in the
large-scale quantum control application. Typically, the quan-
tum manipulation has to be performed on very short spatial
and temporal scales, while the local application of rapidly
varying magnetic field presents a challenging experimental
problem. For that reason, the schemes for quantum comput-
ing tend to rely on modifying the spin dynamics that is
caused by intramolecular interaction, rather than on the di-
rect manipulation of spins.41

The electric fields offer an attractive alternative for spin
manipulation in the molecular nanomagnets.42 One major ad-
vantage is that they can be applied to a very small volume
via an STM tip43,44 and rapidly turned on and off by applying
voltage pulses to the electrodes placed close to the molecules
that are being manipulated. Switchable coupling between
different nanomagnets is essential for qubit implementation.
At present, this can be implemented only locally, and the
interaction is practically untunable. The use of microwave
cavities can offer a solution to this problem. By placing the
nanomagnets inside a microwave cavity, one can obtain a
fully controllable, long-range interaction between them.42

This coupling relies on the presence of a quantum electric
field inside such a cavity, which mediates the interaction be-
tween distant nanomagnets. The interaction can be tuned by
tuning each molecule in-or out-of-resonance with the cavity
field using local electric or magnetic fields.42 The spins, how-
ever, do not couple directly to the electric fields, classical or
quantum, and therefore any electric spin manipulation is in-
direct and involves the modification of molecular orbitals or
the spin-orbit interaction �SOI�. Alternatively, the flying spin
qubits can be manipulated by tailoring the exchange interac-
tions and moving the domain walls in spin chains.45,46

The description of the molecular nanomagnets in terms of
spins is an effective low-energy theory that does not carry
information about the orbital states. However, it is still pos-
sible to predict the form of spin-electric coupling from sym-
metry considerations and single out the molecules in which
such a coupling is possible. In particular, the molecules with
the triangular arrangement of antiferromagnetically coupled
spin-1 /2 magnetic centers interact with external electric field
through chirality of their spin structure.42,47 The same cou-
pling of chirality to the external electric field was derived for
the triangular Mott insulators.48

While the symmetry of a molecule sets the form of spin-
electric coupling, no symmetry analysis can predict the size
of the corresponding coupling constant. The coupling
strength will depend on the underlying mechanism that cor-
relates the spin and orbital states, and on the detailed struc-
ture of low-energy molecular orbitals. To identify molecules
that can be efficiently manipulated by electric fields, it is
necessary to perform an extensive search among the mol-
ecules with the right symmetries and look for the ones that

also have a large coupling constant. Unfortunately, this
search has to proceed by ab initio calculations of the cou-
pling constants for a class of molecules of a given symmetry
or by an indiscriminate experimental scanning of all of the
available molecules.

We will consider the spin electric coupling in the lan-
guage of effective model, namely, either the spin Hamil-
tonian or the Hubbard model. In reality the mechanism be-
hind the spin-electric coupling involves either the
modification of the electronic orbitals in an external field and
the Coulomb repulsion of electrons or the much weaker di-
rect spin-orbit coupling to the external fields. A derivation of
spin-electric coupling from this realistic picture would re-
quire the knowledge of electronic orbitals from an ab initio
calculation and the distribution of electric field within the
molecule. Both of these problems require substantial compu-
tational power and cannot be performed routinely. Since the
electric field acts primarily on the orbital degrees of freedom
and the spin Hamiltonian carries no information about the
orbital states, we provide a description in terms of a Hubbard
model that still contains some information about the orbital
states. We can then describe the properties of the molecule
that allow for strong spin-electric coupling in the language of
orbitals that offers some intuitive understanding of the un-
derlying mechanisms of interaction.

The main body of the paper is divided into three largely
independent sections that deal with the symmetry analysis,
Hubbard model description, and experimental signatures of
the spin-electric coupling. In Sec. II, we consider the general
form of spin-electric coupling in the ring-shaped molecules.
Based on the symmetry analysis, we identify the parameters
of the spin Hamiltonian that can change in the electric field
and cause spin-electric coupling. We find that the low-energy
sector of the rings with odd number of spins �odd-spin rings�
contains two Kramers doublets. Electric fields cause transi-
tions between these states. The even-spin rings possess a
nondegenerate S=0 ground state, making their low-energy
sector unsuitable for electric manipulation. Among the odd-
spin rings, we find that generically the triangular molecules
show strongest coupling to electric fields. In triangles, the
spin-electric coupling mechanism that is of the first order in
electric field does not involve the spin-orbit coupling. In-
stead, the spin-electric coupling in the odd-spin rings with
more than three spins requires it.

In Sec. III, we describe the molecules in terms of Hubbard
model and find how the spin-electric coupling can be attrib-
uted to changes of Hubbard model parameters in the electric
field. We show that the spin Hamiltonian description arises in
the limit of spins well localized on the magnetic centers, and
the symmetry-based results are confirmed in this limit. In
addition, we consider a Hubbard model of a single superex-
change bridge between magnetic centers. We find that the
various symmetries of the bridge and the reduction in sym-
metry in external electric fields specifies the coupling be-
tween the spins on magnetic centers.

In Sec. IV, we identify the response of an MN with spin-
electric coupling in the standard measurements of ESR,
nuclear magnetic resonance �NMR�, magnetization, polariza-
tion, linear magnetoelectric effect, and specific heat. Our
conclusions are summarized in Sec. V.
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II. SYMMETRY ANALYSIS OF ANTIFERROMAGNETIC
SPIN RINGS

Spin chains whose ground state multiplet consists of two
quasidegenerate S=1 /2 doublets represent suitable candi-
dates for the manipulation of the spin state by pulsed electric
fields. Such a ground-state multiplet characterizes a number
of frustrated spin rings, consisting of an odd number of half-
integer spins. Rings containing an even number of antiferro-
magnetically coupled spins show no frustration, and in con-
sequence the ground state is a nondegenerate S=0 state.

Symmetry analysis is one of the most powerful tools for
investigating molecules. By identifying the point group sym-
metry associated with a given molecule, one can readily read
the energy level structure of the system, as well as the al-
lowed transitions induced by external perturbations. In even-
spin molecular systems, the symmetry analysis is done by
using the so called single-valued point groups.49 In an odd-
spin system instead, double valued point groups are usually
used in order to describe the states, the splittings and the
allowed transitions �magnetic or electric�.49 In the presence
of spin-orbit interaction the splittings can be accounted for
either by single group analysis �perturbatively� or by double
group analysis �exact�.

Using both the single group and double group analysis we
pinpoint the transitions that arise in the absence or only in
the presence of SOI. Therefore, the electric dipole transitions
present in the single group are a consequence of the modified
exchange interaction and can arise even in the absence of
SOI, while the ones that show up only in the double group
analysis are a consequence of the SOI �or modification of
SOI in electric field�.

We expect that the molecules that lack inversion symme-
try are going to show stronger spin-electric coupling so that
the odd-spin rings are the prime candidates for observing
such effects. The importance of inversion stems from the fact
that the electric field, being odd under inversion, can only
cause transitions between the states of opposite parity in in-
version symmetric molecules. Unless there is an accidental
degeneracy, these transitions will be suppressed by an energy
of the order of intramolecular exchange interaction. In the
following we consider prototypical examples odd-spin ring
systems and, in the Sec. II D, summarize the symmetry re-
quirements for the existence of spin-electric coupling.

A. Triangle of s=1 Õ2 spins

The low-energy properties of most molecular nanomag-
nets are well described in terms of spin degrees of freedom
alone. Within the spin Hamiltonian approach, the coupling of
external electric fields to the molecule can be accounted by
suitably renormalizing the physical parameters. In the fol-
lowing, we use the symmetry of the molecules to calculate
the changes of spin Hamiltonian parameters, to identify the
system’s eigenstates, and to deduce the allowed transitions.
Quantitative estimates of the parameters entering the spin
Hamiltonian require ab initio calculations50 or comparison
with experiments. The simplest example of a spin system
which may couple to an external electric field in a nontrivial
way is a triangle of s=1 /2 spins, for example, the Cu3

MN.51,52 The schematics of such a spin system in the pres-
ence of an electric field is showed in Fig. 1. Its spin Hamil-
tonian, in the absence of external fields, reads:

Hspin = �
i=1

N

Jii+1si · si+1 + �
i=1

N

Dii+1 · �si � si+1� , �1�

with N=3 and s4�s1. The first term in Eq. �1� represents the
isotropic Heisenberg exchange Hamiltonian with the ex-
change couplings Jii+1 between the spins si and si+1, and the
second term represents the Dzyalozhinsky-Moriya �DM� in-
teraction due to the presence of SOI in the molecule, with the
DM vectors Dii+1. The states of the spin triangle can be
found by forming the direct product of the SU�2� represen-
tations of three spins S=1 /2: Dtot=D�1/2��3=2D�1/2� � D�3/2�,
meaning there are eight states in total. The point group sym-
metry of the molecule is D3h,51 which imposes the following
restrictions on the spin Hamiltonian parameters: Jii+1�J and
Dii+1

x,y �0, and Dii+1
z �Dz. The spin states in a form adapted to

the rotational symmetry C3 of the system are

��M=1/2
�k� � =

1
�3

�
j=0

2

� j
kC3

j �↓↑↑� , �2�

��M=3/2� = �↑↑↑� , �3�

where � j =exp�2i�j /3� and j=0,1 ,2. The states with oppo-
site spin projection M�=−M, i.e., with all spins flipped can
be written in an identical way �not shown�. These states are
already the symmetry adapted basis functions of the point

J23(E)

S3

E

S2

J12(E)

S1
J31(E)

FIG. 1. �Color online� Schematics of the si=1 /2 triangular mol-
ecule in electric field. The antiferromagnetic exchange couplings,
represented by the bonds with thickness proportional to Jii+1, are
modified in electric field. In the absence of electric field, exchange
couplings are equal Jii+1=Jjj+1, here represented in gray �fade blue
online�. The black �blue online� triangle represents the exchange
interaction strengths in electric field.
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group D3h. Moreover, these are eigenstates of the chirality
operator

Cz =
1

4�3
s1 · �s2 � s3� , �4�

with Cz��M
�1,2��= � ��M

�1,2��, Cz��M
�0��=0, and Cz��M=�3/2�=0.

The above states in Eq. �3� carry different total spin. There
are two spin S=1 /2 states, corresponding to k=1, 2, and a
spin S=3 /2 state corresponding to k=0. Obviously, the states
��M=�3/2� have S=3 /2.

Note that the quantum numbers j=0, 1, 2, and chirality
Cz=0, �1 describe the same states. Since 	e2i�Cz/3

�	e2i�j/3
, we can use either of the two quantum numbers to
classify the states. For an arbitrary 2n+1 odd-spin chain with
n=1,2 , . . . the same arguments hold. We can either use the
set 	e2i�k/3
 with k=0,1 , . . . ,2n, or 	e2i�Cz/3
 with Cz
=0�1, . . . , �n to quantify the states. The advantage of us-
ing one or another will show up in the next section when we
treat the SOI.

1. Single valued group analysis of the s=1 Õ2 spin triangle

In the single valued point group D3h, the states ��M=�1/2
�k� �

with k=1,2 form the basis of the two dimensional irreduc-
ible representation E�, while the states ��M=�1/2

�0� �, and the
��M=�3/2� transform as A2�. The allowed electric transitions in
the system are determined by the transformation properties
of the basis states.

The simplest and possibly the dominant dependence of
the spin Hamiltonian on the applied electric field comes via
the modification of the exchange interactions, like depicted
in Fig. 1. This gives rise to the following term in the spin
Hamiltonian:

�H0�E� = �
i=1

3

�Jii+1�E�si · si+1, �5�

where �Jii+1�E��dii+1 ·E, with dii+1 being vectors that de-
scribe the electric-dipole coupling of the bond si−si+1 to the
electric field E in leading order. There are three such vector
parameters and thus nine scalar parameters in total. How-
ever, symmetry will allow to drastically reduce the number
of free parameters by providing relations between them. The
S=3 /2 states of the unperturbed spin Hamiltonian form the
multiplet 4A2�, while the S=1 /2 states form two multiplets
2E�.49 The electric dipole Hamiltonian is He−d=−e�iE ·ri
�−eE ·R, with e standing for the electron charge, ri being
the coordinates of the ith electron, and R=�iri. The nonzero
electric dipole matrix elements of He−d in the D3h symmetric
molecule are

��M
�1,2�� − eX��M�

�2,1�� = i��M
�1,2�� − eY��M�

�2,1�� � d�MM�, �6�

proportional to the effective electric dipole parameter d. The
value of d is not determined by symmetry and has to be
found by some other means �ab initio, Hubbard modeling,
experiments, etc.�. All the other matrix elements are zero.
The electric field acts only in the low-energy sector, which
allows us to write the effective spin-electric coupling Hamil-
tonian acting in the lowest quadruplet as

He−d
eff = dE� · C , �7�

where E�=Rz�7� /6−2��E, with Rz�	� describing the rota-
tion with an angle 	 about the z axis, and � is the angle
between in-plane component E of the electric field E and
the bond s1−s2. For C = �Cx ,Cy ,0� we have

Cx = �
M

���M
�1����M

�2�� + ��M
�2����M

�1��� , �8�

Cy = i�
M

���M
�1����M

�2�� − ��M
�2����M

�1��� . �9�

The low-energy spectrum in the presence of electric field and
the related states can be expressed in terms of the spin
Hamiltonian Eq. �5� so that we find anisotropic variations of
the exchange coupling constants,

�Jii+1�E� =
4d

3
�E�cos�2�

3
i + �� , �10�

which depend on the angle � and the projection of the elec-
tric field E on the plane of the triangle. In the si=1 /2 triangle
the C operators can be written as

Cx = −
2

3
�s1 · s2 − 2s2 · s3 + s3 · s1� , �11�

Cy =
2
�3

�s1 · s2 − s3 · s1� , �12�

with �Ci ,Cj�=2i�ijkCk ��ijk are the Levi-Civita symbols�.42,48

From the above relations we can conclude that �i� only the
electric field component perpendicular to the bond and lying
in the plane of the molecule gives rise to spin-electric cou-
pling; �ii� there is only one free parameter d describing the
coupling of the spin system to electric fields and dii+1
=4d /3 �sin�2i� /3� , cos�2i� /3� ,0�.

The SOI in a D3h symmetric MN is constrained by the
transformation properties of the localized orbitals. It reads

HSO = 
SO
 TA2

Sz + 
SO
� �TE+�

S− + TE−�
S+� , �13�

with T� being tensor operators transforming according to the
irreducible representation �.49 The nonzero matrix elements
of this SOI Hamiltonian in the low-energy quadruplet read
��M

�1,2��HSO��M�
�1,2��= �M
SO

 �MM� so that the SOI takes the
following effective form:

HSO = �SOCzSz, �14�

with �SO=
SO
 and Sz=�i

3si
z. An effective SOI Hamiltonian is

obtained also from the DM SOI Hamiltonian in Eq. �1�. The
constraints Dii+1

x,y =0 and Dii+1
z �Dz on the DM vectors due to

D3h symmetry of the molecule give rise to the same effective
SOI in Eq. �14�, with Dz=
SO

 . Thus, as expected, the mo-
lecular SOI and the DM SOI give rise to the same effective
SOI Hamiltonian acting in the low energy quadruplet. Like
in the case of the electric dipole parameter d, finding Dz�
SO

 �
requires more than symmetry, like ab initio methods or ex-
periments. The transverse SOI, with interaction strength 
SO

�

does not act within the low-energy space, and its effect will
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appear only in higher orders of perturbation theory in 
SO
� /J.

An external magnetic field couples to the spin via the
Zeeman term HZ=B ·g�S, with g� =diag	g ,g ,g�
 being the
g-factor tensor in D3h. The full effective Hamiltonian de-
scribing the low-energy quadruplet in the presence of SOI,
electric field, and magnetic field reads

Heff = �SOCzSz + B · g�S + dE� · C . �15�

Note that �C ,S�=0, and chirality and spin act as independent
spin 1 /2 degrees of freedom. Furthermore, in the absence of
SOI the chirality C and the spin S evolve independently.
However, the SOI couples the two and provides with means
for electric control of both spin and chirality. Vice versa,
magnetic fields can also couple to chirality due to SOI. Also,
while magnetic fields �time-dependent� cause transitions be-
tween states of opposite spin projection M but with the same
chirality Cz, the electric field does the opposite: it causes
transitions between states of opposite chirality Cz, but carry-
ing the same M. Full control of the lowest quadruplet is thus
realized in the presence of both electric and magnetic fields,
as can be seen in Fig. 2.

2. Double valued group states of the s=1 Õ2 spin triangle

The double groups provide a formalism that takes into
account the fact that the rotation of a half-integer spin by the
angle 2� does not produce the identity transformation on its
quantum state. The double group representations allow to
nonperturbatively describe the magnetic and electric transi-
tions in the presence of spin-orbit interaction �see Chapter 10
of Ref. 49�. The lowest quadruplet consists of two Kramers

doublets, transforming like Ē� and Ē�, respectively. The S

=3 /2 states transform as Ē� �for M = �1 /2� and Ē� �M
= �3 /2�. Thus, the S=1 /2 states mix with the S=3 /2 states,
but only the ones transforming according to the same repre-

sentations, i.e., there is no mixing between Ē� and Ē� due to
spin-orbit interaction. The magnetic dipole transitions take

place between Ē� and Ē�, and within Ē� and Ē�, respectively,

while electric dipole transitions take place only between Ē�

and Ē�. The selection rules for the electric transitions are
�M = �2, while for the magnetic transitions these are �M
=0, �1. We see that there are allowed electric dipole transi-
tions also within the S=3 /2 subspace.

We can now establish several selection rules for the SOI,
electric field, and magnetic field induced transitions. Note
that the above analysis was exact in SOI. However, it in-
structive to treat electric field, magnetic fields, and SOI on
the same footing. First, we find that the electric dipole tran-
sitions fulfill the selection rules �Cz= �1 and �Sz=0, mean-
ing that electric field only couples states within the lowest
quadruplet. The SOI transitions show a richer structure. We
can separate the SOI interaction in two parts: the perpendicu-
lar SOI, quantified by Dz in the DM interaction Hamiltonian,
and the in-plane SOI, quantified by Dx,y in the DM interac-
tion Hamiltonian, respectively. By doing so, we find that the
Dz SOI terms obey the selections rules �Cz=0 and �Sz=0,
while for the Dx,y terms we get the selection rules �Cz
= �1 and �Sz= �1. Due to the cyclic boundary conditions
the relation Cz=1+1�Cz=−1 holds. Moreover, for a 2n+1
spin ring with n=1,2 , . . ., this relation is generalized to Cz
=n+1�Cz=−n. We see that in-plane SOI �Dx,y terms� do not
cause any splitting in the ground state and can lead to ob-
servable effects only in second order in perturbation theory
in Dx,y /J. Also, note that if h symmetry is present, Dx,y
�0 and thus there are no in-plane SOI effects at all. Modi-
fication of these terms due to an in-plane external electric
field E, however, lead to different selection rules: changes in
Dz terms lead to �Cz= �1 and �Sz=0, while modification of
Dx,y lead to �Cz=0, �2 and �Sz= �1. The magnetic field
transitions obey the selection rules �Sz=0, �1 and �Cz=0.
Thus, we can make clear distinction between pure electric
field transitions, SOI-mediated electric transitions, and mag-
netic transitions. This distinction between the electric and
magnetic field induced transitions could be used to extract
the spin-electric coupling strength parameter d from spectro-
scopic measurements.

B. Spin s=3 Õ2 triangle

The spin s=3 /2 triangle has a more complex level struc-
ture than the s=1 /2 triangle due to its higher spin. The spin
Hamiltonian, however, is similar to the one in Eq. �1� for s
=1 /2, and the reduction in the representation of three spins
S=3 /2 is Dtot=D�3/2��3=2D�1/2� � 4D�3/2� � 3D�5/2� � 2D�7/2�

� D�9/2�, a total of 64 spin states. The s=3 /2 triangle states
can be defined according to their transformation properties
under threefold rotations C3 in D3h and are of the following
form:

��M
�k,i�� = Pk

3�M,i� , �16�

Pk
3 =

1
�3

�
j=0

2

� j
kC3

j , �17�

where � j
k=exp�2i�jk /3�, C3

j are the threefold rotation of or-
der j, and j ,k=0,1 ,2. The states �M , i���123� represent
all possible states �i states in total� with a given spin projec-
tion M���kk� that cannot be transformed into each other

FIG. 2. �Color online� The spin transitions in the si=1 /2 triangle
induced by electric and magnetic fields. The electric field causes
transitions between the states of opposite chiralities Cz and equal
spin projections Sz �horizontal arrows�, while the magnetic field
instead causes transitions between the states of opposite spin pro-
jections Sz and equal chiralities Cz �vertical arrows�.
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by application of the rotation operator C3
j . These states are

showed in Table I.
The corresponding states with all spins flipped, namely,

with M�=−M, can be written in a similar form �not shown�.
Having identified the symmetric states in terms of the spin
states, we proceed to analyze the allowed transitions induced
in the spin systems by magnetic and electric field, both
within the single valued group and double valued group rep-
resentations.

1. Single valued group states of the s=3 Õ2 triangle

The above states are basis of the point group D3h, but not
eigenstates of the total spin operator S2. The total spin eigen-
states can be written as linear combinations of states with
given M, S, and chirality �k�: ��S,M

�k� �=�l�M�ak,l
S ��M

�k,l��, where
l�M� is the number of different states with a given M. The
coefficients ak,l are to be identified so that these states satisfy
S2��S,M

�k� �=S�S+1���S,M
�k� �, with S=1 /2,3 /2,5 /2,7 /2,9 /2.

The states with k=0 are all transforming according to the A2�
representation, while the states with k=1,2 are organized in
doublets, being the bases of the two dimensional representa-
tion E�. The magnetic and electric transitions are similar to
the ones in the s=1 /2 triangle, in the absence of SOI. The
electric field causes transitions only between states with the
same M and S, but opposite chirality Cz= �1 /2�3�s1 · �s2
�s3� �this is different from the triangle with si=1 /2 spins in
each of the vertices�. As for the s=1 /2 spin triangle, there
are electric dipole transitions within the S=1 /2 quadruplet,
even in the absence of SOI. The ground state is fourfold
degenerate consisting of two S=1 /2 eigenstates,

��M=1/2
�1� � =

1
�10

���M=1/2
�1,1� � + �3��M=1/2

�1,2� �

− ��1 − �2����M=1/2
�1,3� � − ��M=1/2

�1,4� ��� , �18�

��M=1/2
�2� � =

1
�10

���M=1/2
�2,1� � + �3��M=1/2

�2,2� �

+ ��1 − �2����M=1/2
�2,3� � − ��M=1/2

�2,4� ��� . �19�

As in the case of the s=1 /2 triangle, electric-field induced
transitions take place between the states of opposite chirality
Cz and same spin projection M. Besides, the lowest quadru-
plet states are still organized as spin and chirality eigenstates
that are split in the presence of SOI.

In the original spin Hamiltonian in Eq. �1� the electric
field causes modification of the spin Hamiltonian parameters.
As for the spin s=1 /2 triangle, the strongest effect comes
from modification of the isotropic exchange interaction so
that

�H0�E� = �
i=1

3

�Jii+1�E�si · si+1, �20�

with �Jii+1�E�=dE cos�2�i /3+��, where � is the angle be-
tween the projection of the external electric field E to the
molecule’s plane and the s1−s2 bond, and i=0,1 ,2. The ef-
fect of the electric field on the lowest quadruplet is found to
be similar to the spin s=1 /2 case. While the SOI splits the
two chiral states without mixing them �at least in lowest
order�, the electric field, on the other hand, mixes the chiral
states. The effective Hamiltonian acting in the lowest qua-
druplet reads

Heff = �SOCzSz + B · g�S + d�E · C . �21�

Above, d�=3d /2, C = �Cx ,Cy ,0�, with Cx=�M��M
�1����M

�2��
+ ��M

�2����M
�1�� and Cx= i�M���M

�1����M
�2��− ��M

�2����M
�1���, and �SO

stands for the SO splitting. However, in this situation the
in-plane chirality operators Cx,y cannot be written in a simple
form as a function of the individual spin operators, as op-
posed to the s=1 /2 triangle.

2. Double valued group states of the s=3 Õ2 triangle

The double group representation allows us to identify the
couplings between different spin states induced by the SOI
and to identify the allowed magnetic dipole transitions. Due
to SOI, the electric field induced spin transitions will take
place also outside the spin quadruplet. In the absence of extra
degeneracies �induced, for example, by external magnetic
fields�, however, these transitions are strongly reduced due
the gap of the order J. We can then focus, as for the S
=1 /2 triangle, only on the lowest quadruplet. These states

are organized in two Kramer doublets Ē� and Ē� transform-
ing as M = �1 /2 and M = �3 /2.

As in the case of the s=1 /2 triangle, the electric field

induced transitions take place between Ē� and Ē�, with the
selection rules �M = �2. Magnetic transitions instead take

place both within and between Ē� and Ē�, satisfying the se-
lection rules �M =0, �1.

If we now treat the SOI, electric field, and magnetic fields
on the same footing, we arrive at the same selection rules as
for the s=1 /2 triangle, namely, �Cz= �1 and �Sz=0 for
electric transitions, �Cz=0, �1 and �Sz=0, �1 for SOI
transitions, and �Cz=0 and �Sz=0, �1 for magnetic transi-
tions, respectively.

C. Spin s=1 Õ2 pentagon

We now analyze the spin-electric coupling in a pentagonal
molecule with a spin s=1 /2 in each of the vertices, like
depicted schematically in Fig. 3. As in the case of the spin
triangle, an external electric field E gives rise to modification
of exchange couplings Jii+1. However, the net spin-electric

TABLE I. Nonsymmetry adapted states of the s=3 /2 spin tri-
angle. We use �⇑ �⇓ ��= ��3 /2� and �↑ �↓ ��= ��1 /2�.

M

i

1 2 3 4

1 /2 �↓ ↑ ↑ � �⇑ ↓ ↓ � �⇓ ⇑ ↑ � �⇓ ↑ ⇑ �
3 /2 �⇓ ⇑ ⇑ � �↓ ↑ ⇑ � �↓ ⇑ ↑ � �↑ ↑ ↑ �
5 /2 �⇑ ↑ ↑ � �↓ ⇑ ⇑ � 0 0

7 /2 �↑ ⇑ ⇑ � 0 0 0

9 /2 �⇑ ⇑ ⇑ � 0 0 0
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coupling in the lowest spin sector can only be mediated by
SOI, i.e., via the DM interaction.

To make the analysis simpler, we assume in the following
that the pentagonal spin molecule possesses a D5 point group
symmetry, thus no horizontal reflection plane h. However,
no generality is lost since lower symmetry implies more al-
lowed transitions in the spin system. If, for example, in the
lower symmetric situation some transitions are forbidden,
these transitions will be also forbidden in the higher symme-
try case. The Hamiltonian is given in Eq. �1� with N=5. The
states of the pentagon are found from the product of
the individual spin representations Dtot=D�1/2��5=5D�1/2�

� 4D�3/2� � D�5/2�, meaning there are 32 spin states in total.
As before, these states can be organized in a symmetry
adapted basis in the following way:

��M
�k,i�� = P5

k�M,i� , �22�

P5
k =

1
�5

�
j=0

4

� j
kC5

j , �23�

where � j
k=exp�2i�jk /5� with k , j=0, . . . ,5, C5

j are the five-
fold rotations of order j. The states �M , i���12345�
represent all possible states �i states in total� with a given
spin projection M���kk� that cannot be transformed into
each other by application of the rotation operator C5

j . These
states are showed in Table II and the corresponding states
with all spins flipped, i.e., M→−M states �not shown�. In the
absence of SOI there is no mixing of different k states, i.e.
the chirality is a good quantum number. In this case
the chirality is quantified by the operator Cz

=1 / �2�5+2�5��isi · �si+1�si+2� �the prefactor is chosen for
convenience; see below�. The ground-state quadruplet con-
sists of two Kramers doublets with spin S=1 /2. In the fol-

lowing we inspect the level structure of these four states in
terms of the above symmetry adapted states.

1. Single valued group s=1 Õ2 pentagon

We focus here only on the four lowest energy states,
which are two pairs of S=1 /2 states. The first �second� pair
is given by linear combination of states with k=1�k=−1� and
spin projection M = �1 /2. We obtain

��S=1/2,M=�1/2
�k� � =

1
�3� 1

2 cos�2k�

5
� ��M=�1/2

�k,1� �

+ 2�2
k cos�2�

5
���M=�1/2

�k,2� �� , �24�

so that Cz��M=�1/2
�k� �= �−1�k��M=�1/2

�k� �. These states �for a
given M projection� form the basis of the two-dimensional
irreducible representation E1. We are now in positions to
investigate the allowed electric dipole transitions within this
lowest subspace. The in-plane electric dipole d= �dx ,dy�
forms a basis of the irreducible representation E1 in D5.49 By
calculating the product E1 � E1 � E1=2E1 � 2E2, with E2 be-
ing another two-dimensional irreducible representation of
D5, we see that the totally symmetric representation A1 of D5
is absent. Therefore, there are no electric dipole transitions
within the four-dimensional subspace in the absence of SOI.

As in the previous two cases, the coupling of the spin
Hamiltonian to electric field comes via modification of the
spin Hamiltonian parameters. If only the modification of the
isotropic exchange Hamiltonian is taken into account, the
spin-electric Hamiltonian takes the same form as in Eq. �7�,
with �Jii+1�E�=dE cos�2i� /5+��, i=1, . . . ,5. The parameter
d quantifies the electric dipole coupling of each of the bonds
and � is the angle between the electric field E and the bond
s1−s2. Note that d is in principle non-zero in D5 point group
symmetry. However, the matrix elements of the spin-electric
Hamiltonian within the lowest quadruplet are all zero, i.e.,

��S=1/2,M
�k� ��He−d�E���S=1/2,M�

�k�� ��0. This means that electric
field has no effect on the lowest quadruplet, as found out also
by purely symmetry arguments. Therefore, we may expect
that the spin-electric coupling in pentagonal spin molecule is
caused by SO effects.

2. Double valued group s=1 Õ2 pentagon

The lowest four states in the double group D5� are de-
scribed by the two dimensional irreducible representations

S1 S5

S4

S3

S2

J45(E)J12(E)

E

J51(E)

J23(E J34(E))

FIG. 3. �Color online� Schematics of a pentagonal spin ring
molecule in electric field E, light �green� arrow. The molecule in the
absence of electric field is depicted in fade colors, while the full
colors represent the molecules in electric field. Thickness of the
bonds represents the strength of antiferromagnetic exchange inter-
action between the spins. An electric field modifies the strengths of
spin exchange couplings Jii+1.

TABLE II. Spin s=1 /2 pentagon nonsymmetry adapted
states.

M

i

1 2

1 /2 �↑ ↓ ↑ ↓ ↑ � �↑ ↓ ↓ ↑ ↑ �
3 /2 �↓ ↑ ↑ ↑ ↑ � 0

5 /2 �↑ ↑ ↑ ↑ ↑ � 0
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Ē1��M = �1 /2� and Ē1��M = �3 /2�. Since both the magnetic
� and electric d dipoles transform as E1 in D5�, both electric
and magnetic transitions will take place between the same
pair of states. The products of the irreducible representations

that labels the states in the low-energy quadruplet read Ē1�

� Ē2�=E1 � E2, Ē1� � Ē1�=A1 � A2 � E1 and Ē2� � Ē2�=A1 � A2
� E2. These equalities imply the same selection rules in the
lowest subspace as for the spin triangle case: �M = �2 for
electric dipole transitions, and �M =0, �1 for the magnetic
ones.

The main feature of the pentagonal spin ring is the ab-
sence of electric dipole transitions in the lowest quadruplet in
the absence of SOI. This is to be contrasted with the spin
triangle case, where spin-electric coupling exists in the
ground state even in the absence of SOI. This feature finds its
explanation in the interplay between the selection rules for
electric field transitions and the ones for the SOI. In fact,
these selection rules are by no means different from the tri-
angular spin rings. Since the ground state is spanned by four
states with chirality Cz=−1,1 and spin Sz= �1 /2, we see
that the condition �Cz= �1 for the electric field transitions
implies no electric field coupling within the ground state. In
the presence of SOI though, spin electric coupling is still
possible, but it will be �Dx,y /J� times smaller than in tri-
angles. Spin-electric coupling can arise also via modification
of the DM vectors Dx,y,z in electric field. However, the selec-
tion rules for this transitions are, like for the triangle, �Cz
=0, �2 and �Sz=0, �1. This means direct splitting in the
ground state, and thus we expect that for pentagonal spin
rings the electric dipole response will be much weaker.

D. Symmetry requirements for the existence
of spin-electric coupling

There are two general feature that allow for the manipu-
lation of the MN state vector within the ground-state multi-
plet, through pulsed electric fields. �For simplicity, we refer
to the case where such coupling is not mediated by spin-orbit
interaction and appears in a triangular molecule.�

Firstly, in order for the spin-electric Hamiltonian to be
linear in the electric field, permanent electric dipoles dij must
be present on the bridge�s� that mediate the coupling of spins
i and j. These dipole moments must depend on the relative
orientation of si and s j, see Fig. 4. Besides, in order for the
electric field to modify differently the super-exchange cou-
plings Jij between different pairs of spins, the dipoles dij
must point in different directions from one another. In the
present case �10�, the dij are orthogonal to the vectors Rij,
other in-plane components being forbidden by symmetry. If
the dipoles associated with the spin pairs are all along the
same direction, instead, the electric field can only induce
equal renormalizations of all the exchange couplings ��Jij
��J�. As a consequence, the spin-electric Hamiltonian �HE
would commute with H0 and could not induce transitions
between eigenstates of the unperturbed Hamiltonian. In a
recent study of spin crossover effect,53 the total molecular
electric dipole moment was shown to cause influence the
spin state of the molecule. In the mechanism considered
here, we require only the existence of the bridge dipole mo-

ment, while the total dipole moment of the molecule may be
zero.

Secondly, given the existence of a spin-electric coupling,
we require that this allows nontrivial manipulations of the
MN quantum state within the low-energy multiplet. In par-
ticular, in the case of triangle, our proposal relies on the
existence of a four-dimensional ground-state multiplet �with
S=1 /2�, whose states are identified by the spin projection
�Sz�=1 /2 and by chirality Cz. This condition is fulfilled by
rings consisting of an odd number of half integer and equiva-
lent spins. Within these class of systems, triangles are par-
ticularly suited because the two eigenstates of chirality can
be coupled in first order by the spin-electric Hamiltonian
even in the absence of spin-orbit interaction.

Both the above criteria can be formulated in terms of
inversion symmetry. As far as the first criterion is concerned,
the superexchange bridges that magnetically couple si and s j
must lack an inversion center, though this condition is not
sufficient in order for the bridge to possess a permanent elec-
tric dipole. Regarding the level structure and selection rules
�second criterion�, the presence of an odd number of equiva-
lent spins in the ring implies the lack of an inversion center
for the molecule as a whole.

III. HUBBARD MODEL OF A MOLECULAR
NANOMAGNET

Spin Hamiltonian models of molecular nanomagnets are
based on the assumption that the spins on magnetic centers
are the only relevant degrees of freedom. This assumption of
fully quenched and localized orbitals allows for the relatively
simple predictions of spin structure in the low-energy states
of the molecule. However, since the orbital dynamics plays a
crucial role in the spin-electric coupling, spin Hamiltonian
models are unable to predict the corresponding coupling con-
stants. In this section, we relax the assumption of quenched
and localized orbitals and treat the orbital degrees of freedom
of electrons on magnetic ions within a Hubbard model. This
provides an intuitive picture of spin-electric coupling in
terms of the deformation of the molecular orbitals induced
by the external field. Besides, in the limit of strong quench-
ing of the orbitals, the Hubbard model reproduces a spin
Hamiltonian, similar to the results found in the studies of

FIG. 4. �Color online� Dipole moment of an unperturbed bridge.
In the first order, external electric fields couple to the electric dipole
moments of the bridges that connect the spins at magnetic centers.
The different orientations of the bridge dipole moments dij�dkl

lead to inhomogeneous variations of the resulting exchange interac-
tions between the spins �Jij��Jkl.
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cuprates54–56 and multiferroics.57,58 In particular, we find the
relation between modifications of the electronic hopping ma-
trix elements induced by the field and that of the spin-electric
coupling in the spin Hamiltonian, thus providing a guide for
the estimate of the size of spin-electric coupling in a mol-
ecule.

The outline of the present section is the following. In Sec.
III A, we introduce the Hubbard model of a spin chain with
the shape of regular n-tangon and derive the resulting sym-
metry constraints for the hopping parameters. In Sec. III B
we assume a direct electron hopping between magnetic sites
and derive the spin Hamiltonian of a spin triangle from the
Hubbard model in the limit of large on-site repulsions; we
thus express the coupling to electric fields in terms of the
Hubbard model parameters. In Sec. III C, we introduce a
Hubbard model of a magnetic coupling in the case where this
is mediated by a nonmagnetic bridge between the magnetic
centers; also in this case, we find a connection between the
modification of the bridge and spin-electric coupling.

A. Parameters of the Hubbard model of molecular
nanomagnets

Magnetic properties of molecular nanomagnets are gov-
erned by the spin state of few electrons in the highest par-
tially occupied atomic orbitals, split by the molecular field.
The spin density is localized on the magnetic centers,59 and
thus the low-energy magnetic properties are correctly de-
scribed by quantum models of interacting localized
spins.60,61

The response of molecular nanomagnets to electric fields,
as a matter of principle, does not have to be governed by the
electrons occupying the same orbitals that determine the
molecule’s spin. However, the quantum control of single
molecule magnets by electric fields depends on the electrons
that both react to electric fields and produce the magnetic
response. Therefore, the models of molecular nanomagnets
that consider only few orbitals can provide useful informa-
tion about the electric control of spins.

Hubbard model provides a simplified description of or-
bital degrees of freedom by including only one or few local-
ized orbitals on each magnetic center. Furthermore, the inter-
action between electrons is accounted for only by
introducing the energies of the atomic configurations with
different occupation numbers. The Hubbard model of the
MN is given by

HH = ��
i,j

�
�,�

ci�
† �t��� +

iPij

2
· ����cj� + H.c.�

+ �
j

Uj�nj↑,nj↓� , �25�

where cj
† �cj� creates �annihilates� an electron with spin 

= ↑ ,↓ on the orbital localized on jth atom, and nj=cj
† cj is

the corresponding number operator. Model parameters Uj de-
scribe the energy of nj↑�↓� spin up�down� electrons on the site
j. Hopping parameters tij and Pij describe the spin-
independent and spin-dependent hopping between sites i and
j.

We assume that the largest energy scale is the splitting
between the energy of the highest occupied atomic orbital
and lowest unoccupied one, induced by the molecular crystal
field: this justifies the inclusion of one orbital only for each
magnetic center. The on-site repulsion energy is the next
largest energy scale in the problem, being Uj larger than the
hopping coefficients. Among these, processes involving
states of different spin, mediated by spin-orbit interaction,
are described by the x and y components of Pij. The param-
eters Pij;z, instead, describe the difference of the hopping
matrix elements between spin-up and spin-down electrons.
In the following, we shall consider both the case where elec-
tron hopping takes place directly between neighboring mag-
netic ions and that where the magnetic interaction is medi-
ated by bridges of nonmagnetic atoms. Hubbard model with
spin-dependent hopping was used to describe the spin-orbit
coupling in cuprates62 and multiferroics.57 The Hubbard
Hamiltonian can be approximated by a spin Hamiltonian
model in the limit �tij� , �Pij��Uj. The symmetry constraints
on the spin Hamiltonian parameters can be deduced from
those on the Hubbard model parameters.54 If the spin-
independent hopping dominates ��t�� �P��, the resulting spin
Hamiltonian will contain the Heisenberg exchange terms and
a small additional spin-anisotropic interaction. If �t�� �P�, the
size of spin-dependent interactions in the spin Hamiltonian
will be comparable to the Heisenberg terms. Both these cases
appear in the molecule nanomagnets.18,51,63,64

Symmetry of the molecule imposes constraints to the
Hubbard model, thus reducing the number of free param-
eters. The on-site repulsion parameters Uj are equal for all
equivalent magnetic ions. In the molecules of the form of
regular n-tagon, all of the spin-independent hopping param-
eters are equal due to the Cn symmetry. The spin-dependent
hopping elements are related by both the full symmetry of
the molecule and the local symmetry of localized orbitals.
For example, in the case of localized orbitals in a regular
polygon that are invariant under the local symmetry group of
the magnetic center,

Pj,j+1;x = exp�i
2��j − k�

n
�Pk,k+1;x, �26�

with the convention that site n+1 coincides with site 1. In
this case, there is only one free parameter that determines all
of the Px matrix elements. Therefore, the regular n–tagon
molecule in the absence of external electric and magnetic
fields can be described by a Hubbard model, with five inde-
pendent parameters: U, t, and P12. In addition, the v sym-
metry, if present will impose P12= pez, thus reducing the
number of free parameters to three.

B. Hubbard model of the spin triangle: Direct exchange

In this section we give a brief description of the Hubbard
model for a triangular molecule with D3h symmetry. In this
model we assume only direct coupling between the magnetic
centers, thus no bridge in-between. Even so, this simplified
model catches the main features of the effective spin Hamil-
tonian and gives the microscopic mechanisms for the spin-
electric coupling. The Hamiltonian describing the electrons
in the triangular molecule reads
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HH = ��
i,

ci
† �t + i
SO�ci+1, + H.c.�

+ �
i,

��0ni +
1

2
Uninī� , �27�

where 
SO� p=Pij ·ez is the spin-orbit parameter �only one�,
�0 is the on-site orbital energy, and U is the on-site Coulomb
repulsion energy. As stated before, typically 
SO, �t��U,
which allows for a perturbative treatment of the hopping and
spin-orbit Hamiltonians. These assumptions agree well with
the numerical calculations performed in Ref. 59.

The perturbation theory program involves the unperturbed
states of the system. The first set of unperturbed states are the
one-electron states

�	i
� = ci

† �0� , �28�

while the three-electron states split in two categories: �i� the
singly occupied site states

��k
� = �

j=1

3

cjj

† �0� , �29�

with  j = for j�k and  j = ̄, for j=k, and �ii� the double-
occupied sites

��kp
 � = ck↑

† ck↓
† cp

† �0� , �30�

with k=1,2 ,3 and p�k. The states ��k
� and ��kp

 � span the
subspaces with M =1 /2 and M =−1 /2 for =↑ and =↓,
respectively.

The states in Eqs. �28�–�30� are degenerate with energies
E=�0, E=3�0, and E=3�0+U, respectively. Note that these
state are eigenstates of the Hamiltonian in Eq. �27� only in
the absence of tunneling and SOI.

The above defined states are not yet adapted to the sym-
metry of the system, i.e., they are not basis states of the
corresponding irreducible representations of D3h point group.
Finding these states is required by the fact that the symmetry
of the molecule is made visible through the hopping and SOI
terms in the Hubbard Hamiltonian. This is accomplished by
using the projector operator formalism.49 We obtain for the
one-electron symmetry adapted states.

�	A1�
 � =

1
�3

�
i=1

3

�	i
� , �31�

�	E
��

 � =
1
�3

�
i=1

3

�1,2
i−1�	i

� , �32�

where A2� and E�� are one-dimensional and two-dimensional
irreducible representations in D3h, respectively. Similarly, the
symmetry adapted states with the singly-occupied magnetic
centers read

��A2�
1� =

1
�3

�
i=1

3

��i
� , �33�

��E
��

1 � =
1
�3

�
i=1

3

�1,2
i−1��i

� , �34�

while the symmetry adapted states of the doubly-occupied
magnetic centers read

��A1,2�
2 � =

1
�6

�
i=1

3

���i1
 � � ��i2

 �� , �35�

��E
��

1
2 � =

1
�6

�
i=1

3

�1,2
i−1���i1

 � + ��i2
 �� , �36�

��E
��

2
2 � =

1
�6

�
i=1

3

�1,2
i−1���i1

 � − ��i2
 �� . �37�

The tunneling and SOI mixes the singly-occupied and
doubly-occupied states. Since both the tunneling and SOI
terms in the Hubbard Hamiltonian transform as the totally
symmetric irreducible representation A1� in D3h, only states
transforming according to the same irreducible representa-
tions � mix. We obtain the perturbed states in first order in
t /U and 
SO,

��A2�
1� � ��A2�

1� , �38�

��E
��

1 � � ��E
��

1 � +
��̄ − 1��t � 
SO�

�2U
��E

��
1

2 � ,

+
3��t � 
SO�

�2U
��E

��
2

2 � . �39�

Doubly-occupied states become high in energy when
�t� /U ,
SO /U�1. In this limit, the orbital states are quenched
into singly-occupied localized atomic orbitals, and low-
energy behavior is determined by spin and described by a
spin Hamiltonian. In this limit the states in Eq. �34� are ex-
actly the same chiral states in the spin Hamiltonian, i.e.,
��E�

1 ����
�1,2�� and ��A2�

1����
�0��. The probability of finding

two electrons at the same site decays as �t � /U. The lowest
energy states have total spin S=1 /2 and the chirality Cz

= �1, and the fluctuations of chirality �Cz=��Cz
2�− �Cz�2 in

the eigenstates vanish, see Fig. 5. The chiral states emerge as
the eigenstates in the large-U limit, when the system is well
described by the spin Hamiltonian:

The coupling of the molecule to an external electric field
E takes place via two mechanisms. The first one implies
modification of the on-site single particle energies �0 and
leads to the following electric-dipole coupling Hamiltonian:

He−d
0 = − e�



Eya
�3

c1
† c1 −

a

2� Ey

�3
+ Ex�c2

† c2

+
a

2�Ex −
Ey

�3
�c3

† c3, �40�

with a being the geometrical distance between the magnetic
ions and Ex,y the in-plane components of the electric field.
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The second mechanism is due to modification of the hopping
parameters tii+1 in electric field and gives

He−d
1 = �

i,
tii+1
E ci

† ci+1 + H.c., �41�

where tii+1
E = �	i�−er ·E�	i+1� are new hopping parameters

induced solely by the electric field E, and �i are the Wan-
nier states localized on the magnetic centers. We can write
the E-induced hoppings as tii+1

E =�q=x,y,zqii+1Eq, with qii+1=
−�	i�eq�	i+1� being electric dipole matrix elements be-
tween the i and i+1 ions. These matrix elements are not all
independent, symmetry alone reducing drastically the num-
ber of independent electric dipole parameters. In order to
find suitable independent free parameters, we switch from
the description in terms of localized Wannier orbitals �i, to
the description in terms of symmetry adapted states, namely
from qii+1 to q���= �	��q�	���, where �=A1� ,E�� . In the
basis of symmetry adapted states, the components q��� sat-
isfy a number of relations. In particular, we find

�	A1�
 �x�	A1�

 � = �	A1�
 �y�	A1�

 � = �	E+�
 �x�	E+�

 � � 0, �42�

�	E−�
 �x�	E−�

 � = �	E+�
 �y�	E+�

 � = �	E−�
 �y�	E−�

 � � 0, �43�

�	E+�
 �x�	E−�

 � = − i�	E+�
 �y�	E−�

 � � − dEE/e , �44�

�	A1�
 �x�	E+�

 � = �	A1�
 �x�	E−�

 � = − i�	A1�
 �y�	E+�

 � = i�	A1�
 �y�	E−�

 �

� − dAE/e . �45�

These relations reduce the number of free coupling constants
to two, namely, dEE and dAE.

It is instructive to write first the relation between the sec-
ond quantized operators ci

† �ci� and c�
† �c��, which create

�annihilate� electrons in localized and symmetry adapted
states, respectively,

�c1
†

c2
†

c2
† � =

1
�3�1 1 �

1 �̄ �̄

1 � 1
��

cA1�

†

cE+�

†

cE−�

† � . �46�

With these expressions at hand, we can write the electric
dipole Hamiltonian together with the spin-orbit Hamiltonian
in the following form:

He−d
0 =

− iea�3

2 �


�ĒcE+�

† cA1� − �EcE−�

† cA1� + �ĒcE−�

† cE+��

+ H.c., �47�

He−d
1 = �



dAE�ĒcA1�

† cE+� − EcA1�

† cE−�� + ĒdEEcE+�

† cE−�

+ H.c., �48�

HSO = �3
SO�


�cE−�

† cE−� − cE+�̄

† cE+�̄� , �49�

where E=Ex+ iEy�Ē=Ex− iEy�. The symmetry adapted states
can also be expressed in terms of the symmetry adapted op-
erators c�

† . The expressions for these states are shown in
Appendix A. Using these states, we can compute all the ma-
trix elements corresponding to the electric dipole and SOI
Hamiltonian, respectively. The explicit form of these matrix
elements can be found in Appendix B.

We now compute the electric dipole matrix elements be-
tween the perturbed chiral states of the E� symmetry. The
question is to what order in t /U and/or eEa�dEE ,dAE� /U we
want to do it. We use the relations �ea��dEE ,dAE, which hold
in the case of localized orbitals. This leads us to the follow-
ing matrix element of the electric dipole in the ground state:

���E−�
1�He−d

0 ��E+�
1�� � � t3

U3eEa� , �50�

���E−�
1�He−d

1 ��E+�
1�� � �4t

U
EdEE� . �51�

We now relate the SOI matrix elements to the DM vectors
in the effective spin Hamiltonian. From Eq. �49� we get

��E
��

1 �HSO��E
��

1 � = �
5�3
SOt

2U
sgn�� , �52�

In the same time, in D3h symmetry, the DM term reads

HSO =
iDz

2 �
i=1

3

�s+
i s−

i+1 − s−
i s+

i+1� , �53�

allowing us to make the following identification:
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FIG. 5. �Color online� Spin Hamiltonian limit. Expectation val-
ues of chirality �Cz� �full lines� and the their bounds of uncertainty
�Cz���Cz �dotted lines�, see text, in the low-energy states of the
Hubbard model as a function of the on-site repulsion U at the fixed
hopping matrix element t=1 �left scale�. The dashed line shows
dependence of the double occupancy probability PD in the ground
state on the right scale. The spin Hamiltonian description becomes
accurate in the U→� limit. The approach to this limit is slow, and
the double occupancy probability is proportional to t /U.
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Dz �
5
SOt

U
. �54�

We see that this SOI term acts exactly as the “microscopic”
SOI derived before: it splits the chiral states, but it does not
mix them.

The Hubbard model with spin-orbit coupling can repro-
duce the energy-level structure of the spin Hamiltonian. In
the limit of strong on-site repulsion �t� /U�1, the atomic
orbitals in the triangle vertices are occupied by one electron
each. The lowest energy manifold consists of four states with
the total spin S=1 /2. These states are split from the next
four-level S=3 /2 manifold by a gap of the order of t2 /U.

C. Superexchange in molecular bonds

In this section, we use the Hubbard model to deduce the
dependence of the spin Hamiltonian of MNs on the external
electric fields in the case where the coupling between mag-
netic sites is mediated by a nonmagnetic bridge. In particular,
we study how the parameters of the effective spin Hamil-
tonian depend on the hopping matrix elements that are modi-
fied by the presence of an electric field. The spins in molecu-
lar nanomagnets are localized at the magnetic centers and
interact through the long bridges of nonmagnetic atoms. In
addition, we do not expect that these orbitals deform in the
electric field. Therefore, we expect that the superexchange
mechanism through the bridge is more significant than the
direct exchange. This method was successfully applied in the
studies of strongly correlated electrons, like cuprates56 and
multiferroics.58

In order to describe the magnetic coupling, we consider a
pair of sites corresponding to the magnetic centers and a
bridge site. Since the direct overlap of the orbitals localized
on the magnetic centers is small, we set the direct hopping
between the magnetic centers to zero but allow for the hop-
ping of electrons between the magnetic sites and the bridge
site. This hopping gives rise to superexchange interaction
between the spins on the magnetic sites.54 In the limit of
strong on-site repulsions, the effective Hamiltonian in the
lowest energy sector of the bond corresponds to a spin
Hamiltonian where the coupling strengths are determined by
the Hubbard model parameters. This correspondence pro-
vides an intuitive picture of the mechanism that leads to the
interaction between the spins. It also allows us to infer the
properties of the molecule that lead to a strong spin-electric
coupling, e.g., the delocalization of the orbitals and their
local symmetry.

The Hubbard Hamiltonian of the bond is given by

Hb = �
i,��

�ci�
† �ti��� +

iPi

2
· ����b� + H.c.�

+ U1�n1� + U2�n2� + Ub�nb� , �55�

where the indices 1 and 2 refer to the magnetic sites, and b
refers to the bridge site. We derive the spin Hamiltonian by
fourth-order Schrieffer-Wolff transformation of the Hamil-
tonian Hb.

The Schrieffer-Wolf transformation65 of the bond Hamil-
tonian Hb=H0+Htun, where the unperturbed Hamiltonian

H0=U1�n1�+U2�n2�+Ub�nb� produces an effective low en-
ergy Hamiltonian H12 that approximately describes the low-
energy dynamics of the bond. The effective Hamiltonian is

H12 = PeSHbe−SP , �56�

where the antiunitary operator S is chosen so that the low-
energy space of H0 is decoupled from the high-energy space.
This operator is found iteratively, S=S�1�+S�2�+¯ so that the
nth order transformation S�n� removes the terms that couple
the low- and high-energy states up to order n. The projector
P projects to the low-energy states. In our system, the lowest
order Schrieffer-Wolff transformation that gives a nontrivial
contribution to the low-energy spin Hamiltonian is of fourth
order, and the operator S is approximated as S��n=1

4 S�n�.
The unperturbed Hamiltonian, H0=U1+U2+Ub, describes

localized electrons, and the hopping Htun acts as perturbation.
The low-energy subspace of the unperturbed Hamiltonian is
spanned by the states in which the magnetic ions are singly
occupied, and the bridge is doubly occupied. The lowest-
order terms that give rise to a nontrivial spin Hamiltonian, in
the limit �t� , �P��U, are of the fourth order in t and P.

The resulting interaction of the spins includes an isotropic
exchange of strength J, a Dzyalozhinsky-Moriya interaction
described by a vector D, and an anisotropic exchange term
described by a second rank symmetric traceless tensor �,66

H12 = JS1 · S2 + D · �S1 � S2� + S1 · �S2. �57�

Quite generally the interaction between two spins up to sec-
ond order in P12 can be represented as an isotropic exchange
of rotated spins.56 However, since the frustration in the tri-
angle is strong, it is a good approximation to take only the
Dzyalozhinsky-Moriya interaction into account for the weak
spin-orbit coupling, �P12�� �t12� when describing a full mol-
ecule.

In a bond with a single bridge site, the largest possible
symmetry is C2v. We introduce Cartesian coordinates with
the x axis pointing from the magnetic center 1 to 2, y axis
lying in the bond plane and pointing toward the bridge site,
and the z axis normal to the bond plane �Fig. 6�. The ele-
ments of the C2v symmetry group are then rotation Ry,� by �
about the y axis, reflection v in the yz plane, and reflection
h in the xy plane. Each of these symmetry operations im-
poses constraints on the parameters of Hb. In the case of
localized orbitals that remain invariant under the local sym-
metries of their respective sites, the constraints resulting
from the Ry,� symmetry are

t1 = t2, �58�

Px,1 = − Px,2, �59�

Py,1 = Py,2, �60�

Pz,1 = − Pz,2. �61�

The v symmetry implies

t1 = t2, �62�

Px,1 = Px,2, �63�
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Py,1 = − Py,2, �64�

Pz,1 = − Pz,2, �65�

and the h symmetry implies

P1 = − P2 = pez. �66�

In the perturbative calculation of the effective spin Hamil-
tonian parameters, these constraints reproduce the
Dzyalozhinsky-Moriya rules. We do not deal with the sym-
metry of on-site energies U1,2,b in any detail since they do
not affect the spin Hamiltonian at this level of approxima-
tion.

D. Electric field along y

In the electric field pointing along the y axis, the point
group symmetry of the bridge remains C2v, and all of the
constraints �59�–�66� hold. The fourth-order Schrieffer-Wolff
transformation then gives the interaction between the spins
on magnetic centers of form �57� with the parameters

J =
1

12U3 �48t4 − 40t2pz
2 + 3pz

4� , �67�

D =
2

U3 tpz�4t2 − pz
2�ez, �68�

�xx = �yy = −
1

2
�zz = −

8

3U3 t2pz
2, �69�

while all the off-diagonal elements of � vanish. Here, the
parameters of the Hubbard model satisfy the symmetry con-
straints of the full C2v, and

t1 = t2 = t , �70�

P1 = − P2 = pzez. �71�

We have introduced U3=Uc2�2Uc2−Ub2��Ub1−Ub2
+Uc2�2 / �4Uc2−Ub2�, where the on-site repulsions are Ub2 for

the doubly occupied bridge, Ub1 for the singly occupied
bridge, and Uc2 for the doubly occupied magnetic center. The
parameter U describes the energy cost of leaving the mani-
fold of states with the minimal energy of Coulomb repulsion.
We assume that the lowest energy charge configuration cor-
responds to a doubly occupied bridge, so that Ub2�Ub1.

In first order, the variations in the spin-Hamiltonian pa-
rameters resulting from the modification of the Hubbard
model parameters are

�J =
1

3U3 ��48t3 − 20tpz
2��t + �− 20t2pz + 3pz

3��pz� , �72�

�Dz =
2

U3 ��12t2pz − pz
3��t + �4t3 − 3tpz

2��pz� , �73�

��xx = ��yy = −
��zz

2
= −

16tpz

3U3 �pz�t + t�pz� . �74�

Electric field modifies the orbitals and therefore the overlaps
between them that determine the hopping parameters. We
consider the case where the variations �t and �pz are linear in
the field intensity Ey: �t=�tEy, �pz=�pz

Ey. We will not dis-
cuss the effect of variations in the on-site energies U in any
details since their only effect in the fourth-order perturbation
is a rescaling of all the spin Hamiltonian parameters by
U3 / �U+�U�3.

We stress that these linear modifications of the hopping
parameters are characteristic for the C2v symmetry. If the
electric field is oriented differently and thus lowers the sys-
tem symmetry �see below� first-order increments are not al-
lowed, and the spin-electric coupling is at least a second-
order effect in the electric field. The modification of the
orbitals includes the energy scale of splitting of the atomic
orbitals in the molecular field. We have assumed earlier that
the splitting of the orbitals localized on the magnetic centers
is large, and the dominant source of the spin-electric cou-
pling is the modification of the bridge orbital. Therefore, the
key criterion for strong spin-electric coupling is the presence
of bridge orbitals that are weakly split in the molecular field.
If, in addition, we assume that the modification is a property
of the bond alone, and not of the entire molecule, the �
parameters can be determined in an ab initio calculations on
a smaller collection of atoms.

In the limit of weak spin-orbit coupling, �t�� �pz�, the main
effect of the electric fields is a change of J, leading to our
symmetry-based results, see Eq. �15�. In particular, the d
parameter of the symmetry analysis is

d =
4

U3 ��48t3 − 20tpz
2��t + �− 20t2pz + 3pz

3��pz� . �75�

In this case, the Dzyalozhinsky-Moriya vector D is con-
strained to point in the z direction, D=Dez. The model sug-
gests that the dominant effect of the electric field in the mol-
ecules with dominant Heisenberg exchange �J� �D�� is
modification of the isotropic exchange constants J, and

z

z

x

y

x

y

E E

E E

C2v → C1v C2v → C2

C2v → C2v C2v → C1h

d)b)

c)a)z

x

y

z

x

y

FIG. 6. �Color online� Geometry of the bond and reduction of
symmetry. �a� Electric field E in the y direction, leaves the C2v
symmetry unbroken. �b� An electric field E in the z direction, nor-
mal to the bond plane, reduces the symmetry to 	E ,v
. �c� An
electric field E in the x direction, along the line connecting the
magnetic centers, reduces the symmetry to 	E ,h
. �d� In an inho-
mogeneous staggered electric field E, the reduced symmetry group
is 	E ,Ry,�
.
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��D�
��J�

�
�D�
�J�

, �76�

so that the modification of the Dzyalozhinsky-Moriya vector
D→D+�D is weaker. However, in the molecules in which
the modifications of J are inefficient in inducing the spin-
electric coupling, as, for example, in the spin-1 /2 pentagon,
the modifications of D may eventually provide the main con-
tribution to the spin-electric coupling.

Electric field pointing in a generic direction breaks the
C2v symmetry of the bridge and allows further modification
of the Hubbard and spin Hamiltonian parameters that do not
obey all the symmetry constraints in Eqs. �58�–�66�. With the
relaxed constraints, both the direction and intensity of P1,2,
as well as the spin-independent hoppings t1,2 become field
dependent. This observation can be used in the search for
molecules that show strong spin-electric coupling. The en-
ergy cost of changing the distance between the localized or-
bitals may be significantly higher than the cost of modifying
the shape of the bridge orbital. In order to investigate this
dependence, we study the effective spin Hamiltonian de-
scription of a bridge with all possible residual symmetries.

1. Residual �v symmetry

An electric field E=Eez normal to the bond’s plane re-
duces the initial C2v symmetry down to 	E ,v
. This reduc-
tion of the symmetry also happens when a molecule is de-
posited on the surface parallel to the bond plane. While the
constraints in Eq. �66� hold, this reduction in symmetry im-
plies the appearance of nonzero in-plane components of P1,2.
We parametrize the most general Hubbard model parameters
t1,2 and P1,2 consistent with the symmetry as

t1 = t2 = t , �77�

P1,x = P2,x = pxy cos 	 , �78�

P1,y = − P2,y = pxy sin 	 , �79�

P1,z = − P2,z = pz. �80�

The effective low energy spin Hamiltonian, derived by
Schrieffer-Wolff transformation up to fourth order in t /U,
and �P� /U is given by Eq. �57�, with the nonzero parameters,

J =
1

12U3 �pxy
4 − 2pxy

2 pz
2 + 3pz

4 − 8t2�pxy
2 + 5pz

2� + 48t4

− 8pxy
2 �pz

2 − 4t2�cos 2	 + 2pxy
4 cos 4	� , �81�

Dy = −
pxy

U3 �pz cos 	 + 2t sin 	��− pz
2 + 4t2 + pxy

2 cos 2	� ,

�82�

Dz = −
1

2U3 �4tpz − pxy
2 sin 2	��pz

2 − 4t2 − pxy
2 cos 2	� ,

�83�

�xx = −
1

6U3 �pxy
2 �1 − cos 2	� + 2pz

2��8t2 + pxy
2 �1 + cos 2	�� ,

�84�

�yy =
1

12U3 	− pxy
4 + 8pxy

2 pz
2 + 32t2�pxy

2 − pz
2�

+ pxy
2 �8�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	 + 48tpz sin 2	�
 ,

�85�

�yz = �zy =
pxy

U3 �pz cos 	 + 2t sin 	��− 4tpz + pxy
2 sin 2	�

�86�

�zz = − �xx − �yy . �87�

In the lowest order in spin-orbit coupling the spin interaction
consists of the isotropic exchange with J�4t4 /U3, and
the Dzyalozhinsky-Moriya interaction with D
�−8t3�pxy sin 	ey + pzez� /U3.

As a matter of principle, the spin-orbit coupling mediated
hopping P does not have to be much weaker than the spin-
independent hopping t. In this case, all the nonzero terms in
Eqs. �81�–�87� are of comparable size, and the variation in
spin Hamiltonian with the angle 	 becomes significant. Note
that the angle 	 describes the directions of spin-orbit cou-
pling induced hopping parameters P1,2, and that it is not
directly connected to the bond angle between the magnetic
sites and the bridge site. However, for the bridge orbital
without azimuthal symmetry, the angle 	 does depend on the
bond angle. For the molecules in which the full symmetry
allows only for the spin-electric coupling mediated by the
spin-orbit interaction, this effect is important.

With these assumptions, the dependence of the effective
spin Hamiltonian on pxy suggests that the strength of induced
in-plane Dzyalozhinsky-Moriya vector will be sensitive to
the angle 	 that is determined by the angular dependence of
the bridge and magnetic center orbitals. In turn, for a fixed
symmetry of the bridge orbital, this dependence directly
translates into the dependence of the spin-electric coupling
constant on the bridge bond angle.

In the presence of electric field E=Eez, the hopping pa-
rameters will change from their initial values that satisfy the
constraints implied by the C2v symmetry, into a set of values
that satisfy those implied by v only. The resulting change in
the spin-Hamiltonian parameters reads

�J =
1

3U3 �4t0�12t0
2 − 5pz0

2 ��t + pz0�− 20t0
2 + 3pz0

2 ��pz� ,

�88�

�Dy = −
1

U3 �4t0
2 − pz0

2 ��2t0 sin 	 + pz0 cos 	��pxy , �89�

�Dz =
2

U3 �pz0�12t0
2 − pz0

2 ��t + t0�4t0
2 − 3pz0

2 ��pz� , �90�
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��xx = ��yy = −
1

2
��zz = −

16

3U3 t0pz0�pz0�t + t0�pz� ,

�91�

��yz = ��zy = −
4

U3 t0pz0�2t0 sin 	 + pz0 cos 	��pxy .

�92�

The v-symmetric variations in Hubbard parameters oc-
cur when an external electric field is applied along the z
direction to a C2v symmetric bond. Again, the variations in
the parameters is generically linear in the field strength, �t
=�t,vEz, �pxy =�pxy,vEz, and �pz=�pz,vEz, where the � pa-
rameters depend on the modification of the bridge orbital in
the electric field. As opposed to the case of the field along the
y direction that maintains the bonds C2v symmetry, the �
parameters for the field along the z axis vanish in zero field
since the z component of a vector has no matrix elements
between the relevant C2v-symmetric states. The linear expan-
sion is valid when the field is strong enough to distort the
bridge orbital. Alternatively, the expansion is valid for a
bond with lower symmetry in zero electric field, e.g., when
the bond is close to a surface.

2. Residual �h symmetry

In an electric field that lies in plane of the bond, with E  x̂,
the only residual symmetry transformation is the reflection
about the xy plane �h�. Within this reduced symmetry, the
two magnetic sites are no longer equivalent, but the spin-
dependent hopping parameters P1,2 still point along the z
axis,

t1 � t2, P1 = p1ez � p2ez = P2. �93�

In the fourth order in hopping parameters t and P, the
resulting low energy spin Hamiltonian is again given by Eq.
�57�, with the following nonzero coupling constants:

J =
1

12U3 �32t1t2p1zp2z − 4�t1
2p2z

2 + t2
2p1z

2 � + 48t1
2t2

2 + 3p1z
2 p2z

2 � ,

�94�

D = −
1

U3 �t1p2z − t2p1z��4t1t2 + p1zp2z�ez, �95�

�xx = �yy = −
�zz

2
= −

2

3U3 �t1p2z − t2p1z�2. �96�

Similar to the case of full C2v symmetry, the spin Hamil-
tonian consists of the isotopic exchange J, Dzyalozhinsky-
Moriya vector D=Dzẑ normal to the bond plane, and diago-
nal tensor � isotropic in the bond plane ��xx=�yy�. We stress
that the dependence of the effective spin Hamiltonian param-
eters on those entering the spin Hubbard Hamiltonian is dif-
ferent for these two symmetries, and so is the response to the
applied electric field. On one hand, the C2v preserving elec-
tric field induces the transitions in the lowest-energy multi-
plet in the lowest order. On the other hand, the electric field

that reduces the bond symmetry to 	E ,h
 does not alter the
coupling of spins in the lowest order since the deformation
of the molecule requires some coupling to the field.

As in previous case, we expand the h symmetric spin
Hamiltonian around the C2v symmetric case. We introduce a
perturbation of the parameters Hubbard parameters in the
electric field consistent with the residual symmetry: t1= t0
+�t1, t2= t0+�t2, p1z= pz0+�p1z, and p2z=−pz0+�p2z. As a
consequence, the spin Hamiltonian parameters are incre-
mented by

�J =
1

6U3 �4t0�12t0
2 − 5pz0

2 ���t1 + �t2� + pz0�− 20t0
2 + 3pz0

2 �

���p1z − �p2z�� , �97�

�Dz =
1

U3 �pz0t0�12t0 − pz0���t1 + �t2�

+ t0�4t0
3 − 3pz0

2 ���p1z − �p2z�� , �98�

��xx = ��yy = −
��zz

2
= −

8

3U3 t0pz0�pz0��t1 + �t2�

+ t0��p1z − �p2z�� . �99�

As for the case of v residual symmetry, there is no spin-
electric effect of the first order in electric field, and the cru-
cial condition for coupling to the electric field in this direc-
tion is weak splitting of the bridge orbitals in the molecular
field.

3. Residual Ry,� symmetry

Reduction in the symmetry of the bond, from the full C2v
to the group 	E ,Ry,�
, does not occur for any vector pertur-
bation. In terms of electric fields, this reduction in the sym-
metry would correspond to an inhomogeneous electric field
that points in the ez direction at the position of one of the
magnetic centers, and in the −ez direction at the position of
the other. This symmetry breaking can also happen when the
localized orbitals on the magnetic centers have lobes of op-
posite signs extending in the z direction and oriented oppo-
site to each other.

The most general Hubbard model parameters consistent
with the residual symmetry are

t1 = t2 = t , �100�

P1x = − P2x = pxy cos 	 , �101�

P1y = P2y = pxy sin 	 , �102�

P1z = P2z = pz. �103�

After the fourth-order Schrieffer-Wolff transformation,
the effective low-energy spin Hamiltonian has form �57�
with nonzero parameters,

J =
1

12U3 �pxy
4 − 2pxy

2 pz
2 + 3pz

4 − 8t2�pxy
2 + 5pz

2� + 48t2

+ 8pxy
2 �pz

2 − 4t2�cos 2	 + 2pxy
4 cos 4	� , �104�
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Dx =
1

U3 pxy�− 2t cos 	 + pz sin 	��pz
2 − 4t2 + pxy

2 cos 2	� ,

�105�

Dz = −
1

2U3 �4tpz + pxy
2 sin 2	��pz

2 − 4t2 + pxy
2 cos 2	� ,

�106�

�xx =
1

12U3 �− pxy
4 + 8pxy

2 pz
2 + 32t2�pxy

2 − pz
2�

+ pxy
2 �− 8�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	

− 48tpz sin 2	�� , �107�

�zx = �xz =
1

U3 pxy�2t cos 	 − pz sin 	��4tpz + pxy
2 sin 2	� ,

�108�

�yy =
1

6U3 �pxy
2 �1 + cos 2	� + 2pz

2��pxy
2 �− 1 + cos 2	� − 8t2� ,

�109�

�zz = − �xx − �yy = −
1

6U3 	− pxy
4 + 2pxy

2 pz
2 + 8t2�pxy

2 − 4pz
2�

+ pxy
2 �− 2�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	 − 24tpz sin 2	�
 .

�110�

The expansion from the C2v symmetric case gives �see the
discussion of the v residual symmetry in Sec. III D 1,

�J =
1

3U3 �4t0�12t0
2 − 5pz0

2 ��t + pz0�− 20t0
2 + 3pz0

2 ��pz� ,

�111�

�Dx =
1

U3 �4t0
2 − pz0

2 ��2t0 cos 	0 − pz0 sin 	0��pxy ,

�112�

�Dz =
2

U3 �pz0�12t0
2 − pz0

2 ��t + t0�4t0
2 − 3pz0

2 ��pz0� ,

�113�

��xx = ��yy = −
1

2
��zz = −

16

3U3 pz0t0�pz0�t + t0�pz� ,

�114�

��zx = ��xz =
4

U3 t0pz0�2t0 cos 	0 − pz0 sin 	0��pxy .

�115�

As in the case of v symmetry, the resulting interaction of
the spins on magnetic centers becomes dependent on the

angle 	 between the two P parameters. This dependence is
pronounced in the case of strong spin-orbit coupling and can
lead to the dependence of spin-electric effects on both the
geometry of the bond and the shape of the bridge orbital.

E. Bond modification and symmetries

Spin-electric coupling induced by the superexchange
through bridge atoms depends on the symmetry of the bridge
and the direction of the electric field. This symmetry reflects
on the resulting coupling of spins in an MN. In this section,
we combine the results of the Hubbard model study of the
individual bonds with the previous symmetry considerations
and provide rough estimates of the most promising spin-
electric coupling mechanism in the triangular and pentagonal
molecules.

The spin-electric coupling via superexchange is most sen-
sitive to the electric fields that does not break the initial C2v
local symmetry of the bond. This symmetry corresponds to
the electric field that lies in the plane of the molecule and
normal to the bond. All the other couplings require modifi-
cation of the bridge orbitals and are suppressed by a factor
d�E� /Ud, where Ud is on-site repulsion on the bridge. Assum-
ing that this repulsion is strong, we can model the spin elec-
tric coupling as a set of modifications of the spin interactions
�Hjj+1 between the neighboring magnetic centers, with
�Hjj+1� �E�

bond�, where E�
bond is the projection of the electric

field normal to the bond and lying in the molecule’s plane.
In the triangle, the strongest effects of electric field is

modification of exchange couplings �Jjj+1=�J0 cos�2j� /3
+�0�, where the angle �0 describes the orientation of the
in-plane component of the electric field, and �J0 is a
molecule-dependent constant. This modification leads to a
specific coupling of the in-plane components of chirality to
the electric field He−d

eff =dE� ·C, see Eq. �7�. Other types of
coupling are suppressed either due to weaker influence of
electric field on the bonds or due to the symmetry of the
molecule. If the spin-electric coupling is mediated by the
spin-orbit interaction, the suppression is by a factor of the
order �D� /J, and if the coupling is mediated by electric field,
the suppression factor is d�E� /J. Assuming the simplest case,
the modification of exchange coupling is the most promising
mechanism for spin-electric coupling in triangular mol-
ecules.

In the pentagons, the modification of spin-spin interaction
�Hjj+1 preferred by the superexchange mechanism is ineffi-
cient in inducing the spin-electric coupling of the molecule.
The pattern �Jjj+1 of exchange coupling constants induced by
an external electric field does not couple the states within the
lowest energy manifold. In order to couple the spins in the
pentagon to an external field, another mechanism is needed.
The modification of the Dzyalozhinsky-Moriya vectors
�Djz=�Dz0 cos�2j� /5+�0�, where �Dz0 is a molecule-
dependent constant, and �0 describes the orientation of the
in-plane component of the electric field, are preferred by the
superexchange bridge model. In the symmetry analysis, we
have found that this form of modification of spin-orbit cou-
pling does not induce spin-electric coupling. The same ap-
plies to the modifications of in-plane components Djj+1,x�y�.
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The main effect that gives rise to spin-electric coupling is the
modification of the exchange interactions �Jjj+1 in the pres-
ence of the original spin-orbit interaction Djj+1,z. Compared
to a triangle composed out of identical bonds, this interaction
will be weaker by a factor of �D j j+1� /Jjj+1.

In summary, within our model of the superexchange-
mediated spin-electric coupling, the most promising candi-
dates for the spin manipulation via electric field are triangu-
lar molecules. In pentagons, the best candidates are
molecules with strong spin-orbit interaction, and weakly split
bridge orbitals.

IV. EXPERIMENTAL SIGNATURES OF THE
SPIN-ELECTRIC COUPLING

Coherent quantum control of spins in an MN using elec-
tric fields can be achieved by resonant driving of the transi-
tions between the chirality eigenstates.42 At present, how-
ever, little is known about the effects of electric fields on the
spin states of molecular magnets. As a preliminary step, it is
thus useful to identify possible signatures of such a coupling
that are observable in the experiments routinely used to char-
acterize these systems.

In this section, we study the ways in which the spin-
electric coupling can be detected in electron spin resonance
�ESR�, in nuclear magnetic resonance �NMR�, and in the
thermodynamic measurement of an MN.

A. Electron spin resonance

ESR investigates transitions between states belonging to a
given S multiplet and having different spin projections M
along the magnetic field direction.67 This technique provides
information on the anisotropies of the spin system, as well as
on the chemical environment, and the spin dynamics.29 In the
following, we show how the effects of an external electric
field can show up in the ESR spectra of antiferromagnetic
spin rings by affecting both the frequency and the oscillator
strength of the transitions.

1. Triangle of s=1 Õ2 spins

We start by considering the simplest case of interest,
namely, that of a triangle of s=1 /2 spins with D3h symmetry.
The lowest energy eigenstates of the spin triangle, given in
Eq. �3� form an S=1 /2 quadruplet. The effective Hamil-
tonian Heff of the molecule in the presence of electric and
magnetic fields within this quadruplet is given by Eq. �15�.

We first consider the case of a static magnetic field per-
pendicular to the molecule’s plane �B  ẑ�. The eigenvalues of
Heff are then given by



� = �B + ���SO

2 + E2�1/2� , �116�

where E�d�E� ẑ�, B=�B
�g

2Bz
2+g�

2 B�
2 , = �1 /2 is the ei-

genvalue of Sz, and �= �1 is the eigenstate chirality in the
limit of vanishing electric field. In fact, �


��E=0 coincides
with �� ,� up to a phase factor. In the presence of electric
field, the eigenstates read

�

�� = 	2��SO + ��E2 + �SO

2 �1/2��+ 1,� + Ee−i��− 1,�
/D�,

�117�

where D�= 	E2+ ��SO+��E2+�SO
2 �1/2�2
1/2.

Electron spin resonance induces transitions between such
eigenstates. The transition amplitudes are given by the abso-
lute values of matrix elements of x component of the total
spin, taken between the states that the transition connects,

�
−1/2
� �Sx�
+1/2

−� � = − E2/D+1D−1, �118�

�
−1/2
� �Sx�
+1/2

� � =
�SO��SO + ��E2 + �SO

2 �1/2�
�D��2 . �119�

The corresponding frequencies are given by


+1/2
� − 
−1/2

−� = B , �120�


+1/2
� − 
−1/2

� = B + ��E2 + �SO
2 �1/2. �121�

As an illustrative example, we plot the frequencies and am-
plitudes of the ESR transitions as a function of the electric
field �Fig. 7�. While for E=0, these transitions can only take
place between states of equal Cz �red and green symbols
online, transitions with the larger amplitude at low fields, in
the figure and in the inset�, the electric field mixes states of
opposite chirality, thus transferring oscillator strength to two
further transitions, whose frequencies are independent of E
�blue symbols online, constant frequency transition in the
figure�. In the limit dE�Dz, the eigenstates of the spin
Hamiltonian tend to coincide with those of S12

2 , and ESR
transitions take place between states of equal S12. While the
eigenstates depend on the in-plane orientation of the electric
field, no such dependence is present in the frequencies and
oscillator strength of the ESR transitions. Besides, these
quantities are independent of the exchange coupling J and

FIG. 7. �Color online� Energy ��� of the ESR transitions in a
triangle of s=1 /2 spins as a function of the applied electric field E
that lies in the molecule’s plane so that d�E�=dE=E. The magnetic
field is B  ẑ and �0=g�BB, see Eqs. �120� and �121�. The diameter
of the circles is proportional to the transition amplitudes ����Sx�����,
Eqs. �118� and �119�. Here, ��� are the eigenstates of H in the
lowest energy S=1 /2 multiplet. Inset: eigenvalues �in units of Dz�
as a function of E=d�E�, in units 3Dz /4.
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depend on the value of the applied magnetic field only
through an additive constant ��0�.

The dependence of the ESR spectrum on the applied elec-
tric field is qualitatively different if the static magnetic field
is applied in-plane �e.g., B  x̂ and the oscillating field ori-
ented along ẑ�. In this case, the eigenvalues of Heff are

�
� = ���SO

2 + �E + �B�2�1/2, �122�

where = �1 /2 is the value of �Sx� in the limit of large
magnetic field �B�E ,�SO� and �= �1. The corresponding
eigenstates read

��
�� = 	ei���SO + �

����+ 1,+ 1/2� − �− 1,− 1/2��

+ �B + �E���+ 1,− 1/2� − �− 1,+ 1/2��
/D
�,

�123�

where

D
� = �2���SO + �

��2 + �B + �E�2�1/2. �124�

The expectation values of the total spin along the magnetic
field for each of the above eigenstates are given by the fol-
lowing expressions

��
��Sx��

�� = 2���SO + �
���B − �E��/�D

��2, �125�

which are independent of the in-plane direction of the elec-
tric field. The ESR transitions between such eigenstates in-
duced by a magnetic field that oscillates along the z direction
are given by the expressions

��
��Sz���

−�� =
��SO + �

����SO + ��
−�� + �E2 − B2�

D�D−� ,

��
��Sz���

� � = 0. �126�

Therefore, the application of the electric field shifts the en-
ergy of the transitions between states of opposite �, thus
removing their degeneracy; however, unlike the case B  ẑ, it
does not increase the number of allowed transitions.

In the case of tilted magnetic fields, the dependence of the
ESR spectrum on the applied electric field presents qualita-
tively different features �Fig. 8�. In particular, the spectrum is
dominated by two pairs of degenerate transitions that anti-
cross as a function of the electric field. Away from the anti-
crossing, the transitions with the largest oscillator strength
display frequency dependence on the electric field.

2. Pentagons of s=1 Õ2 spins

Triangles of s=3 /2 spins �not shown here� display the
same qualitative behavior as the one discussed above. In
contrast, chains including an odd number N�3 spins behave
differently. This is mainly due to the fact that the spin-
electric coupling �H does not couple directly the four eigen-
states of H belonging to the lowest S=1 /2 multiplet: such
coupling only takes place through mixing with the higher S
=1 /2 multiplet. As a consequence, the effects of the spin-
electric coupling tend to be weaker as compared to the case
of the triangle; besides, unlike the above case of the spin

triangle, they depend on the exchange coupling J. Illustrative
numerical results are shown in Figs. 9 and 10 for the cases of
a perpendicular and in-plane magnetic field, respectively. In
the former case, both the frequencies and amplitude of the
ESR transitions are hardly affected by the electric field in the
same range of physical parameters considered in Fig. 7. In
the case of an in-plane magnetic field, instead, a relatively
small shift in the transition energies is accompanied by a
strong transfer of the oscillator strength for values of the
spin-electric coupling exceeding the Dzyalozhinsky-Moriya
coupling constant.

FIG. 8. �Color online� Energy ��� of the ESR transitions in a
triangle of s=1 /2 spins as a function of the applied in-plane electric
field E so that d�E�=dE=E, and in the presence of the in-plane
magnetic field B  x̂. The diameter of the circles is proportional to
����Sz�����, Eqs. �120� and �121�. The states ��� are the eigenstates
of H in the lowest S=1 /2 multiplet. Inset: eigenvalues �in units of
Dz� as a function of d�E�=E, in units 3Dz /4.

FIG. 9. �Color online� Energy ��� of the ESR transitions in a
pentagon of s=1 /2 spins as a function of the electric field applied
in the molecule’s plane d�E�=dE=E. The Zeeman splitting, �0

=g�BB is set by the magnetic field B  ẑ, orthogonal to the mol-
ecule’s plane. The considered transitions are those between eigen-
states ����� belonging to the S=1 /2 multiplet of the spin Hamil-
tonian �figure inset�. Unlike the case of the spin triangle, these are
coupled to each other by the electric field via eigenstates belonging
to other multiplets, and therefore depends also on the exchange
constant J �here J /�SO=100�. The diameter of the circles is propor-
tional to ����Sx�����, and therefore to the transition amplitude.
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B. Nuclear magnetic resonance

The spin-electric Hamiltonian �H0 modifies nonuniformly
the superexchange couplings between neighboring spins.
This might not affect the projection of the total spin �as in the
case B  ẑ, see above�, but it generally affects the moment
distribution within the spin chain. Such effect can be inves-
tigated through experimental techniques that act as local
probes in molecular nanomagnets, such as NMR �Ref. 68� or
x-ray absorption.69 In NMR, the expectation value of a given
spin within the cluster can be inferred through the frequency
shift induced on the transitions of the corresponding nucleus.
The shift in the nuclear resonance frequency for the nucleus
of the i-th magnetic ion is ��=�A�sz,i�, where A is the con-
tact hyperfine interaction constant at the nuclear site. The
constant of proportionality A depends on the spin density at
the position of the nucleus and can be extracted from the
experiment by considering the polarized ground state M =S
at high magnetic fields.68 As in the case of ESR, the depen-
dence of the NMR spectra on the applied electric field quali-
tatively depends on the orientation of the static magnetic
field B with respect to the molecule. Unlike the case of ESR,
however, it also depends on the in-plane orientation of the
electric field, i.e., on the way in which the E breaks the
symmetry of the molecule.

1. Spin triangles

Let us start by considering a spin s=1 /2 triangle, with a
magnetic field applied perpendicular to the molecule plane
�B  ẑ�. In this case, the distribution of the spin projection
along z is given by the following expression:

�

��si,z�


�� = /3 + f
��E�cos�� + ��5/3 − i�� , �127�

where

f
��E� �

4E��SO + ���SO
2 + E2�1/2�

3�D��2 . �128�

Here, the expressions of the eigenstates �

�� and of D� are

given in Sec. IV A. For E=0, the three spins are equivalent
and �
�1/2

� �si,z�
�1/2
� �= �1 /6. If the electric field is finite and

oriented along one of the triangle sides �e.g., E r12, corre-
sponding to �=0�, then expectation values along z of spins 1
and 2 undergo opposite shifts, whereas that of spin 3 is left
unchanged: �E�s1,z�=−�E�s2,z�, where �E�si,z���si,z�E
− �si,z�E=0. This is shown in Fig. 11 for the ground state of the
spin Hamiltonian, but the above relations hold for any of the
four eigenstates �


�� belonging to the S=1 /2 quadruplet. If
the NMR frequency shifts ��i are larger than the correspond-
ing line widths, the single line at E=0 splits into three equi-
spaced lines, with intensity ratios 1:1:1. If, instead, the elec-
tric field is applied along a symmetry plane of the triangle
�e.g., E�r12, corresponding to �=� /2�, spins 1 and 2 re-
main equivalent and their magnetic moments display the
same electric field dependence, while the shift of the third
one is opposite in sign and twice as large in absolute value:
�E�s1,z�=�E�s2,z�=−�E�s3,z� /3. The intensity ratios of the
two NMR lines are, correspondingly, 1:2. The expectation
values for the remaining eigenstates can be derived by the
following equations: �E�
−1/2

� �si,z�
−1/2
� �=−�E�
+1/2

� �si,z�
+1/2
� �

and �

1 �si,z�


1�=−�E�

−1�si,z�


−1�. Therefore, at finite tem-
perature, the shifts in the expectation values of the three
spins are given by

FIG. 10. �Color online� Energy ��� of the ESR transitions in a
pentagon of s=1 /2 spins as a function of the applied in-plane elec-
tric field E so that d�E�=dE=E. The Zeeman splitting is set by an
in-plane magnetic field B  x̂, and �0=g�BB. The considered transi-
tions are those between eigenstates ����� belonging to the S=1 /2
multiplet of the spin Hamiltonian �figure inset�. Unlike the case of
the spin triangle, these are coupled to each other by the electric field
via eigenstates belonging to other multiplets and therefore depends
also on the exchange constant J �here J /�SO=100�. The diameter of
the circles is proportional to ����Sz�����, and therefore to the transi-
tion amplitude.

FIG. 11. �Color online� Expectation values of the z component
of s=1 /2 spins in a triangular molecule as a function of applied
electric field. The magnetic field is perpendicular to the ring plane
�B  ẑ�; the electric field is parallel and perpendicular to r12 in the
upper and lower panel, respectively. In the electric field along one
of the bonds �lower panel�, the spins that lie on that bond have the
same out-of-plane projections. The shadings �colors online� denote
the different spins.
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�E�si,z�
�E�
−1/2

+1 �si,z�
−1/2
+1 �

=

�
�

� cosh�
−1/2
�

kBT
�

�
�

cosh�
−1/2
�

kBT
� . �129�

If the field is oriented along the molecule plane �B  x̂�, the
expectation value of the three spins corresponding to each of
the eigenstates are given by the following expressions:

��
��si,x��

�� = g
��E� + �1/3�cos�� − 2i�/3� , �130�

where

g
��E� �

2

3

��SO + �
���B + �E�

�D��2 . �131�

If the magnetic field is parallel to the triangle plane, the
in-plane electric field can modify the total spin expectation
value along B. The changes that E induces in the magneti-
zation distribution within the triangle at zero temperature are
less varied than in the previous case �Fig. 11�. In fact, the
magnitude of the �E�si,z� is much smaller, and all the spins
undergo shifts of equal sign and slope. The NMR line, which
is slitted into three lines already for E=0, is rigidly shifted
by the applied electric field.

If the triangle is formed by half-integer spins s�1 /2, an
analogous dependence of the expectation values �si,z� on the
electric field is found. As an illustrative example, we report
in Fig. 12 the case of s=3 /2.

2. Pentagon of s=1 Õ2 spins

Spin chains consisting of an odd number of half-integer
spins present analogous behaviors but also meaningful dif-
ferences with respect to the case of the spin triangle. In par-
ticular, the spin-electric Hamiltonian �H0 does not couple
states belonging to the lowest S=1 /2 quadruplet directly

�i.e., matrix elements �i��H0�j�=0 for i , j�4�; these cou-
plings are mediated by states belonging to higher S=1 /2
multiplets that are higher in energy by a quantity �J. There-
fore, the effect of the electric field tends to be significantly
smaller than in the case of a triangle with equal Dz and E �see
Fig. 13� and depends also on the exchange coupling J.

C. Magnetization, polarization, and susceptibilities

The spin-electric coupling shifts the energy eigenvalues of
the nanomagnet, thus affecting thermodynamic quantities,
such as magnetization, polarization, and susceptibilities. In
the following, we compute these quantities in the case of the
s=1 /2 spin triangle as a function of the applied magnetic
and electric fields. Under the realistic assumption that the
exchange splitting J is the largest energy scale in the spin
Hamiltonian, and being mainly interested in the low-
temperature limit, we restrict ourselves to the S=1 /2 quadru-
plet, and use the effective Hamiltonian Heff in Eq. �21�.

The eigenenergies of the lowest S=1 /2 sector in the pres-
ence of electric and magnetic fields are

E�,� = ���B2 + �SO
2 + E2 + 2�E0

2, �132�

with B=�B
�g

2H
2+g�

2 H�
2 , E0= ��Bz�SO�2+��BE�2��1/4, and

Bz=�BgH. Note that these energies are the generalization
of the ones in the previous section, which were valid for
in-plane magnetic field only, and that the magnetic field Bi
��0Hi, with i=x ,y ,z. The partition function for N identical
and noninteracting molecules is Z=Z1

N, with Z1
=��,� exp�−�E�,�� being the partition function for one mol-
ecule, and �=1 / �kBT�. The free energy reads

F � − 1/� ln Z = − NkBT ln�2�
�

cosh��E��� , �133�

with E��E1/2,�. From this, we can derive different thermo-
dynamic quantities like the magnetization Mi=−�F /�Hi, the

FIG. 12. �Color online� Expectation values of the z component
of s=3 /2 spins in a triangular molecule as a function of applied
electric field. The magnetic field is perpendicular to the ring plane
�B  ẑ�; the electric field is parallel and perpendicular to r12 in the
upper and lower panels, respectively. The shadings denote the dif-
ferent spins.

FIG. 13. �Color online� Expectation values of the z component
of s=1 /2 spins in a pentagon as a function of applied electric field.
The magnetic field is perpendicular to the ring plane �B  ẑ�; the
electric field is parallel ��=0� and perpendicular ��=� /2� to r12 in
the upper and lower panel, respectively. The shadings �colors on-
line� denote the different spins.
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electric polarization Pi=−�F /�Ei, the heat capacity C=
−� /�T�� ln�Z� /���, and the corresponding susceptibilities:
�EiEj

=�Pi /�Ej =�2F /�Ei�Ej—the electric susceptibility,
�BiBj

=�Mi /�Hj =�2F /�Hi�Hj—the spin susceptibility, and
�EiBj

=�Pi /�Mj =�2F /�Ei�Hj—the spin-electric susceptibil-
ity. For the electric polarization components Pi we get

Pi =
NdEi

4 �
�=�1

cosh��E��
�

�=�1

sinh��E��
E�

��1 + �
B2

E0
2��1 − �i,z� , �134�

while for the magnetization components Mi we get

Mi =
Ngi�BBi

2 �
�=�1

cosh��E��
�

�=�1

sinh��E��
E�

��1 + �
�SO

2 �i,z + E2

E0
2 � , �135�

where again i=x ,y. Making use of the above expressions, we
can obtain the above defined susceptibilities

�EiEj
=

Pi

Ej
�ij − �PiPj +

Nd4EiEj

2 �
�=�1

cosh��E��

� � �
�=�1

�E� cosh��E�� − sinh��E��
2E�

3 �1 + �
B2

E0
2�2

+ �
B4

E0
6

sinh��E��
E�

� = �EjEi
, �136�

�BiBj
=

Mi

Bj
�ij − �MiMj +

Ngi
2gj

2BiBj

2 �
�=�1

cosh��E��
�

�=�1
� ��SO

2 �i,z + E2���SO
2 � j,z + E2�

E0
6

sinh��E��
E�

+
�E� cosh��E�� − sinh��E��

2E�
3

��1 + �
�SO

2 �i,z + E2

E0
2 ��1 + �

�SO
2 � j,z + E2

E0
2 �� = �BjBi

, �137�

�BiEj
= − �MiPj +

Ngi
2d2BiEj

2 �
�=�1

cosh��E��
�

�=�1
��

��SO
2 �i,z + E2���SO

2 � j,z + E2�

E0
6

sinh��E��
E�

+
�E� cosh��E�� − sinh��E��

2E�
3

��1 + �
�SO

2 �i,z + E2

E0
2 ��1 + �

B2

E0
2���1 − � j,z� = �EjBi

. �138�

The polarization P, magnetization M, and susceptibilities �,
Eqs. �134�–�138�, all depend on the spin-electric coupling
constant d. In the following, we analyze the details of this
dependence and identify the conditions suitable for extract-
ing the value of d from the measurable quantities.

1. Polarization and magnetization

The in-plane polarization of the molecule as a function of
the magnetic field is illustrated in Figs. 14 and 15. The po-
larization is a growing function of the magnetic field
strength, and it gets reduced by the normal component of the
field.

The low-temperature, kBT��SO, thermodynamic proper-
ties of a molecule with spin-electric coupling show a simple
dependence on the strength of external electric and magnetic
fields in the special cases of in-plane and out-of plane mag-
netic fields. We focus only on effects in leading orders in
electric field under the realistic assumption that the electric
dipole splitting is small compared to the SO splitting, i.e.,

E��SO. Also, we analyze two limiting cases: �i� kBT�E,
i.e., low-temperature regime, and �ii� kBT�E, i.e., high tem-
perature regime. However, we assume all temperatures �in
both regimes� to satisfy kBT��SO so that the spin-orbit split
levels are well resolved. In the first case �i�, we obtain for the
polarization

Pi ��
ndEiB
4E�B

for E � B

nd�SO
2 Ei

4�B
3

for E � B ,� �139�

while for the second situation �ii� we obtain

Pi �
nd�SO

2 Ei

4�B
3 �1 +

B2

�SO
2 ��B� , �140�

with �B=�B2+�SO
2 and n=N /V the density of molecules in

the crystal. We see that, for low temperatures, the electric
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polarization Pi ranges from being independent of the magni-
tude of the electric field �E�B� to a linear dependence on
the applied electric field E for large fields �E�B�. Also, the
polarization is strongly dependent on the magnetic field �lin-
ear in B� for low E fields, thus implying strong magnetoelec-
tric response.

We now switch to the other special case, namely, when
the external magnetic field is applied perpendicularly to the
spin triangles. The electric polarization now reads

Pi =
ndEi

4�E
tanh���E� , �141�

with �E=��SO
2 +E2. The polarization Pi does not depend on

the magnetic field B, and there are no spin-electric effects
present for this particular case.

Our results suggest that the spin-electric coupling can be
detected by measuring the polarization of the crystal of tri-
angular single molecule antiferromagnets that lie in parallel
planes in the in-plane electric and magnetic fields.

The out-of plane component Mz of the molecule’s magne-
tization is rather insensitive to the electric fields since any
effect of the applied in-plane electric field has to compete
with the spin-orbit coupling induced zero-field splitting �SO.
Since we expect to find weak coupling to electric field and
small coupling constant d, it would require very strong elec-
tric fields to achieve the regime d�E���SO. The in-plane
components of magnetization Mx and My, on the other hand,
show clear dependence on electric fields, Fig. 16. At low
magnetic fields the in-plane component of polarization ap-
pears and grows with the strength of in-plane electric fields.
However, the electric field dependence becomes less pro-
nounced when an additional magnetic field is applied normal
to the triangle’s plane.

In the dependence of the magnetization on electric fields,
and for the case of an in-plane magnetic field, we find the
same two main regimes as in the study of the polarization:
E�kBT �i� and E�kBT �ii�. In the first case �i� we obtain

Mi �
ngi�BBi

4�B
�1 +

E�SO
2

B�B
2 � , �142�

while for the second case �ii� we get

Mi =
ng��BBi

4�B
�1 −

3E2�SO
2

2�B
4 �1 −

��B
3

�� . �143�

The magnetization shows a strong dependence on the electric
field E, especially for E�B where this is linear in E field.
For low electric fields, however, the magnetization shows
only a weak dependence on the electric field, both at low and
high temperatures.

For the magnetization �along z� in the presence of a per-
pendicular �also along z� magnetic field we obtain

Mz =
ngz�B

4
tanh��B� , �144�

which is manifestly independent of the spin-electric coupling
constant d.
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FIG. 14. �Color online� Electric polarization Px �x component�
in Eq. �134� as a function of the magnetic field in the x direction.
The three lines correspond to various values of an additional exter-
nal electric field in the z direction. The plot is for the temperature
kBT=0.001�SO, and the electric field dEx=0.1�SO.
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FIG. 15. �Color online� Electric polarization Px �x component�
in Eq. �134� as a function of the magnetic field in the z direction.
The three lines correspond to various values of the external mag-
netic field in the x direction. The plot is for the temperature kBT
=0.001�SO, and the electric field dEx=0.1�SO.
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FIG. 16. �Color online� In-plane magnetization Mx in the x di-
rection in Eq. �135� as a function of the electric field Ex in the x
direction. The three lines correspond to a fixed value of an addi-
tional magnetic field in the z direction. The assumed temperature is
kBT=0.001�SO, while in the inset it is at higher temperature kBT
=0.1�SO.
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2. Susceptibilities

The effects of spin-electric coupling on the polarization of
a molecule show up in the electric susceptibility and the
spin-electric susceptibility. In Figs. 17 and 18, we plot the xx
and xy components of the electric susceptibility tensor as a
function of electric field for various strengths and orienta-
tions of an additional magnetic field. Both susceptibilities
show a high peak in the region of weak electric fields that is
suppressed by in-plane magnetic fields. The peaks are pro-
nounced at low temperatures and vanish as the temperature
exceeds the splitting of the two lowest-energy levels, kBT
�d�E�.

In the case of in-plane magnetic field, and weak coupling
to the electric field d�E���SO, we can calculate the electric
�EiEj

and spin-electric �EiBj
susceptibilities in the two limit-

ing cases �i� and �ii� defined above, with i=x ,y. For the
electric susceptibility we obtain

�EiEj
��

nd2B�E2�ij − EiE j�
4E3�B

for E � B

nd2�SO
2 �ij

4�B
3

for E � B� �145�

in the first case �i�, and

�EiEj
�

nd�SO
2 �ij

4�B
3 �1 +

B2

�SO
2 ��B� . �146�

in the second case �ii�. We see that for low E fields, the
electric susceptibility �EiEj

depends strongly on the applied
electric field, and even vanishes if the field is applied, say,
along the x or y directions. For large E fields instead, the
electric susceptibility becomes independent of the electric
field itself and, for low magnetic fields �i.e., for B��SO� this
reduces to a constant value �EiEj

=�ijnd2 /4�SO. At finite
�large� temperatures the electric susceptibility is still inde-
pendent of the electric field, but it is enhanced by thermal
effects �1 /T.

For the electric susceptibilities �EiEj
in perpendicular

magnetic field, we obtain

�EiEj
=

nd2

4�E
��ij −

EiE j

�E
� , �147�

where we assumed �SO�kBT, as in the previous section. As
expected, there is no dependence of �EiEj

on the B field, and
for vanishing electric field the electric susceptibility reduces
to a constant �EiEj

=�ijnd2 /4�SO.
The quantity of most interest in the present spin system is

the spin-electric susceptibility �EiBj
, i.e., the magnetic re-

sponse �electric response� in electric fields �magnetic fields�.
The nonzero spin-electric susceptibility allows for the elec-
tric control of magnetization and magnetic control of polar-
ization in the crystals of triangular MNs, even in the case
when the coupling between the molecules is negligible. In
addition, �EiBj

is nonzero only in the presence of spin-electric
coupling, i.e., when d�0.

The spin-electric susceptibility shows a characteristic
peak in weak electric fields which vanishes in an external
magnetic field, see Figs. 19 and 20. The peak in the diagonal
xx component, �ExBx

, moves toward the higher electric fields
and broadens as the magnetic field Bx increases. The peak in
the off-diagonal component �ExBz

, on the other hand, shifts
toward the lower electric fields and narrows as the in-plane
magnetic field increases. Both peaks disappear at high tem-
peratures, kBT��SO.

For in-plane magnetic fields and weak spin-electric cou-
pling the spin-electric susceptibility �EiBj

is

�EiBj
�

ndgj�BEiB j�SO
2

4EB�B
3 �148�

for the low temperature case �i�, while for the second case
�ii� we obtain
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FIG. 17. �Color online� Electric susceptibility �xx component�,
Eq. �136�, as a function of the electric field in x direction. The three
lines correspond to various values of the external magnetic field in
the x direction. The plot is for the temperature kBT=0.001�SO. In
the inset, the same quantity is plotted at a higher temperature,
kBT=0.1�SO.
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FIG. 18. �Color online� Electric susceptibility �xy component�,
Eq. �136�, as a function of the electric field in x direction. The three
lines correspond to various values of the external magnetic field in
the x direction. The plot is for the temperature kBT=0.001�SO. In
the inset the same quantity is plotted at a higher temperature kBT
=0.1�SO.
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�EiBj
� −

3n�SO
2 dgj�BEiB j

4�B
5 �1 −

��B
3

� . �149�

By inspecting the above expression, we can infer that for low
temperatures and low E fields the spin-electric susceptibility
shows no dependence on the absolute value of the electric
field E and only a weak dependence on the applied magnetic
field B. Moreover, when both fields are applied along one
special direction, say, along x, and assuming also B��SO,
the spin-electric susceptibility becomes �ExBx

=ndgi�B /4�SO,
i.e., it reaches a constant value. The finite temperature ex-
pression shows that the spin-electric response is reduced, as
opposed to the electric response where temperature increases
the response. Thus, for strong spin-electric response one
should probe the spin system at low temperatures �kBT
��SO� �Fig. 21�.

The diagonal out-of-plane component of the magnetic
susceptibility, �BzBz

, in the presence of an external magnetic
field in the x direction decays strongly in the applied electric

field along the x direction, Fig. 22. In electric fields, the �BxBx
component shows a peak that is reduced by the application
of the magnetic field in the x direction, Fig. 23.

We can derive the magnetic susceptibilities in the two
regimes. In the first case �i� we obtain �assuming now only
linear effects in E field�

�BiBj
=

ng�
2 �B

2

2�B
��ij −

BiB j

�B
2 +

E�SO
2

B�B
2 ��ij −

�3B2 + �B
2 �BiB j

B2�B
2 �� ,

�150�

with i , j=x ,y, while

�BzBz
=

ngz
2�B

2

2�B

�SO
2

BE
�151�

for Bz�SO�BE. At low temperatures the in-plane magnetic
susceptibility shows a linear dependence on the applied elec-
tric field E, thus allowing for a simple estimate of the electric
dipole parameter d from magnetic measurements. Note that
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FIG. 19. �Color online� Linear magnetoelectric tensor �xx com-
ponent� in Eq. �138� as a function of the electric field in the x
direction. The three lines correspond to various values of the exter-
nal magnetic field in the x direction. The plot is for the temperature
kBT=0.001�SO.
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FIG. 20. �Color online� Linear magnetoelectric tensor �xz com-
ponent� in Eq. �138� as a function of the electric field in the x
direction. The three lines correspond to various values of the exter-
nal electric field in the x direction. The plot is for the temperature
kBT=0.001�SO.
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FIG. 21. �Color online� Linear magnetoelectric tensor �xx com-
ponent� in Eq. �138� as a function of the magnetic field in the x
direction. The three lines correspond to various values of the exter-
nal electric field in the x direction. The plot is for the temperature
kBT=0.001�SO.
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FIG. 22. �Color online� Magnetic susceptibility �zz component�
in Eq. �137� as a function of the magnetic field in the x direction.
The three lines correspond to various values of the external electric
field in the x direction. The plot is for the temperature kBT
=0.001�SO. The inset represents the same quantity at a higher tem-
perature kBT=0.1�SO.
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for strong electric fields �E�B�, the magnetic susceptibility
can vanish since the magnetization does not depend on the
magnetic field anymore. However, such a regime would not
help to identify the electric dipole coupling strength d from
susceptibility measurements directly. The perpendicular
magnetic susceptibility shows a strong electric field depen-
dence �BzBz

�E−1 and can be used as an efficient probe for
extracting the electric dipole parameter d. In the second case
�ii� we obtain

�BiBj
=

ng�
2 �B

2

2�B
��ij −

BiB j

�B
2 −

E2�SO
2

�B
4 �3

2
��ij +

BiB j

�B
2 �

− ��B��ij +
4BiB j

�B
2 ��� , �152�

when i , j=x ,y, and

�BzBz
=

ngz
2�B

2B2

2�B
3 �1 + ��B

�SO
2

B2 � . �153�

The magnetic response increases with temperature. Also, in
this limit the dependence of the magnetic susceptibility on
the applied electric field is rather weak ��BiBj

�E��E2�, thus
this regime is also not suitable for observing spin-electric
effects.

For the magnetic susceptibility in the perpendicular mag-
netic field we find

�BzBz
=

�ngz
2�B

2

4
sech��B� , �154�

while for the in-plane magnetic susceptibility �Bx�y�Bx�y�
we

obtain

�Bx�y�Bx�y�
=

ngz
2�B

2�SO

2�B2 − �SO
2 �� B

�SO
�1 −

E2

B2�tanh��B� − 1�
�155�

in the limit B ,kBT��SO. We mention that for B perpendicu-
lar to the molecular plane there is no electric field E �mag-

netic field B� dependence of the magnetization Mi �electric
polarization Pi�. Thus, in order to see spin-electric effects
one needs to apply magnetic fields which have nonzero in-
plane components.

D. Heat capacity

Next we investigate the dependence of the heat capacity
on the applied electric and magnetic fields in different
regimes. The heat capacity is defined as C
=−� /�T�� ln�Z� /��� so that we obtain

C =
NkB�2

4 �
p=�1

�E1 + pE−1�2

cosh2���E1 + pE−1�
2

� . �156�

We consider the cases of perpendicular B field and in-plane
B field in the limit �SO�kBT. In the first case, i.e., for B  z
we obtain

C � NkB�2��E
2e−2��SO + B2e−2�B, B � kBT

�E
2e−2��SO +

B2

4
, B � kBT . �

�157�

The heat capacity C shows a quadratic dependence on the
applied electric field for the entire range of E-field strengths.
On the other hand, the magnetic field dependence of C is
nonmonotonic and shows a maximum for some finite B-field
strength Bmax�kBT. In the second situation, i.e., for B�z we
get

C � NkB�2�
B2E2

�B
2 e−2��BE/�B� + �B

2 e−2��B, E � kBT

B2E2

4�B
2 , E � kBT .�

�158�

As in the previous case, the dependence of the heat capacity
C is linear in E field for low E fields. However, for large E
fields the dependence is nonmonotonic and thus shows a
maximum for some finite electric field strength Emax�kBT.
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FIG. 24. �Color online� Heat capacity, Eq. �156�, as a function
of temperature in various electric fields.
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FIG. 23. �Color online� Magnetic susceptibility �xx component�,
Eq. �137� as a function of the electric field in the x direction. The
three lines correspond to various values of the additional magnetic
field in the z direction. The plot is for the temperature kBT
=0.001�SO.
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Note that in this case also the dependence on the magnetic
field is nonmonotonic, and thus we obtain a second maxi-
mum for Bmax�kBT. The effects of the spin-electric coupling
on the heat capacity are illustrated in Figs 24 and 25. We can
conclude from the above expressions that the strongest de-
pendence of the heat capacity on the electric field is when the
magnetic field is applied in plane, and then it is mostly qua-
dratic.

For the derivation of all the thermodynamic quantities
presented in the previous sections, we have restricted our-
selves to the contributions arising from only the lowest four
states, even though the spin system spans eight states in total.
This description is valid if the splitting between the energies
of S=1 /2 and S=3 /2 states is much larger than the tempera-
ture kBT. This splitting varies strongly with the applied mag-
netic field for B=3J /4 one of the S=3 /2 states �M =−3 /2�
crossing the M =1 /2 of the S=1 /2 states and, even more,
for B�3J /2 the M =−3 /2 becomes the spin system ground
states. Thus, for large magnetic fields our effective descrip-
tion in terms of only the S=1 /2 states breaks down and one
have to reconsider the previous quantities in this limit.

V. CONCLUSIONS

Electric fields can be applied at very short spatial and
temporal scales, which makes them preferable for quantum
information processing applications over the more standard
magnetic fields. Molecular nanomagnets, while displaying
rich quantum dynamics, have not yet been shown to respond
to electric fields in experiments. We have investigated theo-
retically the possibility of spin-electric coupling in molecular
nanomagnets using symmetry analysis and found that the
spin-electric coupling is possible in antiferromagnetic
ground-state manifolds of spin-1 /2 and spin-3 /2 triangles, as
well as in spin-1 /2 pentagon. The spin-electric coupling in
the triangle can exist even in the absence of spin-orbit cou-
pling, while the coupling in the pentagon requires the spin-
orbit interaction in the molecule. We have characterized the
form of the spin-electric coupling in all of these molecules
and presented the selection rules for the transitions between
the spin states induced by electric fields.

While the symmetry can predict the presence or absence
of the spin-electric coupling, it cannot predict the size of the

corresponding coupling constant. In order to find a molecule
suitable for electric manipulation, it is necessary to have an
estimate of the spin-electric coupling strength. For this pur-
pose, we have described the molecular nanomagnets in terms
of the Hubbard model and related the coupling constants of
the symmetry-based models to the hopping and on-site en-
ergy parameters of the Hubbard model. We have found that
the modification of the Hubbard model parameters due to the
electric field produces a spin-electric coupling of the same
form as predicted by the symmetry analysis. However,
within the Hubbard model, the coupling constants have a
clear and intuitive meaning in terms of the hopping and on-
site energies of the localized electrons. We have also studied
the superexchange interaction of the spins on the magnetic
centers through the bridge. If we assume that the interaction
of the localized spins is a property of the bridge alone, the
spin-electric coupling can be calculated by ab initio analysis
of the bridge alone, and not of the entire molecule.

Finally, we analyzed the role of spin-electric coupling in
standard experimental setups typically used for the charac-
terization of molecular nanomagnets. We find that the spin-
electric coupling can be detected in the ESR and NMR spec-
tra that probe the local spins. Also, thermodynamic
quantities, like the polarization, magnetization, linear mag-
netoelectric effect, and the specific heat, show signatures of
spin-electric coupling in the triangular molecules. Thus, our
results set a path toward finding suitable molecules that ex-
hibit spin-electric effects and how they can be identified ex-
perimentally.

In this work, we have focused on the spin rings with an
odd number of magnetic centers �odd spin rings�, whose
low-energy spectrum is dominated by frustration effects. The
odd spin rings, due to frustration, possess a fourfold degen-
erate ground state multiplet, which can be split by electric
fields. As opposed to the odd spin rings, the ground states of
even-spin rings is usually a nondegenerate S=0 state, sepa-
rated from the higher energy states by a gap of the order of
exchange coupling J. Coupling of the electric field to these
states can thus proceed only via excited states, and the cou-
pling strength is reduced by d�E� /J. Similarly, in odd-spin
rings where the spin frustration is removed by a lowered
symmetry, the ground-state multiplet consists of an S=1 /2
Kramers doublet, which cannot be split by electric fields.
Therefore, the odd spin rings with equivalent magnetic cen-
ters seem to be the most suitable candidates for observing the
spin-electric coupling and using it for quantum control of
spins.
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APPENDIX A: SPIN STATES IN TERMS OF THE c�
†

OPERATORS

In this appendix, we show the expressions for the three-
electron symmetry-adapted states ���

i,� in Eqs. �29� and �37�
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FIG. 25. �Color online� Heat capacity, Eq. �156�, at low tem-
perature as a function of external electric field.
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in terms of the symmetry adapted creation operators c�,
† .

Making use of Eq. �46� we obtain

��A2�
1� =

i�
�3

�cA1�̄

† cE+�

† cE−�

† + cE+�̄

† cE−�

† cA1�

† − cE−�̄

† cE+�

† cA1�

† ��0� ,

�A1�

��E+�
1� =

i
�3

�cA1�̄

† cA1�

† cE+�

† + �cE+�̄

† cE+�

† cE−�

† + �̄cE−�̄

† cE−�

† cA1�

† ��0� ,

�A2�

��E−�
1� =

i
�3

�cA1�̄

† cA1�

† cE−�

† + �cE−�̄

† cE−�

† cE+�

† + �̄cE+�̄

† cE+�

† cA1�

† ��0� ,

�A3�

��A1�
2� =

�

�2
�cE+�̄

† cA1�

† cE−�

† + cE−�̄

† cA1�

† cE+�

† ��0� , �A4�

��A2�
2� = −

i�

�6
�2cA1�̄

† cE+�

† cE−�

† + cE+�̄

† cA1�

† cE−�

† − cE−�̄

† cA1�

† cE+�

† �

��0� , �A5�

��E+�
1

2 � =


�2
��̄cA1�̄

† cA1�

† cE+�

† + �cE−�̄

† cA1�

† cE−�

† ��0� , �A6�

��E−�
1

2 � =


�2
��̄cA1�̄

† cA1�

† cE−�

† + �cE+�̄

† cA1�
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2
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† cA1�

† cE−�

† − 2�cE+�̄

† cE+�
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† �
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2
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where  stands above for sign��.

APPENDIX B: HSO, He−d
0 , AND He−d

1 MATRIX ELEMENTS

For the SOI matrix elements we obtain

��A1�
2�HSO��A2�

1� =
2i
SO

�2
 , �B1�

��E
��

1
2 �HSO��E

��
1 � = �

i�̄
SO

�2
 , �B2�

��E
��

2
2 �HSO��E

��
1 � = �

�3�
SO

�2
 , �B3�

��A1�
2�HSO��A2�

2� = − 2
SO, �B4�

��E
��

1
2 �HSO��E

��
1

2 � = � 
�3

2

SO, �B5�

��E
��

1
2 �HSO��E

��
2

2 � = �
i
SO

2
 , �B6�

��E
��

2
2 �HSO��E

��
2

2 � = � 
�3

2

SO, �B7�

while the remaining terms are equal to zero. For the electric
dipole matrix elements we obtain

��E−�
1

2 �He−d
0 ��E+�

1
2 � =

a

2
���̄ − 1�Ex + ��3Ey� , �B8�

��E−�
2

2 �He−d
0 ��E+�

2
2 � =
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2
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0 ��E+�
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We propose a general scattering-matrix formalism that guarantees the charge conservation at junctions between
conducting arms with arbitrary spin interactions. By using our formalism, we find that the spin-flip scattering
can happen even at nonmagnetic junctions if the spin eigenstates in arms are not orthogonal, which has been
missed in previous similar studies. We apply our formalism to the Aharonov-Bohm interferometer consisting of
an n-type semiconductor ring with both the Rashba spin-orbit coupling and the Zeeman splitting. We discuss the
characteristics of the interferometer as a conditional (unconditional) spin switch in the weak (strong) -coupling
limit.
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I. INTRODUCTION

Coherent transport of electrons through mesoscopic rings
or structures with nontrivial geometries has been extensively
investigated both theoretically1–22 and experimentally23–28 in
recent decades. The studies have aimed at exploring the
quantum interference in solid-state circuits and also revolu-
tionizing electronic devices in such a way as to exploit the
quantum effects. At the heart of the studies of mesoscopic
rings, there are two hallmarks of quantum coherence: the
Aharonov-Bohm29 (AB) and Aharonov-Casher30 (AC) effects.
These two effects are related to geometric phases due to the
coupling of a charge to a magnetic flux and of a spin degree
of freedom to an electric field via spin-orbit coupling (SOC),
respectively. Since the AB oscillations in conductance through
normal-metal rings were revealed,1 it has been found that the
effects can lead to diverse quantum interference phenomena
such as conductance fluctuations,23 persistent charge and spin
currents,2,4 the AB effect for excitons,6 the mesoscopic Kondo
effect,7 spin switching,8,12 spin filtering,15 and the spin Hall
effect.20 From a practical point of view, the quantum coherent
phenomena in mesoscopic rings, especially using the spin
degrees of freedom, have been applied to the fast-growing
field of spintronics31,32 and are now known to provide the
easy-to-control devices that generate, manipulate, and detect
the spin-dependent current or signal.

Mesoscopic rings fabricated in semiconductors offer the
intriguing possibility to study simultaneously the AB and
AC effects because of the SOC naturally present in crystals.
The SOC itself can have various forms in different materials,
leading to diverse current oscillations.12,26,27 In addition, the
strength of the SOC can be controlled by tuning a backgate
voltage to the device.33 Among various forms of SOC, the
Rashba SOC, originating from the broken structural inversion
symmetry, is linear in momentum and easy to analyze. The
studies of spin interference9,12 subject to the Rashba SOC have
shown that the Rashba coupling strength can modulate the
unpolarized current, suggesting the possibility of all-electrical
spintronic devices. Recently, a number of experimental26,27

and theoretical18,20,21 studies have investigated transport of
heavy holes in rings, whose SOC is cubic in momentum. In
the presence of external magnetic fields, the Zeeman splitting

is operative together with the SOC and its effect should be
taken into account.5,8,10,14,17

The general framework for the theoretical studies of the
mesoscopic transport relies on the Landauer approach,34 in
which the tunneling between conduction modes in electrodes
and mesoscopic systems can be described in terms of a
scattering matrix. The scattering matrix relates the amplitudes
and phases of the outgoing and incoming modes at a coherent
scatterer. While the explicit form of the scattering matrix
depends on the details of the physical nature of the scatterer,
there is an essential constraint on it, namely the charge-
current conservation. This conservation constraint should be
fulfilled naturally as long as the scattering matrix is obtained
by directly solving the Schrödinger equation containing the
scatterer. However, the exact solution is available only in few
simple cases or by numerical methods, so special caution
is necessary when building up the correct scattering matrix
in any other way. A problem is that the guarantee of the
charge-current conservation looks less obvious if the charge
transport is entangled with the spin degrees of freedom, which
may be affected by the scatterer and/or the spin-dependent
interactions.

We have found that this conservation problem can arise
even in a simple and well-studied case, namely the AB
interferometry formed by a semiconductor ring with both the
Rashba SOC and the Zeeman splitting present. In this case,
the ring modes form nonorthogonal spin textures; the spins of
the modes at the same energy are not orthogonal to each other
at any point in the ring. No shared single spin axis exists, and
the connection between the lead and ring modes whose spins
cannot be ever aligned in parallel then becomes a nontrivial
problem; a spin mixing arises. We will argue in the text that any
previous theoretical studies considering both the effect of the
Rashba SOC and the Zeeman splitting have failed to satisfy the
charge-current conservation unless the whole system is solved
exactly by, for example, numerical methods.

Our goal in this work is to find a general theoretical
formalism that guarantees the charge-current conservation at
the lead-ring junctions by its own way of constructing the
scattering matrix in the presence of arbitrary spin interactions
in the ring. We treat the problem by introducing artificial
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φb

FIG. 1. (Color online) Schematic diagram of the buffered
Aharonov-Bohm interferometer. The upper and low arms of the ring
are connected to the junctions through buffers whose angular size is
given by φb.

buffer regions free of spin interactions in the vicinity of
every junction, as shown in Fig. 1. The spin-mixing effect
is then taken care of at the interfaces between the buffers and
the spinful regions in a standard way. Finally, the original
system is recovered in the limit of vanishing buffers. By
using our formalism, we first recover the known results in
the case of orthogonal spin textures and interpret the role
of buffers. Secondly, we apply our formalism to the n-type
semiconductor ring with both the Rashba SOC and the Zeeman
splitting. We find that (i) our formalism truly guarantees the
charge-current conservation at every junction, giving rise to
correct predictions; (ii) the spin-flip scattering can happen even
if the junctions are defined as nonmagnetic, which cannot be
observed in any previous studies; (iii) the ring interferometer
can act as a conditional (unconditional) spin switch in the
weak (strong) -coupling regimes if some conditions are met.
Although similar studies have been done in recent decades,
our analysis is, to the best of our knowledge, the first one
that strictly guarantees the charge-current conservation and
treats the Rashba SOC and the Zeeman splitting on an equal
footing.

Our paper is structured as follows. In Sec. II, previous
studies are summarized, and our formalism is introduced and
derived in detail. The case of orthogonal spin texture is treated
within our formalism in Sec. III. Section IV is devoted to the
study of a case of nonorthogonal spin states in which both the
Rashba SOC and the Zeeman splitting are taken into account.
Finally, we conclude and summarize in Sec. V.

II. GENERAL FORMALISM TO BUILD A
CURRENT-CONSERVING SCATTERING MATRIX

A. Limitations of previous studies

The scattering in the mesoscopic system is frequently
characterized in terms of the scattering matrix, which defines
the amplitudes and phases of the scattered states relative to the
injected states. The scattering matrix depends on the details of
the system but is constrained by the laws of conservation.
The most important properties that the scattering matrix
obeys are the charge-current conservation, if there is neither
a source nor a sink in the scatterer, and the spin-current

conservation, if the scatterer is nonmagnetic. The conservation
conditions, together with some symmetry-based arguments,
greatly simplify the form of the scattering matrix so that it
can be described by a few parameters. For example, the most
frequently used scattering matrix at the lead-ring junction is
controlled by a single parameter ε that is varied between 0 (no
tunneling) and 1/2 (perfect tunneling), being expressed as⎡⎢⎣ r̃

ũout

d̃out

⎤⎥⎦ =

⎡⎢⎣−ζp
√

ε
√

ε√
ε

ζ

2 (p − 1) ζ

2 (1 + p)√
ε

ζ

2 (1 + p) ζ

2 (p − 1)

⎤⎥⎦
⎡⎢⎣ s̃

ũin

d̃ in

⎤⎥⎦, (1)

with p ≡ √
1 − 2ε and ζ = ±1. The scattering matrix con-

nects the flux-normalized amplitudes (s̃, ũin, d̃ in) of incoming
waves from the lead, upper, and lower arms of the ring to those
(r̃ , ũou, d̃ou) of the outgoing waves. Here the scattering to and
from the upper and lower arms is assumed to be symmetric.

This simple construction of the scattering matrix can be
extended further to the magnetic case in which spin-dependent
interactions exist in the arms. In the presence of the Zeeman
splitting, one can treat the scattering of spin up and down
separately, each of which is described by the simple scattering
matrix mentioned before. For the case of linear-in-momentum
SOC such as the Rashba SOC, one can identify a common
spin polarization axis at the junction so that spin-separate
treatment11 is still possible. In the perfect tunneling limit,
the scattering matrix can be derived analytically by applying
Griffith’s boundary condition3,11 at the lead-ring junctions,
which demands that the wave function is continuous and
that the spin-current density is conserved. Here the second
boundary condition is merely the charge-current conservation
for each spin. In this way, the charge-current conservation
is satisfied. It should be noted that here the spin-separate
treatment is possible because all the arms meeting at a junction
share a single spin polarization axis and the spin is conserved
in the scattering at the junction.

However, the latter assumption is quite fragile and generally
fails in the presence of general spin-dependent interactions in
the arms. The simple cases in which it can happen are the
n-type semiconductor ring with both the Rashba SOC and
the Zeeman splitting, and the p-type semiconductor ring with
cubic-in-momentum SOC.21 As will be shown in Sec. IV, the
ring eigenstates turn out to be neither parallel nor orthogonal
to each other in the spin space at all, denying a common spin
polarization axis. The scattering into the ring then involves all
the spin states, preventing the commonly used spin-separate
treatment. The extended Griffith’s boundary condition, apply-
ing both the charge- and spin-current conservation, would not
succeed in this case because in the nonorthogonal spin texture,
as will be shown in our calculations, the spin current is not
conserved at junctions in general: spin is no longer a good
quantum number.

The previous studies considering the effect of both the
Rashba SOC and the Zeeman splitting have dealt with
this situation by using various methods: the transfer-matrix
method accompanied with wave-function matching,5,8,10 the
perturbative approach,14 the path-integral approach,17 and
numerical calculations based on tight-binding models.13,16,22

Among them, it is only the numerical methods13,16,22 that
fulfill the charge-current conservation. In this approach,
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the Schrödinger equation projected into the tight-binding
model is numerically solved so that the obtained electronic
transport should automatically satisfy the conservation law.
The numerical approach is exact and can provide solutions
even when no analytical solution is available. However, it
is less adequate in capturing the qualitative understanding
of the scattering processes taking place at junctions: The
tight-binding model to which the numerical methods resort
suffers from the finite-lattice-size effect, so it may not clearly
clarify the role of the scattering at the junctions.

The perturbative and the path-integral approaches are, in
principle, approximate methods so that the conservation is
not strictly enforced. In Ref. 14, while the Rashba SOC is
taken exactly, the Zeeman splitting is added as a perturbation
without any consideration of conservation. The path-integral
formalism used in Ref. 17 may be conceptually useful to
interpret the result in terms of phases or winding numbers.
However, it is limited by its semiclassical treatment.

A few groups5,8,10 have performed serious studies on the
AB interferometry in the presence of the nonorthogonal spin
texture by exploiting the transfer-matrix method. The transport
is described by a flux-normalized transfer matrix that relates
the amplitudes within each arm of the ring from one junction to
the other junction. In obtaining the transfer matrix, they have
taken into account the state dependence of the propagation
velocities and the nonorthogonality of the spin states. However,
there are problems with regard to their treatment of lead-ring
scattering at junctions. First, they have assumed that there is
no spin-flip scattering at lead-ring junctions at all, and they
defined the scattering matrix on the assumption by hand. As
our theory reveals, however, this is generally not the case in
the presence of arbitrary spin interaction in the ring. Secondly,
they determine the relation between the lead and the ring modes
solely by the wave-function matching. From their assumption,
the scattering matrix for each spin is defined with respect
to the spin-polarized states along the z axis, adopting the
spin-separate treatment. The amplitudes of the nonorthogonal
ring eigenstates are then determined via the continuity of the
wave function with the injected state obtained by the scattering
matrix. Considering that the scattering matrix in the form
of Eq. (1) should be defined with respect to the coefficients
of flux-normalized modes, this wave-function matching does
not fulfill the charge-current conservation at all. The mode
dependence of the propagration velocity is not reflected in the
construction of the scattering matrix. No unitarity property
of the scattering matrix with respect to the flux-normalized
lead and ring modes is guaranteed. Hence, in their works the
conservation at each junction is not checked, while strangely
the total source-to-drain transport through the ring seems to
obey the conservation law. We suspect that their final results
might be wrong since the charge-current conservation is not
strictly enforced at each junction.

B. Buffered structure

One can then issue several questions. Is there a general
framework to build the spin-dependent scattering matrix that
guarantees satisfying the conservation laws by construction?
What is the smallest number of controlling parameters required
to describe the scattering in the presence of arbitrary spin-

dependent interactions? Can the spin-flip scattering happen
even if the scatterer itself is nonmagnetic?

In order to answer these questions, we propose a general
formalism to build up a consistent (spin-dependent) scattering
matrix for arbitrary spin interaction. The key idea of our
method is to insert artificial buffer regions between the scatter
and arms, as depicted in Fig. 1. The buffer regions are
assumed to be free of any spin-dependent interaction. Hence,
the scattering between buffer regions can be described by the
simple spin-separate scattering matrix. The complexity due to
the spin-dependent interaction results in its effect at interfaces
between buffers and arms. The wave functions at interfaces
are matched in a systematic way by using the continuity of
the wave function and its current density. This wave matching,
together with the scattering matrix between buffer states, leads
one to find the scattering matrix between states of arms. The
size of artificial buffers is then shrunk to zero in order to
recover the original configuration. The shrinking does not
remove all the effects of buffers because the effect of scattering
at buffer-arm interfaces still remains. In the end, the scattering
matrix connecting states of arms is constructed.

The advantages of our methods are listed as follows: (i) The
scattering matrix obtained guarantees that the conservation
laws will be satisfied. This is because the scattering between
buffer states and the scattering at buffer-arm interfaces are set
up to conserve the charge and spin currents. (ii) It systemati-
cally identifies the minimal set of controlling parameters that
the scatterer can have. (iii) It provides a reasonable explanation
for the effect of spin interactions in arms on the spin-dependent
(possibly spin-flip) scattering even when the scatterer itself is
nonmagnetic.

In the following sections, we build up our formalism,
especially focusing on the AB interferometer shown in Fig. 1.
The system consists of two leads and one ring. Each part
is assumed to be narrow enough to be regarded as a one-
dimensional conductor with a single transverse mode. The
scattering matrix between the lead and the ring then becomes a
6 × 6 matrix. We will construct a general scattering matrix for
a ring with arbitrary spin interaction. Our formalism, however,
is quite general and can be applied to mesoscopic circuits with
any geometry.

C. Arms: Lead part

The leads are composed of normal conductors directed
along the x direction. They are free of any magnetic interaction,
and their Hamiltonians read

Hlead = p2
x

2m∗
0

+ U0, (2)

where m∗
0 is the effective mass of electrons in the leads and

U0 is the minimum energy of the transverse mode. Thanks to
the spin degeneracy, the spin polarization axis of eigenstates
can be chosen arbitrarily. Eigenstates of the leads with the
eigenenergy E are then given by

e±iqxχ�μ, (3)
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with the wave number q = √
2m0(E − U0)/h̄ and the spinors

χ�+ =
[

e−iϕ�/2 cos ϑ�

e+iϕ�/2 sin ϑ�

]
, χ�− =

[
−e−iϕ�/2 sin ϑ�

e+iϕ�/2 cos ϑ�

]
. (4)

Here μ = ± is the spin index and � = L,R is the lead index.
The angles (ϑ�,ϕ�) define the spin-polarization axis for the
injection from the left lead (� = L) and the spin detection axis
in the right lead (� = R), respectively. In terms of coefficients
of injected (sμ), reflected (rμ), and transmitted (tμ) waves, the
general wave functions in the leads are given by

	L(x) =
∑

μ

[sμeiqx + rμe−iqx]χLμ

= UL(eiqxs + e−iqxr), (5a)

	R(x) =
∑

μ

tμeiqxχRμ = UReiqxt, (5b)

where

s ≡
[

s+
s−

]
, r ≡

[
r+
r−

]
, t ≡

[
t+
t−

]
(6)

and

U� ≡
[

e−iϕ�/2 cos ϑ� −e−iϕ�/2 sin ϑ�

e+iϕ�/2 sin ϑ� e+iϕ�/2 cos ϑ�

]
. (7)

The group velocities of the eigenstates are ±v0 ≡ ±h̄q/m0,
and the charge-current densities in the leads are

JL = v0

∑
μ

(|sμ|2 − |rμ|2), JR = v0

∑
μ

|tμ|2. (8)

D. Arms: Ring part

The ring can be either of a normal conductor, an n-type
semiconductor, or a p-type semiconductor. It is narrow enough
that the radial dimension is constant with the radius ρ0 and the
degree of freedom is solely described by the azimuthal angle
φ. We assume that an external magnetic field B is applied so
that the ring encloses a magnetic flux �, or the dimensionless
flux f = �/�0 with the flux quantum �0 = hc/e, and the
spin splitting arises due to the Zeeman term,

HZ = g∗μB

2
σ · B, (9)

where g∗ is the Landé g factor, μB is the Bohr magneton, and σ

is the Pauli matrices. For semiconductor rings, an appropriate
SOC, HSO, is operative [see Eq. (52) for the Rashba SOC].
The ring Hamiltonian is then given by

Hring = E0(−i∂φ − f )2 + HSO + g∗μB

2
σ · B, (10)

with

E0 = h̄2

2m∗ρ2
0

, (11)

where m∗ is the effective mass in the ring. In general, the
Hamiltonian has four eigenstates labeled by the spin index μ =
± and the propagation direction  = + (counterclockwise)
and − (clockwise) at a given energy E. Each eigenstate is

endowed with a wave number k

μ, the solution of the dispersion

relation [see Eq. (54), for example]. The wave number can be
a real (propagating state) or a complex number (evanescent
wave). The general form of the eigenstates is then written as

φ
μ(φ) = ei(k

μ+f )φ

[
a


μ(φ)

b

μ(φ)

]
(12)

[compare with Eq. (53), for example]. In terms of coefficients
u


μ for the upper arm (U) and d


μ for the lower arm (D), the

ring wave functions are given by

	U(φ) = ∑
μ

u

μφ


μ(φ) = ∑



U(φ)K(φ)u, (13a)

	D(φ) = ∑
μ

d

μφ


μ(φ) = ∑



U(φ)K(φ)d, (13b)

where

u ≡
[

u

+

u

−

]
, d ≡

[
d


+

d

−

]
(14)

and

U(φ) ≡
[

a

+(φ) a


−(φ)

b

+(φ) b


−(φ)

]
, K(φ) ≡ eif φ

[
eik


+φ 0

0 eik

−φ

]
.

(15)

The group velocity of each eigenstate, v

μ, is given by the

expectation value 〈φ
μ|vφ|φ

μ〉 of the velocity operator vφ . Note
that the SOC affects the velocity operator, and in general the
energy eigenstate is not the eigenstate of the velocity operator.
If the time-reversal symmetry is not broken, the relations v+

+ =
v−

− and v−
+ = v+

− hold generally no matter what the SOC is. In
terms of the group velocities, the charge-current densities in
the ring are expressed as

JU = ∑
μ

(v+
μ |u+

μ |2 − v−
μ |u−

μ |2), (16a)

JD = ∑
μ

(v+
μ |d+

μ |2 − v−
μ |d−

μ |2) (16b)

for the upper and lower arms, respectively. For later use, we
define the action of the velocity operator on the wave function,

vφ	U(φ) = ∑


V(φ)K(φ)u, (17a)

vφ	D(φ) = ∑


V(φ)K(φ)d, (17b)

where the 2 × 2 matrix V(φ) depends on the details of the
system [see Eq. (60b), for example].

E. Buffers

In our formalism, no buffer region is inserted between the
leads and the junctions. This is because the leads, just like
the buffers, are free of spin-dependent interactions and the
scattering at the interface between the lead and the buffer
becomes trivial. On the other hand, as shown in Fig. 1, the
buffer regions are inserted between the junctions and the ring
arms. In the AB interferometer, therefore, four buffer regions
with the same angular size φb are defined in the both sides of
upper and lower arms. Having the junctions at the angles φL

and φR = 0, the interfaces between the buffers and the arms
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are located at φUR = φb, φUL = φL − φb, φDL = φL + φb, and
φDR = 2π − φb. Since the buffers are free of any spin-
dependent interactions, the Hamiltonian in buffers reads

Hbuffer = E0(−i∂φ − f )2 + Ub, (18)

where Ub is the offset in the band bottom with respect to the
ring part. With no spin interaction, we are free to choose the
spin polarization axes in them, and the axis of each buffer is
chosen to be that of the nearest-neighboring lead. Eigenstates
of the buffers with the energy E, labeled by μ and , are then
given by

ei(κ+f )φχ�μ, (19)

with the wave number κ = √
(E − Ub)/E0 and the nearby-

lead index �. By defining the coefficients u


�μ for the upper
buffers close to the side �, and d



�μ for the lower buffers close
to the side �, the buffer wave functions are written as

	U�(φ) = ∑
μ

u


�μei(κ+f )(φ−φ�)χ�μ = ∑


U�K

b (φ)u

� , (20a)

	D�(φ) = ∑
μ

d


�μei(κ+f )(φ−φ�)χ�μ = ∑


U�K

b (φ)d

� , (20b)

where

u


� ≡
[

u


�+
u



�−

]
, d



� ≡
[

d


�+
d



�−

]
, (21)

and

K

b ≡ ei(κ+f )(φ−φ�)

[
1 0

0 1

]
. (22)

The group velocities of the eigenstates are simply given by
±vb ≡ ±h̄κ/mρ0, which is the eigenvalue of the velocity
operator vφ = (h̄/mρ0)(−i∂φ − f ), and the charge-current
densities in the buffers are

JU� = vb

∑
μ

(|u+
�μ|2 − |u−

�μ|2), (23a)

JD� = vb

∑
μ

(|d+
�μ|2 − |d−

�μ|2), (23b)

for the upper and lower buffers, respectively. For later use, we
define the wave function applied by the velocity operator,

vφ	U�(φ) = vb U�(K+
b u+

� − K−
b u−

� ), (24a)

vφ	D�(φ) = vb U�(K+
b d+

� − K−
b d−

� ). (24b)

F. Lead-buffer scattering matrices

With the buffered structure, the scattering at the junctions
connects the states in the leads and the buffers. Since both
the leads and the buffers have no magnetic interaction, the
conventional scattering matrix can be defined to describe the
scattering at the junctions. The reasonable conditions1 for
the scattering matrix are that (i) no spin flip takes place, (ii) the
scatterings from and to the upper and lower arms are the same,
(iii) no phase shift is acquired, and (iv) the charge current
is conserved. The first condition makes the scattering matrix
diagonal in the spin space, and due to the second condition
the scattering matrix with respect to the normalized flux is

symmetric in the exchange between the upper and lower arms.
The most general lead-buffer scattering matrix satisfying the
above conditions is then1

S =
[

S11 S12

S21 S22

]
=

[
S0,11 ⊗ σ0 S0,12 ⊗ σ0

S0,21 ⊗ σ0 S0,22 ⊗ σ0

]
, (25)

with

S0,11 = −ζ
√

1 − 2ε, (26a)

S0,12 =
√

vb

v0
ε
[

1 1
]
, (26b)

S0,12 =
√

v0

vb

ε

[
1
1

]
, (26c)

S0,22 =
[

ζ

2 (
√

1 − 2ε − 1) ζ

2 (1 + √
1 − 2ε)

ζ

2 (1 + √
1 − 2ε) ζ

2 (
√

1 − 2ε − 1)

]
, (26d)

with ζ = ±1. The submatrices S0,11, S0,12, S0,21, and S0,22

describe the lead-to-lead, arm-to-lead, lead-to-arm, and arm-
to-arm scatterings, respectively. Here the controlling param-
eter ε varies from 0 (perfect transmission) to 1/2 (complete
decoupling), and σ0 is a 2 × 2 identity matrix in the spin space,
indicating the absence of spin-flip scattering. Throughout this
paper, we choose ζ = +1 considering the case of phase-
conserving scattering between upper and lower arms.

Assuming that both junctions have the same scattering
matrix, one can set up linear equations for the coefficients
of lead and buffer states: at the left junction,

r = S11s + S12c
←
L , (27a)

c→
L = S12s + S22c

←
L , (27b)

and at the right junction,

t = S12c
→
R , (28a)

c←
R = S22c

→
R , (28b)

where the left- and right-moving buffer states are defined as

c←
� ≡

[
u+

�

d−
�

]
=

⎡⎢⎢⎢⎢⎣
u+

�+
u+

�−
d−

�+
d−

�−

⎤⎥⎥⎥⎥⎦, c→
� ≡

[
u−

�

d+
�

]
=

⎡⎢⎢⎢⎢⎣
u−

�+
u−

�−
d+

�+
d+

�−

⎤⎥⎥⎥⎥⎦, (29)

respectively.
Note that the form of the scattering matrix guarantees the

charge- and spin-current conservation by construction.

G. Lead-arm scattering matrices

Now we derive the scattering matrix connecting the lead
states and the ring states. To do that, we need to find out
the linear relations between the buffer states and the ring
states. The relations are to be determined from the boundary
conditions at the buffer-arm interfaces by using the continuity
of wave function 	(φ) and the current conservation. The
latter condition can be reformulated in terms of the continuity
of H (φ)	(φ), where H (φ) is the total ring Hamiltonian
for both the buffer and arm regions in the ring. The ring
Hamiltonian takes into account the discontinuous change of
the spin-dependent terms at the interfaces. As long as the
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SOC is composed of the linear and/or second orders of
the momentum operator, the continuity of H (φ)	(φ) leads
to the continuity of vφ	(φ). Now we apply the boundary
conditions at four interfaces. By using Eqs. (13) and (20),
the continuity of the wave function, 	U(φU�) = 	U�(φU�) and
	D(φD�) = 	D�(φD�), at the interfaces gives rise to∑



U(φU�)K(φU�)u = U�

∑


K

b (φU�)u

� , (30a)

∑


U(φD�)K(φD�)d = U�

∑


K

b (φD�)d

� . (30b)

The second continuity conditions, vφ	U(φU�) =
vφ	U�(φU�) and vφ	D(φD�) = vφ	D�(φD�), together with
Eqs. (17) and (24), lead to∑



V(φU�)K(φU�)u = vbU�

∑


K

b (φU�)u

� , (31a)

∑


V(φD�)K(φD�)d = vbU�

∑


K

b (φD�)d

� . (31b)

It is straightforward to solve the equations for the coeffi-
cients of the buffer states:

u


� = [
K

b (φU�)
]−1 ∑

′
Z′

� (φU�)K′
(φU�)u′

, (32a)

d


� = [
K

b (φD�)
]−1 ∑

′
Z′

� (φD�)K′
(φD�)d′

, (32b)

with

Z′
� (φ) ≡ U−1

�

U′
(φ) + V′

(φ)/vb

2
. (33)

Once the relations between coefficients of the buffer and the
ring states are set up, it is time to shrink the buffers by setting
φb → 0. The buffer propagating matrices, K

b , become the
identity matrix just because of the zero propagating distance.
Here some caution should be taken with regard to the limit
values of the interface points. The left interfaces go to the single
point, φUL,φDL → φL ≡ φ±

L , while the limit values of the right
interfaces are different, φUR → 0 ≡ φ+

R and φDR → 2π ≡ φ−
R .

Combining Eqs. (27), (28), and (32), one can build linear
equations for the coefficients of lead and ring states, which are
similar to Eqs. (27) and (28): at the left junction,

r = SL,11s + SL,12K←
L c←, (34a)

K→
L c→ = SL,12s + SL,22K←

L c←, (34b)

and at the right junction,

t = SR,12K→
R c→, (35a)

K←
R c← = SR,22K→

R c→, (36a)

where the left- and right-moving ring states and the propagat-
ing matrices are defined as

c← ≡
[

u+

d−

]
=

⎡⎢⎢⎢⎢⎣
u+

+
u+

−
d−

+
d−

−

⎤⎥⎥⎥⎥⎦, c→ ≡
[

u−

d+

]
=

⎡⎢⎢⎢⎢⎣
u−

+
u−

−
d+

+
d+

−

⎤⎥⎥⎥⎥⎦, (36)

and

K←
� ≡

[
K+(φ+

� )
K−(φ−

� )

]
, K→

� ≡
[

K−(φ+
� )

K+(φ−
� )

]
,

(37)

respectively. The lead-ring scattering matrices

S� =
[

S�,11 S�,12

S�,21 S�,22

]
(38)

are then given by

S�,11 = S11 + S12Q−
� (Q+

� − S22Q−
� )−1S21, (39a)

S�,12 = S12[P+
� + Q−

� (Q+
� − S22Q−

� )−1(S22P+
� − P−

� )],

(39b)

S�,21 = (Q+
� − S22Q−

� )−1S21, (39c)

S�,22 = (Q+
� − S22Q−

� )−1(S22P+
� − P−

� ), (39d)

with

P

L ≡
[
Z+

L (φL)
Z−

L (φL)

]
, Q

L ≡
[
Z−

L (φL)
Z+

L (φL)

]
,

(40a)

P

R ≡
[
Z−

R (φ+
R )

Z+
R (φ−

R )

]
, Q

R ≡
[
Z+

R (φ+
R )

Z−
R (φ−

R )

]
.

(40b)

From Eqs. (39) and (40), a few immediate general features
of the scattering matrix can be discussed: (i) In general, the
matrices Z′

� are not spin diagonal. This means that the
lead-ring scattering matrices are not diagonal in the spin basis
even if we start with the assumption that the junction itself
does not invoke the spin-flip scattering. For example, the spin
up injected from the lead can be reflected into the spin down
for any spin injection axis. This is not because the junction
is a magnetic scatterer but rather because of spin-dependent
interaction in the ring. The magnetic property in the arms of the
ring can invoke the spin-dependent scattering at the junctions.
(ii) The buffer effect remains. The lead-ring scattering matrix
has two controlling parameters: ε and Ub. The latter parameter
enters into the scattering matrix in terms of the buffer group
velocity vb. The velocity vb appears in the scattering matrix
in two ways: in the overall factor

√
vb/v0 of S12 and S21 [see

Eq. (26)] and in the matrices Z′
� [see Eq. (33)]. The overall

factor
√

vb/v0 appears in S�,ij in the same way as in Sij and
does not affect the spin-dependent scattering discussed above.
On the other hand, vb in the matrices Z′

� can tune magnitudes
of its off-diagonal components. Therefore, we can draw a
conclusion that at least two parameters for junctions, here ε

and Ub, are necessary to specify and control the spin-dependent
scattering due to arbitrary spin-dependent interaction in arms.

We would like to emphasize that the scattering matrix,
Eq. (39), is the only solution that guarantees the conservation
of the charge and spin currents at junctions under our sym-
metric assumptions. Since we have used the simplest buffer
structure that introduces only one additional parameter, more
complexity, if necessary, can be introduced into the scattering
matrix by allowing additional interactions in the buffer. Here
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we introduce the minimal scattering matrix working properly
in the presence of general SOC.

H. Reflection and transmission coefficients

It is now quite straightforward to solve Eqs. (34) and (35)
in order to obtain the spin-resolved reflection and transmission
coefficients in terms of the lead-ring scattering matrix S�,ij :

t = SR,12(K→F − SL,22K←FSR,22)−1SL,21s, (41a)

r = [SL,11 + SL,12K←FSR,22

×(K→F − SL,22K←FSR,22t)
−1SL,21]s, (41b)

with

K← = diag(eik+
+φL ,eik+

−φL ,e−ik−
+ (2π−φL),e−ik−

− (2π−φL)), (42a)

K→ ≡ diag(eik−
+φL ,eik−

−φL ,e−ik+
+ (2π−φL),e−ik+

− (2π−φL)), (42b)

F ≡ diag(eif φL ,eif φL ,e−if (2π−φL),e−if (2π−φL)). (42c)

Note that the overall factors
√

vb/v0 in S�,12 and S�,21 are
canceled out in the reflection and transmission coefficients.
Therefore, the velocity in the leads does not affect the
coefficients at all.

Below we calculate the transmission amplitudes Tμμ′ =
|tμμ′ |2, and by using them the charge conductance

G = e2

h

∑
μμ′

Tμμ′ (43)

and the current polarization

P = 1

2

∑
μμ′

μTμμ′ (44)

with respect to the unpolarized input current are obtained.

III. ORTHOGONAL SPIN STATES

Before proceeding to study the case in which our formalism
is indispensable, we apply it to the simple cases in which
the spin-separate treatment is possible. As mentioned in the
preceding section, the spin-separate treatment can be used
when the ring is of the normal conductor, or has the linear-
in-momentum SOC such as Rashba SOC, or has the Zeeman
splitting only. What is in common in all the cases is that the
group velocity and the spin matrix are direction-independent,
v


μ = vμ and U(φ) = U(φ), and that the energy eigenstates

are also the eigenstates of the corresponding velocity operator,

vφϕ
μ(φ) = vμϕ

μ(φ) (45)

(v+ �= v− only when the Zeeman splitting is finite). Then the
matrix Vρ(φ) in Eq. (17) is simply given by

Vρ(φ) = U(φ)

[
v+ 0

0 v−

]
. (46)

Accordingly, the matrices Z′
� (φ) are simplified to

Z′
� (φ) = [

U−1
� U(φ)

][ z

+ 0

0 z

−

]
(47)

with

z
μ ≡ 1 + vμ/vb

2
. (48)

By setting U� = U(φ�) [note that U(φ+
R ) and U(φ−

R ) usually

differ only up to the overall phase factor], the matrices Z′
� (φ�)

become spin diagonal, and consequently we recover the spin-
separate lead-ring scattering matrix. For each spin component,
the lead-ring scattering matrix for spin μ can be expressed as

S�μ,11 = Sμ,11 + Sμ,12z
−
μ (z+

μ − z−
μSμ,22)−1Sμ,21, (49a)

S�μ,12 = Sμ,12[z+
μ + z−

μ (z+
μ − z−

μSμ,22)−1(z+
μSμ,22 − z−

μ )],

(49b)

S�μ,21 = (z+
μ − z−

μSμ,22)−1Sμ,21, (49c)

S�μ,22 = (z+
μ − z−

μSμ,22)−1(z+
μSμ,22 − z−

μ ). (49d)

The buffer effect due to the velocity mismatch at buffer-ring
interfaces still remains in the above expressions. However,
one can recover the original form of the scattering matrix by
redefining the controlling parameter ε. In other words, one can
easily prove that the above scattering matrix can be rewritten
as

S�μ,ij (ε,Ub) = Sij (ε′
μ) (50)

with

ε′
μ(ε,Ub) = (vμ/vb)ε

(z+
μ + ζz−

μ

√
1 − 2ε)2

. (51)

Note that 0 � ε′
μ � 1/2 for 0 � ε � 1/2 and 0 < vb < ∞,

as expected. This implies that in the cases in which the
spin-separate treatment is possible, the only role of the
buffer is to renormalize the tunneling parameter ε through
Eq. (51). Hence the buffer is unnecessary and the junction
can be characterized by a single parameter ε′

μ of arbitrary
values. However, our formalism reveals the possible origin
of spin-dependent values for ε′

μ. The difference between ε′
μ

for two spins is due to different group velocity vμ in the ring
and the consequent difference in the magnitude of velocity
mismatch at the junction. Even though it is convention in the
literature to define the same value of ε for two spins, it is more
physically correct to have different tunneling parameters for
two spin components, as shown in our formalism.

IV. NONORTHOGONAL SPIN STATES

As an application of our formalism, we consider the n-type
semiconductor ring with both the Rashba SOC and the Zeeman
splitting. First, we set up the lead-arm scattering matrix in this
case and then examine the features of the scattering matrix.
After that, the spin-resolved transport through the ring is
investigated.

A. Setup of the scattering matrix

The Rashba SOC in the ring geometry is given by

HSO = α

ρ0

[
(σx cos φ + σy sin φ)

(
−i

∂

∂φ
− f

)
+ i

2
(σx sin φ − σy cos φ)

]
. (52)
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It is straightforward to calculate the eigenstates of the ring
Hamiltonian, Eq. (10), and we obtain four eigenstates,35

ϕ

+(φ) = ei(k

++f )φ

[
e−iφ/2 cos θ


+
2

e+iφ/2 sin θ

+
2

]
, (53a)

ϕ

−(φ) = ei(k

−+f )φ

[
−e−iφ/2 sin θ


−
2

e+iφ/2 cos θ

−
2

]
, (53b)

where the wave numbers are the solutions of
E

E0
= [

k
μ

]2 + μ

√(
γZ − k


μ

)2 + (
γRk


μ

)2 + 1

4
(54)

with dimensionless constants

γZ ≡ g∗μBB/2

E0
and γR ≡ α/ρ0

E0
. (55)

Here E+(γR,γZ) is the energy bottom of the upper spin branch
(μ = +), and the angles are defined via

cos θ
μ = γZ − k


μ√(

γZ − k

μ

)2 + (
γRk


μ

)2
, (56a)

sin θ
μ = γRk


μ√(

γZ − k

μ

)2 + (
γRk


μ

)2
. (56b)

Note that the spin textures of the eigenstates are all crownlike
as in the Rashba SOC-only case: The effective magnetic

field for each eigenstate has the radial and z-directional
components whose relative strength is determined by the angle
θ


μ. However, in this case, the angles θ


μ are all different, which

may lead to complicated (energy-dependent) spin precession
along the ring. On the reversal of the Zeeman splitting,
Eqs. (54) and (56) guarantee the following relations:

k
μ(γZ) = −k̄

μ(−γZ) and θ
μ(γZ) = θ ̄

μ(−γZ) + μπ.

(57)

Both the parameters γZ and f are proportional to the
magnetic field B, and their ratio is fixed to

γZ

f
= g∗ m∗

m
, (58)

where m is the electron mass in vacuum. In solids, the effective
mass of electrons can be much smaller than its raw value. So
the dimensionless flux f can vary over successive integers
with a negligible change in γZ .

In order to build the lead-ring scattering matrices, Eq. (39),
one needs to construct the appropriate matrices Uρ(φ) and
V(φ). By using the above eigenstates and the velocity
operator,

vφ = h̄

mρ0

(
−i

∂

∂φ
− f

)
+ α

h̄
(σx cos φ + σy sin φ), (59)

the matrices for the n-type semiconductor ring are found
to be

Uρ(φ) =
[

e−iφ/2 cos θ

+
2 −e−iφ/2 sin θ


−
2

e+iφ/2 sin θ

+
2 e+iφ/2 cos θ


−
2

]
, (60a)

Vρ(φ) = 
h̄

mρ0

([
k


+e−iφ/2 cos θ


+
2 −k


−e−iφ/2 sin θ


−
2

k

+e+iφ/2 sin θ


+
2 k


−e+iφ/2 cos θ


−
2

]
+ 1

2 cos θR

[
−e−iφ/2 cos 2θR−θ


+

2 −e−iφ/2 sin 2θR−θ

−

2

−e+iφ/2 sin 2θR−θ

+

2 e+iφ/2 cos 2θR−θ

−

2

])
, (60b)

with the Rashba angle θR defined via

cos θR ≡ − 1√
1 + γ 2

R

and sin θR ≡ γR√
1 + γ 2

R

. (61)

These matrices enter into Eq. (33) and determine the lead-arm
scattering matrices in Eq. once the injection and detection
spin axes are fixed through U�.

For a closed ring, the single-valued condition quantizes the
ring levels:

n = k
μ(E) + f − 1

2 , (62)

where n is any integer.

B. Lead-arm scattering matrix

In this subsection, we examine the matrix elements of the
lead-arm S matrix, Eq. (39), in the presence of both the Rashba

SOC and Zeeman terms. For later use, the matrix elements of
the S matrix for the left junction (� = L) are called

SL,11 =
[

r++ r+−
r−+ r−−

]
and SL,21 =

⎡⎢⎢⎢⎣
tu++ tu+−
tu−+ tu−−
td++ td+−
td−+ td−−

⎤⎥⎥⎥⎦. (63)

First, we focus on the spin-flip scattering taking place in the
lead side. Figure 2 shows the dependence of the reflection
amplitudes |rμμ′ |2 on Ub for different values of γZ , with γR

being fixed at a finite value. In the absence of the Zeeman
splitting (γZ = 0), we obtain |r++|2 = |r−−|2 and |r+−|2 =
|r−+|2 = 0, as expected. We numerically confirmed that this
is true regardless of the polarization axis (ϑ�,ϕ�), the Rashba
SOC strength γR , the junction parameters ε, and Ub. That is,
no spin-flip reflection takes place when only the Rashba SOC
exists. In this case, the role of Ub is to simply renormalize ε

[see Eq. (51)] as displayed in Figs. 2(a) and 2(b): The perfect
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FIG. 2. (Color online) Reflection amplitudes as functions of Ub(�
E) for different values of γZ: 0 (solid), γR/2 (dotted), γR (dashed), and
2γR (dot-dashed). Here we set ε = 1/4, γR = 0.1, and E = 1.02 ×
E+(γR = 0.1,γZ = 0.2). The spin polarization in the lead is set to be
along the x axis: (ϑL,ϕL) = (π/2,0). The arrows indicate the trend
with increasing γZ .

transmission can happen at some values of Ub even though
ε = 1/4 < 1/2 is used.

On the other hand, the spin-conserving feature of the
reflection is no longer valid as soon as the Zeeman splitting
is switched on. Figure 2(c) clearly shows that the spin-flip
reflection occurs for finite values of γZ , and its amplitude,
|r+−|2 = |r+−|2, increases with γZ . The spin-flip reflection
depends sensitively on the incident energy E and the polar-
ization axis (ϑ�,ϕ�) as well as Ub, as can be seen in Fig. 3. It
modulates with the spin-polarization axis in the lead, and more
importantly, decreases rapidly with increasing E. Although
the amplitude of spin-flip scattering can be considerably large
near the band bottom, E+, it becomes negligibly small with the
incident energy E well above the band bottom. This explains
why the previous works5,8,10 could not see the breakdown of
the current conservation with their wrong S matrix: Unless
the energy is close to the band bottom, the spin-flip scattering
makes quite a small contribution to the total current. However,
its presence, although small, is important to fulfill both the
current conservation and the correct matching of the wave
function.

Figure 4 displays the transmission amplitudes |tuμ+|2 and
|tdμ+|2 as functions of Ub for spin μ = + injection from the
lead. In the absence of the Zeeman splitting, |tu++|2 = |td−+|2

0.308 0.310 0.312 0.314
0

Π 2

Π

E E0

Θ L

0.4

0

FIG. 3. (Color online) Contour plot of spin-flip reflection am-
plitude |r+−|2 as a function of E and ϑL. Here we set ε = 1/2,
Ub = 0, γR = 0.1, γZ = 2γR , ϕL = 0. The energy ranges from
E+(γR = 0.1,γZ = 0.2) to 1.02E+(γR = 0.1,γZ = 0.2).

and |tu−+|2 = |td++|2 hold no matter what values the other
parameters have. Similar relations can be found for spin−
injection as well. This is because the eigenstates ϕ+

+ (φ)
and ϕ−

+ (φ) make time-reversal pairs with ϕ−
− (φ) and ϕ+

− (φ),
respectively. However, the introduction of finite Zeeman
splitting breaks the time-reversal symmetry of the system,
and the balance between the transmission coefficients is gone.
The transmission amplitudes for different μ and  behave
differently with increasing γZ because the group velocities v


μ

are all different, and the spin overlaps between the injected
wave and the eigenstates also become different from each
other. Note that the transmission amplitudes are not necessarily
smaller than 1 since it is the current, not the tunneling
coefficient, that satisfies the unitary condition.

As proposed in our formalism, the charge-current conser-
vation, JL + JU − JD = 0, is well satisfied, as shown in Fig. 5.
Interestingly, the time-reversal breaking and its consequences
on the transmission amplitudes do not invalidate the symmetric
scattering to two arms imposed on the raw S matrix, Eq. (26).
As can be seen from Fig. 5, the normalized currents in both
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FIG. 4. (Color online) Transmission amplitudes |tuμ+|2 and
|tdμ+|2 as function of Ub for spin + injection from the lead. Values
of parameters and plot styles are the same as in Fig. 2 except
E = 1.05 × E+(γR = 0.1,γZ = 0.2).
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FIG. 5. (Color online) Charge currents, JL, JU, and JD, as
functions of Ub with respect to a unit spin + polarized current (v0 = 1)
from the lead. Values of parameters and plot styles are the same as in
Fig. 4.

arms are observed to always satisfy JU = −JD. One would
guess that the imbalances in the transmission amplitudes
(see Fig. 4) and nonorthogonality of the eigenstates lead to
the asymmetry between the scatterings at upper and lower
buffer-arm interfaces. However, our calculations show that the
symmetry of the junction remains untouched based on the fact
that the raw S matrix is symmetric and the upper and lower
arms are identical.

Finally, we extract the effective spin-dependent control
parameters εμ from

εμ ≡ 1 − ∑
μ′ |rμ′μ|2
2

(64)

as a function of ε and Ub in Fig. 6. As expected, εμ depends
sensitively on Ub, and is spin-dependent: ε+ �= ε−. Moreover,
it also depends on the ring property, such as the strength of the
Rashba SOC and the Zeeman term, so that, in contrast to the
conventional scattering theory, the scattering at a junction is
not determined solely by the junction itself but is affected by
the arm properties as wells.

C. Aharonov-Bohm interferometry

In this subsection, we investigate the charge and spin
transport through the Aharonov-Bohm-type interferometer in
the presence of both the Rashba SOC and Zeeman terms. We
divide the study into two regimes: weak- and strong-coupling
limits. In the weak-coupling regime where the effective control
parameters εμ are small, the transport features the quantized
levels in the ring, while in the strong-coupling regime the
interference between the eigenstates is important.

1. Weak-coupling limit

Figure 7 shows a typical dependence of the charge conduc-
tance G on f and γZ in the weak-coupling limit with ε = 0.15
and Ub = 0. The high transmission (the bright lines) occurs
when the quantization condition, Eq. (62), is satisfied. Here
the resonant tunneling via the quantized ring levels boosts
the transmission. This boosting is not affected by the choice
of the spin-polarization axis in the leads. Exactly the same
charge conductance is obtained by taking the spin-polarization
axis along the z axis instead of the x axis used in Fig. 7.
The conductance plot is symmetric with respect to the point

FIG. 6. (Color online) Contour plots of effective control parame-
ters ε+ (a) and ε− (b) as functions of ε and Ub for γR = 0.1, γZ = 2γR ,
E = 1.05 × E+(γR = 0.1,γZ = 0.2), and (ϑL,ϕL) = (π/2,0).

(f,γZ) = (0,0), which is attributed to the relations in Eq. (57).
In addition, the resonance lines exhibit the anti-crossing-like
behavior, which is absent in the quantized levels themselves,
Eq. (62). The anticrossing behavior originates from the Fano-
like antiresonance between two degenerate ring states whose
spin polarizations are rather parallel, leading to large overlap
between their wave functions. In this case, the injected state
with any spin polarization has almost the same overlaps with
the degenerate ring states, resulting in destructive interference
between them in the transmitted state. This happens mostly
when the time-reversal pair states (ϕ+

+ ,ϕ−
− ) or (ϕ+

− ,ϕ−
+ ) cross, as

seen in Fig. 7, and less frequently when the counterpropagating
pair states (ϕ+

+ ,ϕ−
+ ) or (ϕ+

− ,ϕ−
− ) do. For the pairs (ϕ+

+ ,ϕ+
− )

or (ϕ−
+,ϕ−

− ), their spin polarizations are almost orthogonal to
each other so that the transport through each state is almost
independent of that through the other, and their transmission
amplitudes are simply additive.

In Fig. 8(a), the charge conductance is calculated as a
function of external magnetic field B or the normalized flux
f by taking into account the linear relation, Eq. (58), between
γZ and f with the ratio g∗m∗/m = 0.1, which is indicated
by the white lines in Fig. 7. The charge conductance clearly
exhibits four (or three) peaks as the magnetic flux is increased
by one flux quantum �0. The accidental degeneracy in the ring
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FIG. 7. (Color online) Contour plot of charge conductance G in
units of e2/h as a function of f and γZ in the weak-coupling limit
with ε = 0.15 and Ub = 0. Here we have used γR = 0.4 and E =
2E+(γR = 0.4,γZ = 0.8). The white lines follow the linear relation
between f and γZ: γZ = 0.1 × f .

levels enhances the conductance further, while it is still smaller
than the two-channel maximum value 2e2/h. The fluctuations
in the peak heights are mainly due to the variation of the
spin-polarization axis of the ring eigenstates at junctions.

Each ring eigenstate, having the crownlike spin texture,
brings about the spin-flip transport as shown in Figs. 8(b) and
8(c). While the peaks in the spin-flip transmission amplitudes
(solid lines) are located at the same positions as those in the
charge conductance, they alternate between T+− and T−+:
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FIG. 8. (Color online) (a) Charge conductance G, (b,c) spin-
conserving transmission amplitudes T++, T−− (dotted lines), and
spin-flip transmission amplitudes T−+, T+− (solid lines), and
(d) current polarization as functions of f along the white lines in
Fig. 7 with γZ = 0.1 × f . Here the polarization axis of two leads is
chosen to align with the positive x axis: (ϑ�,ϕ�) = (π/2,0). Values of
other parameters are the same as in Fig. 7.

the μ = + level gives rise to the enhancement of T−+ and
the μ = − level to that of T+−. This level dependence is
easily understood from the fact that the spin polarization of the
μ = + (−) level has an inward (outward) radial component.
Since the tilt angle ϑ


μ varies between 0 and π , however,

the spin-flip amplitudes also fluctuate. In addition, each level
also makes a comparable contribution to the spin-conserving
transmissions, T++ = T−− (dotted lines), which follow the
behavior of the charge conductance. These spin-dependent
transmissions enable the unpolarized current input to generate
the spin-polarized current. As seen in Fig. 8(d), the current
polarization P exhibits peaks and valleys whenever the spin-
flip transmission is enhanced. However, since the spin blocking
or the spin flip occur only partially, its magnitude is usually
much smaller than 1/2.

In order to achieve the complete spin polarization or spin
flip, the lead spin axis should be set to align with the (energy-
dependent) spin polarization of the level at the junction.
However, the arbitrary tuning of the spin polarization of the
lead is not easy to implement. Instead, one can adjust the spin
polarization of the ring level to the predefined spin axis of the
lead by tuning the external magnetic field. The formulas for the
tilt angle, Eq. (56), show that a special adjustment, k


μ = γZ ,

yields θ

μ = ±π/2, setting the spin-polarization axis of the

arm state at junctions along the x direction. The adjustment
requires the energy

E

E0
= γ 2

Z + |γZγR| + 1

4
(65)

(here μ = + is chosen) and the quantization condition

n = γZ + f − 1
2 . (66)

From Eq. (66), together with Eq. (58), the candidates for the
magnetic field B or the normalized Zeeman splitting γZ are
suggested, and the energy is then determined through Eq. (65).
Figure 9 displays the variation of transmission amplitudes with
n = 6 in Eq. (66). At the point 1 (f = f1), the two conditions,
Eqs. (65) and (66), are exactly satisfied with k+

+ = γZ so that
T+− is almost at its maximum and the other amplitudes are
negligible. Hence, the conditional spin switch is embodied:
the spin + is completely blocked while spin − is completely
flipped. At the same time, the maximal current polarization
shown in Fig. 9(c) indicates that it can also work as the
perfect spin polarizer for unpolarized injection. The opposite
spin switch that flips spin + to − can be implemented by
reversing the direction of the external magnetic field so that
the two conditions are satisfied with k−

+ = γZ < 0. Note that
the behavior as the perfect spin switch or spin polarizer appears
at f ≈ f1 ± 1 (points 2 and 3) as well. This is due to the small
ratio g∗m∗/m = 0.1 used in calculations: γZ does not change
so much for a few periods of f so that the conditions, Eqs. (65)
and (66), are approximately satisfied at several values of f .

The spin flip occurring at the junction discussed in the
preceding section would spoil the spin switch efficiency by
inducing the tunneling to the other spin branch, and the spin
tunneling cannot be determined only by the spin texture of the
levels in the ring. However, we numerically confirmed that the
observed spin-switch functionality is immune to the variation
of ε and Ub as long as the effective control parameters εμ are
small enough. In fact, the spin flip is very weak if the injection
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FIG. 9. (Color online) (a),(b) Spin-conserving transmission am-
plitudes T++, T−− (dotted lines) and spin-flip transmission amplitudes
T−+, T+− (solid lines), and (c) current polarization as functions of f

with the relation γZ = 0.1 × f . The condition k+
+ = γZ is exactly

satisfied at the point 1, and the energy E is given by Eq. (65) with
respect to the solutions of Eq. (66) for n = 6. Here we have used
ε = 0.1, Ub = 0, and γR = 0.4. The red arrows indicates the points
(1,2,3) where the spin switch is close to its maximum.

energy is well above the band bottom E+ (see Fig. 3). This is
the case for Eq. (65) as long as γR is large enough. One can
then safely use the usual analysis of spin transport based on the
spin precession in the ring with no spin flip at the junctions.

2. Strong-coupling limit

Figure 10 shows the evolution of the charge conductance G

as the lead-ring junction gets more transparent. The resonance
feature due to the ring level, in spite of getting smeared out
with increasing ε, is still visible up to ε ∼ 0.4. For larger values
of ε � 0.4, the conductance peak position does not follow
the quantization condition, Eq. (62), any longer, and instead
every four consecutive peaks in a period of f are merged to
a single one that is located close to f = nπ . In addition, a
dip is formed between them. The dip appears between the
time-reversal pair states if they are in succession, as can be
seen in Figs. 10 (a), 10(c), and 10(d). Interestingly, the anti-
crossing-like behavior can be intensified as ε increases, as
seen in Fig. 10(c), if the pair states are close to each other in
the weak-coupling limit. In this case, the transparent junction
enhances the destructive interference between two resonant
levels. The dip can also be formed in other places if the time-
reversal pair is not in succession [see Fig. 10(b)]. In this case,
the dip is less prominent, implying the destructive interference
is not strong enough.

The charge transport in the strong-coupling limit (ε ∼ 1/2),
as seen in Fig. 11, clearly exhibits the well-known AB
oscillations as the magnetic flux is varied. In addition, the
Zeeman splitting γZ , increasing linearly with f , superposes
line-shaped patterns upon the AB oscillations along which
the conductance is suppressed. This suppression is due to
the localization effect in the ring. To put it simply, consider

FIG. 10. (Color online) Contour plots of charge conductance G

in units of e2/h as a function of f and ε for (a) γR = γZ = 0.4
and E = 2E+(γR = 0.4,γZ = 0.8) (refer to Fig. 7) and (b),(c),(d)
γR = 0.6 and E = 2E+(γR = 0.6,γZ = 1.3) with γZ = 0 (b), 0.7
(c), and 1 (d). Here we have used Ub = 0, and the color scale is the
same as in Fig. 7.

the Rashba-free system. The analytical expression for the
spin-dependent transmission amplitude is then available:

Tμ = 4ε′2
μ cos2 πf sin2 πk̃μ∣∣ε′

μe2πik̃μ− cos 2πk̃μ+( 1−pμ

2

)2 + ( 1+pμ

2

)2
cos 2πf

∣∣2,

(67)

with ε′
μ given by Eq. (51), pμ = √

1 − 2ε′
μ, and k̃μ =√

E/E0 − μγZ . The transmission vanishes not only when f =
n + 1/2 but also when k̃μ = n, where n is an integer. The latter
condition means that the wave in the ring forms the standing
wave so that the state is localized and does not contribute to
the transport. Hence the conductance suppression happens at
E/E0 = n2 + μγZ , making spin-dependent dark lines in the
charge conductance (see Fig. 11). The Rashba SOC, present
in our system but rather small, makes a perturbative coupling
between spin-+ and -− states, inducing the anticrossing of

FIG. 11. (Color online) Contour plot of charge conductance G in
units of e2/h as a function of f and E/E0 in the strong-coupling
limit (ε = 1/2). We have used Ub = 0 and γR = 0.4 and the Zeeman
splitting γZ increases linearly with f : γZ = 0.1 × f . The color scale
is the same as in Fig. 7.
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FIG. 12. (Color online) Contour plot of (a) spin-conserving
transmission amplitudes T++ = T−− and (b),(c) spin-flip transmission
amplitudes T−+ (b) and T+− (c) as functions of f and E/E0 in the
strong-coupling limit (ε = 1/2). Here the polarization axis of two
leads is chosen to align with the positive x axis: (ϑ�,ϕ�) = (π/2,0).
Values of other parameters are the same as in Fig. 11.

dark lines that would be degenerate otherwise. Finally, one
can notice that in the lower right corner of Fig. 11 (under
the line E/E0 = 1 + γZ), the charge conductance is quite
suppressed; the maximum is reduced by half, reaching e2/h,
not 2e2/h. This is because in this region E < E+ so that only
the spin-− channel is open. The spin-+ channel exists in the
evanescent waves whose contribution decreases exponentially
with E+ − E.

The spin transport in the strong-coupling limit is examined
in Fig. 12. Similarly to the charge conductance, the spin-
dependent transmissions feature the AB oscillations and the
localization-induced dark line patterns. In addition, they also
exhibit a global modulation of the height of the AB peaks.
Interestingly, the modulation patterns are in opposite trends be-
tween spin-conserving transmissions (T++ and T−−) and spin-
flip transmissions (T+− and T−+): when the spin-conserving
transmissions are strong, the spin-flip transmissions are weak,
and vice versa. This opposing behavior is clearly displayed
in Fig. 13, where the charge and spin transmissions are
calculated at a given injection energy, E = 9E0. This global
modulation of spin-dependent transmission is surely related
to the variation of γZ with f : γZ = 0.1 × f is used here.
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FIG. 13. (Color online) (a) Charge conductance G, (b) spin-
conserving transmission amplitudes T++ (solid line), T−− (dotted
line), (c) spin-flip transmission amplitudes T−+ (solid line), T+−
(dotted line), and (d) current polarization as functions of f along
the E = 9E0 line in Fig. 12. Here the polarization axis of two leads
is chosen to align with the positive x axis: (ϑ�,ϕ�) = (π/2,0). Values
of other parameters are the same as in Fig. 12.

Subsequently, the nonadiabatic geometric phase connected to
the Rashba SOC and the Zeeman splitting varies gradually and
changes the interference between the ring modes, resulting in
the modulation of the spin-dependent transmission. With the
total charge transmission unchanged so much, the decrease
of the spin-conserving transmission then accompanies the
enhancement of the spin-flip transmission. Hence, in the
regime of parameters where the spin-conserving transmissions
are negligible, an unconditional spin switch is implemented:
the injected spin + is switched to the spin − and vice versa.
As can be seen in Figs. 12 and 13, the parameter regime for the
system to act as a good spin switch is quite wide: the working
condition encloses several periods of f and a wide range of
energy. It is attributed to the slow variation of the geometrical
phase with f . Finally, this system can also behave as a good
spin polarizer for unpolarized current injection, as seen in
Fig. 13(d). Since the maxima of T−+ and T+− are off the
synchronization, the current polarization oscillates strongly
between −0.4 and 0.4. The polarization of spin current can
then be easily tuned by changing the magnetic flux by the
half-flux quantum �0/2.

In fact, there is a prior numerical study that also investigated
the effect of both the Rashba SOC and the Zeeman splitting in
the strong-coupling limit by using the nonequilibrium Green’s
function formalism based on the tight-binding model.22 How-
ever, using rather small values of the magnetic field, −3 �
f � 3, the Zeeman splitting could not have any noticeable
effect in the study: Note that the value of g∗m∗/m is small
in usual semiconductors [see Eq. (58)], so we have varied f

over a wide range. Hence we believe that our study is the first
analysis that has considered both the Rashba SOC and the
Zeeman splitting on an equal footing.
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V. DISCUSSION AND CONCLUSION

We have proposed a general scattering-matrix formalism
that naturally guarantees the charge conservation through a
quantum ring with arbitrary spin-dependent interactions. To
this end, we insert artificial SOC-free buffers in the vicinity of
every junction and solve the system Hamiltonian in a standard
way. The original problem is recovered by shrinking the size of
the buffers to zero, while the effect of the buffers still remains.
It is found that as long as the ring has nonorthogonal spin
textures the spin-flip scattering can happen even if the junction
itself is nonmagnetic. In the case of an n-type semiconductor
with both the Rashba SOC and the Zeeman splitting, the finite
spin-flip scattering and the conservation of charge current
are numerically confirmed. In addition, it is found that the
interplay of the AB and AC effects, in the presence of the
Zeeman splitting, enables the ring interferometer to act as a
conditional (unconditional) spin switch in the weak (strong)
-coupling limit.

It should be noted that our formalism is not restricted to
the structure of the AB interferometer used in this paper. The
technique of inserting artificial buffers and shrinking them

to zero can be applied to any network of semiconductors
with arbitrary SOC. As stated above, the merit of our
formalism is that the charge-current conservation at junctions
is guaranteed as long as the interfaces between buffers and the
spin-dependent regions are treated correctly.

While in our study we focus on the simplest scattering
matrix by minimizing the number of physical parameters
for buffers, the scattering matrix can be generalized by
introducing some spin-dependent coupling into the buffers
in a controlled way. The extended form of the scattering
matrix may give us a clue about the general structure of
the scattering matrix connecting any spin-dependent channels
with a single constraint: the charge-current conservation. It
would be interesting to find out the general form of the
scattering matrix based only on the conservation laws without
relying on the specific model, such as buffers.
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We analyze the low-energy spectrum of a two-electron double quantum dot under a potential bias in the
presence of an external magnetic field. We focus on the regime of spin blockade, taking into account the
spin-orbit interaction and hyperfine coupling of electron and nuclear spins. Starting from a model for two
interacting electrons in a double dot, we derive an effective two-level Hamiltonian in the vicinity of an avoided
crossing between singlet and triplet levels, which are coupled by the spin-orbit and hyperfine interactions. We
evaluate the level splitting at the anticrossing, and show that it depends on a variety of parameters including
the spin-orbit coupling strength, the orientation of the external magnetic field relative to an internal spin-orbit
axis, the potential detuning of the dots, and the difference between hyperfine fields in the two dots. We provide
a formula for the splitting in terms of the spin-orbit length, the hyperfine fields in the two dots, and the double
dot parameters such as tunnel coupling and Coulomb energy. This formula should prove useful for extracting
spin-orbit parameters from transport or charge sensing experiments in such systems. We identify a parameter
regime where the spin-orbit and hyperfine terms can become of comparable strength, and discuss how this regime
might be reached.
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I. INTRODUCTION

Electron spins in gated quantum dots have been exten-
sively studied for their possible use in quantum information
processing.1–3 In this context, the main interest lies in the
study of coherent quantum evolution of electron spins in a
network of coupled quantum dots in the presence of external
magnetic fields. A double quantum dot (DQD) populated by
two electrons is the smallest such network in which all of the
steps necessary for quantum computation can be demonstrated.
In addition, a DQD can host encoded two-spin qubits that
require less resources for control than the single-electron spins
in quantum dots. In DQDs, the spins can be manipulated
exclusively by electric fields in the presence of a constant
magnetic field, taking advantage of the spin orbit and/or
nuclear hyperfine interactions.2,4–13

Requirements for the precise control of spin qubits have
prompted the detailed study of the interactions of electron
spins in quantum dots. The DQDs give experimental access
to the coherent spin dynamics. Studies of transport through
DQDs in the spin-blockade regime14 have been particularly
useful for probing the electron and nuclear spin dynamics. In
this regime, charge transfer between the two dots of a DQD
can take place only when the electrons form a singlet state
with total spin zero. This allows weak spin-non-conserving
interactions to be studied via charge sensing15 or by charge
transport measurements,14,16 even in the presence of much
stronger spin-conserving interactions. The most important
spin-non-conserving interactions are the spin-orbit interaction
and the hyperfine interaction between the electron spins and a
collection of nuclear spins inside the DQD.17

In this work, we investigate the hyperfine- and spin-orbit-
mediated coupling between electronic singlet and triplet spin
states of a DQD in the spin-blockade regime. We show that the
spin-orbit and hyperfine contributions to this splitting can be
tuned by a number of parameters. We derive an explicit formula
that gives this splitting as a function of a homogeneous external

magnetic field and the detuning between the ground-state
energies of the dots in a DQD. These parameters can be varied
in an experiment. In addition, the splitting depends on the
spin-orbit coupling interaction and the inhomogeneous nuclear
Overhauser field as well as on the dot parameters such as the
hopping amplitude between the dots in a DQD, Coulomb repul-
sion between the electrons, and the direct exchange interaction.
Further, we describe how the dependence of the singlet-triplet
splitting on these parameters might be used to extract the
intrinsic strengths of the spin-orbit and hyperfine couplings
from charge sensing measurements in which the DQD is
swept through a singlet-triplet level crossing in the presence
of spin-orbit interaction and a fluctuating nuclear field.

Recently, it was predicted that the angular momentum trans-
ferred between electron and nuclear spins in both dc transport18

and Landau-Zener-type gate sweep experiments19,20 can show
extreme sensitivity to the ratio of spin-orbit and hyperfine
couplings. Our result gives an explicit dependence of this ratio
on the detuning and external magnetic field, thus showing how
all regimes can potentially be reached.

The paper is organized as follows. In Sec. II, we introduce
a model of a DQD, and describe its energy levels as a function
of detuning. In Sec. III, we find the matrix elements of the
spin-orbit interaction in the space of relevant low-energy states.
In Sec. IV, we study the orbital and spin structure of the singlet
and triplet states, which nominally intersect for particular
combinations of the DQD potential detuning and external
magnetic field. In Sec. V, we define an effective Hamiltonian
that describes the action of the spin-orbit and hyperfine
couplings in the corresponding two-level subspace. Then, in
Sec. VI, we study the dependence of the resulting singlet-triplet
splitting on external parameters and show how this dependence
can be used to extract the spin-orbit interaction strength and
the size of Overhauser field fluctuations from charge sensing
measurements. In Sec. VII, we discuss how the DQD can be
tuned between the regimes of spin-orbit-dominated splitting
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and the hyperfine-dominated splitting. Finally, we summarize
our results in Sec. VIII.

II. MODEL HAMILTONIAN FOR DOUBLE QUANTUM
DOTS

In a DQD, electrons are confined near the minima of a
double-well potential VDQD, created by electrical gating of a
two-dimensional electron gas (2DEG) in, for example, GaAs,
see Fig. 1. For the case of a deep potential, we treat the two
local minima of the double-well as isolated harmonic wells
with ground-state wave functions ϕ1,2. In order to define an
orthonormal basis of single-particle states for building up the
two-electron states of the DQD, we form the Wannier orbitals
�L and �R , centered in the left and right dots, respectively:21

�L,R = 1√
1 − 2sg + g2

(ϕ1,2 − gϕ2,1), (1)

where s = 〈ϕ1|ϕ2〉 = exp[−(a/aB)2] is the overlap of the
harmonic oscillator ground-state wave functions of the two
wells, aB = √

h̄/mω0 is the Bohr radius of a single quantum
dot, h̄ω0 is the single-particle level spacing, and 2a = l is the
interdot distance. The mixing factor of the Wannier states is
g = (1 − √

1 − s2)/s.
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FIG. 1. (Color online) (a) Double quantum dot model and the
coordinate system. SL and SR denote the spin 1/2 of the electron in
the right and in the left quantum dots, respectively. The dots lie in the
ξz plane and are tunnel-coupled along the ξ direction (perpendicular
to the z axis). They can be detuned by the externally applied voltage
ε/e. The spin-orbit field � points along the z axis, defining the first
quantization axis for the triplet states |Tz,±〉 and |Tz0〉 (see main text).
The effective magnetic sum field b̄ defines the second quantization
axis for the triplet states |T±〉 and |T0〉. We choose the mutually
orthogonal axes x,y,z so that b̄ lies in the xz plane. (b) Effect of
detuning on the quantum dot levels. At zero detuning ε = 0, an
electron has the same energy on the left and right quantum dots.
For nonzero detuning, the energy of an electron on the left dot is ε

higher than the energy of an electron on the right dot.

The two electrons in the DQD are coupled by the Coulomb
interaction,

C = 1

4πκ

e2

|r1 − r2| , (2)

where r1 (r2) is the position of electron 1 (2) and κ is the
dielectric constant of the host material. In this work, we
consider the regime where the single-particle level spacing is
the largest energy scale, in particular larger than the Coulomb
repulsion, h̄ω0 � e2/(4πκa). In this case, and assuming that
the hyperfine and spin-orbit interactions are also weak, single-
particle orbital excitations can be neglected. Therefore the
relevant part of the two-electron Hilbert space is approximately
spanned by Slater determinants involving the Wannier orbitals
�L,R. Including spin, and using second quantization notation
where c

†
L (c†

R) creates an electron in the Wannier state �L

(�R), we define the two-electron basis states:

|(2,0)S〉 = c
†
L↑c

†
L↓|0〉, (3)

|(0,2)S〉 = c
†
R↑c

†
R↓|0〉, (4)

|(1,1)S〉 = 1√
2

(c†
L↑c

†
R↓ − c

†
L↓c

†
R↑)|0〉, (5)

|T+〉 = c
†
L↑c

†
R↑|0〉, (6)

|T0〉 = 1√
2

(c†
L↑c

†
R↓ + c

†
L↓c

†
R↑)|0〉, (7)

|T−〉 = c
†
L↓c

†
R↓|0〉. (8)

The orbital parts of the basis states with single occupancy
in each well, i.e., the spin singlet |(1,1)S〉 and the spin triplet
|T0,±〉, are given by

	s
±(r1,r2) = 1√

2
[�L(r1)�R(r2) ± �R(r1)�L(r2)], (9)

while the orbital parts of the two states |(2,0)S〉 and |(0,2)S〉
with double occupation of the left and right wells, respectively,
are given by

	d
L,R(r1,r2) = �L,R(r1)�L,R(r2). (10)

The orbital functions 	s
+ and 	d

L,R are symmetric under
exchange of particles, and therefore must be associated with
the antisymmetric singlet spin wave function (total spin
S = 0), while 	s

− is antisymmetric under exchange, and is
associated with the symmetric triplet spin wave function (total
spin S = 1).

The electrostatic gates that create the potential VDQD can,
in addition, tune the energies of the electrons in the potential
minima by creating an additional bias potential Vbias. We
model this bias as a simple detuning ε, which gives an energy
difference for an electron occupying the left or the right dot,

ε = 〈�L|eVbias|�L〉 − 〈�R|eVbias|�R〉. (11)

In the symmetric case, ε = 0, the voltages on the electrostatic
gates are set so that, in the absence of electron-electron
interactions, an electron would have the same energy in either
well. The Coulomb repulsion (2) penalizes the states |(0,2)S〉
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and |(2,0)S〉 with double occupation of either well by an
amount U , given by

U = 〈
	d

L,R

∣∣C∣∣	d
L,R

〉
. (12)

Therefore, for a symmetric potential, ε ≈ 0, the lowest energy
states of two electrons will be primarily comprised of singly
occupied orbitals. When the detuning is large enough to
overcome the on-site electron-electron repulsion in one well,
|ε| > U , the doubly occupied state with both electrons on the
dot with lower potential becomes the ground state. Varying the
gate voltages to increase the detuning from large and negative
to large and positive values then tunes the occupation numbers
of the two dots in the ground state of the DQD through the
sequence (2,0) → (1,1) → (0,2). Since the states with the
charge configurations (2,0) and (0,2) are singlets, while those
with the (1,1) charge configuration can be either singlet or
triplet, the measurement of charge as a function of detuning
can reveal the spin states.

The strong spin-independent terms, i.e. the confinement
potential VDQD, Coulomb repulsion C, and the kinetic energy
are, at low energies and in the limit of tight confinement,
described by the matrix elements between Slater-determinant-
type states in which the two electrons are loaded into
some combination of the Wannier orbitals [see Eq. (12) and
Ref. 21]:

t = 〈�L,R|h0
1,2|�R,L〉 − 1√

2
〈	s

+|C∣∣	d
L,R

〉
, (13)

V± = 〈	s
±|C|	s

±〉, (14)

X = 〈
	d

L,R

∣∣C∣∣	d
R,L

〉
. (15)

Here, we have used h0
1,2 = Hosc + VDQD(r) − Vh(r ∓ aeξ ) to

label the part of Hamiltonian that includes the kinetic energy
T and the harmonic part of the potential VDQD near the dot
centers. The dots are displaced by ±a along the axis with
the unit vector eξ , see Fig. 1. Thus h0

1,2 − Hosc describes the
tunneling due to the mismatch between the true double-dot
potential VDQD and the potential of the harmonic wells.21

The matrix element X describes coordinated hopping of
two electrons from one quantum dot to the other, t is the
renormalized single-electron hopping amplitude between the
two dots, which includes contributions of both the single-
particle tunneling amplitude and the Coulomb interaction, and
V+ (V−) is the Coulomb energy in the singlet (triplet) state
with one electron in each well.

The confinement potential VDQD, the Coulomb interaction
C, and the detuning ε provide the largest energy scales in a
DQD. These terms add up to the spin-independent Hamiltonian
H0 = T + VDQD + C + Vbias, which within the space of the six
lowest-energy dot orbitals, using the basis defined in Eqs. (3)–
(8), is represented by

H0 =
(

HSS 0

0 HTT,0

)
, (16)

where the singlet Hamiltonian in the basis |(0,2)S〉, |(2,0)S〉,
|(1,1)S〉 is

HSS =

⎛⎜⎝U − ε X −√
2t

X U + ε −√
2t

−√
2t −√

2t V+

⎞⎟⎠ , (17)

and the triplet Hamiltonian is diagonal, HTT,0 = V−.
In addition to the terms described above, there are three

sources of spin-dependent interactions: Zeeman coupling to an
external magnetic field, hyperfine coupling between electron
spins and nuclear spins in a quantum dot, and the spin-orbit
interaction. For now, we neglect the spin-orbit interaction, and
analyze it in detail in the next section.

The direct coupling of the electron spins to a uniform
external magnetic field B is described by the Zeeman term

HZ = −μeB · ¯̄g · (SL + SR), (18)

where ¯̄g is the electron g tensor and μe is the electron magnetic
moment. The g tensor can show significant anisotropy in
the quantum wells. The Fermi contact hyperfine interaction
between electron and nuclear spins reads

Hnuc =
∑

i

hi · Si , (19)

where hi , i = L,R, is the Overhauser field of the quantum dot
i, given by22

hi =
∑

j

Aj |	i(Rj )|2Ij . (20)

Here, Aj is the hyperfine coupling constant for the nuclear
species at site j , with typical size of the order of 90 μeV for
GaAs,23 	i is the electron orbital envelope wave function in
the right (i = R) and left (i = L) dots, Rj is the position of
the j th nucleus in the quantum dot, and Ij is the corresponding
nuclear spin.

Because the Zeeman and hyperfine interactions, Eqs. (18)
and (19), have similar forms, we combine them into effective
fields that acts on the electron spin in each dot:

Hnuc + HZ = −bL · SL − bR · SR. (21)

The effective fields bL,R = μeBL,R · ¯̄g − hL,R include the
contributions of the external and Overhauser fields, with all
coupling constants absorbed in the field definitions. The energy
levels arising from the spin-conserving Hamiltonian (16),
along with coupling to a uniform effective field (21) with
bL = bR , are shown in the left panel of Fig. 2.

Below, we will be interested in transitions that change the
total spin of the pair of electrons in the DQD. To facilitate
the discussion, we separate the total field into a sum field
b̄ = (bL + bR)/2 and a difference field δb = (bL − bR)/2:

Hnuc + HZ = −b̄ · (SL + SR) − δb · (SL − SR). (22)

The symmetric component b̄ conserves the magnitude of the
total spin, [b̄ · (SL + SR),(SL + SR)2] = 0, while the antisym-
metric component δb does not. We include the spin-conserving
field b̄ into the unperturbed Hamiltonian, and define

HTT = HTT,0 − b̄ · (SL + SR). (23)
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FIG. 2. (Color online) Energy levels of the double quantum dot
system obtained from exact numerical diagonalization of H given in
Eq. (30) and plotted as a function of the detuning ε measured in units
of the Coulomb on-site repulsion energy U . Of particular interest here
are the crossings and anticrossings of singlet and triplet states due
to spin-orbit and hyperfine interactions. For HST = 0 [see Eq. (42)],
i.e., vanishing singlet-triplet mixing (left-hand side of plot), the pa-
rameter values chosen are (U,t,p,X,V−,V+,b̄,δby,δb · e,δb · e′,ϕ) =
(1,0.1,0,0,0.05,0.04,0.3,0,0,0,0). In this case, the singlets |(1,1)S〉
and |(0,2)S〉 anticross (left oval) and a finite gap opens, whereas the
singlets and triplets only cross (no gap). For HST �= 0, additional gaps
open (right-hand side of plot), in particular, at the lower singlet-triplet
anticrossing around ε = ε∗ (right oval) with an energy splitting �ST

that depends on magnetic field, detuning, spin-orbit, and hyperfine
interactions (see main text and figures below). The singlet S− is a
superposition of |(1,1)S〉 and |(0,2)S〉 [see Eq. (37)]. The parameter
values chosen for the right plot are (U,t,p,X,V−,V+,b̄,δby,δb · e,δb ·
e′,ϕ) = (1,0.1,0.01,0,0.05,0.04,0.3,0.02,0.02,0.01,π/2).

Below, we will investigate the role of the Overhauser fields
in causing spin transitions near a singlet-triplet level crossing
in a two-electron DQD. While the external magnetic field B is
a classical variable, the Overhauser fields hL,R are, in principle,
quantum operators that involve a large number of nuclear spins,
see Eq. (20). Hyperfine-induced electron spin transitions may
be accompanied by nuclear spin flips, and the dynamical,
quantum nature of the Overhauser field may be important.
However, due to the large number of nuclear spins, the time
scale for the Overhauser fields hL,R to change appreciably can
be much longer than the time spent near the avoided crossing
where spin transitions are possible. Thus we will treat the
fields b̄ and δb as quasistatic classical variables, and include a
discussion of the averaging that occurs due to nuclear Larmor
precession and statistical (thermal) fluctuations.

III. SPIN-ORBIT INTERACTION

In addition to the external and hyperfine fields, electron
spins in a DQD are also influenced by orbital motion due to
the spin-orbit interaction. Here, we describe how the bulk spin-
orbit coupling of the 2DEG is manifested in the confined DQD
system. In GaAs quantum wells, the spin-orbit interaction is
caused by the inversion asymmetry of the interface that forms

the quantum well24–26 and the inversion asymmetry of host
material.27 With the 2DEG being much thinner than the lateral
quantum dot dimensions, both spin-orbit interactions are linear
in the in-plane momenta of the confined electrons, and together
are given by

HSO = α(px ′σy ′ − py ′σx ′ ) + β(−px ′σx ′ + py ′σy ′ ), (24)

where the Rashba and Dresselhaus spin-orbit interaction
constants α and β, respectively, depend on the thickness and
shape of the confinement in the growth direction and on the
material properties of the heterostructure in which the 2DEG
is fabricated. This form of spin-orbit coupling appears in a
quantum well fabricated in the (001) plane of GaAs crystal, and
the x ′ and y ′ axes point along the crystallographic directions
[100] and [010], respectively.

Within the space of low-energy single-electron orbitals
in the DQD, the action of the spin-orbit interaction can be
expressed in terms of a spin-orbit field �,

HSO = i

2
� ·

∑
α,β=↑↓

(c†
Lασ αβcRβ − H.c.), (25)

where the field

i� = 〈�L|pξ |�R〉a� (26)

depends on the orientation of the dots with respect to
crystallographic axes through the vector a�.28–30 For a 2DEG
in the (001) plane, a� is given by

a� = (β − α) cos θe[1̄10] + (β + α) sin θe[110], (27)

where the angle between the eξ direction and the [110]
crystallographic axis is denoted by θ . The matrix element
of pξ , the momentum component along the ξ direction
that connects the two dots, see Fig. 1, is taken between
the corresponding Wannier orbitals, and it depends on the
envelope wave function and the double dot binding potential.
The spin-orbit field � accounts for the spin rotation when
the electron hops between the dots. Therefore the spin-orbit
interaction enables transitions between triplet states with
single occupation of each well, to the singlet states with double
occupation of either the left or the right well.

The matrix element in Eq. (26) can be calculated explicitly
in a model potential,21,28 giving

� = 4t

3

l

�SO

a�

|a�| , (28)

where l is the interdot distance. The numerical prefactor is
model dependent, but the dependence on other parameters is
generic. The hopping amplitude t , and the interdot separation l

depend on the geometry of the double dot system, whereas the
spin-orbit length �SO is determined by material properties
(Rashba and Dresselhaus spin-orbit strength) and by the
orientation of the DQD with respect to the crystallographic
axes. In particular, if the 2DEG lies in the (001) plane, it is
given by

1

�SO
=

√(
cos θ

λ−

)2

+
(

sin θ

λ+

)2

, (29)
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where λ± = h̄/[m∗(β ± α)],31 with m∗ being the effective
band mass of the electron. In the special case β = 0, θ =
0, this definition reduces to the Rashba spin-orbit length
�SO|β=θ=0 = λSO = h̄/m∗α.

One of the main goals in the following is to derive the
dependence of the energy splitting at the anticrossing between
the lowest-energy electron spin triplet and singlet states (see
Fig. 2, S− − T+ anticrossing) in terms of this spin-orbit length
�SO. Detailed understanding of this dependence may then be
used to extract the value of �SO, e.g., from measurements
of the singlet-triplet transition probability in gate-sweep
experiments.

Within the model used above for explicit calculation, the
components of � are real, even in the presence of magnetic
fields. This is due to the high symmetry of the ground-state
orbitals of the quantum dot in the model, and remains true even
after the replacement pξ → pξ − (e/c)Aξ in the spin-orbit
Hamiltonian HSO (24). However, this fact is not essential for
the physics described below.

IV. SINGLET-TRIPLET TRANSITIONS AND THE CHOICE
OF SPIN QUANTIZATION AXIS

Transitions between singlet and triplet states can be medi-
ated by the spin-orbit interaction or by an inhomogeneous
effective magnetic field (external plus hyperfine), δb. In
Ref. 19, it was shown that the transfer of angular momentum
between electrons and the nuclei strongly depends on the
relative size and phase of the electron spin-flip matrix elements
induced by spin-orbit interaction and by the difference of the
Overhauser fields in the two dots. Using our model of a detuned
DQD, we will study these matrix elements in the following
in detail and in particular focus on the singlet-triplet level
splitting, see Fig. 2, right panel.

The homogeneous field b̄ acts only within the spin-triplet
subspace, while the inhomogeneous field δb mixes singlet S =
0 and triplet S = 1 states. Representing the total Hamiltonian
in the basis {(|(0,2)S〉,|(2,0)S〉,|(1,1)S〉,|Tz+〉,|Tz0〉,|Tz−〉)},
where the z axis is taken along �, see Fig. 1, we find

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − ε X −√
2t 0 −i

√
2� 0

X U + ε −√
2t 0 −i

√
2� 0

−√
2t −√

2t V+ −√
2(δbx − iδby) 2δbz

√
2(δbx + iδby)

0 0 −√
2(δbx + iδby) V− + 2b̄z b̄x

√
2 0

i
√

2� i
√

2� 2δbz b̄x

√
2 V− b̄x

√
2

0 0
√

2(δbx − iδby) 0 b̄x

√
2 V− − 2b̄z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

The Hamiltonian (30) is the starting point for all of our
further calculations. Our results will show the dependence of
the singlet-triplet splitting on the parameters that enter H . This
Hamiltonian describes a double quantum dot with a single
orbital per dot, i.e., in the Hund-Mulliken approximation,
and it is valid as long as the dot quantization energy is the
largest energy scale in the problem. It can be applied to double
quantum dots of various kinds, for example, gated lateral or
vertical dots in III-V semiconductor materials, quantum dots in
nanowires, or self-assembled quantum dots. We illustrate the
spectrum of H in Fig. 2 , for a set of parameters that emphasizes
anticrossings of the levels. The spectrum is obtained by exact
diagonalization of H , and it is given as a function of detuning
ε. For other types of quantum dots, the parameter values would
change, but the overall structure of the spectrum remains the
same.

V. EFFECTIVE HAMILTONIAN NEAR THE
SINGLET-TRIPLET ANTICROSSING

In the limit of large detuning, |ε| � U,V+,V−,|b̄|, the
ground state is a spin singlet with both electrons in either
the left or right dot, depending on whether ε > 0 or ε < 0.
In the region of weak detuning, the ground state has one
electron in each of the dots. For a sufficiently strong sum field,

|b̄| > U − V+, the singlet ground state exhibits an avoided
level crossing with the lowest-energy triplet state, i.e., the
S = 1 state oriented along b̄, see Fig. 1, at a detuning where the
potential energy gained by the singlet’s double occupancy of
the lower well compensates the Zeeman energy gained by the
spin-polarized triplet. Here, the residual splitting is determined
by the spin nonconserving interactions. The behavior near this
anticrossing has been the focus of many recent studies on the
interaction of electron spins with the nuclei.11,32–35 The role of
spin-orbit interaction has received less attention than that of
the nuclei, and will be analyzed in the following sections.

The orbital structure of the levels near the anticrossing
is determined by the spin-independent interactions and by
the direction and amplitude of the sum field b̄. The singlet
subspace acted on by the Hamiltonian (17) includes a state
with single occupation of the two dots and two states, which
feature double occupation of either the left or the right dot.
Generically, the state that takes part in the anticrossing includes
amplitudes of all three singlet states. However, because U �
J , where J ≈ 4t2/(U − V+) ∼ 0.01–0.1 meV is the splitting
between the lowest-energy triplet and the lowest-energy singlet
state, and U ∼ 1 meV, admixture of at least one of the
singlets will always be suppressed at the anticrossing by
a large energy denominator (note that t ≈ 0.01–0.1 meV
� U − V+).
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Let us now construct the effective Hamiltonian that acts
in the two-level subspace spanned by the levels near the
anticrossing. First, the spin-conserving part of the full (6 × 6)
Hamiltonian reads

Hsc =
(

HSS 0

0 HTT

)
, (31)

where the block HSS acts in the singlet subspace, HTT acts in
the triplet subspace, and the off-diagonal blocks vanish due to
spin conservation.

Explicitly, the block HSS is given by Eq. (17) in the basis
Eqs. (3)–(8). The triplet block HTT is given in Eq. (23).
Since U � t � X in a typical quantum dot, the state at
the anticrossing can include significant contributions from
at most two out of three basis singlets. We will con-
sider the anticrossing at positive values of the detuning ε

(the anticrossing at negative voltage is analogous) so that
the |(2,0)S〉 state with the energy U + ε is far detuned
from the other two singlets. The remaining two singlets can
be close in energy. In order to include the possibility of
near degeneracy, we will introduce a mixing angle ψ that
parametrizes the hybridization of the |(0,2)S〉 and |(1,1)S〉
states. In the restricted subspace of these hybridized states, the
singlet Hamiltonian reads:

Hr = U − ε + V+
2

+ τ · n

√
(U − ε − V+)2

4
+ 2t2, (32)

where τ = (τx,τy,τz) is the vector of Pauli matrices. The
pseudospin τ describes the components of the anticrossing sin-
glet state, |τz = 1〉 = |(1,1)S〉, |τz = −1〉 = |(0,2)S〉, within
the approximation that we neglect the remaining |(2,0)S〉
component (this is valid when |t/U | � 1). In this case,
n = ez cos 2ψ + ex sin 2ψ is a unit vector parametrized by
the mixing angle ψ that describes the relative size of mixing
and splitting of τz eigenstates. Note that the y component
of n vanishes due to the choice of phases in the quantum
dot ground states, which guarantees that the spin-independent
hopping matrix element t is purely real. We remark again
that in our DQD setup the hopping matrix element t stays
real even in the presence of magnetic fields.21 The mixing
angle of the doubly and singly occupied states at the S = 0
anticrossing, |(0,2)S〉 and |(1,1)S〉, respectively, is defined
by

cos 2ψ = U − V+ − ε√
(U − V+ − ε)2 + 8t2

, (33)

sin 2ψ = 2
√

2t√
(U − V+ − ε)2 + 8t2

. (34)

In the basis of eigenstates of Eq. (32), the singlet Hamilto-
nian HSS is given by

HSS =

⎛⎜⎝ U + ε X cos ψ − √
2t sin ψ −X sin ψ − √

2t cos ψ

X cos ψ − √
2t sin ψ ES+ 0

−X sin ψ − √
2t cos ψ 0 ES−

⎞⎟⎠ , (35)

where

ES± = U − ε + V+
2

±
√

(U − ε − V+)2/4 + 2t2 (36)

are the eigenvalues of HSS in the spin-conserving sector. The
basis vectors used here are the far-detuned singlet |(2,0)S〉 [see
Eq. (3)] and the singlets |S±〉 defined by

|S+〉 = sin ψ |(1,1)S〉 − cos ψ |(0,2)S〉, (37)

|S−〉 = cos ψ |(1,1)S〉 + sin ψ |(0,2)S〉. (38)

In the limit U � t , |S±〉 become eigenstates of HSS with
energies ES± given in Eq. (36).

While the mixing of orbital states belonging to singlets
does not affect the triplet Hamiltonian HTT, it will change the
form of coupling between the singlet and triplet states near the
anticrossing. In the following, we first diagonalize the triplet
sector in order to find the explicit form of the triplet state at
the anticrossing, and then find the effective Hamiltonian of the
singlet-triplet coupling.

The triplets are Zeeman split by the sum-field b̄. We have
chosen the z axis of spin quantization so that the spin-orbit
interaction couples |(0,2)S〉 and |(2,0)S〉 to the |S = 1,Sz = 1〉

state. We will now diagonalize the triplet part of the spin-
conserving Hamiltonian, given by

HTT = V− + 2b̄

⎛⎜⎝ − cos ϕ 1√
2

sin ϕ 0
1√
2

sin ϕ 0 1√
2

sin ϕ

0 1√
2

sin ϕ cos ϕ

⎞⎟⎠ , (39)

where we have used b̄ = |b̄|, cos ϕ = b̄z/b̄, and sin ϕ =
b̄x/b̄ (see Fig. 1). The unitary transformation Ut HTTU

†
t that

diagonalizes HTT is

Ut =

⎛⎜⎝ cos2 ϕ

2 − 1√
2

sin ϕ sin2 ϕ

2

− 1√
2

sin ϕ − cos ϕ 1√
2

sin ϕ

sin2 ϕ

2
1√
2

sin ϕ cos2 ϕ

2

⎞⎟⎠ . (40)

We denote the basis states by |T+〉, |T0〉, and |T−〉, where, now,
the quantization axis is given by the sum field b̄.

With the diagonalization of the triplet block of the
spin-conserving Hamiltonian and the preceding approximate
diagonalization of the spin-conserving singlet Hamiltonian
(35), we are able to describe the spin-conserving interaction
near the anticrossing in a convenient form. We will use |S−〉
and |T+〉 as basis vectors, and study the effective Hamiltonian
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in the vicinity of the anticrossing that can emerge from
spin-nonconserving interactions.

The full Hamiltonian is

H = Hsc + HSO − δb · (SL − SR), (41)

and in block form reads

H =
(

HSS HST

HTS HTT

)
. (42)

The diagonal blocks HSS and HTT give the spin-conserving
part, denoted by Hsc, while the off-diagonal blocks HST

and HTS = H
†
ST induce singlet-triplet transitions. In the basis

[|(2,0)S〉,|S+〉,|S−〉,|T+〉,|T0〉,|T−〉], the diagonal blocks take

a simple form. The singlet block is HSS given in Eq. (35). The
triplet block HTT is diagonal and reads

HTT = diag(V− − |b̄|,V−,V− + |b̄|), (43)

where we used that |T+〉 is the lowest-energy triplet.
The effective Hamiltonian near the anticrossing is de-

termined by the spin-conserving terms t,U,X,ε,b̄, and by
the spin-non-conserving terms �, arising from spin-orbit
coupling, and δb, the effective difference field. All these
interactions can be treated perturbatively in dots with weak
overlap of the orbitals. The off-diagonal terms are denoted by
HST = H SO

ST + Hδb
ST, and HTS = H

†
ST, where

H SO
ST = i�

⎛⎜⎝ − sin ϕ −√
2 cos ϕ sin ϕ

cos ψ sin ϕ
√

2 cos ψ cos ϕ − cos ψ sin ϕ

− sin ψ sin ϕ −√
2 sin ψ cos ϕ sin ψ sin ϕ

⎞⎟⎠ , (44)

Hδb
ST =

⎛⎜⎝ 0 0 0√
2(iδby + δb · e′) sin ψ 2(δb · e) sin ψ

√
2(iδby − δb · e′) sin ψ√

2(iδby + δb · e′) cos ψ 2(δb · e) cos ψ
√

2(iδby − δb · e′) cos ψ

⎞⎟⎠ , (45)

where the unit vector

e = ex sin ϕ + ez cos ϕ (46)

points in the direction of the homogeneous field b̄, and the
vector

e′ = −ex cos ϕ + ez sin ϕ (47)

lies in the xz plane, which contains � and b̄ and points in the
direction normal to b̄.

In the vicinity of the anticrossing, the DQD behaves as an
effective two-level system, with the dynamics described by
an effective Hamiltonian denoted by Hcr. Up to first order
in spin-non-conserving interactions and, after neglecting the
high-energy state |(2,0)S〉, we find

H (1)
cr =

(
ES− H34

H43 ET +

)
, (48)

where H34 = 〈S−|H |T+〉 is the matrix element of H , Eq. (42),
between the anticrossing states, and ET + = V− − b̄.

VI. SINGLET-TRIPLET SPLITTING AT THE
ANTICROSSING

The singlet-triplet splitting �ST at the S− − T+ anticross-
ing, see Fig. 2, can be accessed in the spin blockade regime
by transport measurements or by charge sensing. This splitting
gives valuable information about the properties of the quantum
dots and the nuclear polarization. The splitting �ST was used
in the interpretation of both transport15,36 and charge sensing15

measurements in double quantum dots, where it was attributed
to the effects of hyperfine interaction. The anisotropy in the
splitting between the singlet and triplet two-electron states in

an isolated quantum dot37,38 was successfully explained as a
consequence of spin-orbit interaction. Similarly, the effects
of both the spin-orbit interaction and the hyperfine coupling
were measured in double quantum dots fabricated in InAs
nanowires.17,39 However, a systematic study of the dependence
of singlet-triplet splitting on gate voltages and magnetic field
strength and direction was not undertaken. When such a study
is performed, our predictions for these dependencies, derived
from the model (30) can be checked against experimental
results, and may be used to extract information about spin-orbit
and hyperfine fields.

We shall derive now explicit expressions for �ST in terms
of the experimentally relevant quantities ε, b̄, δb, and �. We
proceed by perturbation expansion in HST, t/U , and X/U .
First, we focus on the first-order contributions and, afterward,
address the higher-order corrections, which become relevant
around the points where the leading contributions can be tuned
to zero by the control parameters.

As the DQD detuning ε is varied with other parameters
held fixed, there is a special value ε∗ where the energy ES−
of the lowest singlet, Eq. (36), becomes equal to the energy
ET + = V− − b̄ of the triplet |T +〉, Eq. (43). The detuning
at which this crossing occurs is controlled by the amplitude
b̄ of the sum field, as well as the tunnel coupling t . For the
unperturbed case, described by H0, ε∗ is the solution of the
equation

ES−(ε∗) = V− − b̄. (49)

When the spin-non-conserving interactions are taken into
account, the crossing of singlet (S = 0) and triplet (S = 1)
states is avoided due to state mixing (hybridization).
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Up to first order in HST, t/U , and X/U , the splitting follows
from Eq. (48) and reads

�ST(ε,b̄,ϕ) = 2
√

|H34|2 + (ES− − ET+ )2. (50)

For a fixed value of b̄, the splitting attains its minimum value
�∗

ST at ε∗,

�∗
ST ≡ �ST(ε∗(b̄),b̄,ϕ) = min

ε
�ST(ε,b̄,ϕ), (51)

where ε∗ implicitly depends on b̄, as well as other DQD
parameters. From Eqs. (44), (45), and (48), the splitting is
equal to 2|H34|,

�∗
ST = 2|−i� sin ϕ sin ψ +

√
2(δb · e′ + iδby) cos ψ |.

(52)

Note that �∗
ST contains contributions from both the spin-orbit

coupling and the difference field δb. The relative importance of
each of the two terms depends on the detuning ε∗ through the
mixing angle ψ , as well as on the geometry through the angle
ϕ between the effective field b̄ and the spin-orbit field �. When
varying the detuning ε from large to small values, ψ decreases
from ψ ≈ π/2 at strong detuning, ε � U − V+, to ψ ≈ 0 at
|ε| � t . For a mixing angle ψ ≈ π/2, the contribution to �∗

ST
coming from the spin-orbit interaction dominates the one from
the difference field, and vice versa for ψ ≈ 0.

Reaching the ψ ≈ 0 regime requires weak magnetic fields,
i.e., b̄ � t , and in this case, the energy splittings between the
triplet states are not large enough to warrant the use of the
simple model for a two-level anticrossing. On the other hand,
reaching the regime with ψ ≈ π/2 requires that the detuning
ε∗ at which |S−〉 and |T+〉 anticross is far away from ε12, the
detuning at the anticrossing of |(1,1)S〉 and |(0,2)S〉 singlets,
see Fig. 2. The width of the |(1,1)S〉 − |(0,2)S〉 anticrossing is
of the order t , so the requirement is |ε∗ − ε12| � t . Therefore
the Zeeman energy of |T+〉 must be larger than t , so |μeB ·
¯̄g| � t , which gives B � 0.2 T for typical values t ∼ 10 μeV
and |g| = 0.4.

These considerations show that, at least in principle, the
relative strengths of the spin-orbit and hyperfine contributions
to the singlet-triplet coupling can be tuned through a wide
range of values using a combination of gate voltages and
magnetic field strength and direction. What do we expect for
typical GaAs dots? Using a value of 3–5 mT for the random
hyperfine field (see, e.g., Ref. 2 and references therein), and
an isotropic electron g factor |g| = 0.4, we estimate |δb| ≈
70–120 neV. For the spin-orbit coupling �, see Eq. (28),
using t = 10 μeV, an interdot separation l = 50 nm, and a
spin-orbit length �SO in the range 6–30 μm (see, e.g., Refs. 10
and 40), we find |�| ≈ 20–110 neV. Parameters may vary from
device to device, but it appears that the spin-orbit and hyperfine
couplings are generally of similar orders of magnitude, with
the spin-orbit coupling typically a few times weaker. Thus
adjustments of the matrix elements over a reasonable range of
ψ may be sufficient to explore both the hyperfine and spin-orbit
dominated regimes. Similar analysis can be performed for
devices in other materials, such as InAs or InSb nanowires,
where the natural balance between hyperfine and spin-orbit
couplings may shift.
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FIG. 3. (Color online) Singlet-triplet level splitting �∗
ST =

�ST(ε∗,b̄,ϕ), Eq. (52), for δb = 0 (no nuclear field), as a function
of the detuning ε∗ at which the crossing occurs (cf. Fig. 2) and of
the angle ϕ between the spin-orbit field � and the magnetic sum
field b̄ (cf. Fig. 1). Parameters used for this plot are U = 1, t = 0.01,
V+ = 0.75, δb = 0.

A. Singlet-triplet splitting �∗
ST for δb = 0

Let us first consider the special case of vanishing difference
field, δb = 0, and finite uniform field, b̄ �= 0. In this case, the
splitting depends not only on � but also on the detuning at the
minimal splitting ε∗, which itself is implicitly determined by
the sum field amplitude b̄. The geometry of the system enters
through the angle ϕ between b̄ and the spin-orbit field �. In
Fig. 3, we show a plot of the level splitting �ST(ε∗,b̄,ϕ), given
in Eq. (52) as a function of its variables and for δb = 0.

At any fixed angle ϕ �= 0, �∗
ST shows a dependence on

the detuning ε∗ at the anticrossing due to the mixing of
|(0,2)S〉, which is coupled to |T+〉 via the spin-orbit interaction,
and |(1,1)S〉, which does not couple to |T+〉 via spin-orbit
coupling in the first order, see Fig. 4. At large values of
detuning, ε∗ � U − V+, the splitting reaches a saturation
value of 2� sin ϕ. For typical GaAs quantum dots, reaching
this regime requires strong magnetic fields of |μeB · ¯̄g| � t .
At lower values of the detuning ε < U − V+, the mixing of
the singlet |(1,1)S〉 becomes significant, and the spin-orbit
coupling value � cannot be read off directly from the splitting.

The maximal splitting �∗
ST caused by spin-orbit interaction

is �∗
ST = 2�| sin ϕ| for ψ = π/2. From Eqs. (28) and (29),

we find that � is set by the material properties [Dresselhaus
(β) and Rashba (α) spin-orbit interactions] and the geometry
of the dots. Assuming that the magnetic field is strong enough
to separate the |T0〉 and |T−〉 states from the anticrossing,
U � b̄ � t � |δb|, the maximal splitting is (| sin ψ | = 1)

�∗
ST = 4t

3

l

�SO
| sin ϕ| (δb = 0), (53)

where l is the interdot distance. The numeric factor (of
order unity) is nonuniversal and depends on the specific dot
geometry. Formula (53) is one of the main results of this paper.
It provides a simple but useful relation between quantities that
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FIG. 4. (Color online) Singlet-triplet level splitting �∗
ST =

�ST(ε∗,b̄,ϕ), Eq. (52), for δb = 0 (no nuclear polarization), as a
function of the detuning ε∗ at which the crossing occurs (see Fig. 2)
and of the angle ϕ between the spin-orbit field � and the magnetic
sum field b̄ (see Fig. 1). At small detuning ε∗ < t , the splitting
becomes rather small, while it saturates at large detuning ε∗ > U . The
saturation value is ∝ | sin ϕ|, shown for ϕ = π/4 (full line), ϕ = 3π/8
(dashed line), and ϕ = 5π/8 (dashed-dotted line). Parameters used
for this plot are U = 1, t = 0.01, V+ = 0.75, δb = 0.

can be determined experimentally, such as �∗
ST, t , l, and ϕ,

and a quantity of interest—the spin-orbit length �SO. This
relation could allow the strength of spin-orbit coupling to
be measured experimentally,17,35 though the geometry and
detuning-dependence must be carefully taken into account in
order to obtain an accurate estimate.

Let us remark here briefly on the special case of zero
detuning, i.e., ε = 0 and weak magnetic fields. In this case,
the splitting is not described by our calculations, which require
sufficiently large separation of the triplets in energy. However,
in a slightly different system—a single quantum dot containing
two electrons—singlet-triplet coupling, which is forbidden
by time-reversal symmetry, can be generated by applying a
magnetic field, �∗

ST ≈ (aB/λSO)EZ.31 This case cannot be
recovered from our DQD model with one orbital per site.
Indeed, here, we have seen that in weak fields, b̄ � t , the
coupling of the two states with single occupation in each well
|(1,1)S〉 and |T+〉 due to the spin-orbit interaction involves
doubly occupied states that are higher in energy due to the
on-site repulsion. On the other hand, for a pair of electrons in
a single quantum dot, the on-site repulsion is approximately
the same for both states, singlet and triplet. We note that for
DQDs in weak fields, the Zeeman energy EZ, occurring in
the splitting for a single dot,31 gets replaced by the exchange
energy J if the mixing of triplets due to δb �= 0 is neglected.

B. Singlet-triplet splitting �∗
ST for δb �= 0

In addition to spin-orbit coupling of the anticrossing
triplet to |(0,2)S〉, the anticrossing triplet is coupled to the
singlet |(1,1)S〉 through the difference field δb. The previous
considerations show that the contributions from the difference
field δb to the splitting cannot be neglected for angles ϕ ∼ 0,π ,
or for field strengths where ε∗ < U − V+, which is often the
case. Therefore we now discuss the splitting in the presence

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

∋

U

2
π

*Δ /U

0

0.015

FIG. 5. (Color online) The same plot of the singlet-triplet splitting
as in Fig. 3 except for finite nuclear polarization chosen to be δb =
(−0.0006,0.0008,0.0012). In the strong detuning regime, ε∗ > U −
V+, on the right-hand side of the plot, the splitting is determined
by spin-orbit interaction, vSO > vHF, and resembles the same area in
Fig. 3. In the weak detuning regime, ε∗ < U − V+, on the left-hand
side of the plot, the hyperfine interaction increases the splitting. The
regime with similar strengths of the interactions, vSO ∼ vHF can be
identified in the region ε∗ ≈ U − V+ = 0.25U . For ε∗ on the left-
hand side of the vertical dashed line, and ϕ ≈ 0,π , the splitting is
dominated by hyperfine interaction, vHF > vSO. Near the dotted line,
and for the angles ϕ ≈ π/2,3π/2 the sizes of spin-orbit and hyperfine
interactions are similar, vSO ≈ vHF.

of both, the spin-orbit field � and δb. The splitting �∗
ST as

a function of detuning ε∗ and direction of b̄ is shown in
Fig. 5.

When both sources of splitting are present, generically, the
gap �∗

ST remains open. The spin-orbit contribution to Eq. (52)
is always purely imaginary, while the δb contribution has
both a real part, coming from the component lying in the xz

plane, and an imaginary part, coming from the perpendicular
component δby . For any fixed value of the spin-orbit coupling
strength, closing the gap would require fine tuning of δb, both
in amplitude and direction. As a function of the direction
of b̄ the contributions to �∗

ST compete, and, in addition,
the relative size of the competing terms will change as a
function of ε∗. Indeed, the spin-orbit term is strongest at
large detuning ε∗ � U − V+, while the difference-field term
becomes significant at small detuning ε∗ ∼ t . This competition
affects the form of the ϕ-dependent splitting, see Fig. 6.

In the limit |� sin ψ | � |δb cos ψ |, the splitting �∗
ST is

caused mostly by the inhomogeneous field. In this case, the
splitting is proportional to the size of component δb⊥ = δb −
e(δb · e) of δb, which is normal to the homogeneous field
b̄ = |b̄|e. With the leading spin-orbit coupling correction, the
splitting is [see Eq. (52)]

�∗
ST = 2

√
2|δb⊥ cos ψ | − 2�δby sin ψ cos ψ

|δb⊥ cos ψ | . (54)
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FIG. 6. (Color online) First-order singlet-triplet splitting �∗
ST =

�ST(ε∗,b̄,ϕ), Eq. (52), for finite nuclear polarization δb �= 0, plotted
as a function of the angle ϕ (see Fig. 1), for various detunings ε∗ (see
Fig. 2). The parameters used for the plot are U = 1, t = 0.01, V+ =
0.75, V− = 0.74, � = 0.005, and δb = (−0.0006,0.0008,0.0012).
The curves correspond to ε∗ = 0.1 (full line), ε∗ = 0.2 (dashed),
ε∗ = 0.4 (dashed-dotted). In the strong detuning regime (dashed-
dotted line), the angular dependence reflects the | sin ϕ| dependence
of the spin-orbit term [see Eq. (53)]. The regime of weaker detuning
(full and dashed line) shows the hyperfine effects.

C. Measuring the singlet-triplet coupling

The singlet-triplet coupling �∗
ST is manifested experimen-

tally, for example, in the spin flip probability when the system
is taken through the level crossing during a time-dependent
gate sweep.41 In such experiments, the system is initialized to
its ground state at large ε, the (0,2) singlet. When ε is then
ramped to take the system through the singlet-triplet crossing,
the two-electron spin state may change with a probability
determined by a combination of the coupling �∗

ST and the
sweep rate. The final spin state can then be read out by quickly
ramping back to large ε where the singlet and triplet states
have discernibly different charge distributions, which can be
detected by a nearby charge sensor.

Even with single-shot spin detection,11 determining the
spin-flip probability requires building up statistics over many
experimental runs. Within each run, the parameters in Eq. (52)
may be considered fixed. However, the hyperfine field compo-
nents are, in general, a priori unknown: under typical experi-
mental conditions, the temperature is high compared with all
intrinsic energy scales within the nuclear spin system, and the
equilibrium state is nearly completely random. Depending on
the measurement time scale, the nuclear fields on subsequent
experimental runs may either remain constant or may change.
While the correlation time for the longitudinal component of
the nuclear field (parallel to the external field) may be quite
long, the transverse components change on the time scale of
nuclear Larmor precession, which for moderate fields of a few
hundred milli Tesla can reach the submicrosecond timescale.
The coherence time associated with this precession may reach
several hundred microseconds to one millisecond.

Let P (�∗
ST) be the probability that the system makes a

transition to the triplet state in a single sweep, when the value

of �∗
ST is specified. In an experiment where measurements of

the singlet and triplet fractions are averaged over a time long
compared to all nuclear spin relaxation times, one obtains an
averaged probability 〈P (�∗

ST)〉, where 〈A〉 denotes the mean
value of quantity A, averaging over a Gaussian distribution of
δb, while other parameters such as B,t,b̄,φ, and the sweep
rate are held fixed. If the measurements are averaged over
a shorter period, which is long compared to the time for
phase relaxation of the nuclear spins, but short compared to
the longitudinal relaxation times, then the Gaussian average
should be taken only over the transverse components of δb,
while the component parallel to the applied magnetic field is
held fixed.

When the sweep rate through the S-T transition is rapid,
the probability P (�∗

ST) should be proportional to (�∗
ST)2, so

an average value of P (�∗
ST) will measure the mean value

of (�∗
ST)2. For lower values of the sweep rate, P will have

corrections due to (�∗
ST)4, etc. Therefore measurements of

the averaged value 〈P (�∗
ST)〉 for a wide range of sweep

rates should, in principle, yield average values of all powers
of (�∗

ST)2, and thus allow one to deduce the probability
distribution for (�∗

ST)2. Here, we concentrate on the mean
value of (�∗

ST)2, and discuss predictions for this mean value as
a function of the parameters B,φ, and t .

We illustrate the dependence of 〈(�∗
ST)2〉 on the angle ϕ and

mixing ψ in Figs. 7 and 8. The dependence of the splitting on
the angle ϕ, inherent in the nonaveraged splitting, see Eq. (52),
remains visible when the splitting is dominated by spin-orbit
interaction. As expected, the dependence of the splitting on the
angle ϕ, Fig. 7, is most visible in the case of weak fluctuations
of δb, i.e., for weak hyperfine coupling. In addition, the angular
dependence is more pronounced for larger mixing angles,
since the spin-orbit-induced splitting depends on � sin ψ (see
Fig. 8).
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ϕ /2π
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ψ = 3 π / 8
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FIG. 7. (Color online) Square of the splitting 〈�∗2
ST〉, Eq. (52),

averaged over Gaussian fluctuations of δb with zero mean and
standard deviation σ . The plots show the dependence of 〈�∗2

ST〉 on
the angle ϕ for various mixing angles ψ . We have assumed isotropic
Gaussian fluctuations with a standard deviation σ . Plots are for
the values σ/� = 0.1,0.5,1,2 and illustrate the effects of various
strengths of fluctuations. The curves are found by numerical averaging
over the fields δb.
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FIG. 8. (Color online) Average square of the splitting 〈�∗2
ST〉, in

the fluctuating nuclear field δb. The parameters are chosen as in Fig. 7,
and we illustrate the dependence on the mixing angle ψ .

The fluctuating difference field, besides changing the
average 〈(�∗

ST)2〉, introduces noise in the splitting. We find
that the standard deviation σ� of the splitting, in the limit of
weak fluctuations |� sin ϕ sin ψ | � σ is

σ�,G = 2σ | cos ψ |, (55)

so that it also shows dependence on the mixing angle ψ .
Fluctuations in δb smear the splitting at the anticrossing

�∗
ST. The average value and noise in the splitting can be used

to measure the strengths of spin-orbit coupling � and the
hyperfine field δb. The relative size of fluctuations in �∗

ST, as
a function of ϕ, has minima at ϕ ≈ π/2,3π/2.

D. Higher-order corrections

So far, our analysis of the |S−〉 - |T+〉 anticrossing was
based on the assumption that the largest contribution to the
splitting �∗

ST, Eq. (52), results from the direct coupling of the
two states via H SO

ST and Hδb
ST. However, if the detuning ε∗ is

not large enough to make the influence of the levels that are
energetically further away from the anticrossing completely
negligible, higher-order terms that describe virtual transitions
to such higher levels, and thus involve more than one transition
between the singlets and the triplets, become important.

To study this regime, we derive an effective Hamiltonian in
the vicinity of the anticrossing by a second-order Schrieffer-
Wolff (SW) transformation.42,43 We divide the Hilbert space
of the DQD into a relevant part that includes the anticrossing
states, and an auxiliary part that contains the remaining
four states. The time-independent perturbation series is then
performed in powers of the spin-non-conserving interactions.
The spin-conserving Hamiltonian Hsc (31) is taken as the
unperturbed part, while H − Hsc is the perturbation. In
reordering the basis, we choose the crossing states |S−〉
and |T+〉 of Hsc to be the first two basis states. Then, the
Hamiltonian has a block-diagonal form denoted by

H =
(

A C

C† B

)
, (56)

where A is a 2 × 2 matrix that describes the anticrossing states,
B is a 4 × 4 matrix of the states with energies far from the
anticrossing, and the 2 × 4 matrix C represents the coupling
between of the subspaces controlled by A and B. In the basis
(|S−〉,|T+〉,|T0〉,|T−〉,|(2,0)S〉,|S+〉) with the two anticrossing
levels at the positions 1 and 2, we can read off the blocks from
Eq. (56):

A =
(

ES− −i�s sin ψ + √
2δ+ cos ψ

i�s sin ψ + √
2δ− cos ψ ET +

)
, (57)

B =

⎛⎜⎜⎜⎜⎝
V− 0 i

√
2�c −i

√
2�c cos ψ + 2δ sin ψ

0 V− + b̄ −i�s i�s cos ψ − √
2δ+ sin ψ

−i
√

2�c i�s U + ε −√
2t sin ψ − X cos ψ

i
√

2�c cos ψ + 2δ sin ψ −i�s cos ψ − √
2δ− sin ψ −√

2t sin ψ − X cos ψ ES+

⎞⎟⎟⎟⎟⎠ , (58)

C =
(

−i
√

2�c sin ψ + 2δ cos ψ i�s sin ψ − √
2δ− cos ψ −√

2t cos ψ + X sin ψ 0

0 0 i�s −i�s cos ψ + √
2δ− sin ψ

)
, (59)

where we have used the abbreviations δ = δb · e, δ± = δb · e′ ± iδby , �s = � sin ϕ, �c = � cos ϕ, and the unit vectors e′ and e
are defined in Eqs. (46) and (47), respectively.

As a result of the SW transformation on Eq. (56), the off-diagonal block C is eliminated up to second order in C and the

transformed block A
SW−→A + δA becomes the Hamiltonian of an effective two-level system. Therefore the first-order Hamiltonian

H (1)
cr from Eq. (48) is modified by second-order terms, Hcr

SW−→Hcr + δA, where δA is the second-order correction to A. The
diagonal matrix elements δA11 and δA22 describe the renormalization of the energy levels, and their effect is to shift the detuning
ε∗ at which the anticrossing occurs. The explicit expressions of these corrections are

δA11 = 1

ES− − V−
[2(�c sin ψ)2 + 4δ2 cos2 ψ] + 1

ES− − U − ε
(
√

2t cos ψ − X sin ψ)2 +

+ 1

ES− − V− − b̄
[2(δb · e′)2 cos2 ψ + (

√
2δby cos ψ + �s sin ψ)2], (60)
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δA22 = 1

ET+ − U − ε
�2

s + 1

ET + − ES+
[(�s cos ψ +

√
2δby sin ψ)2 + 2(δb · e′)2 sin2 ψ], (61)

δA12 = − i

2
�s(

√
2t cos ψ + X sin ψ)

(
1

ES− − U − ε
+ 1

ET + − U − ε

)
. (62)

In experiments that probe the electron spin dynamics, the most important terms are the off-diagonal ones, δA12 = δA∗
21. They

lead to a modification of the first-order singlet-triplet splitting (51), i.e., �∗
ST

SW−→2|H34 + δA12|. Thus, up to second-order, the
splitting at the anticrossing becomes

�∗
ST = 2

∣∣∣∣−i� sin ϕ

[
sin ψ −

(
t√
2

cos ψ − X

2
sin ψ

) (
1

ES− − U − ε∗ + 1

ET + − U − ε∗

)]
+

√
2(δb · e′ + iδby) cos ψ

∣∣∣∣ .
(63)

We see now that the new correction terms in �∗
ST become

significant for weak detuning, when ψ < π/2, because the
spin-independent tunneling contribution, which is ∝ cos ψ ,
can alter the first-order result, which is ∝ sin ψ . We compare
the splitting in the second order, Eq. (63), with the first-order
splitting and the result of exact numerical diagonalization of H ,
Eq. (30), in Fig. 9. The higher-order corrections are small, but
they do become significant for the magnetic field normal to the
spin-orbit parameter, ϕ = π/2,3π/2, due to stronger effective
strength � sin ϕ of spin-orbit coupling. For other considered
values of detuning, ε∗ = 0.1U and ε∗ = 0.2U , the change of
splitting is smaller than for the ε∗ = 0.4U case.

The limit ψ = π/2 requires strong magnetic fields, B ∼
1 T for a typical GaAs DQD. It is reasonable to assume that
the experiments can be performed both in this limit and away
from it, so that the dependence of �∗

ST on ψ can be probed. In
materials with larger g factors such as InAs, InSb, SiGe, the
limit is reached at lower fields. In addition, we have obtained
similar results for a model DQD with t = 0.1U , � = 0.1t ,

0 0.2 0.4 0.6 0.8 1
ϕ /2π 

0

2

4

6

10
3

Δ S
T*
 / 

U

first order
second order
numeric

ε = 0.4 U

FIG. 9. (Color online) Comparison of the splitting �∗
ST obtained

from the perturbation in first order (full line), Eq. (52), and in the
second order (dashed line), Eq. (63), to the exact numerical result
(dashed-dotted line), obtained by the direct numerical diagonalization
of H , Eq. (30). The plots show the splitting �∗

ST as a function
of the angle ϕ for the anticrossing at the detuning ε∗ = 0.4U .
The parameters used in this plot are U = 1, t = 0.02, V+ = 0.75,
V− = 0.74, � = 0.005, and δb = (−0.0006,0.0008,0.0012).

and |δb| ≈ 0.5� that describes a smaller DQD with more
pronounced hopping.

VII. RATIO OF SPIN-ORBIT AND HYPERFINE TERMS

As pointed out before, the spin-non-conserving Hamilto-
nian in the vicinity of the anticrossing can be used to get
experimental access to the spin-orbit interaction and nuclear
polarization in the difference field δb. Being a function of
controllable parameters ε and b̄, this Hamiltonian can be
altered by applying voltages to electrodes in the vicinity of the
quantum dots, adjusting the strength of an external magnetic
field, or changing the direction of the field.

The effect of the competition between spin-orbit- and
hyperfine-induced spin flips on the efficiency of angular
momentum transfer between electron and nuclear spins was
recently studied theoretically, both in the context of dc
transport experiments18 and in the context of gate-sweep
experiments.19,20 References 18 and 19 revealed striking
sensitivities of the polarization transfer efficiency on the ratio
of spin-orbit and hyperfine coupling strengths. In those works,
the coupling strengths were treated as phenomenological
parameters. Here, we provide explicit expressions for them,
and discuss how they can be tuned.

Following the notation of Ref. 19, we write

vϑ = vSO + eiϑvHF, (64)

where vSO and vHF stand for the transitions caused by spin-
orbit and hyperfine interactions, respectively. Comparing with
Eq. (48), we can identify vϑ with H34. Then, adjusting the
overall phase to make the spin-orbit part vSO real, we identify
in lowest order,

vSO = |� sin ϕ sin ψ |, (65)

vHF = | cos ψ |
√

(δb · e′)2 + δb2
y, (66)

ϑ = arctan

[−δb · e′

δby

]
. (67)

The explicit expression for ϑ shows that the phase of the matrix
element can be adjusted not only by changing the direction of
δb, but also by rotating the external magnetic field, which
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changes e′, and also controls the effective spin-orbit coupling
strength.

Our results show that, in principle, it is possible to switch
between the regimes of hyperfine-dominated and spin-orbit-
dominated behaviors by changing the external magnetic field
strength and direction. In the strong field regime, with the sum
field b̄ being large, ε∗ is also large, and thus the spin-orbit
terms become dominant (ψ approaches π/2). This behavior
is illustrated in Fig. 5. Note that the large values of ε∗ require
strong b̄ fields. On the other hand, switching to the regime
vHF > vSO is always possible by rotating the direction of the
magnetic field so that it coincides with ±�/|�|, giving ϕ ≈ 0.
In this case, the term vSO is negligible and vHF dominates the
splitting. Higher-order corrections to the effective Hamiltonian
at the anticrossing point do not alter this basic picture of the
splitting, but they do change the values of the parameters ψ

and ϕ at which the switching occurs.
The switching between the regimes dominated either by

spin-orbit or by hyperfine interactions can potentially be
achieved as follows. For the regime vSO > vHF, the sum field
b̄ should point along the normal to the spin-orbit field �,
see Eqs. (26) and (27), in order to maximize | sin ϕ|. Also,
the applied field should be as strong as possible, in order to
maximize the amplitude of the singlet |(0,2)S〉 [contributing to
the anticrossing singlet |S−〉, see Eq. (37)]. On the other hand,
the opposite regime, vHF > vSO, can be reached by orienting
b̄ along �, and thus reaching sin ϕ = 0. If sin ϕ = 0 cannot
be achieved, vSO can be reduced by decreasing b̄ and thereby
increasing the amplitude of the singlet state |(1,1)S〉 in the
|S−〉 singlet at the anticrossing.

VIII. CONCLUSIONS

We have derived an effective two-level Hamiltonian Hcr for
a detuned two-electron double quantum dot in an external mag-
netic field. Our effective Hamiltonian describes the dynamics
of the electron spins for the values of detuning ε ≈ ε∗ close
to the anticrossing of the lowest energy S = 0 and the lowest
energy S = 1 state. We have shown how Hcr can be used
in the interpretation of experiments that probe electron spin
interactions by charge sensing and transport in the Coulomb
blockade regime. The dependence of Hcr on the detuning and
magnetic fields can also be used to switch the spin dynamics in
a double quantum dot between the spin-orbit-dominated and
the hyperfine-dominated regimes.

The spin dynamics at the anticrossing is governed by the
spin-orbit and nuclear hyperfine interactions. In a double
quantum dot, these two interactions act differently on the
orbital electronic states. On one hand, the spin-orbit interaction
causes hopping of an electron between the quantum dots

accompanied by a spin rotation, thus changing the occupation
of the quantum dots. On the other hand, the nuclear hyperfine
interaction acts as an inhomogeneous magnetic field, and
causes spin rotations that are local to the dots, leaving the
charge state unchanged. Due to this distinction, the detuning ε

controls the relative strength of the two interactions in Hcr, in
addition to the ratio |�|/|δb|, or |�|/σ . In the limit of detuning
much stronger than the on-site repulsion of the dots, ε � U ,
Hcr describes mostly the spin-orbit interaction, with negligible
hyperfine effects. In the case of weaker detuning, the effective
hyperfine interactions can be of the size comparable to the
effective spin-orbit interactions.

In addition, we find that the orientations of both the double
quantum dot and the external magnetic field, described in the
Hcr by the spin-orbit field � and the sum field b̄, influence
the effective spin-orbit interaction. In particular, by having
b̄ pointing along �, we can suppress the spin-orbit effects
completely (in leading order).

The splitting of the anticrossing states is accessible to
experiments. It can be calculated from Hcr, and we find the
dependence of this splitting on detuning and the strength and
direction of the sum field, �ST(ε,b̄,ϕ). Of particular interest
is the splitting of levels at the anticrossing. We calculate
this quantity, �∗

ST(ε∗,ϕ) as a function of the detuning at the
anticrossing point ε∗ and the orientation of the sum field, given
by the angle ϕ. Both the spin-orbit interaction strength and the
inhomogeneity in the hyperfine coupling can be deduced by
measuring the splitting and using our formulas for �∗

ST(ε∗,ϕ).
The relative strength of the spin-orbit and hyperfine terms in

Hcr has a profound effect on the coupled dynamics of electron
and nuclear spins. The value of the average angular momentum
transfer to nuclear spins as an electron tunnels through a
spin-blockaded DQD changes sharply as the interaction goes
from the spin-orbit-dominated to the hyperfine-dominated
regime. The spin-orbit interaction is dominant in the limit
of strong detuning, ε∗ � U − V+. The regime dominated by
nuclear hyperfine interaction is reached when the detuning is
weaker ε∗ � t and the orientation of the sum field is along
�. Using the dependencies of the matrix elements on gate
voltages and magnetic field strength and orientation, it may
be possible to tune between these two regimes in situ, thus
enabling experiments to study their sensitive competition.
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We propose a scheme for implementing the CNOT gate over qubits encoded in a pair of electron spins in
a double quantum dot. The scheme is based on exchange and spin-orbit interactions and on local gradients in
Zeeman fields. We find that the optimal device geometry for this implementation involves effective magnetic
fields that are parallel to the symmetry axis of the spin-orbit interaction. We show that the switching times for the
CNOT gate can be as fast as a few nanoseconds for realistic parameter values in GaAs semiconductors. Guided
by recent advances in surface codes, we also consider the perpendicular geometry. In this case, leakage errors
due to spin-orbit interaction occur but can be suppressed in strong magnetic fields.
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I. INTRODUCTION

Standard quantum computing1 is based on encoding,
manipulating, and measuring quantum information encoded
in the state of a collection of quantum two-level systems,
i.e., qubits. Spin-1/2 is an ideal implementation of a qubit
since it is a natural two-level system, and every pure state of a
spin-1/2 corresponds to a state of a qubit. For this reason, spins
have been considered as carriers of quantum information in a
variety of proposals.2 The initial proposal3 called for spins
in single-electron quantum dots electrically manipulated by
the exchange interaction and local time-dependent Zeeman
fields. A variety of other encoding schemes and manipulation
techniques4–11 rely upon encoded qubits. In these schemes,
the simplicity of qubit states and minimal number of physical
carriers of quantum information are traded for less stringent
requirements for experimental implementations. On one hand,
the alternative setups protect from the most common types of
errors by decoupling the computational degrees of freedom
from the most common sources of noise, and therefore allow
for longer gating times. On the other hand, in some alternative
setups, the manipulation without fast switching of the local
magnetic fields becomes possible.

The optimization in the encoding and manipulation proto-
cols is always guided by the state of the art in the experiments.
Recent results suggest that spin qubits can reside in a variety
of material hosts with novel properties. Quantum dots in
graphene12 and carbon nanotubes13 are less susceptible to
the decoherence due to nuclei and spin-orbit interaction.
Spins in nanowires show very strong confinement in two
spatial directions, and the gating is comparably simple.8,9 In
hole systems, the carriers have distinct symmetry properties,
and show coupling to the nuclear spins of a novel kind.14

Recently, the experiments in silicon15 have demonstrated
coherent manipulation of spins similar to that achieved
in the GaAs-based nanostructures. Within these hosts, the
manipulation techniques that use exchange interaction, spa-
tially inhomogeneous time-independent Zeeman splitting, and
nuclear hyperfine interactions are within reach. Despite these
developments, GaAS remains a promising route to spin qubits
due to the highly advanced experimental techniques developed
for this material.

Here, we study the implementation of the quantum gates
on the encoded two-spin singlet-triplet (ST) qubits4,5,7,10,16,17

using resources that closely resemble those available in the
current experimental setups. There, the application of the
time-dependent electric fields through the gates fabricated into
a structure11 are preferred to time-dependent local magnetic
fields. In addition, the nuclear spins7,16–19 and inhomogeneous
magnetic fields20,21 are possible resources for spin control. In
the setups based on semiconductors, the electrons or holes in
the quantum dots are influenced by the spin-orbit interaction
(SOI), which can contribute to the control.22

In this work, we present a scheme for control of ST qubits
which uses switching of the exchange interaction as a primary
resource. We consider the scheme that is optimized for the
application of quantum gates in the network of quantum dots.
The construction of the CNOT gate uses pulses of the exchange
interaction as the only parameter that is time dependent. The
exchange interaction itself is not sufficient for the universal
quantum computation over the ST qubits due to its high
symmetry. The additional symmetry breaking is provided by
nonuniform but static magnetic fields. These fields describe
the influence both of magnetic fields, provided by the nearby
magnets, and of the coupling to the nuclear spins in the host
material via hyperfine interaction. Depending on the scheme
used for the application of the quantum gates, the optimal
geometry is either the one in which the magnetic fields point
parallel to the axis of symmetry of the SOI or perpendicular
to it.

One major problem in the realization of two-qubit quantum
gates (in particular, we consider here the CNOT gate based on
conditional phase gates) is the possibility of leakage errors
where the spin states defining the logical qubit leave the
computational space. These errors move the state of four
spins from the 4-dimensional computational space of two
qubits into some other portion of the 16-dimensional Hilbert
space of four spin-1/2 particles. We consider two ways of
addressing this problem. One scheme possesses the axial
symmetry due to the fact that the SOI vector and magnetic
fields are parallel. For this “parallel scheme,” we are able to
construct a perfect CNOT gate, if we are able to control all the
available parameters. Having in mind two-dimensional (2D)
architectures, we also consider the CNOT gate between two
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FIG. 1. (Color online) Parallel geometry: four quantum dots
(yellow discs) aligned along the x axis in the presence of an external
magnetic field B that is applied parallel to the SOI vector β (red
arrow), which must be perpendicular to the line of the dots and
which we take to be the z direction. At each dot, there is a local
magnetic field Bi (blue arrows), also assumed to be parallel to B, but
with alternating orientations as indicated. The direction of B defines
the spin quantization axis. The dots are defined electrostatically by
metallic gates (light green structures). Each dot contains a spin-1/2,
and the exchange (Jij ) and the SOI-induced (β ij ) interactions between
the spins can be controlled by changing the electrostatic potential
between the dots. The dots 1 and 2 (from left to right) define the first
ST qubit, and the dots 3 and 4 the second ST qubit.

qubits in the case when the SOI vector and magnetic fields
are perpendicular to each other. Here, we can not prevent the
leakage out of the computational space, however, we show
that it is suppressed by a ratio between the SOI and Zeeman
energy coming from a strong external magnetic field. All
our constructions assume that the controlled interactions are
switched in time by rectangular pulses. Any deviations from
this form of time dependence lead to additional corrections
and affect the fidelity of the gate.

The paper is organzied as follows. In Sec. II, we introduce
the model for the double dots and effective Hamiltonians for
field gradients and exchange and spin-orbit interactions. In
Sec. III, we consider the parallel geometry and derive the
CNOT gate via the conditional phase gates and swap gates,
all based on exchange. There, we also give estimates for the
switching times. The scheme for the perpendicular geometry
is then addressed in Sec. IV, and we conclude in Sec. V.

II. EFFECTIVE MODEL

We consider in the following singlet-triplet qubits that are
implemented by two electrons confined to a double-quantum-
dot system4,5 (see Figs. 1 and 2). Such ST qubits have been
realized successfully in several labs,23 and single- and two-
qubit operations have also been demonstrated recently.7,10,17,24

There are several schemes for the fundamental CNOT gate,
which can be divided into two classes, schemes which make
use of exchange interaction and schemes which do not, but

FIG. 2. (Color online) Perpendicular geometry: similar to the
setup shown in Fig. 1, but with the difference that here the SOI
vector β (red arrow) is perpendicular to the magnetic fields B and
Bi , which define the spin quantization axis z.

instead rely on coupling of dipole moments.10 The latter
schemes have the disadvantage to be rather slow and also
to be affected by charge noise rather strongly. Here, we focus
on exchange-based schemes specifically adapted to quantum
dots in III-V semiconducting materials, which have the SOI,
such as in GaAs or InAs quantum dots. Although the SOI is
typically small compared to the level spacing of the dots, it
needs to be taken into account in order to achieve high fidelities
in gate operations.

We focus now on two such ST qubits and assume them
to be encoded in four quantum dots that are arranged in a
row (see Figs. 1 and 2). The external magnetic field B is
assumed to give the largest energy scale and determines the
spin quantization axis z. The Hilbert space of four spin-1/2 is
spanned by 24 = 16 basis states. The total spin of the system is
given by Ŝ = ∑4

i=1 Ŝi , where Ŝi is a spin-1/2 operator acting
on the spin in a dot i = 1,2,3,4. Due to axial symmetry, the
z component Ŝz becomes a good quantum number, and the
eigenstates corresponding to Sz = 0 span a six-dimensional
subspace. The singlet state of a qubit is defined as |S〉 =
(|↓↑〉− |↑↓〉)/√2 and the triplet state as |T 〉 = (|↓↑〉+
|↑↓〉)/√2. We define the computational basis of the two ST
qubits in this subspace as

|00〉 =|↓↑↓↑〉, |11〉 =|↑↓↑↓〉,
(1)

|01〉 =|↓↑↑↓〉, |10〉 =|↑↓↓↑〉,
where {0,1}⊗2 denotes the ST qubit space, “↑” and “↓” denote
states of the quantum-dot spins corresponding to the projection
Sz

i = ±1/2 on the z axis. The remaining two states

|l1〉 = |↑↑↓↓〉 , |l2〉 = |↓↓↑↑〉 (2)

belong to the noncomputational leakage space. We note that
the basis given in Eq. (1) is simply related to the common ST
basis4,5 via rotations on the Bloch sphere (corresponding to a
unitary basis transformation).

Aside from the externally applied magnetic field B, we
allow also for local magnetic fields Bi that are constant in
time (at least over the switching time of the gate). Such local
fields can be generated, e.g., by nearby micromagnets21 or
by the hyperfine field25–30 produced by the nuclear spins of
the host material. In the latter case, in order to reach a high
fidelity, it is important to perform a nuclear state narrowing,25

i.e., to suppress the natural variance δBi ∼ A/
√

N ∼ 10 mT
to a smaller value, where N is the number of nuclear spins
in the quantum dot, and A is the strength of the hyperfine
coupling. In the ideal case, one should try to reach a limit
where |Bi | ∼ 50 mT � |B| and the fluctuations in Bi are much
smaller than |Bi |.

The magnetic fields Bi are assumed to point along the
external field B so that they preserve the axial symmetry of
the problem. However, the Bi’s should have different values
(to create field gradients between the dots), a simple scenario
being local fields of opposite directions on neighboring dots
(see Figs. 1 and 2). The corresponding Zeeman Hamiltonian
is given by

HB =
4∑

i=1

(b + bi)Ŝ
z
i , (3)
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where the effective magnetic fields are defined in terms of
energy as b = gμBB and bi = gμBBi , respectively, with g

being the electron g factor and μB the Bohr magneton.
The exchange interaction Jij (t) couples the electron spins

of nearest-neighbor dots i and j and can be controlled
electrostatically.7,21,23 If the tunnel barrier between the dots
is high, we can treat them as independent. If the tunnel barrier
is lowered and/or a detuning between the dots is applied, the
two spins interact with each other, leading to an effective
description in terms of a Heisenberg Hamiltonian3,22,31

Hex = J12(t)Ŝ1 · Ŝ2 + J23(t)Ŝ2 · Ŝ3 + J34(t)Ŝ3 · Ŝ4. (4)

We assume that the magnetic field is sufficiently large com-
pared to exchange energies, i.e., Jij � B, to avoid admixture
of triplets via the SOI (see the discussion of perpendicular
geometry below).

We note that ideally it is best to switch the exchange
Jij by changing the corresponding interdot barrier height
or distance, instead of detuning the double dot by a bias
ε. Detuning is harmful for two reasons. First, detuning can
admix other unwanted states [for example, (0,2)S (see Fig. 2
in Ref. 22)]. To analyze the errors coming from detuning,
one needs to go beyond the effective spin Hamiltonian and
consider the microscopic model for the double dots, which
includes Rashba and Dresselhaus SOI and inhomogeneous
fields (see Ref. 22). Second, the control of Jij via the tunnel
barrier preserves the symmetry of the charge distribution in
the double dot and thus, in particular, avoids the creation
of dipole moments. In contrast, such dipole moments are
unavoidable for detuning, and in the regime with dJij /dε 	= 0
charge noise can enter most efficiently the qubit space,
causing gate errors and decoherence of the ST qubits.25

Thus, symmetric exchange switching is expected to be more
favorable for achieving high gate fidelities.

Next, we account for the effects of spin-orbit interaction.
Following Refs. 32–34, we model the SOI by a Dzyaloshinskii-
Moriya (DM) term for two neighboring quantum dots [see,
e.g., Eq. (1) in Ref. 33],

H SOI
ij = β ij (t) · (Ŝi × Ŝj ), (5)

where the SOI vector β ij (t) is perpendicular to the line
connecting the dots. First, we consider a “parallel geometry”
(see Fig. 1) where the SOI vectors β ij are all parallel to each
other and the magnetic fields B and Bj are assumed to be
parallel to the SOI vectors. This preserves the axial symmetry
of the spin system, and by definition, we choose the direction
of B to be the z axis. This leads to

H SOI
‖ =

∑
i,j

βij (t)
(
Ŝx

i Ŝ
y

j − Ŝ
y

i Ŝx
j

)
, (6)

where the summation runs over neighboring dots i and j . The
strength of the SOI, βij , depends on the distance between the
dots as well as on the tunnel coupling between them. This
allows us to assume that both Jij (t) and βij (t) are switched on
and off simultaneously.35–37

We note here that both Hex and H SOI
‖ , being axially

symmetric interactions, preserve the z component of the total
spin Sz. This means that our setup is protected from leakage
to the subspace with Sz 	= 0. However, it is not protected from

the leakage to the noncomputational space given by Eq. (2).
By a proper design of gates, this leakage can be minimized.

Alternatively, in a “perpendicular geometry” (see Fig. 2),
the axis of the quantum dots is aligned parallel to the applied
magnetic field, in the z direction. The SOI vector β ij is
perpendicular to this, and we take it to be in the x direction.
The corresponding Hamiltonian becomes

H SOI
⊥ =

∑
i,j

βij (t)
(
Ŝ

y

i Ŝz
j − Ŝz

i Ŝ
y

j

)
. (7)

Here, the SOI vector β ij breaks the axial symmetry of the
system, and the total spin Sz is no longer a good quantum
number. As a consequence, leakage into the noncomputational
space Sz 	= 0 is possible, in principle. However, this coupling
involves higher-energy states and can thus be suppressed
by choosing a sufficiently large magnetic field such that
β/B � 1. In contrast, the SOI does not couple states within
the computational space since the matrix elements of H SOI

⊥
between the states |↓↑〉 and |↑↓〉 vanish. We finally note that,
similarly, a finite angle between the fields B and Bj leads to a
leakage error of order (Bj )x,y/B � 1.

III. PARALLEL GEOMETRY

In this section, we concentrate on the parallel geometry (see
Fig. 1). Using the axial symmetry of the problem we are able
to construct a sequence of gate operations that implements the
CNOT gate,1 defined on the logical ST qubits given in Eq. (1)
by UCNOT|a,b〉 = |a,a ⊕ b〉, where a,b = 0,1.

One important step in this construction is the implementa-
tion of the π/4 gate Uπ/4 (see discussion below and Ref. 1).
For this gate, we propose the following scheme consisting of
four steps:

C23 → (π12, π34) → C23 → (π12, π34), (8)

where the conditional phase gate C23 exchange couples the
dots 2 and 3 and adds a phase factor to the two ST qubits (see
below). The swap gates π12 and π34 exchange spin states on
the dots 1 and 2 and the dots 3 and 4, and can be performed in
parallel.

A major issue in the implementation of Uπ/4 is the
avoidance of leakage errors during the coupling of qubits. To
keep qubits in the computational space, operations on spins 2
and 3 must be constructed in such a way that the resulting gate
is diagonal in the basis given by Eq. (1). This can be achieved
in two ways. The first approach is to use strong pulses that lead
to fast rotations around the Bloch sphere. The second approach
is to use adiabatic pulses that are protected from the leakage
to states with different energies.38 However, the adiabaticity
requires a longer pulse time. In this work, we focus on the first
approach.

A. Conditional phase gate C23

In this section, we describe the phase gate C23 involving
the exchange and SOI interactions only between dots 2 and
3, while dots 1 and 4 are decoupled from dots 2 and 3, i.e.,
J12 = J34 = 0 and β12 = β34 = 0. In this case, the effective
Hamiltonian is given by

HC = HB + Hex + H SOI
‖ = HC

1 + HC
23 + HC

4 , (9)
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where we present it in block-diagonal form. The part of the
Hamiltonian HC

i = (b + bi)Ŝ
z
i acts only on spins located at

the dot i = 1,4. The other part of the Hamiltonian HC
23 acts on

spins located at the dots 2 and 3:

HC
23 = (b + b2)Ŝz

2 + (b + b3)Ŝz
3 + J23Ŝ2 · Ŝ3

+β23
(
Ŝx

2 Ŝ
y

3 − Ŝ
y

2 Ŝx
3

)
. (10)

Here, we assume a rectangular pulse shape for the exchange
and spin-orbit interactions, and from now on we treat J23 and
β23 as time-independent parameters. In this case, the unitary
gate UC is a simple exponential of the Hamiltonian

UC = e−iHCTC = e−iHC
1 TC e−iHC

23TC e−iHC
4 TC . (11)

The spins of dots 1 and 4 do not change in time apart from a
phase factor coming from the corresponding magnetic field. In
contrast, the spins of dots 2 and 3 change in time and acquire
phases, as we describe next. For this, we express HC

23 as a
matrix in the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}:⎛⎝HC

+ 0 0
0 HC

0 0
0 0 HC

−
,

⎞⎠ (12)

where the block-diagonal form reflects the conservation of
Sz. In the case of two parallel spins, the corresponding
Hamiltonian is given by HC

± = J23/4 ± (b2 + b3)/2, which
just assigns a phase to the spins. In the case of antiparallel
spins, the Hamiltonian HC

0 is given by

HC
0 = 1

2

(−J23/2 + �b23 J23 + iβ23

J23 − iβ23 −J23/2 − �b23
,

)
(13)

where �b23 = b2 − b3. Here, HC
0 describes the coupling

between the states |↑↓〉 and |↓↑〉, which, in general, leads
to leakage errors. This leakage can be prevented by choosing
the pulse duration TC in such a way that the corresponding
unitary operator UC

0 = exp[−iHC
0 TC] is diagonal in the basis

{|↑↓〉, |↓↑〉}. It is more convenient to consider the evolution
given by HC

0 on the Bloch sphere. For that, we rewrite HC
0 in

terms of pseudospins,

HC
0 = −J23/4 + (J̃23/2) n23 · τ , (14)

J̃23 =
√

J 2
23 + β2

23 + (�b23)2, (15)

n23 = (J23, − β23,�b23)/J̃23, (16)

where the unit vector n23 defines the rotation axis on the Bloch
sphere (see Fig. 3), and the pseudospin, acting on the states
{|↑↓〉, |↓↑〉}, is described by the Pauli matrices τ . The north
pole corresponds to |↑↓〉 and the south pole to |↓↑〉. The
exchange interaction J23, being the largest scale in HC

0 , forces
n23 to be aligned mostly along the x axis. If we neglect the
SOI and any field gradients, the rotation on the Bloch sphere
takes place in the yz plane. In the presence of SOI and field
gradients, the rotation axis n23 deviates from the x axis.

The unitary time evolution operator UC
0 corresponding to

HC
0 takes the form

UC
0 = exp(−iJ23TC/4)(cos αC + i n23 · τ sin αC), (17)

where αC = J̃23TC/2. The duration of a pulse is determined by
the condition that we obtain full rotations on the Bloch sphere

FIG. 3. (Color online) The Bloch sphere is defined with the north
pole corresponding to |↑↓〉 and the south pole corresponding to |↓↑〉.
The effect of the unitary evolution operator UC

0 [see Eq. (17)] on a state
in the space {|↑↓〉, |↓↑〉} is equivalent to the rotation on the Bloch
sphere around the vector J23ex − β23ey + �b23ez. The conditional
phase gate C23 corresponds to the full rotation on the Bloch sphere
(shown by blue and green circles).

(see Fig. 3)

TC = 2πNC

J̃23
, (18)

where NC is a positive integer. Note that deviations from
Eq. (18) lead, again, to leakage errors.

As a result, the qubit states with parallel spins on dots 2 and
3 acquire the phases

φ01 = 1
2 (J23/2 − b1 + b2 + b3 − b4)TC,

(19)
φ10 = 1

2 (J23/2 + b1 − b2 − b3 + b4)TC,

while the qubit states with antiparallel spins on dots 2 and 3
acquire the phases

φ11 = 1
2 (b1 − b4 − J23/2)TC + πNC,

(20)
φ00 = 1

2 (−b1 + b4 − J23/2)TC + πNC.

Here, φab corresponds to a phase acquired by a two-qubit state
|ab〉. We note that phases produced by the magnetic field terms
will be canceled during the second C23 pulse after the π pulses
have been applied to the qubits.

B. Swap gates π12 and π34

In this section, we discuss the swap gates π12 and π34 that
exchange spin states between dots 1 and 2 and dots 3 and
4, respectively. The swap operation is a one-qubit operation,
so dots 2 and 3 should be decoupled during the swap pulse,
i.e., J23 = 0 and β23 = 0. The swap gate π = (π12,π34) is
implemented, again, by a rectangular pulse and all parameters
are assumed to stay constant during the switching process.
This simplifies the unitary evolution operator

Uπ = Uπ
12 Uπ

34 = e−iHπ
12Tπ e−iHπ

34Tπ . (21)

Further, we focus on the first ST qubit (dots 1 and 2) and
consider only π12 (π34 can be obtained analogously). We also
note that since Sz is conserved separately for each qubit, the
final state is always given by a linear combination of the states
|↓↑〉 and |↑↓〉 on dots 1 and 2. Within this subspace, the
effective Hamiltonian is given by

Hπ
12 = 1

2

(−J12/2 + �b12 J12 + iβ12

J12 − iβ12 −J12/2 − �b12

)
, (22)
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or in pseudospin representation [see Eq. (14)]

Hπ
12 = −J12/4 + (J̃12/2) n12 · τ , (23)

J̃12 =
√

J 2
12 + β2

12 + (�b12)2, (24)

n12 = (J12, − β12,�b12)/J̃12, (25)

where �b12 = b1 − b2 and the Pauli matrix τi acts in the
pseudospin space spanned by |↑↓〉 and |↓↑〉. Again, the unit
vector n12 defines the rotation axis. The corresponding unitary
evolution operator reduces to the form

Uπ
12 = exp(iJ12Tπ/4)(cos απ + in12 · τ sin απ ), (26)

where απ = J̃12Tπ/2.
The swap operation should exchange the states |↑↓〉 and

|↓↑〉. In the absence of SOI and field gradients, the unitary
evolution operator Uπ

12 corresponds to a rotation around the
x axis (n12 = ex) in the yz plane. At half the period, T 0

π =
π/2J̃12, a state evolves from the north to the south pole and
vice versa, i.e., Uπ

12|T 0
π

∝ τx .
However, in the presence of SOI and/or field gradients,

the rotation axis n12 is not aligned with ex (compare with
Fig. 3), so the trajectory starting at the north (south) pole
would never go exactly through the south (north) pole. The
corresponding deviations lead to errors in the π12 gate on
the order of

√
�b2

12 + β2
12/J12. This means that it is impossible

to produce a perfect swap operation with only one single
rectangular pulse. However, by applying a sequence of several
rectangular pulses, it is still possible to produce a perfect π12

gate, as we demonstrate next.
Indeed, this goal can be achieved by the following three

steps (see also Fig. 4). First, we switch on the exchange
interaction J12 between the dots 1 and 2 (this also automatically
switches on the SOI β12). We assume J12 to be larger than �b12

and/or β12. The rotation axis n12 in polar coordinates is given
by

n12 = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (27)

From now on, we work in the coordinate system in which
the x axis points along J12ex − β12ey , so ϕ = 0 and 0 �
cos ϑ = �b12/J̃12 � 1/

√
2. The strength and the duration of

the rectangular pulse is chosen in such a way that the rotation
reaches the equator of the Bloch sphere. The initial and final
vectors on the Bloch sphere are given by

χi = (0,0,1), (28)

χf = [cot ϑ,
√

sin(2ϑ − π/2)/ sin ϑ,0], (29)

allowing us to find the rotation angle α(a1)
π = π/2 +

arcsin(cot2 ϑ), and the corresponding pulse duration

T (a1)
π = [π + 2 arcsin(cot2 ϑ)]/2J̃12. (30)

Second, after switching off exchange and spin-orbit inter-
actions J12 = 0 and β12 = 0, the rotation takes place around
the z axis in the equatorial plane, at a precession frequency
determined by the field gradient �b12. The rotation angle
becomes α(a2)

π = 2[π − arccos(cot ϑ)], and the pulse duration
is given by

T (a2)
π = α(a2)

π /�b12. (31)

(a) (b)

FIG. 4. (Color online) Two schemes for the swap gate π12:
|↑↓〉 → |↓↑〉, composed of three consecutive rotations on the Bloch
sphere where the offset induced by �b12 and β12 is fully compensated.
(a) First, starting from the north pole, we turn on J12 and β12 to
induce rotation around J12ex − β12ey + �b12ez (upper blue arc) until
we reach the equator where we turn off J12 and β12. Second, we let the
state precess around the z axis in the equatorial plane until the mirror
point of the starting point on the equator is reached (brown arc).
Third, we induce once more rotation around J12ex − β12ey + �b12ez

(lower blue arc) until we reach the south pole. Lower panel: associated
rectangular gate pulses and switching times T (a1,a2,a3)

π for the three
steps. (b) Alternative scheme where during the second step the state
precesses along the equator until it reaches the point diametrically
opposite to its starting point (brown arc).

Finally, we repeat the first step by applying a pulse of the same
strength J12 (β12) and during the same time T (a3)

π = T (a1)
π .

An alternative scheme (b) is presented in Fig. 4(b). During
the second step, the state evolves on the Bloch sphere only
over half of the equator, α(b2)

π = π , with the corresponding
pulse duration T (b2)

π = α(b2)
π /�b12. The duration of the third

pulse is given by

T (b3)
π = [3π − 2 arcsin(cot2 ϑ)]/2J̃12. (32)

The second step is the slowest one in these schemes, so the
scheme (b) has an advantage over the scheme (a) by being
faster as it requires less rotation on the equator. However,
scheme (b) requires better control of parameters since T (b1)

π 	=
T (b3)

π .
Here, we note that it is also possible to switch off the

exchange coupling J12 not only on the equator, but also at
any other point on the Bloch sphere. Moving away from the
equator speeds up the gate performance, but demands greater
precision in the tuning since the rotation proceeds along a
smaller arc and in shorter time.

The scheme presented above confirms that it is possible to
construct a perfect π swap gate even in the presence of the z

component of the SOI vector β12, or local field gradients �b12,
by adjusting the pulse durations. The other two components
of the SOI vector couple states of different total spin Sz, and
thus cause leakage errors. Therefore, it is optimal to orient the
magnetic fields (defining the spin quantization axis z) along
the SOI vector β12.
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C. CNOT gate

After the execution of the four-step sequence given by Eq. (8), an initial qubit state is restored but with a phase factor [see
Eqs. (19) and (20)]:

[00]
C23−→ eiφ00 [00]

(π12, π34)−−−−−→ eiφ00 [11]
C23−→ ei(φ11+φ00)[11]

(π12, π34)−−−−−→ [00]ei(φ11+φ00),

[11]
C23−→ eiφ11 [11]

(π12, π34)−−−−−→ eiφ11 [00]
C23−→ ei(φ11+φ00)[00]

(π12, π34)−−−−−→ [11]ei(φ11+φ00),
(33)

[01]
C23−→ eiφ01 [01]

(π12, π34)−−−−−→ eiφ01 [10]
C23−→ ei(φ01+φ10)[10]

(π12, π34)−−−−−→ [01]ei(φ01+φ10),

[10]
C23−→ eiφ10 [10]

(π12, π34)−−−−−→ eiφ10 [01]
C23−→ ei(φ01+φ10)[01]

(π12, π34)−−−−−→ [10]ei(φ01+φ10),

with φ01 + φ10 = −(φ11 + φ00) = J23TC/2, where we omit a
trivial phase 2πNC . The total gate acting on the qubits as
defined by Eq. (33) can be written in the compact form

e−i(J23TC/2)σ z
1 σ z

2 , (34)

where the Pauli matrix σ
j

1 acts on the first ST qubit (formed
by dots 1 and 2) and σ

j

2 on the second one (formed by dots 3
and 4) with j = x,y,z. Choosing

TC =
(

4πm − π

2

)/
J23, (35)

where m is a positive integer, we obtain the π/4 gate

Uπ/4 = ei π
4 σ z

1 σ z
2 . (36)

Both Eqs. (18) and (35) should be satisfied simultaneously.
For example, if m = 1 and NC = 2, we get

TC = π
2

√
15

�b2
23+β2

23
, (37)

J23 = 7√
15

√
�b2

23 + β2
23. (38)

From this we can estimate the total switching time to perform
the π/4 gate that is a sum of the switching times at each step
[see Eq. (8)]. For the scheme discussed in Secs. III A and III B,
the slowest part is given by the swap gates π12 and π34, the
switching time of which is limited by field gradients (due
to nuclear spins7,16–19 and/or micromagnets20,21), |�b12| =
|�b34| ≈ 10 mT, which corresponds to T (b2)

π ≈ 10 ns. The gate
can be faster if the rotations around the z axis are performed
not on the equator, but more closely to the poles. This allows
us to decrease the switching time of the swap gate to 2 ns;
however, this would require a more precise control over the
pulses. The same trick can be used to decrease the switching
time of the conditional phase gate C23 (compare Figs. 3 and
5). If field gradients larger than 10 mT are used, the switching
rates will be proportionately larger.

Using the π/4 gate, we construct the controlled phase flip
(CPF) gate UCPF = diag(1,1,1,−1) (see footnote13 in Ref. 3)
as

UCPF = Uπ/4e
−i π

4 (σ z
1 +σ z

2 −1). (39)

Finally, we obtain the CNOT gate

UCNOT =
(
I 0
0 σx

2

)
(40)

by using the CPF gate and performing a basis rotation on qubit
2 (a single-qubit rotation by π/2 about the y axis),

UCNOT = ei π
4 σ

y

2 UCPFe
−i π

4 σ
y

2 . (41)

In summary, the full sequence of operations for the CNOT gate
UCNOT is given by

ei π
4 σ

y

2 [(π12π34)C23(π12π34)C23]e−i π
4 (σ z

1 +σ z
2 )e−i π

4 σ
y

2 . (42)

We note again that this result has been derived under the
assumption of rectangular pulse shapes. This is certainly an
idealization, and in practice we expect deviations from this
shape to cause errors for the gates and to affect the gate fidelity.
The study of this issue, being very important for practical
purposes, requires a separate investigation and is beyond the
scope of this work.

IV. PERPENDICULAR GEOMETRY

In the previous section, we have discussed the parallel
geometry for which we were able to construct a perfect CNOT
gate under the assumption that we have a complete control over
the parameters. The CNOT gate, together with single-qubit
gates, allows us to simulate any other quantum gate and its
implementation is a crucial step toward the realization of a
quantum computer.1 In a next step, many such elementary
gates need to be connected into a large network. In recent years,
the surface code39 has emerged as one of the most promising
platforms for this goal due to its large threshold of about 1%
for fault-tolerant error correction.39 This platform requires a

FIG. 5. (Color online) An alternative scheme for the conditional
phase gate C23 (see also Fig. 3). Instead of the rotation with the pulse
defined by Eqs. (18) and (35), we consider a sequence of three pulses.
During the first and the third pulses (blue arcs), the state precesses
quickly acquiring the π/4 phase [see Eq. (35)]. During the second
pulse J23 = 0, the state precesses around the z axis over a shorter path
than the one in Fig. 3. As a result, the switching is faster.
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FIG. 6. (Color online) Schematic setup for 2D architecture. Two
dots define an ST qubit (black dotted ellipses). An external magnetic
field B and local magnetic fields (blue arrows) are parallel. In the
case of the coupling between two qubits from the same row (red
solid ellipse), the SOI vector β‖ is parallel to the magnetic field B,
corresponding to the parallel geometry (see Fig. 1). In the case of
coupling between two qubits from two neighboring rows (red dashed
ellipse), the SOI vector β⊥ is perpendicular to the magnetic field B,
corresponding to the perpendicular geometry (see Fig. 2).

2D geometry and can be implemented in semiconductors of
the type considered here.11

The basic 2D scheme is illustrated in Fig. 6. There, we show
an array of quantum dots where two neighboring dots in a given
row represent one ST qubit. These quantum dots are embedded
in a semiconductor where the SOI is of the same type in the
entire structure. As a typical example, we mention Rashba
and/or Dresselhaus SOI that both depend on the momentum
of the electron. As a result, the direction of the SOI vector β is
always perpendicular to the line along which two quantum dots
are coupled by exchange interaction.22 Thus, for the coupling
of two such qubits in the same row, the SOI vector β is parallel
to the external magnetic field B, so we can use the scheme
designed for the parallel geometry in the previous section. In
contrast, if we want to couple two qubits from neighboring
rows, we should also consider a perpendicular geometry (see
Figs. 1 and 6) in which the SOI vector β is perpendicular to
the magnetic field B.

This perpendicular geometry is characterized by several
features. As was mentioned before, the axial symmetry in this
case is broken by the SOI, leading to the coupling between
computational (Sz = 0) and noncomputational (Sz 	= 0) space.
If the magnetic field B is sufficiently large to split the triplet
levels T± far away from the computational space (gμBB � β),
we can neglect this leakage. We estimate for GaAs B = 5 T ≈
100 μeV/gμB . At the same time, the SOI does not couple
states within the computational space, so for the realization of

the phase gate C23 and the swaps gates π12 and π34, we can
use the same scheme as in Sec. III only with β = 0.

V. CONCLUSIONS

We have studied the implementation of the CNOT gate
for ST qubits in a model that is appropriate for current
experiments.7,17,24 The setup consists of an array of quan-
tum dots with controlled growth direction and the relative
orientation of the dots. Pairs of neighboring dots build the
ST qubits, where the quantization axis is determined by an
externally applied magnetic field B. Moreover, we introduce an
inhomogeneity in magnetic fields Bi by local micromagnets or
by the hyperfine field. The resources used for time-dependent
control are the exchange interaction Jij (t) and the SOI vector
β ij (t).

If the SOI vector β is parallel to the external (B) and
local magnetic fields (Bi), we are able to construct a perfect
scheme for the CNOT gate based on the π/4 phase gate
Uπ/4, consisting of four basic steps. Two of the steps involve
interaction of spins that belong to different qubits, and open the
possibility of leakage errors. Under condition of total control
over system parameters, we show that the leakage can be
eliminated. In the other two steps, the tuning of exchange
interaction enables perfect swap gates even in the presence of
field gradients and SOI.

Motivated by recent results on the surface code, we shortly
comment also on the 2D architecture. Here, we encounter a
situation in which the SOI vector β and the magnetic fields
B and Bi are perpendicular. In this case, the leakage to the
noncomputational space with Sz 	= 0 is inevitable. However,
it can be made very small as long as β/gμBB � 1.

Depending on the pulsing scheme, the switching times
for the conditional phase gate are shown to lie in the range
1–100 ns for typical GaAs parameters. Compared to the
experimentally established decoherence times of about 250
μs,17 this switching is sufficiently fast and shows that a
CNOT gate based on exchange is a promising candidate for
experimental realizations.
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We theoretically investigate hyperfine-induced decoherence in a triangular spin cluster for different qubit
encodings. Electrically controllable eigenstates of spin chirality (Cz) show no appreciable decoherence up to
102 μs, while a complete decoherence is estimated for the eigenstates of the total-spin projection (Sz) and of the
partial spin sum (S12) after 10 μs. The robustness of chirality is due to its decoupling from both the total- and
individual-spin components in the cluster. This results in a suppression of the effective interaction between Cz

and the nuclear-spin bath. We finally estimate the reduction of the decoherence time scale for Cz, resulting from
possible hyperfine contact terms or from the misalignment of the magnetic field.
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Introduction. Molecular nanomagnets represent a varied
class of spin clusters, whose physical properties can be
extensively engineered by chemical synthesis.1 This makes
them a potential alternative to other spin systems2 for the
implementation of spin-cluster qubits.3–5 While most of the
attention has been so far focused on the use of the total-spin
projection (Sz) as a computational degree of freedom (DOF),
it has been recently realized that alternative encodings would
enable the use of electric—rather than magnetic—fields for the
qubit manipulation.6 In particular, transitions between states
of opposite spin chirality [Cz = (4/

√
3)s1 · s2 × s3] can be

induced in antiferromagnetic triangles with Dzyaloshinskii-
Moriya interaction. Spin-electric coupling constants compat-
ible with ns gating times τg have been predicted by effective
models6,7 and microscopic ab initio calculations,8 and might
be possibly enhanced by suitable chemical substitutions.9

In order to assess the suitability of spin chirality for
applications in quantum-information processing, its τg has to
be contrasted with a characteristic decoherence time τd . At low
temperatures, quantum coherence in molecular nanomagnets
is limited by the coupling to the nuclear-spin environment,
with typical values of τd in the microsecond range.10–12 All
the existing literature is, however, concerned with linear su-
perpositions of different Sz eigenstates. Here we theoretically
investigate the dependence of hyperfine-induced decoherence
on the qubit encoding within a prototypical spin-cluster qubit,
consisting of an antiferromagnetic spin triangle. In particular,
we consider three different DOFs, namely, Sz, Cz, and the
partial spin sum S12 (S12 = s1 + s2), whose value—as that of
Cz—can be controlled through spin-electric coupling. Since
the optimal candidate system has not been identified yet,
we refer here to a prototypical molecular spin-cluster qubit,
with a typical electron-spin Hamiltonian13 and bath of nuclear
spins.14

Qubit encodings in the spin triangle. We consider a triangle
of 1/2 spins, with a dominant antiferromagnetic coupling and
Zeeman interaction:

H0 = J

3∑
i=1

si · si+1 + gμBB · S. (1)

An additional term H1 determines the expression of the lowest
eigenstates |0〉 and |1〉, belonging to the ground state S = 1/2

quadruplet. As discussed in the following, the robustness of
the spin-cluster qubit with respect to hyperfine-induced deco-
herence strongly depends on the distinguishability between |0〉
and |1〉 in terms not only of total-spin orientation, but also of
spin texture. Hereafter, we thus discuss these features in some
detail in two relevant cases:

H
Cz

1 = �√
3

ẑ ·
3∑

i=1

si × si+1, (2)

H
S12
1 = (J12 − J )s1 · s2. (3)

The term H
Cz

1 accounts for the Dzyaloshinskii-Moriya
interaction.13 For an electron-spin Hamiltonian He =
H0 + H

Cz

1 , the four lowest eigenstates can be labeled after the
value of the spin chirality Cz, and the Dzyaloshinskii-Moriya
term can be rephrased as H

Cz

1 = �CzSz.6 If the magnetic field
is oriented parallel to the principal axis (z) of the molecule,
the eigenstates |Cz,Sz〉 read |±1, + 1/2〉 = (|↓↑↑〉 +
e±i2π/3|↑↓↑〉 + e∓i2π/3|↑↑↓〉 )/

√
3 and |±1,−1/2〉 =

σ 1
x σ 2

x σ 3
x |±1,+1/2〉, where σ i

x is the Pauli operator acting on si .
Both Sz and Cz commute with He, which makes them suitable
as computational DOFs. In the first case, the logical states are

|0〉Sz
= |Sz = −1/2; Cz = +1〉,

|1〉Sz
= |Sz = +1/2; Cz = +1〉,

with spin expectation values [Fig. 1(a)]

〈1|sz,i |1〉Sz
= −〈0|sz,i |0〉Sz

= 1/6. (4)

If the computational DOF is identified with spin chirality, the
logical states are instead

|0〉Cz
= |Cz = +1; Sz = −1/2〉,

|1〉Cz
= |Cz = −1; Sz = −1/2〉,

and the expectation values of the three spins are independent
on the qubit state [Fig. 1(a)],

〈1|sz,i |1〉Cz
= 〈0|sz,i |0〉Cz

= −1/6. (5)

As a result, |0〉Cz
and |1〉Cz

are indistinguishable in terms
of total-spin projection and spin texture: They thus span an
approximately decoherence-free subspace15–17 (see below).
Such a condition is, however, not general. In fact, if the
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http://dx.doi.org/10.1103/PhysRevB.86.161409


RAPID COMMUNICATIONS

TROIANI, STEPANENKO, AND LOSS PHYSICAL REVIEW B 86, 161409(R) (2012)

FIG. 1. (Color online) (a) Schematics of the local spin projections
〈sz,i〉 in the spin triangle, corresponding to the |0〉 (red) and |1〉 (blue)
states in the three considered qubit encodings. The logical states of the
chirality qubit (Cz, left) have identical expectation values 〈sz,i〉; this
is not the case for the other two encodings (S12 and Sz). (b) Angle αk

between the vector 〈S〉 and ẑ for the eigenstates |0〉θ
Cz

(blue) and |1〉θ
Cz

(green), for �/gμB = 0.5 (solid lines) and 2.0 (dotted). (c) Statistical
distribution of the distances den between the Ne = 3 electron and the
Nn = 200 nuclear spins with randomly generated positions.

applied magnetic field is tilted with respect to the z axis,
B = B(sin θ x̂ + cos θ ẑ), 〈k|si |k〉θCz

(with k = 0,1) are oriented
along B′

k = (Bx,0,Bz ± �/gμB). Eigenstates of opposite
chirality are thus characterized by different orientations of
the spin expectation values [see Fig. 1(b)],

〈k|sx,i |k〉θCz
= sin αk/6, 〈k|sz,i |k〉θCz

= cos αk/6, (6)

where αk = arctan[ χB sin θ

B cos θ+(−1)k�/gμB
] + π , 0 � arctan � π ,

and χ = ±1 for � ≷ BgμB .
If no Dzyaloshinskii-Moriya interaction is present and one

exchange coupling differs from the other two, the term H
Cz

1

is replaced by H
S12
1 [Eq. (3)]. For He = H0 + H

S12
1 , the four

lowest eigenstates can be labeled after the partial sum of the
first two spins, rather than the spin chirality, |S12,Sz〉, where
S12 = 0,1. Their expressions read |0,+ 1/2〉= (|↑↓↑〉−
|↓↑↑〉)/√2, |1,+ 1/2〉= (|↑↓↑〉+ |↓↑↑〉− 2|↑↑↓〉)/√6,
while |S12,− 1/2〉= σ 1

x σ 2
x σ 3

x |S12,+ 1/2〉. Choosing S12 as
the computational DOF, one has

|0〉S12 = |S12 = 0; Sz = −1/2〉,
|1〉S12 = |S12 = 1; Sz = −1/2〉.

As far as the spin expectation values are concerned, S12

represents an intermediate case between Sz and Cz. The
qubit states have in fact identical values for the total spin,
〈0|S|0〉S12 = 〈1|S|1〉S12 , as Cz, but they strongly differ in terms
of spin texture, as Sz [Fig. 1(a)]:

〈0|sz,i=1,2|0〉S12 = 0, 〈0|sz,3|0〉S12 = −1/2, (7a)

〈1|sz,i=1,2|1〉S12 = −1/3, 〈1|sz,3|1〉S12 = 1/6. (7b)

Nuclear spin and hyperfine interactions. The decoherence
of the spin-cluster qubit is investigated by simulating the

coupled dynamics of electron and nuclear spins. The qubit
and the nuclear environment are initialized respectively in
the linear superposition |ψe(0)〉 = 1√

2
(|0〉 + |1〉) and in the

mixed state ρn(0) = ∑
I PI |I〉〈I|. Here, the expressions of

|0〉 and |1〉 depend on H1, while |I〉 = |mI
1 , . . . ,mI

Nn
〉 and

mI
i are the projections along the magnetic field direction of

the Nn nuclear spins. In the pure-dephasing regime, each
state |�I (0)〉 = 1√

2
(|0〉 + |1〉) ⊗ |I〉 evolves into |�I (t)〉 =

1√
2
(|0,I0〉 + |1,I1〉), where |I0〉 (|I1〉) can be regarded as the

state of the nuclear bath conditioned upon the qubit being in the
|0〉 (|1〉) state. The degree of coherence in the reduced density
matrix of the qubit, ρe = Trn{

∑
I PI |�I (t)〉〈�I (t)|}, is given

by the so-called decoherence factor r(t) = ∑
I PIrI (t), with

rI (t) = 〈I1(t)|I0(t)〉 and 〈0|ρe|1〉 = rI/2.
The nuclear-spin bath we consider consists of Nn =

200 hydrogens (I = 1/2), whose positions rn
p are ran-

domly generated so as to reproduce typical values of
the spin density and the electron-nuclear distances den =
|re

i − rn
p|, where re

i are the positions of electron spins
[Fig. 1(c)].18 The nuclear-spin Hamiltonian Hn includes
Zeeman and dipole-dipole terms, Hn = B̂ · ∑

p ωpIp +
Dnn

∑
p<q [Ip · Iq − 3(Ip · r̂pq)(Iq · r̂pq)]/r3

pq , where Dnn =
(μ0/4π)μ2

nγ
2
I and rpq = rn

p − rn
q . Electron and nuclear

spins are coupled by dipole-dipole and contact interac-
tions, Hen = Den

∑
i

∑
p[si · Ip − 3(si · r̂ip)(Ip · r̂ip)]/r3

ip +∑
i aisi · Iq(i), where Den = (μ0/4π)μnμeγI γe and rip =

re
i − rn

q . The contact terms ai , whose effect will be considered
in the final part of this Rapid Communication, couples electron
and nuclear spins belonging to the same magnetic center.

The dephasing arises from the qubit-state dependent
dynamics of the nuclear bath, generated by an effective
Hamiltonian H. We use a two-step procedure19,20 to derive H
from the Hamiltonian H = He + Hn + Hen. We first replace in
H the single-electron-spin operators sα,i with their projection
onto the S = 1/2 subspace, sα

p → ∑3
i,j=0〈i|sα

p |j 〉σij , where
σij = |i〉〈j | and |i〉 are the eigenstates of He. We then apply a
Schrieffer-Wolff transformation to the projected Hamiltonian
H that removes from the Hamiltonian the terms that are
off diagonal in the basis of electron-spin eigenstates |i〉,21,22

and finally neglect energy nonconserving terms (secular
approximation). The resulting Hamiltonian reads H = Hi +
(|0〉〈0| − |1〉〈1|) ⊗ He, where

Hχ=i,e =
Nn∑

p=1

ωχ
pI z′

p +
∑
p �=q

(
Aχ

pqI
z′
p I z′

q + Bχ
pqI

+
p I−

q

)
(8)

and ẑ′ ≡ B/B. Two-spin terms in the intrinsic Hamiltonian
Hi come from dipolar interactions between the nuclei.
Those in the extrinsic Hamiltonian He are mediated by
virtual transitions between eigenstates of the electron-spin
Hamiltonian: They thus depend quadratically on the hyperfine
couplings Den, while the dependence of ωe

p is linear. The time
evolution of the nuclear states |Ik〉 is computed within the
pair-correlation approximation, where the nuclear dynamics is
traced back to independent flip-flop transitions between pairs
of nuclear spins.21,23,24

Hyperfine-induced decoherence. The fastest contribu-
tion to dephasing in the spin-cluster qubit is related to
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RAPID COMMUNICATIONS

HYPERFINE-INDUCED DECOHERENCE IN TRIANGULAR . . . PHYSICAL REVIEW B 86, 161409(R) (2012)

FIG. 2. (Color online) Time dependence of the decoherence
factor r for the three qubit encodings: Sz (black), S12 (red), and
Cz (green for θ = 0 and blue for θ = π/8). The curves are averaged
over NI = 5 × 104 randomly generated initial states |I〉 of the nuclear
bath. Inset: Statistical distribution (squares) of the parameter δI , and
corresponding Gaussian fits (solid lines).

inhomogeneous broadening, and typically takes place on time
scales that are much shorter than those characterizing the
dynamics of the nuclear bath (τn ∼ h̄/|Bk

pq | ∼ 102 μs). Such
a contribution results from the following renormalization of
the energy gap between the states |0〉 and |1〉 induced by
the hyperfine interaction: δI = ∑

k=0,1(−1)k〈k,I|H|k,I〉 �∑
p ωe

pmI
p. Being the nuclear spin bath initially in a mixture

of states |I〉, the decoherence factor evolves as r(t � τn) �
e−i(E0−E1)t ∑

I PIe−iδI t , while |Ik(t � τn)〉 � |I〉. In first
order in Hen, δI can be regarded as a function of the Overhauser
field at the electron-spin sites,

δI � μBg
∑

i

BI
hf(r

e
i ) · [〈0|si |0〉 − 〈1|si |1〉], (9)

where BI
hf(r

e
i ) = Den

∑
p mI

p[ẑ′ − 3(ẑ′·r̂ip)r̂ip]/r3
ip. In the case

of the Sz qubit [see Eq. (4)], δ
Sz

I � −(μBg/3)
∑

i B
I
hf,z′ (re

i ).

The statistical distribution N (δSz

I ) is reported in the inset
of Fig. 2 (black squares) for 5 × 104 initial nuclear states
|I〉, randomly generated from a flat probability distribution
PI = 1/2Nn . N (δSz

I ) is well fitted by a Gaussian function
(solid line), with σSz

= 9.0 neV. Correspondingly, the decay of
|r(t)| (black line in Fig. 2) is approximately Gaussian, and its
characteristic time scale is 102 ns. In the case of the S12 qubit,
the three electron spins are no longer equivalent, and δ

S12
I �

− (μBg/3)[2BI
hf,z′ (re

3) − BI
hf,z′ (re

1) − BI
hf,z′ (re

2)]. However, the

statistical distribution of δ
S12
I strongly resembles that of Sz

(see the red squares in the figure inset, and the Gaussian
fit with σS12 = 9.4 neV), and so does the time evolution of
the decoherence factor (red curve in the main panel). In fact,
since the distances dee between electron spins are larger than
the smallest den [see Fig. 1(c)],18 the spatial fluctuations of the
Overhauser field within the spin triangle are comparable to its
average value. In spin clusters with larger den/dee ratios (not
shown here), spatial fluctuations of Bhf(r) are relatively small.

FIG. 3. (Color online) Time evolution of the decoherence factor
rm in the cases of the Sz (black) and S12 (red) DOFs. The case of
chirality is displayed for small tilting angles θ = 2πk/100, with k

ranging from 0 (upper green curve) to 11 (lower green curves). All
curves are averaged over 102 randomly generated initial conditions
|I〉; the spin Hamiltonian parameters are � = 1 K, B = 1 T.

As a result, δ
S12
I � δ

Sz

I , and the S12 qubit is less affected by
inhomogeneous broadening than Sz.

In the case of the Cz qubit and for B ‖ ẑ, the Overhauser
field does not renormalize the energy difference between the
states |0〉 and |1〉 that have identical expectation values for
all single-spin projections [Eqs. (5) and (9)]. The leading
contribution to δ

Cz

I is given by terms that are second order
in the hyperfine Hamiltonian, δ

Cz

I = ∑
p �=q Ae

pqm
I
pmI

q , and its
modulus is here five orders of magnitude smaller than that of
δ

Sz

I and δ
S12
I . Correspondingly, no inhomogeneous broadening

occurs in the considered time scale (green curve). For a
tilted magnetic field (θ �= 0), states of opposite chirality have
different expectation values 〈si〉 [see Eq. (6)], and thus couple
differently to the Overhauser field. The leading contribution to
the renormalization of the energy difference reads δ

Cz

I (θ ) �
(μBg/6)

∑1
k=0(−1)k(sin αkB

I
hf,x ′ + cos αkB

I
hf,z′ ), where x′ ⊥

z′ and lies in the xz plane. The statistical distribution of
δ

Cz

I (θ = π/8) and the resulting qubit dephasing are reported
in Fig. 2 (σCz

= 4.5 neV, blue curve).
The nuclear-spin dynamics contributes to decoherence by

correlating electron and nuclear spins. In order to single out this
contribution, we compute the function rm(t) = ∑

I PI |rI (t)|.
In the case of the Sz qubit, electron-nuclear correlations
result in a decay of rm in the μs time scale (Fig. 3, black
curve). The decay is induced by the interplay of the dipolar
interactions between the nuclei and of the term

∑
p ωe

pI z
p,

whose expectation value gives δ
Sz

I . A similar time dependence
for rm is obtained in the case of the S12 qubit (red curve). Here,
the same terms in the effective Hamiltonian H dominate, and
have similar expectation values, δ

Sz

I � δ
S12
I (see the inset of

Fig. 2). This quantity (δCz

I ) is about five orders of magnitude
smaller for the Cz qubit, if B ‖ ẑ. As a result, the dynamics
of the nuclear bath is largely independent on the qubit state
and no appreciable decoherence takes place for t � 102 μs
(upper green curve): On such a time scale the |0〉 and |1〉 states
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FIG. 4. (Color online) Time dependence of the decoherence
factor in the presence of three additional nuclear spins (Nn = 203)
localized at the electron-spin positions re

i and coupled to the
respective electron spins with a contact coupling (a) ap = 10 mK or
(b) ap = 1 mK. The solid curves correspond to the cases Sz (black),
S12 (red), and Cz (figure insets). The dotted lines represent the time
dependence of rm in the absence of the three nuclei with contact
couplings.

thus define a decoherence-free subspace. However, δCz

I (θ ) and
the decoherence rate rapidly increase for finite values of the
tilting angle θ (lower green curves); for θ = 3π/8 (blue), r(t)
approaches the curve corresponding to S12 and Sz.

We finally investigate the possible contribution to deco-
herence of the contact terms, resulting from the relatively
strong coupling with the electron spins of few (Nc

n ∼ Ne �
Nn) nuclei. Here, the Nc

n = Ne = 3 additional nuclear spins

are localized at the electron-spin sites re
i , and are assumed

for simplicity identical to the remaining 200 nuclei. The
inequivalence between the Nc

n and Nd
n nuclear spins, resulting

from strong coupling of the former ones with the electron spins,
warrants the factorization of the decoherence factor, r(t) =
rc(t) rd (t). The time evolution of rc(t) is reported in Fig. 4, for
ap = 1 and 10 mK [Figs. 4(a) and 4(b), respectively]. In the
case of Sz (black curve) and S12 (red), rc is responsible for the
fast oscillations, while the decay is due to rd (dotted lines). In
the case of Cz, oscillations of the decoherence factor take place
on a time scale which is much longer than that of Sz and S12, but
much shorter than the one that characterizes the contribution
of the dipolar interactions (figure inset). The chirality qubit
also presents a different dependence on the contact coupling
constant ai with respect to Sz and S12. A comparison between
the two panels shows in fact that the characteristic time
scale of the oscillations in rc is τ c

d ∼ h̄/ap for Sz and S12,
and τ c

d ∼ h̄ δij /a
2
p for Cz, where δij ∼ min{�,gμBB} is the

smallest difference between eigenvalues of He. The leading
contributions of contact interaction to H are thus quadratic in
the hyperfine Hamiltonian for Cz, and linear for the other two
DOFs.

In conclusion, we have shown that the nuclear-induced
decoherence in a prototypical spin triangle strongly depends on
the qubit encoding. In particular, no appreciable decoherence
is found for the chirality qubit up to 102 μs, due to the
decoupling of Cz from both the total-spin orientation and the
spin texture. The eigenstates of S12 are instead characterized
by decoherence times comparable to those of the total-spin
projection Sz, unless the distance between electron spins
is strongly reduced with respect to the size of the nuclear
bath.

We acknowledge financial support by PRIN of the Italian
MIUR, by the Swiss NF, and by FP7-ICT project “ELFOS.”
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ABSTRACT

A promising proposal for quantum computation, due to Loss and DiVincenzo, is based on

using electron spins in quantum dots as qubits — two-level systems which are the quantum

analogues of classical bits. Two-qubit operations (quantum gates) are then carried out by

switching on and off the exchange interaction between neighboring spins (i.e. “pulsing” the

interaction).

This thesis presents a study of the effects of anisotropic corrections to the exchange

interaction due to spin-orbit coupling on this scheme. It is shown that time-symmetric

pulsing automatically eliminates some undesirable terms in the resulting quantum gates,

and well-chosen pulse shapes can produce an effectively isotropic exchange gate which can

be used for universal quantum computation. Deviations from perfect time-symmetric pulsing

are then studied in the context of a microscopic model of GaAs quantum dots.

A new proposal for universal quantum computation which uses control of anisotropic

corrections is then presented. In this proposal, the number of pulses required to carry out

quantum gates scales as the inverse of a dimensionless measure of the degree of control.

The size of this dimensionless “figure-of-merit” depends on (i) variation of anisotropy with

interdot distance, and (ii) restrictions on the pulse duration due to decoherence for slow

pulses and nonadiabatic transitions for fast pulses. Taking these constraints into account,

the figure-of-merit is estimated for GaAs quantum dots and shown to be large enough to be

useful for quantum computation.
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CHAPTER 1

INTRODUCTION

A man provided with paper, pencil, and rubber, and subject to strict disci-
pline, is in effect a universal Turing Machine.

Alan Turing

One of the most exciting current frontiers of science is the new field of quantum

information and quantum computation. This excitement is due to the possibility of realizing

a qualitatively new “quantum technology” which would be capable of performing various

kinds of communication and computational tasks which no classical machine could do. The

modern digital computer is certainly one of the great achievement of classical technology,

and the realization of its quantum analogue, a “quantum computer”, is one of the main goals

of this new field.

In a quantum computer, classical bits — the fundamental units of classical information

which can take the values 0 or 1 — are replaced by two level quantum systems, or “qubits.”

The Hilbert space of a single qubit is spanned by orthogonal basis states which play the

role of a classical 0 and 1, and which by convention are denoted by the ket states |0〉 and

|1〉. Classical logic gates that manipulate bits in a digital computer are then replaced by

unitary operators acting on qubits, known as quantum gates. In analogy with classical

computation, quantum computation is done by preparing a computer in an initial state,

applying a sequence of quantum gates that change its state, and reading out the result of

the computation by measuring the state of the qubits.

There is no question that the construction of a fully functioning quantum computer is

a daunting task. Yet, remarkably, there does not seem to be any fundamental reason why

one could not be built. One reason for optimism is the large number of proposals that have

been made for realizing a quantum computer, spanning the fields of quantum optics, atomic
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physics, and condensed-matter physics. This thesis is concerned with one such proposal —

the quantum dot computer in which electron spins are used as qubits.

The topic of this thesis is manipulation of such spin qubits for quantum computation.

The unifying theme is the use of symmetry as both a valuable source of insight into spin

control and as a tool for the development of simple but powerful techniques for realizing

quantum gates.

1.1 Overview

The topic of this thesis is the control of pairs of electron spins in coupled single electron

quantum dots. In particular, we are concerned with the effect of anisotropic terms in the

exchange interaction due to spin-orbit coupling on various quantum computing schemes.

The original results presented here use symmetry as a guiding principle for designing simple

solutions to the complex problem of complete control over spins using a limited influence on

their interaction.

The strongest interaction between spin qubits in quantum dots is the Heisenberg-type

isotropic exchange (S1 · S2). In most proposals for quantum computers it has been assumed

that this is in fact the exact form of the interaction between spins. This is why it is important

to study the effects of anisotropic corrections — even if they are small, they lead to a

qualitative change in the form of the interaction which can spoil various proposed quantum

computing schemes.

In this thesis we show that symmetry based control can reduce the effects of deviations

of the actual interaction from the purely isotropic form, making the anisotropy of quantum

gates significantly smaller than the anisotropy of the underlying interaction. It is also shown

that control over anisotropic corrections allows for their use as a resource for coherent control

of spin, and a new scheme for universal quantum computation using this control is given.

The first chapter of the thesis provides a short overview of quantum computation aimed

at putting the results of the thesis into a wider context. It points to the problems that are

going to be treated in later chapters and gives a short review of the results.

The second chapter presents a scheme for reducing the influence of anisotropy in the

spin interaction on quantum operations. In this chapter the anisotropy of the interaction
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is treated a problem for quantum computing, and the perceived problem is solved using a

novel time symmetry of the interaction, as well as shaping of pulses.

The third chapter deals with the microscopic basis of anisotropic coupling between spins,

and deduces some of its general properties, again based on the symmetry of interaction and

to a large extent independent of the interaction details.

Finally, in the fourth chapter the insights into symmetries of the spin interaction are

used to devise a new scheme for quantum computation that uses anisotropy for spin control.

The available range of control and estimates about the physical processes that constrain it

suggest that control over anisotropic corrections through time dependence of classical control

parameters can be a useful tool for the control of spins in GaAs quantum dots.

1.2 Background on Quantum Computing

Quantum computers and quantum information are fascinating subjects studied in the

context of physics, computer science, mathematics, and technology. They are also interesting

in the context of the more general inquiry about the nature of information. To understand

the significance of quantum computing, it is useful to overview some of the basic concepts

of computer science in the framework of more familiar classical computation.

1.2.1 Classical Computers

The idea of a machine that can perform computational tasks stems from the concept of

formalization of knowledge. A body of knowledge is formalized when it is possible to devise

a recipe for solving all the problems within its scope by simply following a universal set of

instructions spelled out in an algorithm. Solving formalized problems does not involve any

amount of genius or creativity. Machines are notoriously better than humans in following

instructions, so the execution of algorithms can benefit from the use of machines. In a sense,

all of science can be described as a creative effort to not only acquire, but also formalize

knowledge about nature.

Accepting formalization, design of algorithms and delegation of non creative tasks to

machines as a part of scientific practice, we are led to ask ourselves about the scope of this

approach. This question was asked by David Hilbert in the form of a problem about the
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formalization of mathematics, the famous Hilbert’s Entscheidungsproblem [1]. This problem

asked whether it is possible to decide if any given statement concerning arithmetic is true by

following a predefined set of rules. Alan Turing [2] has demonstrated that such a set of rules

does not exist. The same problem has been worked on and solved in an alternative fashion

by the logician Alonso Church [3, 4].

Turing’s solution to the Entscheidungsproblem not only solved an important problem

in mathematics, but also opened a whole new area of research. After proving that it is

impossible to solve all problems algorithmically, it is natural to ask which problems can be

solved in this way. Answering that question motivated the introduction of a precise definition

of an algorithmic solution to a problem.

The most important framework for studying algorithms is the Turing machine model

of computation. A Turing machine is an abstract device that follows a set of instructions

in order to solve a given problem. The precise definition of a Turing machine is given in

[Fig.1.1], and it is a widely applicable model of all the processes that are governed by a set

of instructions.

The Turing machine captures the essence of algorithmic solutions to computational

problems. It also allows for quantification of the resources needed to perform a computational

task, in the form of the instructions list length, the number of steps that are executed, or the

length of the used portion of the tape. With a quantitative measure of the resources needed

to execute a given program, it is possible to ask questions about the efficiency of algorithmic

solutions to any given problem, and not just about their existence. Since the resources used

in any run of the Turing machine explicitly depend only on the program being executed and

the algorithm that is implemented, and only implicitly on the problem that is being solved,

it is generically hard to find the resources necessary to solve a given problem. The study

of resources required to produce a solution to a given problem as a function of the problem

itself, rather than the employed algorithm, comes under the heading of “complexity theory”

and it is one of the main topics of computer science.

An alternative to the Turing machine model of classical computation that will be more

relevant for the discussion of quantum computing that follows is the so-called classical circuit

model. In the classical circuit model, the state of a computer is specified by some number of

bits — the fundamental units of classical information [5] [6]. A bit is a logical variable that
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Figure 1.1. Illustration of the Turing machine. The Turing machine consists of an infinite
tape with cells and a read write head. At any time the machine is in some internal state
from a predefined set {i1, i2, . . .}. Each cell contains a symbol from a preselected alphabet,
in this figure {0, 1}. Head moves along the tape and at each step it is over a single cell on
the tape. At each steps it reads the symbol in the cell below it, reads an instruction and
executes it. Instruction is a set of five objects, < i1, s1, i2, s2, m >, where i1, i2 are internal
states of the machine, s1, s2 are symbols from the alphabet and m = ± is the direction of
motion of the head. Machine finds instruction for which i1 is current internal state and s1
is symbol on cell below the head. Than, it changes internal state to i2, writes the symbol s2
in the cell and moves one cell in the direction m.

by convention takes values from the set {0, 1} instead of more standard {TRUE, FALSE}.
In the classical circuit model, every computation is represented by a set of logic gates acting

on some number of bits. A logic gate f is defined by a Boolean function. It takes n bits in

a state i ∈ {0, 1}n as the input and delivers m output bits in a state o ∈ {0, 1}m, so that

o = f(i).

The usefulness of the Turing machine model is in its ability to quantify the resources

needed to perform a given computational task. This quantification is also possible in the

classical circuit model. To do this we must define what is known as a universal set of logic
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Figure 1.2. Universal set of classical logic gates. One universal set of classical logic gates
consists of a NOR and a NOT gate. In this figure, these gates are represented by truth
tables and a symbol in classical circuit model.

gates. A universal set of gates is a small family of logic gates with few input and output

bits that can be combined into circuits implementing any given logic gate with inputs and

outputs of arbitrary size. The role of the elementary steps in a Turing machine operation is

then played by the simple logic gates from a universal set.

An example of a universal set of gates are the NOR and NOT gates shown in [Fig. 1.2].

In this figure, and all similar diagrams, bits are represented by lines and gates are represented

by their standard Boolean logic symbols, with time flowing from left to right. To quantify

the computational resources in the circuit model, a classical circuit that represents a given

computation is constructed from gates belonging to this universal set. The number of gates

from the universal set used in this construction is then a measure of the resources needed

to perform a computational task. It is a fundamental result that the complexity of any

problem deduced within the classical circuit model (or any model of classical computation)

is equal to its complexity in the Turing machine model. This fact allows us to talk about

the complexity of a problem as a function of the problem itself, rather than as a function of

both the problem and the model of computation used to evaluate its complexity.

One way in which the circuit model is more useful than the Turing machine model is

that it suggests how we could actually build a computing device. If we could realize physical

systems which are capable of represent bits, and carrying out a universal set of logic gates

on these bits, then this system could serve as a computing device. For example, in a modern
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Figure 1.3. The classical circuit model of computation. The classical circuit model of
computation is a direct abstraction of the actual electronics that performs computation in a
digital electronic computer. The figure shows different levels of this abstraction. Electronic
schemes on top produce a digital output as a function of digital input and can be represented
by the symbols for NOT and NOR logical gates.

digital computer, bits correspond to voltages, and logic gates are carried out by transistor

circuits, such as those shown in [Fig. 1.3].

We will see in the next section, that there is a quantum version of the classical circuit

model which again allows for a quantitative measure of algorithmic complexity, and, as

above, provides a guide for realizing such a “quantum computer” in a variety of physical

systems.

1.2.2 Quantum Computers

The standard model of a quantum computer is the quantum circuit model, a quantum

version of the classical circuit model described above. In the quantum circuit model, the

elementary units of quantum information — the quantum analogue of the classical bit —

is the quantum bit or qubit. A qubit is an abstract representation of a two-level quantum

system with its state space spanned by logical basis states |0〉 and |1〉. A qubit that remains

in one of its logical basis states throughout a quantum computation behaves exactly like a
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classical bit. But, already at the level of its basic unit, quantum information shows some

new properties, absent from the classical case.

Since the state of a qubit is quantum, it can exist in an arbitrary normalized superposition

of the basis states, like 1/
√

2 (|0〉 + i|1〉). These states have a novel property that they are

completely specified, but measurement in the computational basis gives either 0 or 1 with

equal probability, like readout of a bit in a classical computer that can be in either the 0

or 1 states with equal probability. Even though the readout of the bit will have the same

distribution of results as the measurement of a qubit in the computational basis, these two

objects are different. The state of a probabilistic bit corresponds to its least specified state,

while the state of a qubit is completely specified. The measurement of a qubit in this state

in the computational basis, collapses its state into the state corresponding to the result of

measurement. The quantum properties of a single two level system are the basis of the first

practical application of quantum information in cryptography [7, 8].

Pairs of qubits can show even more novel features. For example, they can be in an

entangled state, like 1√
2
(|00〉 + i|11〉). The results of measurements on a pair of qubits in

such a state can show quantum correlations which are impossible to realize in any classical

system [9], [10].

A quantum computer consists of a set of qubits that are manipulated in a controllable

fashion. In the quantum circuit model, as in the classical circuit model, qubits are represented

by lines, and operations on them are represented by so-called quantum gates. A quantum

gate is a unitary operation that takes qubits in the input state and deliver them in an

output state. These elements of a quantum circuit model are shown in [Fig. 1.4]. Each gate

is specified by unitary transformation acting on the Hilbert space of the involved qubits.

Computation begins with the preparation of a set of qubits into some initial state, typically

|00 . . . 0〉, continues with the application of a predetermined sequence of quantum gates, and

finishes with a set of measurements of the qubit states. The result of the computation is

then deduced from the results of this final measurement.

In passing we note that the quantum circuit model is not the only model of quantum

computation. The most important alternative models are adiabatic quantum computation

due to Farhi [11], and the one-way quantum computer of Raussendorf, Browne and Briegel

[12]. The important point about all of these models, including the quantum circuit model,
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Figure 1.4. Elements of the quantum circuit model of quantum computation. In quantum
circuit model a qubit is represented with a line. Gate is a box that takes some number of
qubits (three in this figure) as an input and deliver the same number of qubits as an output.
The state of qubits at the output is related to the state of qubits at the input through a
unitary transformation that specifies the gate.

is that they are based on physical systems that undergo controlled evolution corresponding

to the computing process. They are in principle realizable and reflect very concrete ideas

about a real physical computer.

One of the earliest triumphs of quantum computing was DiVincenzo’s proof that gates

acting on single qubits or pairs of qubits are sufficient for application of an arbitrary unitary

evolution to any set of qubits [13]. The importance of this proof lies in the fact that it shows

that control over single-body and two-body interactions is sufficient for the complete control

over a set of qubits of arbitrary size. These two types of interaction are also the only types

that can be controlled within reasonable assumptions about the obstacles that are present

in realistic quantum systems.

We can now introduce the quantum analogue to the universal set of logic gates described

in the previous section for classical computers. As in that case, there are many choices.

The standard choice for a universal set of quantum gates consists of all possible single qubit

operations and the so-called controlled not (CNOT) gate [Fig.1.5].

The CNOT gate is a two-qubit gate defined by its action on the computational basis of

the qubits. In the basis

{|00〉, |01〉, |10〉, |11〉} , (1.1)
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|in> |out>
|in> |out>R(ϕ)

Figure 1.5. A universal set of quantum gates. An important universal set of gates consists
of all unitary gates acting on a single qubit and the controlled not (CNOT) gate acting on a
pair of qubits. If we attach pseudospin labels to qubit states |0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉, every
single qubit gate corresponds to a unique rotation. In this sense, single qubit gate can be
labeled R(φ) and parametrized by a vector φ, where the rotation axis is φ̂ and the rotation
angle is φ. Action of a CNOT gate on logical basis is to flip (NOT operation) the state of
target qubit if the state of control qubit is |1〉 and do nothing if the state of of control qubit
is |0〉. In the figure, control qubit is above target qubit. Action on all other input states is
given by linearity of transformation.

where |ab〉 ≡ |a〉 ⊗ |b〉 is a product state with both qubits in computational basis states, the

matrix representation of a CNOT gate is

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (1.2)

Its action is thus to flip the logical state of the second (target) qubit if the first (control)

qubit is in the |1〉 state and to do nothing to the target qubit if the control qubit is in the

|0〉 state. The action of this gate on a general input state then follows from linearity.

Like the universal set of classical logic gates, a universal set of quantum gates allows for

quantification of resources needed to perform a given quantum computation. The complex

unitary transformation corresponding to a given quantum computation can be reduced to

the application of a series of gates from a universal set, and the number of gates is then a

measure of the resources used in the process, as illustrated in [Fig.1.6].
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Figure 1.6. Complexity of a quantum gate is measured by the number of quantum gates
from a universal set necessary to implement it.

1.2.3 Church-Turing Thesis

We have seen that both the Turing machine and circuit model of classical computation

provide a way to quantify the resources needed to carry out a given computation. For

quantum computation, resources are quantified using the quantum circuit model. In all

three cases, the complexity of a problem is measured by the resources a model machine must

use to solve it.

A key assumption of computational complexity theory is that complexity measures

defined using different models of computation are essentially equal in the sense that any

model of computation can be simulated within any other model of computation with at

most a polynomial overhead. This assumption is usually referred to as the Church-Turing

thesis. It is only because of the Church-Turing thesis that we can talk about the complexity

of any given problem rather than the complexity of a problem in the context of some model

of computation.

11



The Church-Turing thesis is proved to be true for all classical models of computation

known to date that are, at least in principle, physically realizable. Quantum computers are

the only possible exception. Quantum computing is in fact the model of computation that

presents the most credible challenge to the Church-Turing thesis.

It should first be noted that a quantum computer is at least as powerful as any machine

that can be described in the classical circuit model. If qubits are kept in their logical basis

states throughout the computation then the quantum computer is equivalent to a reversible

classical circuit, which is in turn equivalent to ordinary classical circuits, as shown by Fredkin

and Toffoli [14]. It follows that any task that can be completed on a classical computer can

be completed at least as efficiently on a quantum computer.

In fact, algorithms for a quantum computer that are more efficient than any algorithm

for a classical computer exist and prove that a quantum computer is more powerful then

a classical computer. However, it is not known whether the extra power of a quantum

computers is significant in the sense of Church-Turing thesis. To illustrate the precise

relation between the computational powers of classical and quantum computers, it is useful

to consider two of the best known quantum algorithms — Grover’s search algorithm [15] and

the famous Shor’s algorithm for factoring [16].

Grover’s algorithm performs a search of an unstructured database of size N for a tagged

element and retrieves the tagged element with certainty after accessing the database only

O(
√
N) times. The best classical algorithm must access the database O(N) times to

discover the tagged element with certainty. This proves that quantum computers are more

powerful than classical ones, but here the improvement is insignificant in the sense of the

Church-Turing thesis, because the achieved improvement is only polynomial.

The algorithm that led to a true explosion of interest in quantum computing is Shor’s

factoring algorithm. This algorithm factors an N digit composite integer into its prime

factors using O(N 3) quantum gates. This is to be contrasted with the best known classical

factoring algorithm which uses O
(

exp(N1/3 log(N)2/3)
)

classical gates [17], i.e. resources

that are exponential in N . This improvement, sometimes referred as “exponential quantum

speed-up” (illustrated in [Fig. 1.7]) is therefore significant in the sense of Church-Turing

thesis. However, it is not known if the best classical factoring algorithm known to date is

the best possible classical algorithm. A detailed discussion of Shor’s factoring algorithm can
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Classical factoring − exponential in N (
1/3 2/3~exp(N     (log N)     ))

3Shor factoring − polynomial in N ( ~N  )

Figure 1.7. Comparison between complexities in classical and quantum circuit model. In
this figure both classical and quantum circuit consist of a certain number of gates from
appropriate universal sets. If the two circuits were designed to factor an N digit integer,
classical using the best known classical algorithm and quantum using Shor’s algorithm for
factoring that can only be implemented in a quantum computer, the number of gates in
classical circuit would grow like an exponential in N , while the number of quantum gates in
the quantum circuit would be a polynomial.

be found in the review article of Ekert and Jozsa [18]. It is widely believed that factoring

cannot be done significantly better on a classical computer, so it is equally widely believed

that the quantum computer is a fundamental improvement of computing machinery.

It is still an open question just how powerful quantum computers really are, but they are

extremely interesting from the point of view of computer science and in fact in any discussion

about the ultimate limits of the power of algorithmic solutions to problems.
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1.3 Physical Realizations

Computer science deals with idealized models of computation out of a need for rigorous

and general definitions of the computing resources needed to solve a given problem. However,

these models are useful only as long as they apply to computers that are, at least in principle,

realizable in the real world. Therefore, the question about the computing power available in

nature lies in the domain of natural sciences. Only the properties of real systems that perform

computations determine if a given model of computation is an appropriate description of

some real computing device.

For quantum computing the question of physical realization is very important for at least

two reasons. The first reason is that quantum computing is possibly the most powerful

computing model that does not violate the laws of nature as we know them. If quantum

computers can not be realized there should be a good reason for that, hopefully involving

novel insights into these laws. The second reason is that trying to build a quantum computer

forces us to achieve complete control over a quantum system, offering many possibilities for

learning about quantum mechanics in regimes where no experiments were done before.

For a quantum computer, the most important real world constraint is decoherence.

Decoherence is a process in which a quantum system becomes entangled with its environment

and thus makes a transition from a pure quantum state described by amplitudes into a

statistical mixture of states described by probabilities alone (or, more precisely, a density

matrix). Statistical mixtures cannot be used for quantum computation. Unfortunately,

having qubits which interact with the environment is necessary, if we are going to be able

to control them. This means that some amount of decoherence caused errors will always be

present in any quantum computer. At first sight, then, it seems that a quantum computer

can operate only for a finite and rather short period of time in which the transition from

quantum state to statistical mixture takes place.

It is a remarkable fact, and one of the true triumphs of the theory of quantum

information, that a quantum computer actually can function and maintain its advantage in

performance over classical computers even in the presence of errors that are unavoidable due

to decoherence. This result, due to Shor [19], Calderbank and Shor [20, 21], Steane [22] and

Preskill [23] is known as quantum error correction and fault-tolerant quantum computation.
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The main result of quantum error correction is the famous threshold result. This result

states that if the error in a quantum operation has a probability p smaller than some constant

error correction threshold pth, it is possible to devise a procedure that will eliminate errors

in the final results at the cost of a polylogarithmic increase in circuit complexity [24]. The

exact value of the error correction threshold depends on the model of error and the estimates

vary in a wide range 10−4 < pth < 10−8. However, the very fact that the threshold exists

proves that a quantum computer can, at least in principle function in the presence of errors

without losing its power. A truly remarkable result.

Fighting decoherence and errors is not the only challenge facing the builders of quantum

computers. The set of requirements that a device must meet in order to be a practical

quantum computer are summarized in DiVincenzo’s desiderata list for quantum computation

[25]. The desiderata are:

1. Qubits: A quantum computer must be a scalable device with well characterized qubits.

This property is important because quantum computers may be better than classical

ones only for large sizes of input that requires a lot of qubits to encode and work with.

Qubits are well characterized if there is only a small probability for the state of any

qubit to leak outside of the space of linear combinations of logic basis states |0〉 and

|1〉.

2. Initialization: Initialization of the computer in a specific state, like |00 . . . 0〉 must be

possible.

3. Coherence: Decoherence times must be much longer than the time needed to perform

an elementary operation on the qubits. The probability of error in gate operation,

which is bounded from below by a function of the ratio between time needed to perform

a gate and the decoherence time, must be below the error correction threshold pth.

4. Universal Gates: We must be able to apply every transformation from some universal

set of gates. This requirement is very hard to meet, because the available set of gates

is determined by the available interactions in a system. A wise choice of the universal

set will contain gates implemented by control of the interactions between qubits that

are already available in the system.
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5. Measurement: We must be able to perform a measurement of the state of each qubit

in the computational basis. The measurement requirement is necessary for the readout

and application of the error correction procedures.

Many systems have been investigated as potential quantum computers. Some of the

most notable ones are nuclear magnetic resonance in both liquid and solid state, ion and

atom traps, cavity quantum electrodynamics systems, nonlinear optics, linear optics with

measurement, quantum dots, Josephson junctions and nonabelian anyons. Topics discussed

in this thesis are most relevant for the proposal for a quantum computer based on single

electron quantum dots, due to Loss and DiVincenzo [26].

A common feature of all potential quantum computers is that they consist of systems

with well established quantum behavior and a small subset of energy levels that can be

isolated from the rest of the system and manipulated as a logical basis for a qubit. Most of

the proposals come from areas of research with rich experimental practice and a great deal

of experience with manipulation of the system.

Nuclear magnetic resonance (NMR) proposals use nuclear spins as qubits. They use a

standard NMR setup using radio frequency pulses to address nuclear spins in magnetic fields.

Preparation of the initial state, manipulation and measurement of the nuclear spins in this

setup is an art form that is perfected through the experience of many researchers working

in the field. Radio pulse sequences that perform various quantum operations are well known

and, at the present stage of development, can be routinely developed. Nuclear spins have

very long coherence times, due to their weak interaction with the environment, leaving

the possibility for gate operations with very small errors. In nuclear magnetic resonance

based proposals the complete computer fits on a single molecule and nuclei with different

surroundings represent addressable qubits. The most powerful experimental demonstrations

of quantum computing to date is factoring of the number 15 on 7 qubit NMR based quantum

computer by Vandersypen et al. [27]. Currently, NMR quantum computers cannot be scaled

up to useful numbers of qubits. Main problems with scaling are synthesizing large and

complex molecules and strong damping of the NMR signal with molecule size.

Proposals based on traps use arrays of isolated atoms or ions [28]. Each trapped

particle carries a qubit with logical states encoded in suitably chosen energy levels. Another

alternative is the use of optical lattices. Manipulation of the qubits is done by shining
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electromagnetic radiation of wisely chosen frequency and polarization, and interacting the

qubit states with collective degrees of freedom and cavity photons. These systems have long

coherence times, but somewhat involved control. Recent progress in designing ion traps on

chips suggests that ion traps quantum computers may be scalable to useful scales [29].

Optics proposals use single photons to carry qubits encoded usually as states of the

polarization or in spatial degrees of freedom. Single qubit operations on photons can

be done using standard linear optics, and single photon detection allows for efficient

measurements. The hard part of optical schemes are two-qubit operations that require

nonlinear optical elements. An alternative to the circuit model, the one-way quantum

computer of Raussendorf, Browne and Briegel [12] is considered as a way to remove the need

for more than a single qubit operations. Optical qubits were the first ones with practical

applications, in quantum cryptography [7, 8].

The most important solid state physics based proposals for quantum computation include

Josephson junctions, phosphorus donors in silicon and our heroes, quantum dots, as carriers

of qubits. In Josephson junction based approach, qubits are encoded into either flux or

current through a junction or the charge of a superconducting island [30]. One interesting

property of this proposal is that it uses quantum properties of a large collection of electrons.

The phosphorus in silicon approach of Kane [31] uses qubits encoded into spin of phosphorus

nuclei precisely implanted into a slab of silicon. Electrodes above the phosphorus donors

influence the electron cloud of phosphorus atom and indirectly the nuclear spins. This

proposal combines long coherence time of nuclear degrees of freedom with the indirect control

through orbital degrees of freedom of electrons that are much easier to access. The main

problem with this approach is the complexity of control and difficult fabrication of the device.

1.3.1 The Quantum Dot Quantum Computer

The quantum dot based proposal for realizing a quantum computer [26] is the most

relevant one for the research presented in this thesis. In the original proposal of Loss and

DiVincenzo, the qubits are spins of electrons bound to electrically gated coupled single

electron quantum dots in GaAs, see [Fig. 1.8].

The control over these spins is then achieved through separate mechanisms for addressing

single electron spins and interacting pairs of electron spins on neighboring dots. Single spins
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Figure 1.8. Quantum dot quantum computer, due to Loss and DiVincenzo. The qubits of
this proposed computer are electron spins on coupled single electron quantum dots. Quantum
dots are fabricated by electrostatic gating of a two dimensional electron gas in GaAs. In
the original proposal, illustrated in this figure, the spins are manipulated via voltages on
electrodes that define quantum dots and a combination of electron spin resonance techniques
and manipulation of the Zeeman terms at the position of individual dots. In this figure two
spin qubits on the left are decoupled, while spin qubits on the right interact through exchange
coupling.

are accessed through local modulation of the Zeeman coupling via an external magnetic

field, and electron spin resonance (ESR) techniques. Pairs of spins are interacted through

the exchange coupling controlled by the potential on the electrode that separates the two

quantum dot hosts.

Surprisingly, the mechanism for the control of pairs of electron spins is much simpler

than the mechanism for accessing and controlling individual spins. Applying a two-qubit

gate involves only sending a voltage pulse to one of the electrodes in the structure,

while application of single-qubit gate involves modulation of the Zeeman coupling term

HZ = µ0gB · S and applying an ESR pulse that will resonantly affect only one of the spins.

The Zeeman coupling can be altered by either locally manipulating the magnetic field in

the device or, again locally, changing the g-factor. Both the alteration of Zeeman coupling

and application of an ESR pulse are considered to be much more involved operations than

sending a voltage pulse which controls the interaction of a pair of spins.

This discrepancy in the difficulties connected with the control mechanisms for single-qubit

and two-qubit gates has prompted a lot of effort to enable quantum computation in
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these structures using only the voltage control. This approach is known as exchange-only

quantum computation. An important result in exchange-only quantum computation was the

demonstration of DiVincenzo et al. in [32] and Bacon et al. [33] that controllable isotropic

exchange coupling of the form

H(t) = J(t)S1 · S2, (1.3)

where J(t) is the coupling constant that depends on the externally controlled voltage and S1,2

are the spin operators of interacting electrons, is sufficient for the production of a universal

set of quantum gates over qubits encoded into states of three spins.

The isotropic exchange gates (1.5) produced by the spherically symmetric exchange

Hamiltonian preserve the total spin of affected spins. In order to construct a universal

set of gates, the logical basis states |0〉 and |1〉 of a qubit must have the same total spin

quantum numbers. The smallest number of spins that allows for such encoding is three. A

construction of the universal set of gates over logical qubits of three spins with S tot = 1
2

and

either Stot
z = 1

2
or Stot

z = −1
2

is known, but it is rather complex, see [Fig.1.9], taken from

[32].

This construction of a universal set of gates using isotropic exchange fails when the

effective interaction of the spins deviates significantly from the isotropic form (1.3). In the

context of quantum computing, a significant deviation is any deviation which produces an

error that cannot be handled using quantum error correction codes.

Even with the optimistic assumption of the error correction threshold of pth = 10−4, naive

estimate for the size of anisotropic corrections to the isotropic effective spin interaction (1.3)

that are due to spin-orbit coupling are large enough to make voltage controlled quantum

computing as proposed in [32] impossible. The first estimate of the size of spin-orbit

coupling induced anisotropy and the corresponding pessimistic outlook on the possibility

of exchange-only quantum computation was given by Kavokin [34].

One of the major results presented in this thesis resolves the problem of spin-orbit

coupling induced errors in exchange-only quantum computing based on isotropic exchange

interaction (1.3). We show that the anisotropy in a voltage controlled quantum gates can

be smaller than the size of the interaction terms would suggest. With properly chosen time

dependence of the control voltage, the effect of anisotropy in a quantum gate can be turned

from a first order effect in spin-orbit coupling strength into a second order effect in spin-orbit
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Figure 1.9. Circuits for implementing single-qubit and two-qubit rotations using isotropic
exchange. a) Single-qubit rotations by nearest-neighbor interactions. Four exchanges
(double-headed arrows) with variable time parameters τi are always enough to perform any
such rotation b) Non-nearest neighbor interactions. Only three interactions are needed c)
Circuit of 19 interactions that produce a CNOT between two coded qubits (up to one-qubit
gates before and after). The durations of each interaction are given in units such that for

t = 1/2 the rotation Uij = exp(iJt~Si · ~Sj/h̄) is a SWAP, interchanging the quantum states
of the two spins i,j. The t̄i parameters are not independent, they are related to the tis as
indicated. (Figure due to DiVincenzo, Bacon, Kempe, Burkard and Whaley.)
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coupling strength. More details about the procedure are given both later in the introduction

and in the separate chapters of the thesis.

1.4 Spin-Orbit Coupling

The most important source of anisotropy in the effective spin interaction in coupled

quantum dots is spin-orbit coupling. The details of the spin-orbit coupling interaction in

the semiconductor hosting the quantum dots are important because they will determine the

properties of the anisotropic interaction between the spins. We briefly review the physics of

spin-orbit coupling in this context here. A more detailed discussion is given in chapter 3.

For electrons moving in the presence of an electric field in vacuum, spin-orbit coupling

can be seen as a simple relativistic effect. A Lorentz transformation from the laboratory

frame into the rest frame of the electron transforms the electromagnetic field, producing a

magnetic component with the size of the order v/c, where v is the electron velocity and c

is the speed of light. The spin magnetic moment of the electron will then couples to this

magnetic field. Since the magnetic field in the rest frame is a function of electron velocity,

the spin and orbital degrees of freedom are coupled through this effect.

In semiconductors, the source of spin-orbit coupling is, of course, the same relativistic

effect described above; namely, an electron moving in the presence of the electric field of the

background ions of the solid again feels an effective magnetic field which couples to its spin.

However, the treatment of this effect is more complicated than that of a uniform electric

field. To calculate the effect of spin-orbit coupling in this context it can be treated as a

perturbation of the electronic band structure states labeled by the crystal momentum k.

The resulting term that couples orbital and spin degrees of freedom then has the form

HSO = h(k) · S, (1.4)

where h(k) is an odd vector function of crystal momentum. This last fact follows from

time-reversal symmetry — under time reversal both k and S changes sign, but HSO cannot

(spin-orbit coupling is time-reversal symmetric), thus we must have h(k) = −h(−k).

If the system is symmetric under inversion, the spin-orbit coupling will be absent. Under

inversion the crystal momentum changes sign, k → −k and spin remains invariant S → S.

This implies that the time-reversal symmetric spin-orbit coupling Hamiltonian (1.4) is odd
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under inversion and thus vanishes in systems that are inversion symmetric. Thus, we see that

every source of spin-orbit coupling can be traced to inversion asymmetries of the system.

In the devices that are considered here, inversion asymmetry comes from two main

sources. The first source is bulk inversion asymmetry of the crystal structure that hosts the

dots. This source of spin orbit coupling was studied by Dresselhaus [35] and the contribution

of crystal structure asymmetry to spin-orbit coupling Hamiltonian is usually referred to as

the Dresselhaus term. Another spin-orbit coupling inducing inversion asymmetry comes

from the structure fabrication. Quantum dots are fabricated near the boundary of two

different semiconductors, and inversion would switch the materials, changing the system.

Contribution of this structure inversion asymmetry to the spin-orbit coupling is called the

Rashba term [36]. The strain at the contact of two semiconductors. induces spin-orbit

coupling terms of Rashba form. These strain induced terms can be much stronger than the

original Rashba terms, as shown in experiments of Kato et al. [37], and therefore important

for spin manipulation.

Earliest inquiries into spin-orbit coupling in semiconductors concerned its effects on

the band structure [35] and spin decoherence [38]. Also, an important proposal for a

semiconductor device that uses both spins and charge, the Datta and Das spintronic

transistor [39], uses spin-orbit coupling to influence spin degrees of freedom through electric

fields. For the purpose of research presented here, details of the spin-orbit coupling

interaction in a semiconductor hosting the quantum dots are important because its form

will eventually determine properties of anisotropic interaction between the spins.

1.5 Symmetry and Control

The construction of a universal set of quantum gates in a quantum computing device

can be formulated as a control problem. Imagine we are given a set of Hamiltonians that

depend on the values of some set of external parameters. These external parameters are

time dependent and under our control. As we change the values of these parameters in time,

we apply a time-dependent Hamiltonian to the system that hosts the qubits and induce a

unitary evolution, i.e. a quantum gate. The problem of complete control over our system
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is solved when we find a set of time-dependent external parameters that will produce all of

the gates from some universal set.

Whenever the interactions in the system have some degree of symmetry (for example,

rotational symmetry in the case of the isotropic exchange interaction), there is an interesting

trade off between the complexity of required control over the interactions and the set of gates

that can be produced. Consider a given time-dependent Hamiltonian that has some fixed

symmetry at every moment in time. The unitary evolution produced by this Hamiltonian

will then have the symmetry as the underlying Hamiltonian. Also, the combination of

two such symmetric evolution operators will also be symmetric. Therefore, the quantum

gates that can be produced with time dependent pulses of control parameters will all have

the symmetry of the underlying Hamiltonian and preserve its good quantum numbers. By

definition, a combination of gates which form a universal set can implement arbitrary unitary

transformation on qubits, including transformations that change good quantum numbers of

Hamiltonian. Thus we see that symmetric gates can not be universal if qubits correspond

to single spins.

In order to eventually produce a universal set of gates using symmetric elementary gates,

logical qubit states have to be encoded into the states of more than one physical qubit

(as in the discussion of exchange-only quantum computation given above). Here, we call

a gate elementary if it is produced by a single voltage pulse. Then, a set of elementary

gates with common symmetry operating on physical qubits can correspond to another set

of gates on encoded logical qubits without common symmetry [33]. Another search through

combinations of these gates can lead to a universal set. However, the search for a universal

set of gates over encoded qubits can be hard. Therefore, the task of finding a universal set of

gates becomes harder when the underlying interaction is symmetric, giving a negative side

of the trade off.

On the positive side of the trade off, symmetry simplifies the control at the level of

the design of pulses that produce an elementary gate. Since the Hamiltonian is symmetric

throughout the application of the elementary gate, its good quantum numbers will remain

unaltered by the applied gates. The form of resulting gate will be then constrained in order

to preserve the good quantum numbers, and getting to the right gate in this restricted set

will be much simpler.
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The example of the spherically symmetric isotropic exchange interaction (1.3) can clarify

this point about symmetry trade off. Let us assume that we apply a pulse of time dependent

voltage which produces a time dependent coupling constant J : H(t) = J(t)S1 ·S2. Invariance

under arbitrary rotation in spin space is preserved throughout any such pulse, and the

resulting elementary gate must therefore also be spherically symmetric. There is only one

spherically symmetric operator, apart from the irrelevant constant, that can be constructed

from two spins. So, based on the symmetry of the problem alone, we can conclude that the

resulting gate U has a very simple form

U(λ) = exp−iλS1 · S2, (1.5)

where the only dependence on the external parameters and the way they change in time

comes through a single integrated coupling constant

λ =

∫ ∞

−∞
J(t)dt. (1.6)

The fact that there is only a single control parameter, λ, tells us that the control over this

highly symmetric Hamiltonian is comparatively simple. The resulting elementary gate is

fixed by a single parameter, as opposed to the 15 parameters of a general gate produced by

an interaction with no symmetry. Also, there is only one simple property of the pulse —

namely its integrated intensity — that matters at all in the elementary gate construction

and needs to be controlled, as opposed to 15 functions of the time dependent Hamiltonian

determining the gate when there is no symmetry. Parameters in asymmetric case are rather

complex functions of time dependent interaction and hard to control. Control simplicity in

symmetric case is the positive side of the trade-off.

1.5.1 Reduction of the Effects of Spin-Orbit Coupling in Exchange Gates

We have seen that symmetry is a useful guiding principle in solving problems that concern

the control of spins in coupled quantum dots. Achieving this control is a crucial task for

fulfilling the requirement of the existence of a universal set of gates from the desiderata list

for the quantum computer proposal that uses spins of electrons on coupled single electron

quantum dots as qubits.
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Early experiments on spin manipulation in quantum dots suggested that control of a

single spin is much harder task than control of the interaction between a pair of spins. For

this reason, a lot of work has been aimed at minimizing the requirements that need to be

imposed on single spin operations necessary for a quantum computer to function. While

the set of all two-qubit gates is universal and also a randomly chosen two-qubit gate is

almost certainly universal, the real problem lies in controlling such gates. In the light of the

symmetry trade off described in the previous section, obtaining a desired quantum gate from

an asymmetric interaction is hard.

In the original proposal [26] for a quantum computer based on electron spins on single

electron quantum dots the effective interaction between spins was assumed to be isotropic

(1.3). In fact, isotropic exchange is quite a good approximation to the real effective

interaction for most purposes. However, due to the stringent requirements of quantum

correction and fault-tolerant quantum computation, quantum gates have to be executed

very precisely. The sources of anisotropic interaction between spins considered in the original

proposal were direct dipolar coupling of spins and the spin-orbit coupling due to the electric

field of the confining potential in the plane of the dots. The anisotropy from both of these

sources was found to have negligible effect on the isotropy of the resulting effective interaction

of the spins.

After taking Dresselhaus and Rashba contributions to spin-orbit coupling into account,

the size of the anisotropic terms in the effective spin interaction was estimated by Kavokin

[34] to be between 0.1 and 0.01 of the size of the dominant isotropic exchange interaction. If

the gate anisotropy was comparable to the interaction anisotropy, the errors in the isotropic

exchange gates due to spin-orbit coupling would make the error correction threshold of

pth ∼ 104 − 108 unattainable.

The results presented in chapter 2 of this thesis will show that the error rate in isotropic

exchange gate is not bounded from below by the size of anisotropic terms in the interaction

relative to isotropic terms. To reduce the anisotropy in the gate, we use the freedom to shape

the time dependence of the interaction that produces the gate. Since the isotropic part of

the gate is determined by the integrated isotropic interaction strength (1.6) only, there is

actually quite a lot of freedom left in the choice of time dependence for the Hamiltonian that

implements the gate. When the underlying interaction is slightly anisotropic, this additional
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freedom in the choice of time dependence can be used to reduce the error in the resulting

gate. The required manipulation of the time dependence is remarkably simple. We only

need to keep the time dependence of control parameters symmetric in time to prevent the

strongest effects of anisotropy in the interaction from appearing in the resulting gate.

In general it is hard to fine tune the time dependence of an interaction to produce a

desired unitary evolution. However, because for the specific case discussed in chapter 2 the

requirement for the interaction can be stated in terms of symmetry alone, it translates into

a very simple constraint on the pulses, that can again be stated in terms of symmetry alone.

With all of these requirements satisfied, the applied gates will be isotropic up to second

order in spin-orbit coupling. For the range of anisotropic interaction strengths estimated

by Kavokin, the difference in going from the first to the second order can be crucial for

implementation of fault-tolerant quantum computation.

1.5.2 Using Spin-Orbit Coupling Effects for Spin Control

Any anisotropy in the effective interaction between spins on coupled quantum dots is

an obstacle for isotropic exchange based quantum computing. However, if it is possible to

control the form and size of the anisotropic terms in the gate, they can turn into a resource

for spin manipulation.

Since single spin manipulation in coupled quantum dots is hard, various authors have

proposed schemes for reducing the demands for single spin control in a spin-based quantum

computer. Apart from using isotropic exchange for universal quantum computation over

qubits encoded into states of three spins, there are various other sets of resources that are

also sufficient.

For example, Kempe and Whaley [40] showed that one universal interaction is the XY

Hamiltonian

Hxy(t) = J(t) (Sx
1S

x
2 + Sy

1S
y
2 ) , (1.7)

where the spin components in plane, chosen to be xy, are coupled with equal strength,

while the coupling of the third, out of plane z component is absent. This interaction would

enable computation without the need for control over individual spins. Some other possible

resources are gates generated by rotated exchange supplemented by the ability to control
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local magnetic fields of constant direction, as shown by Benjamin [41], Levy [42] and Wu

and Lidar [43]. Most of these proposals use a two spin interaction of reduced symmetry to

do some of the work traditionally done by single spin operations.

In general breaking the symmetry makes the problem of finding a scheme for quantum

computing easier. In deciding on the value of any particular scheme for reducing requirements

placed on single spin manipulation, the crucial criterion is the availability of the considered

interactions. Chapter 3 presents a study of the microscopic properties of a system of coupled

single electron quantum dots for the purpose of finding a reasonable model for the effective

interaction between the spins, including the effects of spin-orbit coupling. A very useful

result of this analysis is that axially symmetric anisotropic exchange is available in carefully

fabricated quantum dots.

Another original result presented in this thesis and relevant for the proposal for a quantum

dot quantum computer is the idea that voltage control over anisotropy can be a useful

resource in this system. This new resource may even be sufficient for universal computation

when the details of the fabrication of the device and the control over pulse shape are

arranged to achieve control over effects of anisotropic exchange in quantum gates, rather

than eliminating them.

A scheme for implementing a universal set of quantum gates using axially symmetric

anisotropy and pulse shaping is presented in chapter 4. There, control over an anisotropic,

but axially symmetric, exchange interaction is considered as a source of control.

The control is achieved through voltage pulses only, which is a tremendous technical

simplification. With both axial symmetry of the interaction, enforced by the device

fabrication, and time symmetry of pulses that experimenters can enforce at will, the gates

between a pair of spins are constrained to a simple form, determined by three parameters

only.

While the form is constrained by symmetry, the parameters of a gate will depend on

the detailed form of the time symmetric pulse used to implement it. The combination of

interaction symmetry and control through time symmetric pulses in principle allows for

complete control over encoded two-spin qubits. The amount of control is limited, but our

estimates suggest that it is still a significant resource for spin control.
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1.6 Summary of Results

The unifying theme of the work presented in this thesis is the use of symmetry as a

guiding principle in solving the control problem for a pair of electron spins in coupled single

electron quantum dots in the presence of anisotropic terms due to spin-orbit coupling.

The anisotropy caused by spin-orbit coupling is first treated as a problem for those

quantum computation schemes which assume that spins interact through purely isotropic

exchange, and later as a resource for spin control and application of a universal set of quantum

gates.

It is shown that a novel symmetry that depends on the time dependence of the voltage

used to switch on and off the exchange interaction can drastically reduce the anisotropy

of the resulting quantum gates. Specifically, time-symmetric pulsing, combined with pulse

shaping and a choice of local reference frames in the spin spaces of the qubits, reduces the

effects of anisotropy in quantum gates from first order in spin-orbit coupling to second order.

A microscopic study of a realistic model of coupled quantum dots shows that dot

fabrication can constrain the interaction of the spins to have an axially symmetric form (i.e.,

a form which is rotationally invariant about a particular axis in spin-space). Combining this

axial symmetry of the interaction with time symmetry of the voltage pulses that implement

quantum gates allows for a relatively simple solution to the complex problem of spin control.

In particular, these gates can be combined to construct a universal set of gates over qubits

encoded into pairs of spins. The range of available anisotropies in these gates is identified

as a figure of merit for this control mechanism. Estimates of this figure of merit for realistic

systems suggest that anisotropy in the spin interaction due to spin-orbit coupling can be a

useful resource for spin manipulation.
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CHAPTER 2

SPIN-ORBIT COUPLING AS A PROBLEM:

REDUCING THE GATE ANISOTROPY

In Chapter 1 we have seen that the isotropic exchange interaction between two spin-1/2

qubits, H = JS1 · S2, is a useful resource for quantum computation. In particular, this

interaction can be used to construct a universal set of quantum gates for properly encoded

qubits. Unfortunately, the interaction between electron spins in realistic systems is never

exactly of this isotropic form. Even worse, for quantum dots realized in a GaAs two-

dimensional electron gas, a good candidate for a solid-state quantum computer, spin-orbit

coupling induces relatively large anisotropy in the exchange interaction. In this chapter

we address this quantum computing “design problem” and show that by tailoring the time

dependence of the control voltage pulses used to switch on and off the exchange interaction

between neighboring spins we can make the resulting two qubit quantum gates significantly

more isotropic than the underlying interaction.

2.1 Reduction of Control Complexity

The control of a large system of qubits to the extent that allows for the application

of an arbitrary unitary evolution is an extremely complex problem. If the system consists

of N qubits, the dimension of its state space is 2N . The dimension of the space of all

unitary operators with determinant 1 acting on this state space, i.e. the space of distinct

quantum gates that can be applied to it, is 22N −1. The first item in the quantum computing

desiderata list, mentioned in chapter 1, specifies that the system of qubits should be scalable.

This means that adding new qubits to a computer should not significantly slow down its

operation. This suggests that the control problem is very hard, because the dimension of
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the gate space grows exponentially with the number of qubits while control has to remain

possible for any number of qubits.

The complexity of this general control problem is more apparent when the gates are

considered in terms of interactions that should be controlled in order to implement them. A

matrix that represents a given gate in the computational basis of N qubits is an element of

the group SU(2N), and is therefore an exponential of the corresponding su(2N) Lie algebra

element. At the more intuitive level we may imagine the algebra element exponentiation as a

gate implementation that consists of switching on the appropriate interaction H int, keeping

it on for some predetermined period of time and than switching it off to implement the gate

U = exp−iλH int, (2.1)

where −iλH int is a convenient representation of the Lie algebra element that allows us to

talk about the overall strength of interaction λ. (Here, and throughout this thesis, we

will set Planck’s constant h̄ equal to one.) Being able to apply arbitrary gates to the

qubits thus corresponds to being able to switch on and off arbitrary interactions between

qubits. This set of interactions includes all one-body terms interacting a qubit with external

fields, all two-body interactions of arbitrary pair of qubits, all three-body interactions that

naturally appear only as models of more fundamental two body interactions in systems of

many particles, and all n-body interactions that can be imagined, which cannot be realized

nor controlled. Obviously, a drastic simplification of control is necessary in order to move

this complete control program anywhere further.

Fortunately there is a drastic simplification of the complete control problem, due to the

notion of a universal set of gates. An analogous problem is also present in a classical digital

computers. A computation consisting of taking an N bit input and transforming it into an

M bit output of similar size is application of one out of (2M)(2N ) possible transformations.

The task would be impossible if each transformation corresponded to separate tuning of

interactions in a computer. From the Turing machine model we can learn that one extremely

complex tuning of interactions can be broken down into a possibly long succession of very

simple operations. Similarly a quantum computation can proceed with repeated application

of gates from a much smaller universal set. Such small sets of universal quantum gates

do exist, as reviewed in chapter 1. More importantly, some universal sets consist solely of
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gates that only act on one or two qubits at a time [44]. In the representation of gates by

interactions (2.1), this means that it is sufficient to control one and two body interactions

that commonly appear in nature. Repeated application of gates from a universal set can

produce an arbitrary gate on a system of qubits of arbitrary size. Thus it is possible to

trade a very complex construction of a gate that acts on a large collection of qubits for the

repeated application of much simpler gates from a universal set.

2.2 Isotropic Exchange

In choosing a universal set of quantum gates for a particular design of a quantum

computer, it is important to choose gates produced by interactions that are natural for the

particular physical system being considered. In this thesis we are considering qubits that

are encoded in electron spins. Spin 1/2 is a good candidate for a qubit because it perfectly

satisfies the desiderata requirement of having a well defined logical space. This requirement

calls for having a small probability for a system to be in a state that does not correspond to

any qubit state. For spin 1/2 this probability is exactly zero, because the entire state space

is two-dimensional. Another nice property of these qubits is that spin degrees of freedom

are well isolated from all the other degrees of freedom. The criterion for having qubits

with known properties hosted in systems that are studied in detail suggests electron spins

in semiconductors are good candidate qubits. Furthermore, the rich experience gathered

in studies of semiconductors in electronics eases the problems of fabrication and control of

devices. It is then natural to ask which interactions of electron spins in semiconductors can

efficiently produce quantum gates.

Recent experiments have shown that spins in semiconductors can have surprisingly long

coherence times. For example, the experimental observation of long spin coherence times for

electrons in GaAs in the experiments of Kikkawa and Awschalom [45] spurred interest in the

possibility of using electron spin as a carrier of quantum information. Long coherence time

is an indication of isolation of the spin degrees of freedom from both electron orbital degrees

of freedom and degrees of freedom of the crystalline lattice.

It is interesting to note that the idealized assumption of perfect isolation of the spin

degrees of freedom would determine the form of effective interaction between the spins.
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Good isolation of spin from orbital degrees of freedom suggests that the Hamiltonian for an

electron is, to a good approximation, of the form

He = Horb ⊗ 1spin, (2.2)

and therefore acts nontrivially only on the orbital degrees of freedom of the electrons. Such

an interaction is invariant under arbitrary rotations in spin space. This suggests that the

spin degree of freedom does not play any role in electron dynamics, and that the effective spin

Hamiltonian for electrons is just the identity. However, this is not the case. Since electrons

are fermions, the allowed wave functions of a pair of electrons must be antisymmetric with

respect to exchange. Arbitrary transformation of spins can turn an antisymmetric spin

state into symmetric, and the effective Hamiltonian can not be invariant under such a

transformation.

As an example we may consider a state of a pair of electrons

|ψ〉 =
1

2

(

|ab〉orb + |ba〉orb
)

⊗
(

| ↑ | ↓〉spin − | ↓↑〉spin
)

, (2.3)

where a and b denote arbitrary orthogonal electron orbital states and ↑ and ↓ are spin states

with projections 1/2 and −1/2 on arbitrarily chosen quantization axis. If the Hamiltonian

was symmetric under arbitrary spin transformation, the state

|ψ〉 =
1

2

(

|ab〉orb + |ba〉orb
)

⊗
(

| ↑↑〉spin − | ↓↓〉spin
)

, (2.4)

obtained from (2.3) by rotation of the first spin would be an equally valid state of the pair

of electrons. However, (2.4) is symmetric under the exchange of two electrons and can not

be a state of a pair of fermions.

This means that even though the Hamiltonian acts trivially on spin states in (2.2), the

effective spin Hamiltonian is not the identity, unless we explicitly take care of the electron

statistics. Due to symmetry it must only be a constant in the subspace of all the symmetric

spin states and possibly a different constant in the subspace of antisymmetric spin states.

This fact alone fixes the form of effective spin Hamiltonian. Another way to find the form

of effective spin Hamiltonian of a pair of electron spins interacting through (2.2) is through

rotational symmetry in spin space. The real rotations that rotate both spins are symmetries

of the system, so that the Hamiltonian has to be invariant under such rotation. There is
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only one invariant quantity, up to an irrelevant constant, that can be constructed from two

spins, the scalar product. This leads to the conclusion that the effective interaction of spins

in the case when the electron Hamiltonian acts trivially in the spin space is

H int = JS1 · S2, (2.5)

where J is a coupling constant determined by the details of orbital interaction and orbital

states of electrons with spins S1,2.

Isotropic exchange interaction appears under rather general assumptions that concern

only the electron Hamiltonian, and do not assume anything about the structure in which the

electrons reside. Generically, the largest terms in a Hamiltonian of a pair of electrons are

kinetic energy, interaction with external electromagnetic fields and Coulomb repulsion. All

of these terms are spin independent and to a good approximation the electron Hamiltonian

is of the form (2.2). The isotropic effective spin interaction arising from these terms is then

the strongest interaction in a pair of electron spins.

This conclusion about the specific form of effective spin-spin interaction arising from the

general properties of the underlying Hamiltonian is important from the point of view of spin

control. There is a guarantee that the effective interaction will have a simple and symmetric

form, even when the system itself is not symmetric. This fact was noted in the spin-based

quantum computing proposals early on [26]. The most important aspect of this derivation is

the fact that simple constraints on the Hamiltonian make the control of interaction between

spins remarkably easy. No matter how the device is fabricated, no matter what the symmetry

of the electron orbital wave functions and no matter which control mechanisms act on the

orbital degrees of freedom, the effective spin interaction will have the simple form (2.5),

as long as the spin degrees of freedom are neither directly affected by the interaction nor

coupled to the orbital degrees of freedom. At every moment during the gate operation the

effective interaction between spins will be

H int(t) = J(t)S1 · S2, (2.6)

and only the coupling strength J(t) will change. Since the set of available interaction is so

constrained, all the complexity of control will be described with a single function of time,

J(t).
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2.2.1 Simple Control

Simplicity of control brought by the triviality of spin part of the electron Hamiltonian does

not end with the highly symmetric form (2.6) of the effective interaction. This symmetric

interaction also implies simplicity of the quantum gates that can be produced.

Let us imagine that we are applying a gate using an arbitrary mechanism that produces

a time-dependent orbital Hamiltonian while the spin interaction is both trivial and does

not couple orbital and spin degrees of freedom. The only constraint we put on the gate is

that its application takes finite time. The initial Hamiltonian at time t → −∞ and final

Hamiltonian at t → ∞ then must describe electrons in some orbital states with decoupled

spins.

Spherical symmetry of the spin part of the electron Hamiltonian guarantees that the

effective spin interaction is isotropic, with the strength of the effective isotropic coupling

going to zero as time goes to plus or minus infinity. Quite generally the two spin gate

produced by a time-dependent effective Hamiltonian H int(t) is given by the time ordered

exponential

U = T exp−i
∫ ∞

−∞
H int(t)dt, (2.7)

where the symbol T represents the usual time ordering. The meaning of time ordering is

that whenever Hamiltonians taken at different times appear in expansion of the exponential

of (2.7), they should be commuted past each other so that the Hamiltonians with labels

corresponding to earlier times act before Hamiltonians taken at latter times. For any product

H(t1)H(t2) . . .H(tn) that appears in the exponential, it must be true that t1 ≥ t2 ≥ . . . ≥ tn.

In the case of an isotropic effective coupling, spin Hamiltonians taken at different times

commute, because they are proportional to the same operator, S1 · S2. The time ordering is

then trivial and the resulting gate is of the extremely simple form

U(λ) = exp−iλS1 · S2, (2.8)

where the only parameter that determines the gate, λ, is the integrated interaction strength

λ =

∫ ∞

−∞
J(t)dt. (2.9)

This simplification in going from the most general unitary operator acting on two spins, to

the extremely simple gate (2.8), determined by a single parameter is guaranteed whenever the
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spin Hamiltonian is trivial and spin and orbital degrees of freedom do not interact. Because

of this symmetry, all the potential complexity of arbitrary control mechanism is bundled in

a single parameter λ, which is simple function of time dependent effective Hamiltonian.

This chain of symmetry induced simplifications leads from the reasonable assumption

about the form of the electron Hamiltonian, through the specific form of the effective

interaction of a pair of spins to the highly symmetric and simple form of any gate that

can be applied using such an interaction, no matter how complex the control mechanism

itself is. Such a simplification that is obtained without any need for special care about the

device fabrication or the procedure for applying the gate suggests that the isotropic exchange

gates (2.8) should be among the easiest gates to apply. It will be interesting to compare

this bold prediction with the assessment of the actual possibility of control achievable in

experiments on electron spins in quantum dots.

2.2.2 Universal Gate Set Using Isotropic Exchange

The gate produced by a time-dependent electron Hamiltonian with trivial spin part is

very symmetric. It is invariant under rotations in spin space. In light of the symmetry

trade off from the introductory chapter, a symmetry that allows for easy control of a single

gate will make the problem of realizing a universal gate set construction harder if only the

isotropic exchange gates are used.

If single qubit gates are also available, isotropic exchange can be used for a simple

universal gate set construction. Isotropic exchange gates can add the necessary two-body

interaction between spins to single qubit rotations to construct a universal set of gates. The

standard choice of a universal set of quantum gates consists of all single qubit rotations and

the CNOT gate. When qubits are spins of spin 1/2 electrons, we can choose the logical

qubits as |0〉 = | ↑〉 and |1〉 = | ↓〉, and single spin rotations correspond to single qubit

operations. The construction of a CNOT gate can be done using isotropic exchange gate
√
SWAP and single spin rotations, as shown by Loss and DiVincenzo [26];

CNOT = (1 ⊗H)
√
SWAP (σz ⊗ 1)

√
SWAP (1 ⊗H) , (2.10)

where the square root of swap gate is

√
SWAP = exp−iπ

2
S1 · S2, (2.11)
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HH

Figure 2.1. Controlled not (CNOT) gate construction using isotropic exchange gate

S ≡ U(π
2
) =

√
SWAP and single qubit gates Z = σz and Haddamard gate H. This

construction demonstrates that isotropic exchange gates and single qubit rotations are
sufficient for universal quantum computation over spin qubits.

and the Hadamard gate in the computational basis is

H =
1√
2

[

1 1
1 -1

]

. (2.12)

This construction is also shown in [Fig.2.1]. Therefore, control over isotropic exchange

and single spin rotations is sufficient for universal quantum computation.

The perceived relative ease of applying the isotropic exchange gates on pairs of qubits

stimulated a lot of research into the possibility of delegating some of the work performed by

the single spin gates in the standard universal set of CNOT and single spin rotations to two

spin gates.

The problem with isotropic exchange gates as a resource for universal quantum compu-

tation lies in the fact that they are too symmetric for this task if the qubits are taken to be

the individual spins. Since the operator S1 · S2 that appears in the isotropic exchange gates

commutes with all of the spin rotations, spin quantum numbers remain invariant under the

action of isotropic exchange gates. A universal set of gates must allow for application of

an arbitrary unitary operation on a system of qubits and thus can not have any symmetry.

Therefore, isotropic exchange gates can not be universal on spin qubits.

If universal quantum computation is to be performed using only isotropic exchange gates,

logical qubit states must all have the same total spin and spin projection on arbitrary axis,

because isotropic exchange gates cannot change these quantum numbers. The smallest

system of spin-1/2 particles with a two dimensional subspace of states that all have the same
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total spin and its projection on a fixed axis consists of three particles. In this case there

are two subspaces with the required properties, states with S = 1/2, Sz = 1/2 and states

with S = 1/2, Sz = −1/2. Universal quantum computation using isotropic exchange gates

is indeed possible in both of these spaces. The explicit universal gate set constructions can

be found in [32], and is based on the knowledge gathered in more general study of universal

sets of quantum gates over encoded qubits [33]. One- and two-qubit gate constructions over

encoded qubits are reproduced in [Fig.1.9].

2.3 Anisotropy

Hopefully we have convinced the reader that isotropic exchange is a powerful resource

for quantum computation. It has the potential to be easy to control and at the same time

sufficient for universal quantum computation over encoded qubits.

Unfortunately, the assumptions behind the simple argument for isotropic exchange as an

effective spin interaction almost never hold exactly. In reality there will exist a nontrivial

spin Hamiltonian and a nontrivial coupling of spin and orbital degrees of freedom. For

example, a pair of spins will always interact through dipolar coupling of magnetic moments

Hdip ∝ S1 · S2 − 3 (S1 · r̂) (S2 · r̂)
r3

, (2.13)

where the vector r connects the two spins. Another important source of anisotropy is

spin-orbit coupling. Electrons in any solid state device will always move in the presence

of the electric field produced by the background ions and the other electrons in the system.

A Lorentz transformation from the frame of reference in which the lattice is stationary into

the electron rest frame will transform this electric field into an electromagnetic field with a

magnetic component of the order v/c, and the electron magnetic moment gµBS will couple

to that magnetic field. This coupling of the orbital quantity v to the electron spin will

create a part of the Hamiltonian that couples orbital and spin degrees of freedom, leading to

anisotropy. The source of this electric field can either be the external field used to localize

electron spin qubit or very strong internal field in the crystal.

Terms that cause anisotropy are generically weaker than the kinetic energy, direct

coupling to electric field and Coulomb repulsion terms responsible for isotropic exchange.

However, the tolerance of a quantum computer to errors is low. It can function in the
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presence of errors, but only if the probability of error in the gate operation is smaller than

the error correction threshold pth that is estimated to be 10−4 < pth < 10−8 [24]. Demands

for precision in the gate operation are very high and it is not obvious that various anisotropies

are not going to push the deviation of a realistic gate from the intended isotropic exchange

gate far enough to cross the threshold.

The anisotropy of the spin interaction in real semiconductor structures was first recog-

nized as a potential problem for quantum computation by Kavokin [34]. His estimate for

the strength of the anisotropic interaction relative to the dominant isotropic exchange was

βK ∼ 0.1 − 0.01. If we imagine that a quantum gate is applied by switching on and off a

slightly anisotropic exchange interaction instead of one which is purely isotropic, the size of

Kavokin’s βK will then be the size of the amplitude for transitions into a state that generates

an error in the gate. Therefore, the probability of error coming from this anisotropy will

be of the order (βK)2 ∼ 10−2 − 10−4 and most probably larger than the error correction

threshold.

Since isotropic exchange gates are controlled via simple voltage pulses and are still

powerful enough for universal quantum computation these errors due to anisotropy are very

unwelcome. This chapter describes in detail a procedure that allows for isotropic exchange

based spin manipulation even in the presence of anisotropic corrections predicted by Kavokin.

The procedure reduces the influence of anisotropy in the spin interaction on the applied gate,

turning the part of the gate produced by the anisotropic interaction from a first order effect

in the size of anisotropy into a second order effect. This reduction may push the error rate

below the error correction threshold.

2.4 Time Dependence, Interaction and the Gate

In a quantum computer based on spin 1/2 qubits, the goal of spin manipulation through

any two body interaction is to reliably produce a unitary transformation on a pair of spins.

We are always interested in the gates that the interaction of spins produces, and (almost)

never in the interaction itself.

The concept of a quantum gate is very similar to the S matrix of scattering theory.

Let us consider a quantum gate acting on a pair of spins through a two-body interaction

H int(t). At the initial t → −∞ and final t → ∞ time the spins are decoupled, and their
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states are |ψin〉 and |ψout〉, respectively. By definition, the gate is an evolution operator that

connects these two states. If the system does not decohere or leak into a noncomputational

state, the evolution operator U is unitary, and |ψout〉 = U |ψin〉. The gate is then completely

specified by the mapping from initial to final state. Obviously there are many time dependent

interactions that produce the same gate.

Calculation of the gate produced by a given time dependent interaction involves solving

the time-dependent Schrödinger equation for the evolution operator

i
dU(t)

dt
= H int(t)U(t), (2.14)

where U(t) is the evolution operator evolving a state from time −∞ to time t. The initial

condition for U(t) is that the initial state is indeed the state of the system at the beginning

of evolution,

lim
t→−∞

U(t) = 1. (2.15)

Equation (2.14) can not be solved analytically for the most general interaction H int. The

solution of this equation determines the gate produced by a given time-dependent interaction.

As stated above, this correspondence between gates and time dependent interactions is not

one to one. There are many time dependent interactions that produce the same gate.

2.4.1 Control through Pulse Shaping

From (2.14) we can also see that the quantum gate produced by a given time-dependent

interaction is not determined solely by the form of the spin interaction. The specific form of

the time dependence also plays a role. For example, the simple (and commonly used) model

of a quantum gate applied by switching a constant interaction sharply on and off is a gross

oversimplification in cases when the Hamiltonians describing the spin interaction taken at

different times do not commute with each other.

In a quantum computer, the time dependence of the interaction will be under external

control. For electron spins on coupled quantum dots, the interaction is a function of the

potential on the electrode that separates two neighboring dots. This voltage and its time

dependence are controllable.

This controllability can in principle be used to apply the quantum gate using a time

dependent Hamiltonian, where the gate is determined by solving the Schrödinger equation
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(2.14). The time dependence of the voltage can be therefore be considered as a handle for

spin control. The voltage dependent Hamiltonian that causes a pair of spins to go through

evolution that starts with a pair of noninteracting spins, continues with the change of state

governed by some time dependent interaction and ends again in the decoupled spins in final

state will be called a pulse. The corresponding voltage pulse is a time dependent potential

on the electrode that is used to implement the gate.

The most important results presented in this thesis are insights into symmetry based

control using time dependence. Time dependence is usually a rather weak control mechanism.

Here we find that it is not weak because there are a few different gates that can be applied

by carefully choosing the time dependence of the pulse. In fact, for an interaction without

any symmetry, pulse shaping of the Hamiltonian can in principle produce an arbitrary gate

acting on a pair of spins. The problem with this mechanism is in the complexity of required

control.

2.4.2 Voltage Control Program

In the scenario where all the gates are to be applied by pulses of a two spin interaction,

the difficulties are in finding the appropriate pulse forms and the generic complexity of

such pulses. To find the required pulse shape, it is first necessary to solve the Schrödinger

equation (2.14) with correct model for the interaction H int. Even with the overly optimistic

assumption that it is possible to find the correct model for an interaction in realistic system

and a reasonable assumption that the resulting equation can be numerically solved to the

required precision, the problem of control would not really be solved.

This solution would give the gate as a function of the time dependent Hamiltonian, which

is an inverse problem of what we need for control. If the hard problem of inverting these

solutions to find a time dependence of the correct model Hamiltonian needed to implement

the gate can be solved, we would be able to know which time dependent Hamiltonian should

be applied.

Only with yet another bold assumption, that a voltage pulse producing the required time

dependent interaction can be found, would we be able to formally solve the control problem.

Apart from being extremely hard to obtain, this formal solution to the control problem

is utterly useless. The list of unrealistic assumptions needed for formally solving the control
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problem is quite impressive and includes the ability to model the realistic effective interaction

between two spins in a semiconductor, the ability to solve the time dependent Schrödinger

equation with this kind of Hamiltonian, the ability to invert the solution in order to find a

time dependent realistic interaction that produces a given gate, and finally the ability to find

the voltage pulse causing such a time dependent interaction. The list of problems with using

time dependence as a control mechanism does not end there. Formal solution to the control

problem, even if it is possible to find, is a voltage pulse as a function of two-spin quantum

gate. The form of voltage pulse will generically be too complex for the contemporary or

future electronics to produce. One of the requirements for a quantum computer from the

desiderata list requires that the gates should be fast enough to prevent decoherence from

putting the error rate of the gate beyond the error correction threshold. Therefore, voltage

pulses would have to be both precision crafted and very fast. A drastic simplification in this

scenario of achieving the spin control is necessary if the time dependence is to be useful in

the control of spins.

The voltage control of a two spin system is a complex problem. However, the voltage

pulses are technically the simplest mechanisms for control and it would be encouraging if the

voltage control over available interactions proves to be sufficient for the control required for

the universal quantum computation. Applicability of the voltage control is determined by

the available interactions. It was already shown that highly symmetric isotropic exchange

can in principle be easily controlled, and because of its simple form, the fine tuning of pulse

shapes is not needed in this case.

In this chapter the freedom of crafting the pulse shape beyond what is needed for the

control over isotropic part of interaction is used to reduce the effects of the remaining

anisotropic terms on the performed gate. In the final analysis, the applicability of this

approach is determined by the form of effective spin interaction in the actual device. In the

case of spin-orbit coupling caused anisotropy, the symmetry of the underlying interaction,

manifested in the form of the effective coupling of the spins, allows for the simple design

of pulse shapes that reduce the gate anisotropy. However the problem of control using

general anisotropic coupling is still practically unsolvable. For general anisotropy, problems

connected with the stringent requirements on control of pulse shape make voltage control

impractical.
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2.5 Simplifications from Symmetry

A drastic simplification of the control required to reduce the effects of anisotropy in

a quantum gate implemented by the pulse of an almost isotropic interaction comes from

symmetry. An isotropic interaction is itself highly symmetric, and the dominant anisotropic

terms in the effective spin interaction will also have definite symmetries. Regularity in the

interaction between spins leads to simple predictions about the form of the resulting gate.

In the case of small anisotropy caused by spin-orbit coupling these predictions are sufficient

to prepare a recipe for the pulse control that reduces the errors in isotropic exchange-based

gates below the error correction threshold.

The analysis of this chapter is most useful for reducing the errors in isotropic exchange

gates caused by spin-orbit coupling. An appropriately modified procedure can in principle

reduce anisotropy in gates caused by anisotropies of different origin. The quantum computer

design that inspired this procedure is the coupled single electron quantum dots proposal of

Loss and DiVincenzo [26].

In this proposal the only significant source of anisotropy is spin-orbit coupling. Symmetry

properties of spin-orbit couping allow for a needed drastic simplification of the control

problem that is sufficient for the removal of first-order anisotropy in a quantum gate.

The source of spin-orbit coupling for a free particle is, as we have described above, a rela-

tivistic effect. Electron that moves in the purely electric field experiences an electromagnetic

field with nonzero magnetic component in its rest frame. The magnetic field strength is of

the order v/c, where v is the electron velocity, and c is the speed of light. This magnetic field

couples to electrons magnetic moment which is proportional to spin. This coupling includes

both the orbital degrees of freedom through the velocity v and the spin degrees of freedom

through the electron spin. In a crystal, the form of this coupling is

HSO = h(k) · S, (2.16)

where h(k) is an odd function of electron crystal momentum k, and S is electron spin (see

chapter 1).

In a semiconductor system with a localized pair of electrons, the dominant effective

interaction between spins will be isotropic exchange. If spin-orbit coupling is treated as
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a small correction to this dominant interaction, it is useful to write down the effective

interaction between spin at any time t as

H int(t) = J(t)
(

S1 · S2 + Aint(t)
)

, (2.17)

where J(t) is the instantaneous strength of the isotropic part and Aint(t) is the strength of

anisotropic part of the interaction, scaled by the size of the dominant isotropic part.

The symmetry of spin-orbit coupling under parity can help us find the structure of the

anisotropic term Aint of (2.17). With complete generality, we can write down Aint as

Aint(t) = βint(t) · (S1 × S2) + S1 · Γint(t) · S2, (2.18)

where βint(t) is a vector and Γint(t) is a symmetric rank two tensor. This particular

parametrization of the anisotropic part of the interaction in (2.17) is useful because it

separates terms that are of different order in spin-orbit coupling. The term βint acting

between localized spins and caused by spin-orbit coupling was considered for the first time

from the point of view of symmetry by Dzyaloshinskii [46] and microscopically by Moriya

[47]. They found that the antisymmetric anisotropy term βint is first order in the strength of

spin-orbit coupling, while the symmetric anisotropy term Γint is second order in spin-orbit

coupling.

This observation of Dzyaloshinskii and Moriya is a simple consequence of the fact that

spin-orbit coupling is odd under parity. This can be seen by noting that under inversion,

the crystal momentum of a given electron changes sign k → −k, while its spin, which is an

axial vector, does not S → S. Thus, since the spin-orbit field h(k) is an odd function of k,

the spin-orbit Hamiltonian HSO = h(k) ·S also changes sign HSO → −HSO under inversion.

Therefore, the βint(t) term of (2.18) that couples to a spin operator (S1 × S2) that is odd

under exchange of two spins must itself be odd inversion and at most first order in spin-orbit

coupling strength. And by similar reasoning the Γint(t) term of (2.18) that couples to a spin

operator that is even under exchange of the two spins must be of even order in spin-orbit

coupling. Since the interaction is isotropic when spin orbit-coupling is absent (Γint(t) = 0

in that case), Γint(t) is at most second order in spin-orbit coupling strength.
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2.6 Removal of First Order Anisotropy

The separation of anisotropy into terms of different order in spin-orbit coupling strength

is helpful in the search for voltage controlled gates with reduced anisotropy. When the task is

specified to eliminating the first order anisotropy, the hierarchy of terms allows for calculating

the gate applied by pulse (2.17) using perturbation theory with spin orbit coupling strength

playing the role of a small parameter.

2.6.1 Calculation of the Gate

We have found that in our analysis it is useful to define something we refer to as the

“gate Hamiltonian.” To define the gate Hamiltonian imagine that a given quantum gate

implemented by a particular pulse (i.e. time-dependent interaction) was in fact implemented

by switching on and off a constant Hamiltonian — this constant Hamiltonian is then what

we refer to as the gate Hamiltonian. Put another way, the gate Hamiltonian is nothing more

than the Hermitian operator which is exponentiated to produce a given quantum gate. As

we shall see, the usefulness of the gate Hamiltonian is that it makes the symmetries of the

corresponding quantum gate transparent.

A priori there is no reason to expect the gate Hamiltonian to have any special form —

it can be the most general two-spin Hamiltonian possible. A useful parametrization of the

gate Hamiltonian, which is analogous to the parametrization of interaction discussed above,

is then

U = exp−iλH ≡ exp−iλ (S1 · S2 + A) ≡ (2.19)

≡ exp−iλ
(

S1 · S2 + β · (S1 × S2) + S1 · Γ · S2 +
α

2
· (S1 − S2) +

µ

2
· (S1 + S2)

)

,

where the gate parameter λ measures the overall strength of the pulse, and the remaining

parameters are vectors α, β and µ and a rank two symmetric tensor Γ. The interaction H

appearing in the gate parametrization (2.19) is the gate Hamiltonian and time independent

operator A is the anisotropic part of the gate Hamiltonian.

The gate parameters (α, β, µ, Γ) will depend on the the details of the pulse shape (2.17).

Note that the parameter λ is arbitrary, because only the product λH enters the definition

of the gate Hamiltonian. The freedom of choosing the value of λ can be used to define it as
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Table 2.1. Behavior of gate parameters under parity (P ) and time reversal (T ). Quantities
that are even(odd) under parity are of even(odd) order in spin interaction anisotropy. Gate
parameters odd under time reversal vanish from the gates implemented by time-symmetric
pulses.

symmetry λ α β Γ µ

P + − − + +
T + − + + −

λ =

∫ ∞

−∞
J(t)dt. (2.20)

With this convention, λ is the control parameter of the isotropic gate that would be

implemented in the limit of zero spin-orbit coupling strength. This definition allows us

to see that the gate Hamiltonian H defined in (2.19) as an isotropic gate Hamiltonian we

would like to implement plus a correction A due to the anisotropy of interaction.

2.6.1.1 Parity and Time Reversal

Before starting the calculation of gate, we can do a quick symmetry analysis, analogous

to the symmetry analysis of Dzyaloshinskii, and estimate the sizes of the terms which will

appear in the gate Hamiltonian. This analysis is summarized in table (2.6.1.1). Recall that

spin-orbit coupling, which produces all the anisotropic terms in the gate, is odd under parity

S1 ↔ S2. The gate parameters also behave simply under parity; the vectors α and β change

sign, while the vector µ and symmetric rank two tensor Γ remain invariant. That implies

that parameters α and β are first order in spin orbit coupling, while µ and Γ are second

order. Another important symmetry of spin-orbit coupling is time reversal (Si → −Si),

where i = 1, 2. Under time reversal, parameters β and Γ are invariant, while α and µ

change sign. The terms α and µ, odd under time reversal and corresponding to staggered

and uniform magnetic field, will vanish unless time reversal symmetry is broken.

The symmetry properties summarized in Table (2.6.1.1) immediately give us a method

to eliminate one of the strong (i.e. first-order in spin-orbit coupling) anisotropic terms from

the gate. Since the interaction (2.17, 2.18) is invariant under time reversal, the only way to

create the α term, which is odd under time reversal and first order in spin-orbit coupling,

is to break time reversal symmetry. And the only possible source of time reversal symmetry
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breaking is in the actual time dependence of the pulse used to implement the gate, as we

prove in the next section.

2.6.1.2 Time Reversal Symmetric Interactions and Time Symmetric Pulses

In this section, we prove the following important result: A time symmetric pulse will

preserve the time reversal symmetry of the resulting gate.

It is important to make the distinction between invariance under time reversal of the

interaction Hamiltonian and the time symmetry of the pulse. Invariance under time reversal

of the interaction is here taken in the standard sense. Let us consider some Hamiltonian and

the evolution governed by it, starting at time t0 from the state |ψ(t0)〉. We let the evolution

proceed under the influence of this Hamiltonian to time t. At time t, we change the current

state of the system |ψ(t)〉 into time reversed version T |ψ(t)〉 and let the system keep evolving

under the influence of the Hamiltonian from t to t + (t − t0). If the state of the system at

t + (t − t0) is the same as the initial state at t0 for an arbitrary initial state and values of

t and t0, we say that the Hamiltonian is invariant under time reversal. Time symmetry of

the pulse, on the other hand, means simply that the time dependent Hamiltonian H(t) is

an even function of time, H(t0 + t) = H(t0 − t) for every time t, where t0 is the center of

the pulse. Time symmetric pulses are easy to produce because the time symmetry of the

classical control parameters, which can be, in principle, directly controlled in an experiment,

guarantees that the corresponding Hamiltonian pulse will also be time symmetric.

We can now precisely state the proposition to be proved: A time symmetric pulse of a

time reversal symmetric Hamiltonian produces a time reversal symmetric gate. Here is a

formal proof of this statement.

Let HP (t) be a time symmetric pulse i.e. HP (t) = HP (−t) for every time t, and let

it be invariant under time reversal at any point in time. Evolution generated by this time

dependent Hamiltonian, U = exp−iλH has a time reversal symmetric gate Hamiltonian H.

The time reversal operation for any quantum system can be represented by an antiunitary

operator Θ [48]. An orthonormal basis {|Mi〉} for the Hilbert space of this system is time

symmetric if

Θ|Mi〉 = |Mi〉 (2.21)

for all i.
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For any Hamiltonian H acting on a state |Mi〉 in this basis we can write

H|Mi〉 =
∑

j

〈Mj|H|Mi〉|Mj〉. (2.22)

Under time reversal H is transformed into ΘHΘ−1. Using the invariance of the {|Mi〉} basis

and the antiunitarity of Θ we can then also write

ΘHΘ−1|Mi〉 = ΘH|Mi〉 = Θ
∑

j

〈Mj|H|Mi〉|Mj〉 =
∑

j

〈Mj|H|Mi〉∗|Mj〉. (2.23)

Comparing (2.22) and (2.23) leads to the conclusion that if H is time reversal symmetric,

i.e. H = ΘHΘ−1, then the Hamiltonian matrix is purely real in the {|Mi〉} basis.

Since H is real in the {|Mi〉} basis if and only if H is time reversal symmetric it follows

that the unitary operator U = exp−iλH is symmetric, i.e. U = UT , if and only if H is

invariant under time reversal.

Now consider a time dependent pulse HP (t). We assume that HP (t) is invariant under

time reversal at all times, i.e. HP (t) = ΘHP (t)Θ−1 for all t. The corresponding unitary

evolution operator U which evolves the system from time tI to tF can be written

U = lim
N→∞

U(tN )U(tN−1) · · ·U(t2)U(t1) (2.24)

where

U(ti) = e−i∆tHP (ti), (2.25)

with ∆t = (tF − tI)/N and t1 ≡ tI and tN ≡ tF .

Since HP (ti) is time reversal symmetric the above arguments imply UT (ti) = U(ti) when

U(ti) is expressed in the time-symmetric basis {|Mi〉}. Thus, in this basis, we have

UT = lim
N→∞

(U(tN )U(tN−1) · · ·U(t2)U(t1))
T (2.26)

= lim
N→∞

UT (t1)U
T (t2) · · ·UT (tN−1)U

T (tN) (2.27)

= lim
N→∞

U(t1)U(t2) · · ·U(tN−1)U(tN ). (2.28)

For a time-symmetric pulse HP (ti) = HP (tN+1−i) and so U(ti) = U(tN+1−i). This allows

us to reverse the order of the operators in (2.28) which then implies

UT = U. (2.29)
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Thus if we write U in terms of an effective Hamiltonian,

U = exp−iλH, (2.30)

the matrix elements of H must be real in the time-symmetric basis. H must therefore be

time reversal symmetric, i.e. H = ΘHΘ−1.

2.6.2 Perturbative Evaluation of the Gate

After proving this crucial result regarding time reversal symmetry for general quantum

gates, we now return to the task of perturbatively solving (2.14) for the gate (2.19) produced

by the pulse (2.17). We take as the small parameter of the perturbation theory the strength

of spin-orbit coupling.

The formal exact solution of (2.14) is the time ordered exponential (2.7). Here the

unperturbed Hamiltonian (i.e. the Hamiltonian in the absence of spin-orbit coupling) is

isotropic exchange H0(t) = J(t)S1 · S2, and the unperturbed evolution is trivial to find,

because the unperturbed Hamiltonians taken at different times commute [H0(t1), H0(t2)] = 0

for every pair of times t1, t2. This means we can safely ignore the time-ordering operator,

and the unperturbed evolution operator is

U0(t) = T exp−i
∫ t

−∞
J(t′)S1 · S2dt

′ = exp−ix(t)S1 · S2, (2.31)

where

x(t) =

∫ t

−∞
J(t′)dt′, (2.32)

is the integrated pulse strength from the beginning of the pulse up to time t. Pulsing the

unperturbed interaction produces an unperturbed gate (i.e. an isotropic exchange gate)

limt→∞ U(t) = U0(λ) = exp−iλS1 · S2 where λ is the usual strength of entire pulse (2.9).

Anisotropy will appear as a correction to this form of this gate.

Since the unperturbed problem is solved and we are interested in presenting the perturba-

tive solution in the form (2.19) that clearly separates the unperturbed and perturbative parts

of the gate, it is useful to keep track of the orders of perturbation theory in the interaction
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picture, with the picture operator defined by the unperturbed evolution operator (2.31). In

this picture the state of the system at time t, |ψI(t)〉, is

|ψI(t)〉 = U †
0(t)|ψ(t)〉, (2.33)

where |ψ(t)〉 is the state in the standard Schrödinger picture, and U †
0(t) is given by (2.31).

The state in this interaction picture then evolves only under the influence of anisotropic part

of the Hamiltonian,

i
d

dt
|ψI(t)〉 = J(t)AI(t)|ψI(t)〉, (2.34)

where the anisotropic part of the Hamiltonian must, of course, also be taken in the same

interaction picture, with

AI(t) = U †
0(t)A(t)U0(t). (2.35)

The form of the Schrödinger equation in the interaction picture is the same as in the

Schrödinger picture, with the operator J(t)AI(t) playing the role of a time dependent

Hamiltonian. By analogy, the formal solution for the evolution operator in interaction picture

is again the time ordered exponential

UI(t) = T exp−i
∫ t

−∞
J(t′)AI(t

′)dt′, (2.36)

where the initial condition limt→−∞ UI(t) = 1 is assumed. This evolution operator maps

a state at the initial time t → −∞ into a state at time t when both states are in the

interaction picture. Note that the picture operator at the initial time is the identity,

U0(t → −∞) = 1. The initial state in the interaction picture is then the same as in

the standard Schrödinger picture. On the other hand, the final states at t → ∞ do differ

because limt→∞ U0(t) = exp−iλS1 · S2.

To calculate the gate parameters (2.19) corresponding to this gate, we need to compare

our perturbative result for the gate with the gate that would be produced by a pulse of the

gate Hamiltonian H of (2.19) with the same isotropic interaction strength. Of course the

comparison is meaningful only when both operators are taken in the same picture.
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The gate produced by the gate Hamiltonian in the Schrödinger picture is, by definition

U of (2.19). From the transformation rule between states in the Schrödinger and interaction

pictures, we can easily conclude that the interaction picture of this evolution operator is

UI = lim
t→∞

U †
0(t)U(t) = exp (iλS1 · S2)U. (2.37)

The goal of this calculation is then to find the gate produced by a pulse (2.17). The result

should be correct up to second order in the strength of spin-orbit coupling, which translates in

to second order in βint(t) and first order in Γint(t). Since the perturbation Aint(t) contains

both of these terms, we would need to work out the second order perturbation. For this

precision it is sufficient to keep the first two terms in the Dyson series expansion of (2.36).

This gives

UI = 1 − i

∫ ∞

−∞
J(t)Aint

I (t)dt +
(−i)2

2

∫ ∞

−∞
dt1

∫ t1

−∞
dt2J(t1)J(t2)A

int
I (t1)A

int
I (t2) + o(SO2),

(2.38)

where o(SO2) are terms of higher than second order in spin orbit coupling strength.

Using the two expressions for the gate in the interaction picture, (2.37) and (2.38),

we arrive at a set of 16 equations for the matrix elements, 15 of which are independent.

The condition that reduces the number of equations is the fact that both the traceless

time dependent Hamiltonian H int(t) and traceless gate Hamiltonian H produce gates with

determinant 1, represented by an SU(4) matrix. These equations can then be solved for the

parameters of the gate Hamiltonian.

The result of this rather lengthy computation are the following perturbative expressions

for the gate parameters:

α =
1

2 sin(λ/2)

∫ ∞

−∞
βint(t) sin

(

x(t) − λ

2

)

J(t)dt, (2.39)

β =
1

2 sin(λ/2)

∫ ∞

−∞
βint(t) cos

(

x(t) − λ

2

)

J(t)dt, (2.40)

µ =
1

4λ

∫ ∞

−∞
J(t1)dt1

∫ t1

−∞
J(t2)dt2 m(t1, t2), (2.41)

where

m(t1, t2) =
(

βint(t1) × βint(t2)
)

cos (x(t1) − x(t2)) + 2 (α × β) sin (x(t1) − x(t2)) , (2.42)
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and

Γab =
1

λ

∫ ∞

−∞
Γint

ab (t)J(t)dt+
1

4λ

∫ ∞

−∞
J(t1)dt1

∫ t1

−∞
J(t2)dt2Iab(t1, t2) sin (x(t1) − x(t2)) ,

(2.43)

where

Iab(t1, t2) = 2
(

βint(t1) · βint(t2) − β2 − α2
)

δab − (2.44)

−
(

βint
a (t1)β

int
b (t2) + βint

a (t2)β
int
b (t1) − 2βaβb − 2αaαb

)

.

These results are valid when |λα| � 1 and |λβ| � 1 and correct up to second order in

spin orbit coupling strength. They obviously diverge in the limit λ → 2nπ for integer n.

The reason for this divergence is in the fact that the unperturbed gate U0 approaches the

identity, and the corrections cannot be small. In the λ → 0 limit, α and β do diverge, but

the products λα and λβ have finite values and the result represents a valid gate. Since only

the gate has direct meaning, the gate parametrized by a value of λ close to an even multiple

of π can always be mapped to another gate with the value of λ close to zero. The result of

this remapping will generically be far from the real gate applied by the considered pulse and

in that sense perturbative results do break down for these values of λ.

It is gratifying to note that these perturbative results are consistent with our rigorous

result that time symmetric pulses produce gates described by a time reversal symmetric gate

Hamiltonian. To see this note that the expressions (2.39) for α and (2.41) for µ corresponding

to staggered and homogeneous magnetic field do indeed vanish when the pulse H int(t) is time

symmetric. The vanishing of the α term in (2.39) is obvious for symmetric pulses. We can

introduce the quantity x of (2.32) as a new integration variable and use J(t)dt = dx(t). The

sine function is odd about the center of the pulse, i.e. changes sign on mapping λ
2
±x→ λ

2
∓x,

and the prefactor is even under the same transformation. Integration over x goes from 0 to

λ, an interval symmetric about λ
2
, so that the value of α is zero. For µ, we can do a similar

trick, and show that the cross product term vanishes after separating the first integration

into intervals from 0 to λ
2

and from λ
2

to λ and switching variables in the two integrals. The

term with α vanishes, because α is zero for time symmetric pulses.

The symmetry predictions for the size of the anisotropic terms also hold. The gate

parameters α and β are first order in the time dependent βint(t), i.e. first order in spin orbit

coupling, while Γ and µ are second order.
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2.6.3 Local Symmetry

We have seen that time symmetric pulsing of anisotropic exchange gates removes one

of the undesirable first order anisotropic terms (i.e. the α). Unfortunately, such a

symmetrically pulsed gate will still be anisotropic, but the remaining anisotropy will only

have the terms that correspond to interactions which are invariant under time reversal.

The remaining first order β term in (2.19) can not be removed by simple pulse shaping.

However, the perturbative expression for β (2.40) suggests that this term can be controlled

by the choice of the pulse shape that fixes the form of βint(t).

While we cannot use the control gained from pulse shaping to make β vanish, we can

use it to effectively eliminate this term. To see how, note that the gate Hamiltonian of a

symmetrically pulsed gate is

H = S1 · S2 + β · (S1 × S2) + S1 · Γ · S2, (2.45)

where, again, the problematic term is β, because it is of the first order in spin-orbit coupling

strength.

The isotropic exchange gate (1.5) we are trying to implement is very useful because of its

symmetry properties. Any rotation in spin space leaves it invariant. However, the rotations

that leave the gate invariant are global. Both spins that the gate affects must be rotated

about the same axis and through the same angle in order to keep the gate isotropic. However

if the spin rotations are not equal the isotropic form will not be preserved.

Under rotations, the spin operators behave like vectors, and simple geometry can tell

us what happens with a scalar product when spins are rotated by a different angle. From

elementary geometry, the change of a vector S under a small rotation is

S → S′ = S + φ × S, (2.46)

where φ̂ is the rotation axis and the rotation angle is φ. Under such a local rotation, the

isotropic exchange gate Hamiltonian will transform into

S1 · S′
2 = S1 · S2 + sin φ φ̂ · (S1 × S2) + (cosφ− 1)

(

S1 · S2 −
(

φ̂ · S1

)(

φ̂ · S2

))

. (2.47)

In the special case, when the symmetric tensor Γ in gate (2.45) satisfies

Γab =

√

1 − β2 − 1

β2

(

β2δab − βaβb

)

, (2.48)
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all the anisotropy can be absorbed into a relative rotation of spins. This kind of gate is

called a rotated exchange gate, and its gate Hamiltonian is a rotated exchange interaction.

Comparing these changes of vector and scalar product with the gate Hamiltonian for a

symmetric pulse we see that, up to the first order in spin-orbit coupling, a symmetrically

pulsed gate can always be interpreted as an isotropic exchange gate between a spin S1 and

slightly rotated spin S2

S1 · S2 + β · (S1 × S2) = S1 ·R(β)S2 +O(SO2), (2.49)

where the currently unimportant terms of second and higher orders are lumped together into

O(SO2).

Within this interpretation, the first order anisotropy in a symmetrically pulsed gate is

just a measure of the relative rotation of the two spins involved in an isotropic exchange

gate. Therefore all the first order anisotropy in a symmetrically pulsed quantum gate can

be absorbed into a choice of the spin quantization axis on one of the spins, regardless of the

form of the symmetric anisotropy because it is always second order.

We apply this idea to a general gate produced by a time symmetric pulse. With standard

spin quantization axes, the gate is

U = exp−iλ (S1 · S2 + β · (S1 × S2) + S1 · Γ · S2) , (2.50)

i.e. it is generated by the gate Hamiltonian (2.45). The convention for the overall pulse

strength λ is that it is the strength of the isotropic gate that would be applied if spin-orbit

coupling was turned off. When represented in terms of spins S1 and S′
2 = R(φ)S2 which is

slightly rotated S2 this same gate is

U = exp−iλ (S1 · S′
2 + S1 · Γ′ · S′

2) , (2.51)

when the axis and angle of rotation R(φ) are determined by the requirement that the first

order anisotropic term β gets absorbed in the relative rotation of the two spins. Note that

the relative rotation of the spins has also caused a change in the symmetric tensor part of
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the gate, from Γ to Γ′, because of second order terms in (2.47). The new symmetric second

order anisotropy is

Γ′
ab = Γab +

1

2

(

β2δab − βaβb

)

+O(β4). (2.52)

The absorption requirement determines the local rotation completely. The rotation that

exactly removes the β term from (2.50) is about the β̂ axis and the angle of rotation is

arcsin β.

The exact form of this rotation is not important at this point, because we only aim at

removing the first order anisotropic effects. With this in mind, we expand the required

rotation up to first order in orbit coupling and find that it is about an axis β̂ and through

an angle β. The corresponding rotation matrix is

Rab = δab +
∑

c

εabcβc −
1

2

(

β2 − βaβb

)

+O(β3), (2.53)

with the remaining terms O(β3) being of third order in spin orbit coupling.

A choice of spin reference frames that are local for spins in a computer (i.e., a choice of

gauge) can remove the first order anisotropy from any gate applied by a given time symmetric

pulse. If all quantum are done in this gauge, the first order correction will not affect the

computation, again in first order in spin-orbit coupling. Even better, the choice of gauge

is not an actual operation applied to the spins. It is merely a choice in the way in which

define “up” and “down” spins on the two quantum dots. There is no additional spin control

requirement involved with a change of gauge.

There are only two times in a quantum computation when the actual spin reference frame

matters. At the beginning of a computation, the spins have to be prepared in initial states

that are defined in a fixed gauge. Also the spin projection measurements at the end of the

computation are done along axes defined in the same fixed gauge. Because the initial and

final steps of a quantum computation have to be done in the same gauge, it is necessary

that the entire computation proceeds in a fixed gauge. The anisotropy reducing gauge is

illustrated in [Fig. 2.2].

The requirement that the entire computation take place in a fixed gauge, however,

presents a problem. The anisotropy canceling rotation (2.53) that determines the gauge is a

function of the pulse used to implement the gate. On the other hand the spin quantization
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Figure 2.2. Illustration of local reference frames. If every two-qubit exchange gate that
acts on a pair of spins produces the same first order anisotropy β, the anisotropy in rotated
reference frame will be second order in interaction anisotropy βint. Rotation connecting the
two local reference frames is about the axis β̂, and rotation angle is β up to second order
in interaction anisotropy. It maps the reference frame (x, y, z), represented with dashed
axes into (x′, y′, z′), represented with solid axes. Actual reference frames matter only in
initialization and readout of the spin qubit. To reduce anisotropy, the spins should be
prepared and measured along local z′ axes. Red arrows represent spins immediately after
initialization.

axis of a fixed spin is determined by the gauge and must not change during the computation.

Therefore the gauge fixing is possible only if every gate applied to a pair of spins requires

the same canceling rotation for that particular pair. Since the canceling rotation (2.53) is

a function of the gate parameter β, every symmetric pulse applied to a given pair of spins

must produce the same first order anisotropy, regardless of the isotropic exchange gate that

was implemented.
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In the search for a set pulses that produces all possible isotropic exchange gates (1.5)

while keeping the first order anisotropy fixed, the perturbative result (2.40) can be quite

useful. To illustrate this point, let us find a set of pulses that produce gates with a fixed

value of β for all the values of the isotropic part strength λ in a simple but illustrative model.

We consider a family of pulses of the form (2.17) with time dependent isotropic interaction

strength

J(t;λ) =
J0(λ)

cosh2 2t
τ(λ)

, (2.54)

and first order anisotropy proportional to isotropic interaction strength

βint(t) = β1J(t;λ). (2.55)

The time dependence is set by the pulse strength J0(λ) and the decay time τ(λ). For all of

these pulses, the integrated strength of the isotropic part of interaction is
∫∞
−∞ J(t;λ)dt =

J0(λ)τ(λ). With this simple model of pulse time dependence and the anisotropy strength,

equation (2.40) for the value of gate parameter β can be integrated analytically. The resulting

first order anisotropy parameter is

β = β1
4J0(λ)

λ2

(

2 − cot
λ

2

)

, (2.56)

and it is easy to find a set of pulses that keep (2.56) constant, while the integrated isotropic

gate strength varies. Solving for the parameters J0(λ) and τ(λ) of such a set of pulses of the

form (2.54) we find

J0(λ) = J0(π)
2λ2

π2

1

2 − λ cot λ
2

, (2.57)

and

τ(λ) = τ(π)
π

2λ

(

2 − λ cot
λ

2

)

. (2.58)

With these parameters the gate anisotropy is independent of λ, but the integrated pulse

strength of the isotropic part J0(λ)τ(λ) = λ is different for different pulses. Note also that

the pulses are time symmetric. The shape of these pulses is shown on [Fig.2.3].

In realistic systems the goal of keeping the first order anisotropy fixed for all gates would

be achieved through calibration in experiments, rather than calculation. The reason for this

is the obvious difficulties connected with finding the actual form of the first order anisotropy

of interaction that we have conveniently modeled using (2.55).
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Figure 2.3. A family of pulses that implement different isotropic exchange gates that
all have the same first order anisotropy. Time dependence of isotropic exchange coupling
strength J(λ; t) is plotted as a function of time measured in units of characteristic time scale
τ . The sharpest pulse gives the integrated isotropic exchange λ = π/4. Other pulses give
λ = 2π/4 . . . 7π/4 in steps of π/4. For the identity λ = 2π pulse, the width would have to
diverge in order to keep anisotropy constant.

If an analogous set of pulses could be found in a realistic device, the entire quantum

computation could proceed without any first order anisotropic corrections, provided that

initialization and readout were done in the correct gauge.

The anisotropy reducing gauge does not exist for all the topologies of spins connected

by two spin gates. In fact, whenever the net of spins connected by two spin gates contains

closed loops, such a gauge does not exist. The problem is that each link in such a net defines

a reference frame of spin on one of its ends. Starting from one of the spins in the network
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Figure 2.4. Inconsistency of the definition of local reference frames in the presence of loops.
Quantization axes in the anisotropy reducing gauge are determined by the spin position. On
each step between spins connected by a two spin gate, quantization axis is rotated by a fixed
amount.Going around a loop will give two contradictory prescriptions for a spin quantization
axis. In this figure, the quantization axis for the spin in upper left corner is set at the
beginning and set again after transversing a loop.

and going around a loop will define a reference frame for every spin on the path. The last

step in the loop will require defining the reference frame at the position of the spin at which

we started transversing this loop. However, this frame was defined before, at the start of the

loop. The new definition set in the last step of the loop will generally be inconsistent with

the old one. The required anisotropy reducing gauge therefore does not exist, see [Fig. 2.4].

This method of anisotropy reduction works only for networks of spins connected by two spin

gates with the topology of a tree i.e. without any loops. Two examples of tree topology are

given in [Fig.2.5].

The idea of an anisotropy reducing gauge in spin based quantum computer was formalized

by Wu and Lidar in [49], where they have introduced the formalism of dressed qubits and

58



Figure 2.5. Two examples of spin nets with tree topology. If two spin gate is going to act
between a pair of spins during quantum computation, they are connected by a blue link.
If every exchange gate produces the same anisotropy, local reference frames at the ends of
a link will be related by a constant rotation. At initialization all the spins in a network
point in the direction of local quantization axis z. Initial configuration is represented by red
arrows. Because there are no loops of spins connected by exchange gates, it is possible to
consistently define local reference frames in a net with tree topology.

applied it to gates produced by switching on and off the rotated exchange interaction (2.47).

In this case, they have found that the gauge choice completely removes the anisotropy from

the gate. (A point we also made in [50]).

The main advantage of the procedure for the reduction of anisotropy advocated here

is that the new requirements on control are surprisingly simple. All that is required is

that the voltage pulses be time symmetric and both initialization and readout performed in

local reference frames, with independent axes at the position of every spin. It is especially

important that the requirements on pulse shapes are not tremendously more complex than

in the case of isotropic interaction. The intuition that the time dependence of voltage pulses

needed to perform any useful task is prohibitively complex was probably the reason why
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their time dependence was never considered to be such a useful method for spin control prior

to this work.

2.7 Summary of the Results

The method described here can be applied to improve any anisotropic exchange gate. It

would be particularly useful if the anisotropy of the spin interaction in a system is already

small, but still above the error correction threshold. For small anisotropies this method

roughly squares the error rate.

Apart from learning how to use pulse shaping and gauge fixing to improve quantum gates,

we can also learn about spin control through time dependent pulses. The most important

lesson to be learned is that the extremely complex requirements of generic control through

a time dependent interaction is drastically simplified if we are only trying to constrain the

symmetry of the resulting gate. While it is not true that the interaction Hamiltonian equals

the gate Hamiltonian, symmetry constraints can stay satisfied when some care is taken about

the symmetry of the pulse. It is reasonable to expect that similar techniques are able to

efficiently control the spins in situations when the symmetry of resulting gate is crucial.

There are two main implementations of the universal gate sets that use isotropic exchange.

One is exchange only quantum computation that was already shown to benefit from

symmetry based control. Another approach is to use isotropic exchange and the single

spin rotations for CNOT construction and then proceed with the standard universal set

consisting of CNOT and all the single spin rotations.

Standard implementations of the universal gate sets are dependent on isotropic exchange

gates. Results about symmetrically pulsed gates as a simple way to obtain symmetric

gates, with gate Hamiltonian (2.45), encouraged several authors to study them, rather than

isotropic exchange as a natural, easily implemented, two spin gates in a system of coupled

quantum dots.

An important result of Burkard and Loss [51] showed that the standard construction

of the CNOT gate based on isotropic exchange also works exactly with any symmetric

gate generated by (2.45). In the gate parametrization (2.19) it means that whenever

α = 0 and µ = 0, the CNOT construction is going to be exact. This result shows the

value of symmetrically pulsed gates beyond the immediate application in reducing the gate
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anisotropy. Similarly, when aided by the controllable Zeeman splitting HZ = gµ (B · S) the

symmetric gates were shown to be universal for quantum computation over encoded qubits

by Wu and Lidar [43].
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CHAPTER 3

MICROSCOPIC DERIVATION OF SPIN

INTERACTION

I wish to God these calculations had been executed by steam.

Charles Babbage

The power of the isotropic exchange interaction, H int(t) = J(t)S1 ·S2 as a control tool in

a spin-based quantum computer was the main motivation for the work presented in the

previous chapter. There, we developed a method for effectively eliminating anisotropic

corrections, by using time-symmetric pulses and tailoring of the pulse shapes. However,

isotropic exchange is not the only useful tool for the construction of a universal set of

quantum gates. Other, less symmetric forms of the interaction can be equally useful. Burkard

and Loss [51], for example, have shown that the standard construction of a controlled not

(CNOT) gate, using the isotropic
√
SWAP gates (see [Fig. 2.10]) also works exactly when

the isotropic
√
SWAP gates are replaced by any gate of the form

Uπ/2(β, γ) = exp−iπ
2

(S1 · S2 + β (S1xS2y − S1yS2x) + γ (S1xS2x + S1yS2y)) , (3.1)

with arbitrary values of parameters β and γ. In this chapter, we show that time symmetric

pulsing of a Hamiltonian that includes the effects of spin-orbit coupling will produce a

quantum gate of this useful form. Unlike the method presented in the previous section,

however, detailed tailoring of the pulse shapes is not necessary.

Our demonstration will proceed within a model of the quantum dot quantum computer.

This microscopic approach will allow us to study the properties of the anisotropic corrections

to the isotropic exchange gates in a real device. Such a study will prove valuable in the design

of gates that use anisotropy as a resource for control of spins. Such gates will be presented
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and discussed in chapter 4 of this thesis. To appreciate the reasons for using the microscopic

approach, we now discuss the usefulness of the results of the previous chapter, obtained for

the purpose of reducing the gate anisotropy, in design of a spin-based quantum computer.

The perturbative results (2.39)-(2.41) that predict the quantum gate produced by a given

time-dependent Hamiltonian can not immediately tell us which gates can be produced in a

realistic device. In order to use these results, we would have to know the interaction between

spins as a function of time. For practical use, therefore, it is necessary to supplement these

perturbative results with some model of the interaction between the spins. Prior work

in modeling the spin interaction in these devices was mainly concerned with the isotropic

exchange coupling [52]. The original results we present here are about the anisotropy of the

effective spin interaction caused by spin orbit coupling.

Constructing a solvable microscopic model of the exchange interaction in a double

quantum dot system that would be accurate enough to allow us to use the perturbative

expressions derived in the last chapter to predict the quantum operation is impossible.

The connection between a given time dependent interaction and the gate produced by it

is only a useful estimate of what we expect in future experiments on spin control in quantum

dots. For any quantum computing application, the interaction parameters would have to

be calibrated in experiment, rather than calculated theoretically. All the results of the

calculations presented below should therefore be seen as proofs of principle rather than

accurate design specifications.

One of the main result of this chapter, that axial symmetry of symmetrically pulsed (in

time) gates is, however, to a large extent independent of the details of interaction. The

details of the device construction that are modeled with simplicity, rather than accuracy,

in mind are not going to change the symmetry of the interaction. They will, however give

us an insight into the effects of spin-orbit coupling in spin-based quantum computing and

motivate a study of these effects as a source of control in the quantum dot quantum computer

discussed in Chapter 4.
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Figure 3.1. Quantum dot quantum computer, due to Loss and DiVincenzo. The qubits of
this proposed computer are electron spins on coupled single electron quantum dots. Quantum
dots are fabricated by electrostatic gating of a two dimensional electron gas in GaAs. In
the original proposal, illustrated in this figure, the spins are manipulated via voltages on
electrodes that define quantum dots and a combination of electron spin resonance techniques
and manipulation of the Zeeman terms at the position of individual dots. In this figure two
spin qubits on the left are decoupled, while spin qubits on the right interact through exchange
coupling.

3.1 The Model of Quantum Dots Quantum Computer

The calculations presented here are all based on the Loss-DiVincenzo proposal [26] for a

quantum dot quantum computer. This proposal was reviewed in Chapter 1, and for ease of

reference, a sketch of the proposed device is given again in [Fig. 3.1].

Recall that the quantum dot quantum computer consists of an array of single electron

quantum dots, fabricated by electrical gating of a two dimensional electron gas (2DEG)

in GaAs. Each dot contains a single electron, and the spin of that electron represents a

qubit. The proposed control mechanism for single qubit operations is electron spin resonance

(ESR). Addressing of the spin qubits is done through local manipulation of the Zeeman

Hamiltonian HZ = gµ0 (S1 · B) at the position of individual dots. Preparation of the

computer into an initial state is achieved by cooling in a uniform magnetic field. The

proposed readout mechanism is to transform spin information into charge information by

spin selective tunneling to a polarized dot or lead [53].
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For describing the two-qubit quantum gates in this device, and in particular the effects

of spin-orbit coupling on these gates, the most important aspects of the actual device design

in this proposal are the confinement mechanisms and the voltage control of the interaction

between spins. We will now discuss these properties in greater detail and introduce the

model we are going to use to calculate the behavior of an actual device.

3.1.1 Confinement to Two Dimensions

Hosts of electron spin qubits in the proposed quantum computing device considered here

are quantum dots. A quantum dot is a system of electrons confined in all three dimensions

to the extent that it exhibits a discrete spectrum.

For quantum computing applications it is necessary that confinement can change during

gate operation. Tunable confinement is possible in electrically gated quantum dots. This

kind of confinement is achieved in two steps. The first step consists of confining electrons to a

two dimensional electron gas (2DEG). This is typically done by fabricating a semiconductor

heterostructure consisting of layers of semiconductors with different energy gaps (e.g. GaAs

and AlxGa1−xAs ). Band bending at the boundary between the two semiconductors creates

a potential well for electrons in the growth direction. The motion of electrons along the

growth direction is then quantized into so-called subbands. If the temperature of the sample

is much less then the subband level splitting then a truly two-dimensional gas of electrons

forms [54]. To put it more colorfully, we have created an electron ”flatland.”

In the calculation of the effective Hamiltonian for electrons on coupled single electron

quantum dots and in the presence of spin orbit coupling, this step in confinement is

important. In the introduction to this thesis, it was mentioned that spin orbit coupling exists

in systems that lack inversion symmetry. One of the sources of this inversion asymmetry is

the potential that restricts the motion of electrons in one direction and produces a 2DEG.

We will model the growth direction potential by a triangular well,

Vt(z) =

{

−eEz, z ≥ 0
∞, z < 0

(3.2)

where e = −|e| is the electron charge, and E is the effective electric field that is taken

to point along the z axis [Fig. 3.2]. This description looks crude, but it is in fact quite

adequate for the purpose of deriving the effective spin Hamiltonian. It captures the essential
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Figure 3.2. Two dimensional electron gas, formed in the potential well at the interface of
two semiconductors. The well appears due to electrostatic attraction of the ionized donors.
Electrons in this well have their motion in the direction normal to the interface confined to
the ground state and they are effectively two-dimensional.

symmetry properties of the asymmetric confining potential because it breaks the inversion

symmetry in the z direction, while being symmetric with respect to transformations in xy

plane. The linear form of the potential is a reasonable approximation for a well with cusp

near its bottom. In the limit of a very steep well, we can expect that both the form of the

potential will be close to triangular well and that the low lying states will be similar to the

eigenstates of such a well. For concreteness, we will assume that the growth direction of the

semiconductor heterostructure is along the [001] crystallographic direction of the GaAs layer

hosting the quantum dots.

The electronic state in the growth direction is then the ground state of triangular

potential. In position representation this state is an Airy function. The entire state is
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given by

〈z|ψtot〉 = CκAi(κz − ξ1)|ψ〉, (3.3)

where |ψtot〉 is the state of an electron, and |ψ〉 is the factor in the state that describes orbital

degrees of freedom in the plane of the 2DEG and the spin degree of freedom. The width of

the wave function in z direction is determined by the parameter κ = (2m∗E|e|)1/3 of (3.3),

where m∗ is the effective electron mass. The constant ξ1 ≈ −2.34 is the first zero of Airy

function and the normalization constant is C ≈ 1.43.

The structural inversion asymmetry in the growth direction due to this triangular well

will give rise to the Rashba [36] type of spin orbit coupling. The form of this term is the

same as the spin-orbit coupling of a free electron coupled to an electric field pointing in the

growth direction. In our model, we have assumed that the growth direction is along the [001]

crystalline axis of GaAs, which we also denoted as the z direction, and the Rashba term is

then

HSO
R = 2αREe

(

k[010]S[100] − k[100]S[010]

)

, (3.4)

where k[abc] is the projection of crystalline momentum to the [abc] crystalline axis, and S[abc]

is the analogous projection of electron spin. The parameter αR is a property of the material

hosting the 2DEG. It is then convenient to define the strength of Rashba term as

fR ≡ 2αREe. (3.5)

Confinement in the plane will also affect the Dresselhaus contribution to spin-orbit

coupling due to the bulk inversion asymmetry of the zinc-blende crystal structure of GaAs

(see Chapter 1) [35]. In the system of crystallographic axes, the form of the Dresselhaus

term in bulk is

HD = γC

(

k[100]

(

k2
[010] − k2

[001]

)

S[100] + cycl.+H.C.
)

, (3.6)

where cycl. denotes cyclic permutation of axes [100], [010] and [001], H.C. is the Hermitian

conjugate, and γc is again a property of GaAs hosting the dots.

When electrons are confined to a 2DEG in the (001) plane, the electric field determines

the width of the electron wave function in the [001] (z) direction. We can always replace the
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square of the crystal momentum component kz by its expectation value in the state described

by the Airy function and given in (3.3),

〈k2
[001]〉 = 0.78κ2 = 1.24 (m∗E|e|)2/3 . (3.7)

This expectation value is set by the strength of the electric field. We can also set odd powers

of the component of the crystal momentum in the growth direction to zero, kz = 〈kz〉 = 0.

In a typical quantum dot, the confinement through heterostructure fabrication is much

tighter than the confinement in the plane of the 2DEG. The tight confinement leads to large

expectation values of the square of the momentum, i.e.

〈k2
[001]〉 � 〈k2

[100]〉, 〈k2
[010]〉, (3.8)

and the Dresselhaus contribution to spin-orbit coupling takes an approximate linear form

HD
1 = 2γC〈k2

[001]〉
(

−k[100]S[100] + k[010]S[010]

)

. (3.9)

In the rest of this chapter, we will neglect the remaining bulk inversion asymmetry

contributions to spin orbit coupling that are cubic in in-plane momentum components and

call HD
1 the linear Dresselhaus term.

For convenience, we define the strength of the linear Dresselhaus term fD as

fD = 2γC〈k2
[001]〉. (3.10)

¿From the dependence of the linear Dresselhaus (3.9) and Rashba (3.4) terms in the

spin-orbit coupling Hamiltonian on the growth direction electric field, we can immediately

see that the size of this electric field controls the relative size of the two terms. The size of

the Rashba term is linear in the confining field E, while the Dresselhaus term scales as E2/3.

A very important fact about the control of spin-orbit coupling via in-plane confinement

and heterostructure growth is that the change of the order of layers relative to the [001]

direction corresponds to a switch in the sign of electric field. This change of sign will change

the sign of Rashba term in spin-orbit coupling, but will not change the Dresselhaus term.

Therefore, the heterostructure orientation can make the contributions of the Dresselhaus

and Rashba terms add up constructively or destructively.
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3.1.2 Confinement in Plane, from Two to Zero Dimensions

The earliest quantum dots were produced by chemically etching a semiconductor het-

erostructure containing a 2DEG into pillars [55]. The geometry of such dots is set by the

confinement and fixed in fabrication. For quantum computation, it is essential to allow

for the change of quantum dot properties after they are produced. A tunable confinement

potential in the plane of 2DEG is achieved by fabricating metallic electrodes on top of the

2DEG [56]. (Whenever possible, throughout this thesis the metallic gates controlling this

confinement will always be referred to as electrodes, to avoid confusion with quantum gates.)

Electrodes that define quantum dots are connected to an external voltage source and

their potentials can be changed at will. The electrode potential modifies the electrostatic

confinement in the plane of the 2DEG (the xy plane). By supplying an external voltage to

an electrode, we form a potential well in the xy plane, with a minimum under the electrode.

This minimum provides confinement in two dimensions and binds electrons from the 2DEG

to form a quantum dot. Electrons in a quantum dot are then have the discrete energy levels

of both the triangular well in z direction and the electrostatic potential of an electrode in xy

plane. The dot properties will depend on electrode potentials and can be manipulated after

fabrication.

As in the problem of confinement into s 2DEG, the exact form of the electrostatic binding

potential is hard to predict. For example, numerical calculations of the potential well

produced by square metallic electrode, based on the Poisson-Schrödinger equation and self

consistently including up to ten electrons by Kumar, Laux and Stern [57] demonstrated that

the potential is to a good approximation circularly symmetric and has a radius significantly

smaller than the dimensions of the electrode. In their calculation the side of square electrode

was 300nm and the diameter of the produced circular dot was approximately 100nm. Since

the confining potential is hard to predict the best strategy when calculating the device

properties is to use a simple potential which models it.

Some guidance in the choice of the model binding potential is based on both experimental

and theoretical studies of the discrete spectra in quantum dots. Spectroscopy in the far

infrared region showed that the excitation spectrum of a quantum dot is independent of the

number of electrons and the interaction between them. Work of Brey, Johnson and Halperin
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[58], Maksym and Chakraborty [59], and Bakshi, Broido and Kempa [60] on generalizations

of the Kohn theorem [61] have shown that these properties, as well as the observed structure

of the spectrum are to be expected in wells with parabolic confinement. Parabolic well shape

is also a natural approximation to any smooth potential around its minimum. These two

observations suggest that the parabolic well is a reasonable approximation for the potential

in the plane of electrically confined quantum dot.

The problem of a two dimensional electron in a parabolic potential well with a magnetic

field orthogonal to the electron plane was solved long before the development of quantum

dots by Fock [62] and Darwin [63]. Their results come from the fact that the Hamiltonian

for this system can be written in the form

HFD =
1

2m∗

(

p − e

c
A
)2

+
1

2
m∗ω0

2r2 (3.11)

=
p2

2m∗ +
1

2
m∗ (ω0

2 + ωL
2
)

r2 − ωLlz,

where r is electron position, p its momentum, ω0 is the frequency of an electron in a well,

A = B/2[y,−x, 0] is the vector potential of a uniform magnetic field of strength B pointing

in growth direction of the 2DEG z, ωL = |e|B/(2m∗c) is the Larmor frequency of the electron

in this field, and lz is the orbital angular momentum of two dimensional electron. From the

similarity of the form of the Fock-Darwin Hamiltonian (3.11) with that of a two-dimensional

simple harmonic oscillator, it is clear that the eigenstates in this system are eigenstates of a

two dimensional simple harmonic oscillator of frequency Ω =
√
ω0

2 + ωL
2 and mass m∗ that

are at the same time eigenstates of the angular momentum projection on the z axis. The

spectrum consists of equidistant two dimensional simple harmonic oscillator energies, shifted

by the Larmor term −ωLlz.

Within the approximations of a triangular well in the growth direction and a harmonic

well in the plane, the ground state of an electron in a single electron quantum dot is an Airy

function in the z direction (3.3) and a magnetically squeezed simple harmonic oscillators

state in the plane of the 2DEG. These states will be used in further microscopic evaluation

of the spin behavior.

70



3.1.3 Control Mechanisms

The control mechanisms for single spin and two spin operations in the quantum computer

proposal considered here are clearly different. Single spin operations are done using electron

paramagnetic resonance (ESR) techniques or local magnetic fields. In order to address

separated spins through ESR, the transition frequencies for electron spins on individual dots

are modified by local manipulation of the Zeeman coupling, either through direct local control

of magnetic fields or g-factor manipulation [64]. Similar manipulations are also necessary for

direct addressing of spins by magnetic fields. Manipulation of either quantity on the length

scales of ∼ 10nm and the time scale of picoseconds is necessary for single spin control, but

also very demanding. It is widely believed that single spin operation are very hard to achieve

in this configuration. (For a review of spin manipulation in this structure see [65].)

There has been a great deal of interest in reducing the requirements for single qubit

operations in this quantum computer proposal. One direction of work aims at methods that

will allow for some computing tasks that in the standard implementation require single

spin operations to be applied by two spin interactions only [40], [32]. These methods

require either encoding of logical qubits into more than one spin or control over novel two

spin interactions. Another set of methods aims at quantum computation with less than

complete control over the magnetic field. For example, universal quantum computation is

possible with controllable local magnetic fields of fixed direction [43] or with global fields

and encoding [66, 42]. However, it is generally believed that minimizing the required single

spin manipulations in any quantum computing scheme is preferable in practice.

Two spin operations are much easier to perform in this device. A pair of quantum dots

is separated by a barrier set by a potential on the electrode sitting above it. Changing the

potential on this electrode, which is comparatively easy to do in electrically gated dots, will

make the potential barrier between the dots higher or lower. The low barrier will make the

two electrons interact, while the high one will decouple them. Application of a two spin

operation then consist of starting with the low voltage on the control electrode, producing

a high barrier corresponding to uncoupled dots, continues with application of high voltage

that lowers the barrier and couples the electrons on the dots, and than separating the dots

by lowering the voltage and raising the barrier again [Fig. 3.3].
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Figure 3.3. Voltage control of the spin gate. At the beginning of the gate application, the
barrier between the dots is high and the spins are not interacting. Lowering the the barrier
by changing the potential of the control electrode make the electron orbitals overlap and
turns on the effective spin interaction. At the end, the barrier is turned again high, the spins
do not interact and they are in a different state.

The effective spin interaction in the absence of spin orbit coupling will be isotropic

exchange (1.3), and the only input from microscopic properties of the device will be the

strength of this exchange. This coupling strength was calculated by Burkard, Loss and

DiVincenzo [52] and their result is reproduced in [Fig. 3.4]. In this chapter we are deriving

an effective spin Hamiltonian for nonzero spin orbit coupling and discuss the dependence of

this interaction on the external classical control parameters.

To model a quantum gate acting on a pair of spins, we consider a system of two

electrostatically confined quantum dots with one electron in each dot. For concreteness,

we assume the dots are formed in a two-dimensional electron gas realized in a GaAs

heterostructure.

The system is modeled by the Hamiltonian
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Figure 3.4. Isotropic exchange coupling strength as a function of distance between two
single electron quantum dots, adapted from Burkard, Loss and DiVincenzo. The radius of
the dots is 20 nm, and they are fabricated in GaAs. Effects of the spin-orbit coupling are
not included.

H = T + C +HSO. (3.12)

Here T is the Hamiltonian that describes kinetic energy of two dimensional electrons and

their binding to the modeled electrostatic gate potential in C is the Coulomb repulsion term.

This part oh Hamiltonian (3.12) was studied in [52]. It is given by T =
∑

i hi with

hi =
1

2m∗

(

pi −
e

c
A(ri)

)2

+ V (ri), (3.13)

and C = e2/ε|r1−r2| is the Coulomb repulsion between electrons. We take the 2DEG the dots

are formed in to lie in the xy plane, and for concreteness take m∗ = 0.067me and ε = 13.1,

corresponding to GaAs. For completeness we include a vector potential A = (−y, x, 0)B/2

which couples the orbital motion of the electrons to a uniform magnetic field B = B ẑ.
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Note that the Zeeman coupling of spins to this magnetic field is explicitly excluded.

While for typical values of the magnetic field the Zeeman coupling is small [52], it can

become comparable to the spin-orbit coupling effects considered here for some values of dot

parameters. If this is the case, the general conclusions based on time reversal symmetry we

derive below will no longer be valid. As opposed to Zeeman coupling, the orbital effects

of a magnetic field, included in the single particle Hamiltonian (3.13) through minimal

substitution and the vector potential A will not alter these time reversal symmetry based

conclusions.

As in [52] lateral confinement of the dots is modeled by a double-well potential,

V (x, y) =
m∗ω2

0

2

(

1

4a2
(x2 − a2)2 + y2

)

. (3.14)

This potential describes a pair of quantum dots at the points (x, y) = (±a, 0) [Fig. 3.5].

When the dots are well separated, i.e. the interdot distance scale a is much bigger than

the characteristic length scale of the harmonic oscillator of mass m∗ and frequency ω0, this

potential describes two decoupled harmonic wells. Application of a quantum gate can be

described by the potential of the form (3.14) with time dependent interdot distance a that

goes to infinity at the beginning and the end of the pulse, for times t→ ±∞.

3.2 Hund-Mulliken Approximation

To better understand the choice of approximation used in the description of a system

of coupled single electron quantum dots, we will first briefly review an elementary, but

revealing, estimate of the effective spin interaction. Let us imagine a pair of electrons in

localized orbitals |A〉 and |B〉 that are ground states of some confining potential. Let us also

imagine that the centers of these orbitals can be moved around so that in the limit of very

large distance between the centers the two orbitals become orthogonal 〈A|B〉 = 0, and at

smaller distance they begin to overlap.

The properly antisymmetrized states of the pair will be

|Singlet〉 =
1

√

2 (1 + |〈A|B〉|2)
(|AB〉 + |BA〉) ⊗ |S〉 (3.15)

|Triplets〉 =
1

√

2 (1 − |〈A|B〉|2)
(|AB〉 − |BA〉) ⊗ |T ± 0〉, (3.16)
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Figure 3.5. The model electrostatic potential that defines the quantum dots in a plane of
2DEG. Dots form around the minimums of this potential at the points (x, y) = (±a, 0). Near
this minima, the binding potential is parabolic in both x and y direction and eigenfrequency
of corresponding to the potential near the minimum is ω0.

where |S〉 and (|T ± 0〉) label a spin singlet and three spin triplet states. If the electrons

interact through some two-body interaction W , the energies of these two states will differ by

ET − ES = J = 〈Triplets± 0|W |Triplets± 0〉 − 〈Singlet|W |Singlet〉. (3.17)

This energy difference between triplets and singlets can be reinterpreted in terms of spins as

an isotropic exchange interaction JS1 ·S2. The crucial assumption behind this interpretation

is that the spins state uniquely specifies the total state of the system. Only in that case we

can label the states by spins.

A similar situation occurs in our system of quantum dots when the barrier is high. The

orbital states are ground states in the dots and the total state is completely describes by

spins.
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When the barrier is lowered, the low lying two-electron states will have a significant

amplitude for both electrons to be on the same dot or for electrons to be in excited states of

the dots. These states are not completely described by spins. For example a pair of electrons

in a spin singlet state can be in an orbital state with one electron on each dot, but they

can also be in a state in which both electrons are on the same dot. For that reason, the

Hamiltonian that describes both of those states and the transitions between them cannot be

written as a function of just the two spins. Therefore an exact effective spin Hamiltonian does

not exist in this case. An approximate spin Hamiltonian exists only when the probability

for having the electrons in orbitally excited states is small.

In order to describe the situation when a spin Hamiltonian does not exist, we need to

include the orbital excitations into our calculation. The energy scales that define important

excitations are excitation energies in a single dot Ee and Coulomb energy cost of double

occupancy EC . These energy scales measure the gaps from the orbital state of two electrons

in ground states on their dots to excited orbital states with an electron excited into a higher

energy state (Ee) or with both electrons on the same dot (EC).

A good spin qubit will spend most of the time during gate operation in the orbital ground

state of its dot and must be in the ground state of its dot at the end of the operation. That

will be the case if both energies Ee and EC are large and the tunneling amplitude between the

two dots is small. This property of a good spin qubit suggests that a useful approximation

in deriving the properties of such a qubit would be to take into account only orbital ground

states of the dots and low lying excitations.

Our choice of approximation is to take into account only one orbital —the ground state

— per dot, but allow for the two-electron states in which both electrons occupy the ground

state of the same dot. This is the famous Hund-Mulliken approximation of molecular physics.

In our system, it is justified when the Coulomb repulsion energy scale EC is significantly

smaller than the energy scale of the single dot orbital excitations Ee. This limit of Coulomb

repulsion dominating over orbital excitations corresponds to small quantum dots. The orbital

excitation energy is proportional to the inverse square of the dot size, while the Coulomb

repulsion energy is proportional to the inverse of the dot size. For small dots the energy cost

of orbital excitations will be greater than the energy cost of double occupancy.
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Figure 3.6. Orbital excitations. Two-body states with both single-body ground states
occupied by an electron correspond to qubits. Hund-Mulliken approximation also takes into
account the orbital excitations with doubly occupied one-body states that do not represent
a spin qubit. These states are separated from the ground state by an energy gap Ec. Other
orbital excitations, not included in Hund-Mulliken approximation, with electrons in excited
one-body orbitals are separated from the ground state by an energy gap Ee ≈ ω0.

Apart from describing a qubit, the Hund-Mulliken approximation also describes one of

its important “failure modes.” The inclusion of doubly occupied states in the approximation

scheme enables us to consider errors in gate operation due to transitions of electrons into

orbital states that do not correspond to any state of a qubit. If electrons end up in such a

state, qubits are lost from the computer.[Fig. 3.6].

In the limit of decoupled dots, and ignoring spin-orbit coupling, the single electron

ground states will be the ground states of the Fock-Darwin Hamiltonian (3.11), centered

at (x, y) = (±a, 0),

φ±a(x, y) =

√

m∗Ω

π
exp

(

−m
∗Ω

2

(

(x∓ a)2 + y2
)

± iay/2l2B

)

. (3.18)

Here Ω =
√

ω2
0 + ω2

L is the frequency of the magnetically squeezed oscillator where ωL =

|e|B/(2m∗c) is the Larmor frequency and lB is the magnetic length given by 2l2B = 1/(m∗ωL).

In zero magnetic field, the size of these wave functions is set by the effective Bohr radius

aB = (mω0)
−1/2.

The Fock-Darwin states can be orthogonalized to obtain the Wannier states
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|Φ1〉 =
1

√

1 − 2Sg − g2
(|φa〉 − |g|φ−a〉) , (3.19)

Φ2〉 =
1

√

1 − 2Sg| − g2
(|φ−a〉 − g|φa〉) , (3.20)

where S = 〈φ−a|φa〉 and g = (1 −
√

1 − S2)/S. We can then introduce second quantized

operators c†1α (c1α) and c†2α (c2α) which create (annihilate) electrons in the states |Φ1〉 and

|Φ2〉 with spin α =↑, ↓. These states are taken to be the single particle levels of the two

electron system. Obviously, for large separation of the dots they turn into Fock-Darwin

states on dots 1 and 2.

To proceed with the calculation, we represent two electron states as built by populating

the low lying Wannier states (3.19). This approximation takes into account only one orbital

per dot, the ground state of corresponding Fock-Darwin potential. The approximation takes

into account the states in which electrons stay in lowest lying levels on their dots, but also

includes the doubly occupied states in which both electrons lie in the same orbital. This

amounts to restricting the full Hilbert space of the problem to the six-dimensional Hilbert

space spanned by the states

|S1〉 =
1√
2
(c†1↑c

†
2↓ − c†1↓c

†
2↑)|0〉, (3.21)

|S2〉 =
1√
2
(c†1↑c

†
1↓ + c†2↓c

†
2↑)|0〉, (3.22)

|S3〉 =
1√
2
(c†1↑c

†
1↓ − c†2↓c

†
2↑)|0〉, (3.23)

|T−〉 = c†1↓c
†
2↓|0〉, (3.24)

|T0〉 =
1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, (3.25)

|T+〉 = c†1↑c
†
2↑|0〉, (3.26)

where the S states are spin singlets, and the T states are triplets. States |S1〉, |T−〉, |T0〉 and

|T+〉 are all singly occupied, i.e. each electron is in separate Wannier orbital, while singlets

|S2〉 and |S3〉 are doubly occupied, i.e. both electrons are in the same orbital.

We proceed by calculating the matrix representation of the Hund-Mulliken Hamiltonian

in this basis. The problem of determining the effective spin interaction for this Hamiltonian,

but without spin orbit coupling, was solved before [52]. We will use these results, and present

in detail the calculation of the spin orbit coupling contribution to interaction.
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In the case of zero spin orbit coupling, the Hund-Mulliken Hamiltonian is described by

the Hubbard model [67] with the direct exchange term added,

HHubbard =
∑

α=↑,↓

−tH
(

c†1αc2α +H.c.
)

+ V (S1 · S2 + 3/4) + UH(n1↑n1↓ + n2↑n2↓). (3.27)

Here

Sµ =
1

2

∑

α,β=↑,↓

c†µα
σαβcµβ (3.28)

is the spin operator on site µ = 1, 2,

V = 〈S1|C|S1〉 − 〈T |C|T 〉 (3.29)

is the ferromagnetic direct exchange,

UH = 〈S2|C|S2〉 − 〈S1|C|S1〉 (3.30)

is the Coulomb energy cost of doubly occupying a dot, and

tH = −1

2
〈S1|T + C|S3〉 (3.31)

is the interdot tunneling amplitude. Expressions for these quantities as functions of the

properties of the pair of quantum dots hosting the electrons can be found in [52].

This model describes a pair of electrons on two sites, 1 and 2. They can hop between

the sites with transition amplitude tH . Double occupancy of any site increases the system

energy by on-site Coulomb repulsion UH . Electrons also interact through direct exchange

coupling V that splits singly occupied singlets and triplets.

3.2.1 Spin Orbit Coupling Hamiltonian

Spin-orbit coupling enters the Hamiltonian through the term

HSO =
∑

i=1,2

h(ki) · Si, (3.32)

where k = p − e
c
A is the canonical momentum of an electron in a magnetic field. Time-

reversal symmetry requires that h(k) is an odd function of k, h(k) = −h(−k). Thus h is

nonzero only in the absence of inversion symmetry.
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For definiteness, we have taken the 2DEG in which the dots are formed to lie in the

plane perpendicular to the [001] crystalline axis of GaAs, which then points along the z-axis.

However, we allow the x-axis, which is parallel to the displacement vector of the two dots,

to have any orientation with the respect to the [100] and [010] structural axes. To describe

the dependence of the spin-orbit field h on the crystal momentum k, it is convenient to

introduce unit vectors ê[110] and ê[110] which point in the [110] and [110] structural directions,

respectively, and define k[110] = k·ê[110] and k[110] = k·ê[110]. We then have, following Kavokin

[34],

h(k) ' (fD − fR)k[110]ê[110] + (fD + fR)k[110]ê[110]. (3.33)

Here fD is the strength of Dresselhaus contribution [35, 46] due to the bulk inversion

asymmetry of the zinc-blende crystal structure of GaAs [Fig. 3.7], and fR is the strength of

Rashba contribution [36] due to the inversion asymmetry of the quantum well used to form

the 2DEG. These quantities depend on details of the 2DEG confining potential and so will

vary from system to system.

It was pointed out in [68] that HSO has a special symmetry when fD = ±fR. This can

be seen directly from (3.33). When fD = fR (fD = −fR) the direction of h is independent

of k and is fixed to be parallel to ê[110] (ê[110]). The full Hamiltonian (3.12) is then invariant

under rotations in spin space about this axis. We will see below that this special case has a

number of attractive features.

Since h in (3.32) is a sum of direct products of single particle operators that are linear

in components of k with spin projections, the matrix elements of HSO can be written as

〈orb1, spin1|Hso|orb2, spin2〉 =
∑

α=1,2

∑

j,l=x,y

hj,l〈orb1|kj,α|orb2〉〈spin1|el · Sα|spin2〉, (3.34)

where el is a unit vector in the direction of the crystal axis. The index α counts electrons.

The model we are considering is recovered from (3.34) when −hx,x = hy,y = fD (Dresselhaus

terms), hx,y = −hy,x = fR (Rashba terms), with all the other components of h being zero.

This form of bulk inversion asymmetry induced spin-orbit coupling corresponds to dots in a

thin two dimensional electron gas.

The spin orbit coupling Hamiltonian in second quantized notation is

HSO =
∑

α,β=↑,↓

(

−iP · c1α
†σαβc2β +H.c.

)

. (3.35)
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Figure 3.7. Zinc-blende crystalline structure of GaAs. The lattice consists of two face
centered cubic lattices, one made of Ga and another of As ions, displaced along the diagonal
of a cube by a quarter of its length. This crystal structure is not symmetric under inversion
and its inversion asymmetry gives rise to Dresselhaus terms in spin-orbit coupling.

It describes a tunneling from one dot to the next with a spin flip around the axis P̂. The

amplitude for this process is given by P . Details of the calculation of P are given in the

Appendix.

Adding the spin-orbit coupling Hamiltonian (3.35) to the extended Hubbard model, we

have shown that the Hamiltonian of the electrons on coupled quantum dots is of the form

HHM =
∑

α,β=↑,↓

−
(

c†1α(tHδαβ + iP · σαβ)c2β +H.c.
)

+V (S1 · S2 + 3/4) + UH(n1↑n1↓ + n2↑n2↓). (3.36)

Effects of spin-orbit coupling in this system are described by a single parameter P = |P|.
An intuitive picture of this modification of the extended Hubbard model by spin-orbit
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coupling can be seen if we rewrite the hopping part of the Hund-Mulliken Hamiltonian

(3.36) as

∑

α,β=↑,↓

−
(

c†1α(tHδαβ + iP · σαβ)c2β +H.c.
)

=
∑

α,β=↑,↓

−t
(

c†1αR(ψ, eP)αβc2β +H.c.
)

, (3.37)

where t =
√

t2H + P 2 is the hopping amplitude, and R(ψ, eP) is a spin rotation by the angle

ψ = 2 arctan P
tH

about the axis parallel to P, given by

R(ψ, eP)αβ = cos
ψ

2
δαβ − i sin

ψ

2
P̂ · σαβ. (3.38)

With (3.37) and (3.38) we can interpret the influence of spin orbit coupling on spin interaction

as a precession of spin when it tunnels from one quantum dot to the next. Spin-orbit

coupling induces tunneling with a spin flip about the axis P and standard Hubbard model

parameter tH gives an amplitude for tunneling without a flip. The sum of these two

processes corresponds to tunneling with a new amplitude t into a state with rotated spin.

This modification of interaction is illustrated in [Fig. 3.8]. Given the physics of spin-orbit

coupling, it is not surprising to see that it enters as a small spin precession which occurs

whenever an electron tunnels between the dots.

The only remaining task in calculating the spin orbit Hamiltonian in Hund-Mulliken

approximation is finding the value of the parameter P. It is given by the matrix element

iP = 〈Φ1|h(k)|Φ2〉 = 〈Φ1|(px −
e

c
Ax)|Φ2〉η, (3.39)

where

η = (fD − fR) cos θê[110] + (fD + fR) sin θê[110]. (3.40)

Here θ is the angle the x-axis makes with the [110] structural direction. This term introduces

a small spin precession about an axis parallel to P through an angle ψ = 2 arctan(P/tH)

when an electron tunnels between dots.

It is convenient to express the spin-orbit matrix element as P = slSO where

s =

√

(fD − fR)2 cos2 θ + (fD + fR)2 sin2 θ

aB ω0
(3.41)

is a dimensionless measure of the strength of spin-orbit coupling. As stated above, fD and

fR depend on details of the potential confining the electron to the 2DEG. Thus θ, fD and fR

82



P

P

ψ

1 2.σ

t

Ht

Figure 3.8. Precession on hopping. Spin-orbit coupling induces tunneling of an electron
from one dot to the next. During the tunneling, the spin of electron is flipped about the P
axis. This process is represented by a dark red arrow. Hubbard model tunneling induces the
same orbital transition, but keeps the spin orientation unchanged and it is represented by a
pink arrow. Combined effect of these two processes is tunneling with a spin precession about
the flip axis by an angle that depends on the ration of amplitudes for the two tunneling
processes, represented by the red arrow.

are all parameters that in principle can be engineered to control the value of s. For example,

if θ = 0 then s = |fD − fR|/(aBω0). Thus, for this orientation of the dots, if it is possible to

design a system in which fD = fR, s can be made to vanish. Even if such perfect cancellation

cannot be achieved, minimizing the difference fD − fR will reduce s.

The parameter s lumps together all of the dependence of the spin orbit coupling

contribution to the spin interaction on the material properties and dot parameters fixed

during fabrication. In the remaining part of this section it will be treated as a free parameter.

For typical parameters in GaAs quantum dots, its value is s < 0.1, based on the estimates

of [34]. The remaining factor in P is
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lSO =
h̄ω0

2

1 − g2

1 − 2Sg + g2

d

b
e−d2b(2−1/b2)η̂, (3.42)

where d = a/aB is a dimensionless measure of the distance between dots, b = Ω/ω0, and

η̂ = η/η.

The Hund-Mulliken Hamiltonian (3.36) is a description of a pair of single electron

quantum dots. Our goal is the extraction of the effective spin interaction. As discussed

earlier, orbital excitations in the form of doubly occupied states indicate that strictly

speaking the effective spin interaction does not exist, because the orbital degrees of freedom

play some role in the system dynamics. An effective spin interaction is an approximation

to the true system behavior when the orbital excitations do not play a significant role.

This is the case when on-site Coulomb repulsion is much bigger than the amplitudes of

both direct tunneling and tunneling mediated by spin orbit coupling, UH � tH , |P|. This

description gives the derivation of effective spin Hamiltonian and also determines the range

of its applicability.

3.3 Axial Symmetry of the Effective Spin Interaction

When the Hund-Mulliken Hamiltonian (3.36) describes a pair of spins in singly occupied

one-electron orbitals, the spins of these two electrons are spin qubits. Neglecting the

doubly occupied states, the interactions in this system can be described by an effective

spin Hamiltonian. That will be the case when the energy cost of double occupancy UH is

much larger than the hopping amplitude tH and the spin orbit coupling parameter P . We

begin by noting that the system has an axial symmetry around the direction of the spin

orbit coupling induced vector P. This implies that the spin interaction will have the same

axial symmetry and will then be of the form

Hm(J, βint, γint) = J
(

S1 · S2 + βint (S1xS2y − S1yS2x) + γint (S1xS2x + S1yS2y)
)

. (3.43)

This is the most general axially symmetric form of a two spin interaction. The parameter J

is the strength of isotropic coupling. Because of axial symmetry, the direction of the vector

coupling βint and the form of the symmetric tensor coupling Γint are fixed and we only need

one scalar parameter to completely specify each of them, β int measures the strength of vector
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and γint of the tensor coupling. We now take the z axis in spin space to be the symmetry

axis, i.e. an axis parallel to the precession vector P.

We determine the values of the parameters J , β int and γint by solving (either exactly or

perturbatively) both the model spin Hamiltonian (3.43) and the microscopic Hund-Mulliken

Hamiltonian (3.36) and matching the eigenvalues and eigenvectors. Our earlier symmetry

analysis tells us that the isotropic exchange J term exists even in the absence of spin orbit

coupling, the antisymmetric anisotropy β int is first order, and the symmetric anisotropy

γint is second order in spin-orbit coupling. The matching of solutions proceeds by doing a

perturbatively expansion in powers of P of the eigenvalues and eigenvectors of the microscopic

Hund-Mulliken Hamiltonian. We then fit the parameters of the model spin Hamiltonian

(3.43) to get the same spectrum up to second order in P and the same eigenstates up to first

order. The result is

J = J0 + 4P 2 cos2 θ
2

J0 − 2V + UH
+ o(SO2) (3.44)

βint = 4P
sin θ

2

J
+ o(SO3) (3.45)

γint = 8P 2 V

J (V (V − UH) − 4t2H)
− β2

2
+ o(SO2), (3.46)

where J0 is the strength of anisotropic exchange without spin orbit coupling, V is the strength

of direct ferromagnetic exchange interaction, and the angle θ is given by

sin θ =
4tH

√

U2
H + (4tH)2

, (3.47)

which measures the relative sizes of the hopping amplitude and the on-site Coulomb

repulsion.

The dependence of the parameters of the spin interaction on the interdot distance is

shown in [Fig. 3.9].

The equations (3.43) and (3.44)-(3.46) define an effective low energy spin Hamiltonian

for electrons on coupled quantum dots that perturbatively includes the effects of spin orbit

coupling. We have shown that for the configuration of the dots that we investigate the only

new parameters to be calculated from the microscopic Hamiltonian is P .
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Figure 3.9. Strengths of anisotropic terms in effective spin Hamiltonian as a function of
the interdot distance. Plotted quantities are β int/s and γint/s2, where s is the dimensionless
measure of spin orbit coupling strength (3.41). Data points are calculated from results (3.45)
and (3.46). The system is a pair of GaAs quantum dots of the Bohr radius aB ≈ 20nm,
corresponding to the simple level spacing of ω0 = 3meV , and for this calculation it was
assumed that s = 0.01.

3.4 Pulses of Hund-Mulliken Hamiltonian

We now consider pulsing the Hund-Mulliken Hamiltonian HHM by varying the distance

between the dots, the barrier height, or some combination of the two, in such a way that the

two electron spins interact for a finite period of time, but are well separated at the beginning

and end of the pulse. We assume the initial state of the system is in the four-dimensional

Hilbert space describing two qubits, i.e. the space spanned by the singly occupied states

|S1〉, |T0〉, |T−〉 and |T+〉. As the pulse is carried out, the eigenstates of HHM at any given

instant in time can be grouped into four low-energy states separated by a gap of order UH
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from two high-energy states. If the pulse is sufficiently adiabatic on a time scale set by

∼ h̄/UH , the amplitude for nonadiabatic transitions which would leave the system in the

excited state |S2〉 at the end of the pulse can be made negligibly small [69]. If this condition

holds, the final state of the system can also be assumed to be in the four-dimensional Hilbert

space of two qubits. We will see that this condition is easily achieved below.

One way to theoretically study the effect of such a pulse would be to first reduce HHM to

an effective anisotropic spin Hamiltonian acting on the four-dimensional low-energy Hilbert

space, as we have done in the previous section, and then consider pulsing this effective

model using the perturbative results of Chapter 2. The problem with this approach is that

any such effective spin Hamiltonian will only be valid if the pulse is adiabatic, not only

on the time scale h̄/UH , but also on the much longer time scale set by the inverse of the

small energy splittings within the low-energy space due to the spin-orbit induced anisotropic

terms. However, it is precisely the nonadiabatic transitions induced by these terms which

give rise to the quantum gate corrections we would like to compute.

Although we may not be able to define an instantaneous effective spin Hamiltonian during

the pulse, we can define one which describes the net effect of a full pulse. This definition,

which is essentially the same as the ”gate Hamiltonian” defined in Chapter 2, amounts to

parameterizing the quantum gate produced by the pulse as

U = exp−iλH, (3.48)

where U acts on the four-dimensional Hilbert space of the initial and final spin states. H

is then an effective spin Hamiltonian, i.e. it can be expressed entirely in terms of the spin

operators S1 and S2.

We have seen from symmetry arguments that time symmetric pulsing of an axially

symmetric Hamiltonian, such as HHM when fD and fR are constant, which is itself

time-reversal symmetric at all times, will automatically produce an axially and time reversal

symmetric gate of the form (2.50), provided the pulse is adiabatic so that the initial and final

states of the system are in the four-dimensional Hilbert space of two qubits. It is natural to

then ask what the effect of the inevitable deviations from time symmetric pulsing will be on

the resulting gate. To investigate this we have performed some simple numerical simulations

of coupled quantum dots.
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In our calculations, we imagine pulsing the dots by varying the dimensionless distance d

between them according to

d(t) = d0 +

(

t

τ + rt

)2

. (3.49)

Here d0 is the distance at the point of closest approach, τ is a measure of the pulse duration,

and r is a dimensionless measure of the time asymmetry of the pulse. This form describes

the generic behavior of any pulse for times near the pulse maximum (t = 0). Note that

for large |t|, and for r 6= 0, the distance d(t) will saturate, and has a singularity for some

negative t. We have taken r to be small enough so that the dots decouple long before this

leads to any difficulty.

For our calculations, we work in zero magnetic field and take h̄ω0 = 3 meV and d0 = 1,

corresponding to a ' 20 nm at closest approach. The resulting time dependences of the

parameters in HHM are shown in [Fig. 3.10]. Note that the spin-orbit matrix element plotted

in this figure is lSO, while the spin-orbit matrix element appearing in HHM is P = slSOẑ

where s is the dimensionless measure of spin-orbit coupling.

For a given pulse HHM(t) we integrate the time-dependent Schrödinger equation to obtain

the evolution operator U for the full pulse. If the pulse is adiabatic then the matrix elements

of U which couple the singly occupied states |S1〉 and |T0〉 to the doubly occupied state |S2〉
can be made negligibly small [69]. The quantum gate is then obtained by simply truncating

U to the 4×4 matrix acting on the two-qubit Hilbert space. By taking the log of this matrix

we obtain λH = i logU and thus the parameters λ, α, β, γ. Note that when calculating

logU , there are branch cuts associated with each eigenvalue of U , and as a consequence λH

is not uniquely determined. We resolve this ambiguity by requiring that as the pulse height

is reduced to zero and U goes continuously to the identity that λH → 0 without crossing

any branch cuts.

We fix the pulse width τ by requiring that if we turn off spin-orbit coupling (s = 0)

we obtain a λ = π/2 pulse, i.e. a square-root of swap. For the parameters used here we

find this corresponds to taking τ = 23.9/ω0 ' 5 ps. We have checked that these pulses

are well into the adiabatic regime. The magnitudes of the matrix elements coupling singly

occupied states to the doubly occupied state |S2〉 are on the order of |〈S1|U |S2〉| ∼ 10−6 and

|〈T0|U |S2〉| ∼ s10−6.
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Figure 3.10. Time dependence of the terms in Hund-Mulliken Hamiltonian. Graphs are for
spin independent hopping tH , direct exchange V , spin orbit coupling induced hopping with
spin flip P and energy cost of double occupancy UH . The energy scale on all the graphs is
the splitting of harmonic oscillator levels in isolated dots ω0. The time scale is characteristic
time scale of the pulse τ . Pulses in the figure are tailored to produce a square root of swap
(
√
SWAP ) gate in the limit of zero spin orbit coupling. The solid line is a time symmetric

pulse with asymmetry parameter r = 0. The dashed line is the most asymmetric pulse we
have considered, corresponding to asymmetry parameter r = 0.1.

3.4.1 Slightly asymmetric pulses

Once τ is fixed, there are two parameters characterizing each pulse, s and r, and four

parameters characterizing the resulting gate, λ, α, β, and γ. The transformation properties

of these parameters under parity (P ) and time reversal (T ) are summarized in Table I.

These properties follow from the fact that under time reversal Sµ → −Sµ and r → −r, while

P = slSOẑ is invariant and under parity SA ↔ SB and P → −P, while r is invariant. Note
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Table 3.1. Symmetry properties of the pulse parameters r and s, and gate parameters λ,
α, β and γ under parity P and time reversal T .

r s λ α β γ
P + − + − − +
T − + + − + +

that, as defined in (3.41), the parameter s is positive. Here we allow s to change sign when

the direction of the vector P is reversed, thus under parity s→ −s.
These symmetry properties imply that if s and r are small, the parameters of the effective

Hamiltonian will be given approximately by

α ' Cαrs, (3.50)

β ' Cβs, (3.51)

γ ' Cγs
2, (3.52)

λ ' λ0 + Cλs
2, (3.53)

where the coefficients should be of order 1. For the pulses we consider here λ0 = π/2.

The results of our calculations are shown in [Fig. 3.11]. Each point corresponds to a

separate numerical run. The plots for λ, β and γ show their dependence on s when r = 0.

The dependence of the parameter α on pulse asymmetry is shown by plotting α/s vs. r. For

the s values we have studied, up to |s| = 0.1, the numerical results for α/s are essentially

independent of s for a given r. These results are clearly consistent with the above symmetry

analysis.

3.5 Robust CNOT

There are two main implementations of the universal gate sets that use isotropic exchange.

One is exchange only quantum computation that was already shown to benefit from

symmetry based control. Another approach is to use isotropic exchange and the single

spin rotations for CNOT construction and than proceed with the standard universal set

consisting of CNOT and all the single spin rotations.
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Figure 3.11. Parameters appearing in the gate Hamiltonian derived from pulses. The
parameters for isotropic pulse strength λ, antisymmetric anisotropy β and symmetric
anisotropy γ are shown as functions of dimensionless spin orbit coupling strength s for
the case of time symmetric pulses (r = 0). For α the quantity α/s is plotted vs. pulse
anisotropy r. We have verified that the ratio α/s is essentially independent of s for all values
we have considered (|s| ≤ 0.1).

Standard implementations of the universal gate sets are dependent on isotropic exchange

gates. Results about time symmetric pulses as a simple way to obtain time reversal symmetric

gates, presented in Chapter 1 of this thesis, encouraged a couple of authors to study these

gates, rather than isotropic exchange, as a natural easily implemented two spin manipulation

in a system of coupled quantum dots.

An important result of Burkard and Loss [51] showed that the standard construction of

the CNOT gate based on isotropic exchange also works exactly with any symmetric gate of
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the form (3.1). If we try to implement the CNOT gate using standard construction with
√
SWAP isotropic exchange gate, errors due to anisotropy of spin interaction may spoil the

result. Instead of a CNOT construction considered in Chapter 2 and illustrated in [Fig. 2.1],

in the presence of anisotropy a more general gate

U(
π

2
;α, β, γ) = exp

(

−iHm(
π

2
;α, β, γ)

)

, (3.54)

with axially symmetric Hamiltonian Hm defined in (3.43) is applied whenever the original

construction calls for isotropic
√
SWAP gate.

Our microscopic consideration shows that the decoupled triplets with Sz = ±1 are not

affected by the spin-orbit coupling. Action of anisotropic gates on these states is the same

as the action of corresponding isotropic gate. We will now see how anisotropic gates act in

the remaining two dimensional space.

In the pseudospin space defined with singlet state of two spins representing pseudospin up

and triplet state with zero projection representing pseudospin down, the axially symmetric

gate is a pseudospin rotation

U(λ;α, β, γ) → exp

(

− i

2
b · σ

)

, (3.55)

parametrized by the vector b = λ(α, β, 1 + γ) in the convention where the vector parame-

terizing a rotation points along the rotation axis and has an intensity equal to the rotation

angle. Anisotropy effects on the essential two-qubit part of the CNOT circuit are shown in

figure [Fig. 3.12]. When there is no anisotropy α = β = γ = 0 and the vector b points along

the pseudospin z axis. The role of anisotropy is to pull the pseudospin rotation axis away

from z direction.

Single qubit Z⊗1 operation sandwiched between the two-qubit gates is a rotation about

the pseudospin x axis by the angle π. It is represented by pseudospin Pauli matrix with a

phase factor, iX.

If there was no anisotropy, the sequence of gates in a circuit of [Fig. 3.12] would act as

a simple phase factor of i on the pseudospin space. In this space, it is a sequence of π/2

rotation about z axis, π rotation about x with an extra factor i and finally another π/2

rotation about z. Since the x rotation by π flips all the vectors in yz plane, the second z

rotation will cancel the initial one, and the phase factor will be the only change of states in

the pseudospin space.
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Figure 3.12. Effect of axially symmetric anisotropy on a CNOT construction.

When there is anisotropy, the pseudospin rotations that describes two-qubit gates will

not be about z axis, but about an axis parallel to b = λ(α, β, 1 + γ). However, the previous

argument showing that the combination of gates from [Fig. 3.12] gives only a phase factor

holds whenever the rotations caused by two-qubit gates are about a fixed axis in yz plane,

and not necessarily about the z axis.

Therefore, this CNOT construction is exact when the vector b has a vanishing component

in pseudospin x direction. At the level of a two qubit gates (3.54) it means that the gate

construction is exact whenever α = 0. This condition is satisfied for time symmetric pulses.

Microscopic considerations of this chapter are therefore immediately useful in application

of a CNOT gate. The condition for validity of the construction is immediately satisfied when

the voltage pulses that produce the gate are symmetric in time and the interaction is axially

symmetric. Even when the interaction is not isotropic, time symmetric pulses will produce

a gate that is axially symmetric up to first order in spin-orbit coupling.

Apart from immediate usefulness in CNOT construction, the results about the gate

symmetry based on microscopic model can help in the quantum gate design. Intensities of

various interaction terms calculated here are dependent on the details of device fabrication,
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but the overall symmetry of the gates is not. Since the symmetry of the gates is a robust

property, application of symmetric gates is less sensitive to the details of device design.
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CHAPTER 4

SPIN-ORBIT COUPLING AS A RESOURCE:

USING THE GATE ANISOTROPY

Brothers and sisters, the time has come for each and every one of you to decide
whether you are going to be the problem or you are going to be the solution...

Brother J.C. Crawford

In the previous chapters, we have shown that the effect of spin orbit coupling induced

anisotropy on quantum gates performed in a spin-based quantum computers can be reduced

using pulse shaping and device fabrication techniques. These studies taught us that the

anisotropy in a quantum gate can be controlled. Now we show that control over anisotropy

can be used to apply quantum gates, becoming a computational resource, rather than an

obstacle in the design of quantum gates.

The techniques of pulse shaping and fabrication that reduce the effects of anisotropy

lead to quantum gates with specific symmetries. The requirement of time symmetric pulsing

imposes time reversal symmetry on the resulting gate. Microscopic calculation shows that

the gate symmetry is further increased in dots fabricated along specific crystalline axes, when

the resulting gate also shows axial symmetry.

In this chapter we construct a universal set of quantum gates over qubits encoded into

pairs of spins out of “elementary” quantum gates with both axial and time reversal symmetry.

We define an elementary gate as a gate produced in a single voltage pulse. Later in the

chapter, we examine the control of the symmetric interaction and estimate the amount of

control over anisotropy in a realistic device. It will turn out that the constraints on the

available amount of control will come from details of the spin interaction in the system

and more importantly from the physical processes that produce errors in gate operation for
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voltage pulses that either take a long time on the time scale set by the decoherence, or a

short time on the time scale set by the nonadiabatic orbital transitions.

4.1 Universal Gate Set Construction

In this section we give a construction of a universal set of quantum gates over qubits

encoded into pairs of electron spins that uses only elementary gates with both axial and

time reversal symmetry. Elementary operations in this construction act on a pair of electron

spins on coupled single electron quantum dots aligned along a specific axis of a crystal with

zinc-blende structure. Control is achieved using only voltage pulses on electrodes that define

the dots. Such voltage-only control is a great advantage in implementation of spin-based

quantum computing, because voltages are the simplest control parameters in quantum dot

quantum computer.

Microscopic analysis of spin-orbit coupling effects, presented in chapter 3, shows that

axial symmetry of the spin interaction is present in quantum dots aligned along the [110]

axis and lying in (001) plane of GaAs for any value of the control voltages. Axial symmetry

of the interaction throughout the pulse implementing an elementary gate implies that the

resulting gate will also be axially symmetric. The most general form of axially symmetric

gate, acting between neighboring spins S1 and S2 is

U(λ, α, β, γ) = exp−iλ
(

S1 · S2 + β (Sx1Sy2 − Sy1Sx2) + (4.1)

+γ (Sx1Sx2 + Sy1Sy2) +
α

2
(S1z − S2z) −

1

4

)

,

where we have chosen the symmetry axis to point along the z direction in spin space. Note

that the “µ” term that would correspond to a homogeneous magnetic field pointing in

symmetry direction is allowed by axial symmetry, but it is missing from the general axially

symmetric gate (4.1). This term is absent, because it can not be generated by a pulse

of axially symmetric interaction, as can be inferred from perturbative expressions for gate

parameters, (2.41) and (2.42). A constant term −1/4 is added for later convenience.

In terms of the gate Hamiltonian, the Hermitian operator that would reproduce this gate

if exponentiated, (4.1) is

U(λ, α, β, γ) = exp−iλHgate(λ, α, β, γ), (4.2)
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with the gate Hamiltonian Hgate of the form

Hgate(λ, α, β, γ) = S1 · S2 + β (Sx1Sy2 − Sy1Sx2) + γ (Sx1Sx2 + Sy1Sy2) +
α

2
(S1z − S2z) −

1

4
.

(4.3)

The symmetry of the gates with respect to rotations about the z axis implies that the

total spin projection on this z axis will be conserved in any applied gate. A universal set

of gates, on the contrary, contains gates that can produce arbitrary operation on qubits

through repeated application. It is now clear that the repeated application of elementary

gates with axial symmetry (4.1) can not lead to all the gates from any universal set acting

on single spins as qubits. As in [32], the symmetry of our elementary operation forces us to

use qubits encoded into states that all have the symmetry of underlying interaction.

In our case of axial symmetry all the qubit states must have the same projection of the

total spin on z axis. The smallest number of electron spins that allows for such encoding is

two. To describe this encoding, we associate a pseudospin space with every nearest-neighbor

pair of spins i and i+ 1. This space is spanned by the states

|S〉i,i+1 =
1√
2
(| ↑i↓i+1〉 − | ↓i↑i+1〉), (4.4)

|T0〉i,i+1 =
1√
2
(| ↑i↓i+1〉 + | ↓i↑i+1〉), (4.5)

where the associated pseudospin states are

|S〉i,i+1 ≡ |′ ↑′〉 (4.6)

|T0〉i,i+1 ≡ |′ ↓′〉. (4.7)

Within this pseudospin space axially symmetric gates correspond to spin rotations.

Triplet states with nonzero total spin projection on the symmetry axis are decoupled, as

we demonstrated in appendix. The phase convention in (4.1) is chosen so that the spin

states without assigned pseudospin remain invariant under the action of elementary gates.

The space of these decoupled states is orthogonal to pseudospin space and spanned by

|T+〉i,i+1 = | ↑i↑i+1〉 and |T−〉i,i+1 = | ↓i↓i+1〉.
Given these definitions and a phase convention, the action of elementary gates in

pseudospin space is

Ui,i+1(λ,φ) = exp

(

i
λ

2

)

exp

(

− i

2
φ · σ(i,i+1)

)

, (4.8)
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where φ = λ(α, β, 1 + γ) and the components of σ = (σx, σy, σz) are Pauli matrices, with

the superscript (i, i+ 1) indicating that they act in the pseudospin space associated to spins

i and i + 1. These gates are pseudospin rotations by an angle

φ = λ
√

1 + α2 + β2 + 2γ + γ2 = λ+O(SO2), (4.9)

with the dominant part determined by isotropic component of the interaction and a correction

that is of the second order in axial anisotropy caused by spin-orbit coupling, indicated by

O(SO2) term. The pseudospin rotation axis is parallel to φ.

Outside the pseudospin space, states remain invariant under the action of any axially

symmetric gate (4.1)

Ui,i+1(λ,φ)|T±〉i,i+1 = |T±〉i,i+1. (4.10)

Note that while this invariance is a consequence of phase convention, it is relevant. In order to

keep the states invariant in (4.10) we had to keep the overall phase factor exp (iλ/2) in (4.8)

that is irrelevant if we only care about pseudospin states. In the construction of a universal

set of gates we are going to need this phase. Since computational and noncomputational

states of a pair of spins get different phases in gate application, these phases will be of

importance when the gate acts between spins that do not belong to the same qubit.

Axial symmetry will be set in the fabrication of quantum dots. All control over gate

parameters will come from pulse shaping. The isotropic part of the spin interaction will

approximately determine the angle of pseudospin rotation, λ, and the anisotropic corrections

that depend on the details of the pulse will determine the pseudospin rotation axis through

spin-orbit coupling induced terms α, β and γ.

The pulse shape control was investigated in chapter 2 and chapter 3 and we do know

some properties of the gate produced by a pulse of axially symmetric interaction. Following

the general discussion of chapter 2, we know that if the pulses are symmetric in time, the

resulting gate will be invariant under time reversal. Thus, the α term is odd under time

reversal, it vanishes for time symmetric pulses. In what follows, we assume that the pulses

are time symmetric and α = 0. Allowing for nonzero α would not simplify universal gate set

construction.

Pulse shaping beyond keeping the pulses symmetric in time will give us some control over

the integrated isotropic exchange λ, antisymmetric anisotropy β and symmetric anisotropy
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γ in (4.8). We will be able to vary λ at will, β will be first order in spin-orbit coupling and

γ second order. Different pulse shapes will control the values of β and γ, but the amount of

control will be limited. Also, β will be larger than γ and will vary in a wider range.

When time symmetric voltage pulses are used to implement the gate, the gate applied

in a single pulse will consist of pseudospin rotations about an axis in yz plane. Isotropic

exchange is the dominant interaction of spins so β and γ will be small and β will be larger

and easier to control than γ. The range of available rotation axes will be continuous and it

will span a wedge in yz plane in the vicinity of pseudospin z axis. Width of the wedge of

available axes will change slightly with the rotation angle φ, but to a good approximation

we may assume that it is constant. The opening angle θm of wedge of available axes is

a measure of our ability to control spins. This wedge may or may not contain the z axis

that corresponds to isotropic exchange. The wedge of available pseudospin rotation axes is

sketched in [Fig.4.1].

We now show how the available pseudospin rotations can be combined to perform all the

single qubit rotations and the CNOT gate, thus providing a universal set of quantum gates

[44]. The setup of our quantum computer is a linear array of quantum dots. The dots are

aligned along [110] crystalline axis of a zinc blende semiconductor to enforce axial symmetry

of spin-orbit interaction. Within this array, each qubits is encoded into a pair of spins on

dots i and i + 1 for odd i. We choose logical basis states

|0L〉i,i+1 = |S〉i,i+1 (4.11)

|1L〉i,i+1 = |T0〉i,i+1. (4.12)

These states also correspond to a basis in the pseudospin space of same pair of spins

|0L〉i,i+1 = |′ ↑′〉i,i+1 (4.13)

|1L〉i,i+1 = |′ ↓′〉i,i+1. (4.14)

This identification of the logical qubit basis and the pseudospin basis lets us identify single

qubit gates with pseudospin rotations. It is now obvious that in order to apply all single

qubit operations we must be able to perform all pseudospin rotations. We can now rely on

ordinary geometric intuition in construction of the single qubit gates from a universal set.
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Figure 4.1. Rotation axes in the pseudospin space of two neighboring spins. The wedge
lying in the plane perpendicular to x and sweeping out the angle θm contains rotation axes
which can be achieved using time symmetric pulses in a system fabricated so that the spin
interaction has axial symmetry about z axis.

If the pseudospin rotation acts on a pair of spins that do not encode a qubit there is no

simple geometric interpretation of the gate action. Such pseudospin rotation are important

in the application of gates on pairs of encoded qubit. For designing two qubit gates we will

have to rely on formalism, rather than intuition.

4.1.1 Single Qubit Gates

Any rotation can be represented as a composition of elementary rotations about any pair

of noncolinear axes. It is then obviously true that the set of available pseudospin gates is

sufficient to perform an arbitrary single qubit gate. A more interesting question is how many

elementary rotations are necessary for constructing an arbitrary rotation. To answer this
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Figure 4.2. Pseudospin rotation about the x axis. Successive π rotations about n̂1 and
n̂2, with n̂1 · n̂2 = cos θ, result in a 2θ rotation about the x axis. The effect of errors in the
rotation angles, δ1 and δ2, on the net rotation axis is also shown. Here ẑ ′ ‖ (n̂1 + n̂2) and
ŷ′ = ẑ′ × x̂.

question we first explicitly present a way to do single qubit rotations, and than argue that

it is optimal.

It is clear that the rotations about axes inside the wedge can be implemented with just

one pulse. Rotations which will require the longest sequence of elementary gates are going

to be about axes far from the wedge. Specifically, we will consider a pseudospin rotation

about an axis normal to the wedge, x. This operation can be performed by a sequence of

π rotations about available axes lying in the wedge. Two such axes, n1 and n2, making an
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angle θ ≤ θm are shown in [Fig. 4.2]. A π rotation about n1 followed by a π rotation about

n2 then results in a 2θ rotation about the x axis. The sense of this rotation can be reversed

by reversing the order of the π rotations. Since a continuous range of axes within the wedge

are available, a rotation about the x axis through an arbitrary angle Θ can be carried out

by an even number, 2dΘ/(2θm)e + 2, of π rotations, where dxe denotes the greatest integer

function of x. So, the hard rotations about x axis take a number of elementary rotations

that scales as θm
−1 and in the worst case this number Nx is

Nx = 2dπ/(2θm)e + 2. (4.15)

Once we know how to perform an arbitrary x rotation, we can do an arbitrary rotation

about an arbitrary axis by completing the standard Euler construction with one of the axes

in the wedge. Therefore the number of pulses needed to perform an arbitrary single qubit

gate on our encoded qubits is Nx + 2. This number goes to infinity as the wedge width

shrinks to zero.

The scaling of Nx with the wedge width as (θm)−1 is optimal. A simple way to see that

we cannot do a single qubit gate construction that scales better than θm
−1, is to consider

the images of the wedge after repeated rotations. If we want to be able to apply arbitrary

rotation, we must be able to rotate the wedge axis to any position in yz plane. Optimal

way of moving the wedge axes is sequence of π rotations about the axes on the edge of

wedge. With each new rotation, the axis of the wedge moves at most by an angel θm/2

from its previous position. Covering the entire yz plane, therefore takes on the order of θ−1
m

elementary rotations, and there is no way to produce all the rotations in a number of steps

that scales any better than θ−1
m .

As θm is reduced, this construction also becomes increasingly sensitive to errors. To see

this, let us consider the case when the π rotations about n1(2) are slightly wrong, and the

angles are π + δ1(2), where δ1(2) are errors. If we take the z′ axis to be parallel to n1 + n2

and the y′ axis parallel to ẑ′ × x̂ then the composition of these two rotations will yield an

overall 2θ +O(δ2/θ) rotation about an axis deviating from the x̂ axis by an angle δ1 − δ2 in

the y′ direction and (δ1 + δ2)/2θ in z′ direction (see [Fig. 4.2]). Thus, the larger θm is, the

more robust this construction is against errors.
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We have shown that arbitrary rotations of a single encoded qubit can be performed

using axially and time reversal symmetric gates. The number of elementary gates in this

construction and the dominant error in the resulting gate both scale like an inverse of the

range of available rotation axes.

4.1.2 Two Qubit Gates

Encoding of qubits in pairs of spins was chosen so that all the elementary gates applied

to a pair of spins forming a qubit correspond to single qubit operations. Therefore, these

gates will never enact two qubit gates when applied in this way. However, if the elementary

pseudospin rotation acts in the pseudospin space of spins that belong to two different but

neighboring qubits, the elementary gate changes the state of both qubits. Therefore, we may

use such operations to interact qubits.

Now consider the two logical qubits shown in [Fig.4.3]. A two-qubit gate between the

12 qubit and the 34 qubit can be carried out by a sequence of pulses acting on spins 2

and 3. Because the pseudospin space of spins 2 and 3 does not correspond to a logical

qubit, rotations in this space will, in general, mix in noncomputational states resulting in

leakage errors. To avoid such errors, the net unitary transformation must be diagonal in the

{↑1↓2↑3↓4, ↑1↓2↓3↑4, ↓1↑2↑3↓4, ↓1↑2↓3↑4} basis of the four spins. The most general unitary

operator of the form (4.8) for which this is the case consists of a rotation about the x-axis

in pseudospin space. It follows that the net gate must be of the form

U23(Λ,Φ) =
∏

k

U23(λk; φk) = exp

(

i
Λ

2

)

exp

(

−iΦ
2
σ(2,3)

x

)

, (4.16)

where Λ =
∑

k λk is the net phase and Φ is the rotation angle about the x-axis produced by

the sequence of rotations {φk}. Note that both Λ and Φ are defined modulo 4π.

The gate (4.16) can be expressed in terms of operators acting on the logical qubits as

follows,

U23(Λ,Φ) = exp

(

i
Λ

4

)

exp

(

i
Λ

4
σ(1,2)

x σ(3,4)
x

)

exp

(

i
Φ

4
σ(1,2)

x

)

exp

(

i
Φ

4
σ(3,4)

x

)

. (4.17)

This gate can be combined with single qubit gates we already know how to implement to

give a CNOT and complete the universal gate set construction.
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Figure 4.3. Sketch of two logical qubits, one composed of spins on dots 1 and 2, and another
composed of spins on dots 3 and 4. Gates between spins that belong to the same qubit will
enact single qubit gates. The two qubits can interact via same kind of gates, performed
between spins 2 and 3 that belong to different qubits.

In the search for the gates of the form (4.17) that can make a CNOT, we use a two qubit

gate canonical form [70]. The canonical form E(θx, θy, θz) of a two qubit gate is

E(θx, θy, θz) = exp−i (θxσx ⊗ σx + θyσy ⊗ σy + θzσz ⊗ σz) , (4.18)

where the parameters θx, θy and θz satisfy condition

π

4
≥ θx ≥ θy ≥ |θz|, (4.19)

and σ operators are the Pauli matrices. Any two qubit gate can be decomposed into a

gate of canonical form and at most four single qubit gates. For any U ∈ SU(4) , there are

U1L . . . U2R so that

U = U1L ⊗ U2L E(θx, θy, θz) U1R ⊗ U2R, (4.20)
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and the decomposition is unique in a sense that single qubit rotations can not change the

canonical form of a gate.

By expressing the (4.17) in its canonical form [70], it can be shown to be equivalent to a

CNOT gate, up to single qubit rotations, if and only if

Λ =
∑

k

λk = (2n+ 1)π. (4.21)

Detailed discussion of the condition (4.21) is given in the Appendix.

Below we outline two procedures for simultaneously satisfying (4.16) and (4.21).

For the first procedure, we use the fact that the phase shift λ in any elementary gate is

approximately equal to the rotation angle. Therefore, we try to construct a rotation about

the x axis from rotations with angles that approximately sum up to an odd multiple of π.

Let Rx(π) be a π rotation about the x axis. Using the single qubit rotation scheme

described above, this rotation can be performed through a sequence of 2n = 2[π/(2θm)] + 2

rotations about available axes. If A(φ) is then a φ rotation about a particular available axis

lying in the yz plane, the sequence of rotations A(φ)Rx(π)A(φ) will have the form (4.16)

with Φ = (2n + 1)π regardless of the value of φ. According to (4.9) the contribution of

Rx(π) to the total phase Λ will then be 2nπ + µ where µ ∼ O(s2/θm) ∼ O(s). To satisfy

(4.21) we therefore require φ = π/2 + O(s), where the O(s) adjustment must be chosen so

that λ = π/2 − µ/2 for A(φ) and thus Λ = (2n + 1)π. This procedure is similar to those

proposed in the two spin encoding schemes of [41, 42, 43]. The main difference is that in

these constructions the Rx rotation is generated by an inhomogeneous Zeeman field, whereas

in ours it is generated entirely by a sequence of exchange gates corresponding to π rotations

in the wedge of available axes. As for single qubit rotations, as θm goes to zero, the number of

required pulses scales as 1/θm and the construction becomes increasingly sensitive to errors.

The second procedure uses the fact that the phase shift in elementary gate and the

rotation angle do differ. We do a series of 2π rotation that are equivalent to x rotations as

far as leakage is concerned, because they are pure phases. While doing this, we wait for the

difference between the sum of angles and the sum of phases to grow to π.

This second procedure requires more pulses in the limit of small θm, but is simpler and

less susceptible to error. The idea is to perform a sequence of 2π pseudospin rotations about

any available axis or axes and use the spin-orbit induced mismatch between φ and λ to
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Figure 4.4. A quantum circuit implementing the CNOT gate. Each line represents a qubit
encoded in the state of two spins. Circuit consists of a two-qubit part U(Λ,Φ) and four
one-qubit gates. Angle of single qubit rotations is ψ = (Φ + Λ)/2 and the Haddamard gate
H is 1/

√
2(σx + σz).

accrue the extra π phase required to satisfy (4.21). The resulting gate will then have the

form (4.42) with Φ = 2nπ where n is the number of 2π rotations. For the ith rotation the

corresponding phase factor will be λi = 2π+ νi, where νi ∼ O(s2). For a sequence to satisfy

the constraint (4.21) the sum of all phases, and hence
∑

i νi, must be an odd multiple of π.

Given control of spin-orbit coupling, there will be a continuous range of achievable ν values

for each 2π rotation, with ν1 < ν < ν2 where ν1, ν2 ∼ O(s2). If this range includes 0 then

(4.21) can always be satisfied with dπ/νmaxe + 1 rotations, where νmax = max(|ν1|, |ν2|). If

this range does not include 0 it will still always be possible to satisfy (4.21) with, at most,

dνmax/(ν2 − ν1)e + 2 + dπ/νmaxe rotations.

Regardless of which procedure is used, single qubit gates acting on logical qubits 12 and

34 are required to complete the CNOT construction. One procedure for doing this is shown

in [Fig.4.4].

This gate construction establishes that axially and time reversal symmetric gates are

universal for quantum computing over qubits encoded in pairs of electron spins. Universality

is not such an exciting feature by itself. In fact, almost any two qubit gate is universal

[71]. The present construction is exciting because it uses gates that are constrained by the

symmetries of both interaction and time dependence. Such symmetry constrained gates are

usually easier to apply than generic unconstrained gate, and the scheme that uses them

may have advantages implementation. Another important result of the gate construction is

identification of the width of a wedge of available axes θm as a figure of merit for a device
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that should host a quantum computer. Both the efficiency and the precision of a universal

set of quantum gates depend on θm and we will investigate its size in the real devices.

4.2 Control Range

As shown in the previous section, a universal set of quantum gates over qubits encoded

in states of a pair of spins can be constructed from elementary quantum gates that are both

axially and time-reversal symmetric. Application of these elementary gates does not require

excessive tuning of fabrication and in principle does not require very involved control through

voltage pulses. Requirements for their application are fabrication of an array of quantum

dots along [110] crystalline axis of a semiconductor with zinc-blende structure and symmetry

in time dependence of the control voltage pulses.

Explicit construction of a universal set of quantum gates depends crucially on the ability

to independently control both the axis and angle of a pseudospin rotation, i.e. both the

length and direction of the vector parameter φ in pseudospin rotation (4.8). Manipulation

of the pseudospin rotation angle is relatively simple, because the main contribution to this

angle comes from the integrated strength of the isotropic exchange interaction. To achieve

a desired pseudospin rotation angle we only need to fix the integrated strength of the pulse.

We are then still left with a lot of freedom for further tailoring of the pulse shape.

The requirement for control over the axis of the pseudospin rotation is harder to meet. If

the interaction between spins was isotropic, the parameters α, β and γ of an elementary gate

(4.1) would all be zero and the pseudospin rotation (4.8) along φ would always be about the

z axis. In order to controllably move the pseudospin rotation axis away from the z axis we

have to control the anisotropic terms in the elementary gate.

The number of pulses needed to produce a generic gate from a universal set depends on

the available range on pseudospin rotation axes. In our construction, the width of this range

was called θm and the number of pulses per implementation of a gate from the universal set

scales as θ−1
m . Also, the dominant contribution to the error in such a gate scales as θ−1

m . The

applicability of our universal gate set construction depends on the range θm in real quantum

dot devices being large enough to allow for meaningful control.

This section presents an estimate of the available range of anisotropies in a system of

quantum dots in zinc-blende structures. Detailed discussion of this range is limited to the
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case of GaAs quantum dots. The reason for this is that the most sophisticated experiments

are done in this material [72], and fabrication techniques are better developed than in the

case of other zinc-blende semiconductors.

Control over anisotropy in a quantum gate depends on the fabrication of the device and on

the way it is operated. The only significant source of anisotropy for our scheme is spin-orbit

coupling. In chapter 3 the effects of spin-orbit coupling were divided into (i) device specific

interaction strength, described by a parameter s and defined in (3.41), and (ii) the part that

changes during the application of an elementary quantum gate because it depends on the

current state of control parameters, lSO defined in (3.42).

In the present discussion of the available range of anisotropies we make the division

into fabrication level and pulse level control.We find this division useful because the types

of control coming from theses two sources are different. Our scheme for application of a

universal set of quantum gates calls for successive application of quantum gates with different

anisotropies. Control through fabrication is fixed once and cannot be changed between gate

applications. We use this type of control to impose axial symmetry and find the device

parameters that gives a useful range of anisotropic interaction when control parameters i.e.

electrode voltages vary while the gate is implemented.

A figure of merit for our proposal, θm, is determined by the range of anisotropies of

quantum gates implemented by sending voltage pulses of various shapes to electrodes. Below,

we estimate this figure of merit in a device that uses both ways to influence the resulting

gate.

4.2.1 Control at Fabrication Level

First choices that will influence anisotropy in quantum gates are made at the fabrication

level. Properties of the device set at fabrication do not change during the gate operation.

Therefore, fabrication is the preferable stage for setting the symmetry properties of the

interaction. In the implementation of quantum computing using isotropic exchange, the

goal of fabrication is to reduce the anisotropy of interaction and choosing the material with

weak spin-orbit coupling, like in silicon design of [73], would solve the problem of anisotropy.

In our scheme, the goal is not to reduce the anisotropy, but to make it symmetric and

controllable.
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The most important control task that needs to be solved at the fabrication stage is

making the interaction of spins axially symmetric. The range of available axially symmetric

anisotropies in the interaction should also be as large as possible. The range of anisotropies

available in the gates will ultimately be determined by the control through pulse shaping.

Later in this chapter, we will show that having a wide range of anisotropies in the interaction

before considering the time dependence implies a larger set of available quantum gates.

The most common materials considered for spin-based quantum computing in quantum

dots are III-V semiconductors. Among these materials GaAs holds the greatest promise

because it is easiest to fabricate the necessary structures from it. Important III-V semicon-

ductors that are commonly used for quantum dots fabrication have zinc-blende crystalline

structure [74]. As discussed in chapter 3, the zinc-blende structure is not symmetric under

inversion and this bulk inversion asymmetry causes Dresselhaus type spin-orbit coupling.

Structure inversion asymmetry in the layered heterostructure of semiconductors will produce

Rashba type spin-orbit coupling. Both of these couplings can be influenced in the stage of

fabrication of two dimensional electron gas (2DEG) by choosing the width and orientation

of potential well in which 2DEG is formed.

Recall that two important contributions to the spin-orbit-coupling of electrons in (001)

crystallographic plane are Dresselhaus

HD = γC

(

k[100](k
2
[010] − k2

[001])S[100] + cycl.+H.C.
)

, (4.22)

and Rashba term

HR = 2αREe(k[010]S[100] − k[100]S[010]). (4.23)

In (4.22), γC is the property of the particular III-V semiconductor in which the dots are

fabricated. The equation is given in the system of crystallographic axes, k[abc] is a projection

of canonical momentum to the crystallographic axis [abc], and similarly S[abc] is a projection

of spin. The symbol cycl. to denotes cyclic permutations and H.C. is Hermitian conjugation.

We will not consider the effects of external magnetic field now, but hermitian conjugate adds

a factor of two to the result. In (4.23), αR is again the property of material, e is electron

charge and E is the strength of electric field in [001] direction binding the electrons into

2DEG. A detailed description of the spin-orbit coupling effects in two dimensional systems
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can be found in Winkler’s monograph [75]. Since the spin-orbit coupling Hamiltonian was

already discussed in chapter 3, we will here only review its dependence on device properties.

There are two main ways of influencing spin-orbit coupling in a 2DEG, before fabrication

of the quantum dots using electrodes to bind 2DEG electrons into the quantum dots. The

first way is control through the choice of the material that alters constants γC and αR.

These constants will determine the relative size of Dresselhaus (4.22) and Rashba (4.23)

contribution to the total spin-orbit coupling Hamiltonian. Since the two terms have different

functional dependencies on momentum components, altering their size will alter the form

of resulting coupling. Other material properties that influence spin-orbit coupling are the

effective mass of the electron and the dielectric constant. For our purpose of getting large

spin-orbit coupling the advantageous material should have large γC and αR. However, the

main concern in fabrication is the technology of producing the 2DEG and fabrication of

electrodes to produce quantum dots. These technological concerns single out quantum dots

in GaAs as the best candidate for quantum computing device.

The second important parameter set at the stage of 2DEG fabrication that will influence

spin-orbit coupling is the width of the potential well in growth direction.

The earlier discussion of the influence of the growth direction electric field in the regime

of a strong field that induces strong confinement in growth direction,

〈k2
[001]〉 � 〈k2

[100]〉, 〈k2
[010]〉, (4.24)

presented in chapter 3, gives the following expression for the spin-orbit coupling Hamiltonian

HSO
1 =

(

k[100](−fD,−fR) + k[010](fR, fD)
)

· (S[100], S[010]). (4.25)

The strengths of Dresselhaus and Rashba terms are

fD = 2γC〈k2
[001]〉 = 2.48γCκ (m∗E|e|)2/3 , (4.26)

and

fR = 2αREe, (4.27)

where E is the growth direction electric field. Other parameters in spin-orbit coupling

strengths are material properties γC and αR electron charge e and its effective mass m∗.
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The expression (4.25) has some interesting properties. There is a special symmetry in

the case

fD = ±fR. (4.28)

In both of these cases (4.25) describes coupling of the orbital crystalline momentum to fixed

projection of the spin. In the first case, fD = fR, we have

HSO
1 (fD; fR = fD) = fD(k[100] + k[010])(−1, 1) · S, (4.29)

and coupling of orbital degrees of freedom to the spin projection in [1̄10] direction, for any

values of the matrix elements of in plane momentum components. Similarly, for fD = −fR

HSO
1 (fD; fR = −fD) = fD(−k[100] + k[010])(1, 1) · S, (4.30)

again coupling only the [110] spin component in any orbital state to the orbital degrees of

freedom.

Achieving (4.28) in regime (4.24) would be very useful, because it imposes an approximate

rotational symmetry of the spin-orbit coupling Hamiltonian about a fixed axis, regardless of

symmetry of actual orbital electron states in the system. Effects of this symmetry on spin

coherence in transport were studied by Schliemann, Egues and Loss [68].

Parameters fD and fR have different dependence on growth direction electric field,

fD ∝ E2/3, fR ∝ E. Note that the sign of fR changes when the sign of the electric field along

the crystal axis [001] is changed, while the sign of fD does not. For that reason the condition

for axial symmetry (4.28) can be satisfied at some fields in any III-V material. Whether

such fields can be produced in real heterostructure is a separate and complex question.

After production of the 2DEG, the next step in designing a device is fabrication of

quantum dots by putting metallic electrodes on top of the heterostructure hosting the 2DEG.

There, we can choose a direction of dot alignment.

In the Hund-Mulliken approximation that takes into account only rotationally invariant

orbital ground states of each dot, the only component of momentum with nonzero matrix

elements connecting ground state orbitals on dots will be along the direction connecting

the dots. This property will impose a constant ratio of matrix elements of k[100] and k[010],

because they are projection of the momentum operator in the direction connecting the dots,
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which is fixed during fabrication. This allows for a new way of controlling the spin-orbit

coupling Hamiltonian and keeping it axially symmetric.

As described earlier, adjusting the values of fD and fR by engineering the 2DEG could

produce coupling to a single component of the spin, under the assumption of a narrow well

(4.24). Equation (4.25) tells us that the roles of fD and fR on one hand and k[100] and

k[010] on the other hand are similar when the ratio of appropriate k matrix elements is kept

constant. This property becomes manifest if we rewrite (4.25) using parameters fD, c defined

by fR = cfD, intensity of the momentum in the direction connecting the dots k, and the

angle θ between [100] axis and that direction:

HSO
1 (k, fD, c, θ) = kfD(− cos θ − c sin θ, c cos θ + sin θ) · S. (4.31)

The direction of spin-orbit coupling field h is

ĥ = (1 + c2)−1/2(− cos θ − c sin θ, c cos θ + sin θ), (4.32)

and in the case θ = (2n + 1)π/4 giving, cos θ = ± sin θ it is independent of c and points

either in [110] or [1̄10] direction. This is in principle another way of achieving coupling of only

one component of spin to the orbital degrees of freedom, resulting in the axially symmetric

spin-orbit coupling Hamiltonian for any values of fD and fR.

By manipulating the width of the 2DEG we were able to impose axial symmetry in the

approximation of a very thin well, where (4.24) holds. If we carefully choose the direction

along which the dots are fabricated, axial symmetry of the spin interaction will be imposed

by the symmetry of the problem. Then, the condition of a thin well (4.24) is not necessary

for axial symmetry of the dots. Adding the cubic Dresselhaus terms, the ones that contain

third powers of crystal momentum components in (001) plane of the 2DEG, is not going

to spoil the axial symmetry. Therefore, in an an array of quantum dots fabricated in (001)

plane and aligned along either [110] or [110] crystallographic direction, the spin interaction

will be axially symmetric.

In the intuitive picture of anisotropy as spin precession on hopping [50], illustrated on

[Fig. 3.8], uniaxiality means that the axis of relative spin rotation points in the same direction

for any interdot distance. The dependence of the precession angle on interdot distance in

GaAs quantum dots fabricated along [110] crystalline direction and in (001) plane is plotted
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Figure 4.5. Angle of precession on hopping as a function of the device parameters.
Spin-orbit coupling causes precession of the electron spin when it hops from one dot to the
next. Precession angle is plotted against interdot distance for various electric fields in growth
direction. Dots are fabricated in GaAs and their Bohr radius is a0 ≈ 20nm, corresponding to
level spacing of 3meV . Red curves correspond to the direction of the electric field in which
contributions of Dresselhaus and Rashba coupling to the precession add up, and on blue
curves they interfere destructively. Pronounced dip shows that the anisotropy of interaction
changes with the interdot distance.

in [Fig. 4.5]. The precession angle shows a pronounced dip when the orbital states on dots

start to overlap significantly. This implies that there will be a range of available anisotropies

of the interaction.

The precession angle is a function of the ratio of amplitudes for two types of electron

hopping. One amplitude is for hopping between the dots with a spin flip, caused by the

spin-orbit coupling. The other is an amplitude for hopping without a change in spin state,

standard Hubbard model tH . Combination of the two types of hopping gives a hopping with
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precession about the vector spin-orbit coupling parameter in Hund-Mulliken Hamiltonian.

The precession angle is

ψ = 2 arctan
P

tH
, (4.33)

where P is a matrix elements of the spin-orbit coupling Hamiltonian, discussed in the chapter

3 and in the Appendix B.

Interaction parameter βint is closely related to spin precession angle. If the Hund-Mulliken

Hamiltonian did not include the direct exchange V term, the interaction would be rotated

exchange. The Hund-Mulliken Hamiltonian without direct exchange is,

HHM
0 =

∑

α,β=↑,↓

−t
(

c†1αR(ψ, eP)αβc2β +H.c.
)

+ UH(n1↑n1↓ + n2↑n2↓), (4.34)

where t =
√

t2H + P 2 is the hopping amplitude, R(ψ, eP) is a spin rotation by the angle

ψ = 2 arctan P
tH

about the P axis and UH is energy cost of double occupancy. Redefining

the local reference frame of the second spin, in a way similar to anisotropy reducing gauge of

chapter 2, and remembering that the standard Hubbard model predicts isotropic exchange

spin interaction [67], we find

H int
0 = JHS1 ·R(ψ)S2, (4.35)

where

JH =
4t2

UH

, (4.36)

and t is the total amplitude that includes hopping induced by spin-orbit coupling. For small

precession angles the equation (4.35) gives the interaction anisotropy β int
0 = sinψ ≈ ψ.

Direct exchange will, in the lowest order, change the strength of isotropic exchange from

the Hubbard value JH (4.36) to J = JH + V . With the new strength of isotropic exchange,

the anisotropic interaction strength will change to

βint = sinψ
JH

JH + V
. (4.37)

Since the direct exchange is ferromagnetic, V = −|V |, this correction increases the

anisotropy. Direct exchange changes fast when orbitals begin to overlap, in the region that

coincide with the dip in precession angle versus distance plot. Therefore, direct exchange can

make the dip in anisotropic interaction of spins versus interdot distance significantly larger
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Figure 4.6. Strength of the dominant term in spin interaction β int, plotted against interdot
distance for various electric fields in growth direction. Dots are fabricated in GaAs and their
Bohr radius is a0 ≈ 20nm, corresponding to level spacing of 3meV . Red curves correspond to
the direction of the electric field in which contributions of Dresselhaus and Rashba coupling
to the precession add up, and on blue curves they interfere destructively. Pronounced dip
shows that the anisotropy of interaction changes with the interdot distance.

than the dip in precession angle. Explicit calculation of anisotropic interaction strength

confirms this intuition as shown in [Fig. 4.6].

At the fabrication level we set two important properties that will persist throughout the

gate application. First, we can ensure axial symmetry of the interaction by alignment of the

dots along crystallographic direction [110]. An alternative way of setting the axial symmetry

through fabrication is matching of the magnitudes of Dresselhaus and Rashba coupling,

|fD| = |fR| in a very thin 2DEG. Second important characteristic of the device set at the

fabrication stage is the effective spin interaction. Although the effective spin interaction in

the strict sense does not always exist, setting its approximate form so that it varies widely
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with the interdot distance would allow for the more efficient manipulation if spins using

voltage pulses.

4.2.2 Control through Time Dependence

The effective interaction between spins does not specify the gate that will be applied

by the pulse of such interaction. As discussed earlier, a quantum gate is the evolution

operator connecting states in distant past with states in far future. This evolution is

governed by the time dependent interaction. When the interaction operators taken at

different times commute, the corresponding quantum gate is just the exponential of the

interaction Hamiltonian times the integrated interaction strength. In our case, however,

interactions at different times do not commute, and the gate can be more complex than the

interaction. Manipulations of time dependence were used in chapter 1 to reduce the gate

anisotropy and make it smaller than the anisotropy of interaction. Now, our goal is to find

out how much the anisotropy in the gate can be controlled by pulse shaping.

For spin control, the most important gate parameter is β, because it is the largest and

most controllable, once the overall isotropic exchange strength is fixed. It is of the first order

in spin-orbit coupling and when the time dependence of underlying interaction is even β is

the only gate parameter that is first order in anisotropy. The perturbative result for β in

(2.40) for an axially symmetric spin interaction is

β =
1

2 sin(λJ/2)

∫ ∞

−∞
βint(t) cos

(

x(t) − λJ

2

)

J(t)dt, (4.38)

where

x(t) =

∫ t

−∞
J(t′)dt′, (4.39)

and λJ = limt→∞ x(t) is the strength of isotropic part of the interaction, integrated over the

entire pulse. Up to second order in spin-orbit coupling λJ is equal to the gate parameter λ

of (4.1).

The perturbative result (4.38) shows that, to first order in spin-orbit coupling, the gate

parameter β is an average of the time dependent interaction parameter β int(t). The weight

function for this average is a product of the strength of the isotropic exchange and the cosine

of the integrated isotropic exchange strength, starting from the beginning of the pulse. The
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cosine factor is phase shifted so that its maximum falls in the middle of the pulse. The

isotropic exchange factor in the weight function makes the anisotropy of the interaction

between spins at small distance more important. The cosine term imposes the proper

symmetry in time. This result also implies that the available range of gate anisotropies is

similar to the available range of interaction anisotropies. For gates applied through a change

in the interdot distance, starting from infinitely separated dots, suddenly bringing them close

together, keeping them at that distance until enough pulse strength λJ is accumulated and

again suddenly pulling them back apart, this range corresponds to all of the values of β int

plotted in [Fig. 4.6]. Such gates can not be applied in realistic systems. Sudden changes

of the potential would excite arbitrary orbital levels, and the description in terms of spin

degrees of freedom becomes meaningless.

In realistic systems that are to be used for quantum computation, anisotropy of the

interaction is not necessarily a good estimate for anisotropy in the gate, as we demonstrated

in chapter 2. The fundamental problem with identifying the interaction anisotropy β int with

the gate anisotropy β applied by some pulse lies in the fact that the effective spin interaction,

for which βint is one of the parameters is a meaningful concept only when the orbital states

of spin carrying electrons are well defined orbital qubit states.

In reality the orbital state of a pair of electrons involved in the gate has some overlap

with orbitally excited states that cannot be described with a spin Hamiltonian. The

Hund-Mulliken approximation can model such excitations, but the effective spin Hamiltonian

cannot. Amplitude for orbital excitations is suppressed by the energy gap between qubit

and orbitally excited states. This gap was studied in a system of quantum dots by Hu

and Das Sarma [76]. Orbital excitations can make the concept of effective spin interaction

inapplicable, but still allow for the quantum gate operation if the transitions in a final state

are suppressed due to adiabaticity [69]. Destruction of a qubit due to orbital excitations

happens only if the amplitude for orbital excitations is high at the end of the pulse.

Since orbital excitations can not be modeled by an effective spin interaction, we have

chosen to study the effects of time dependence on the gate operation using a time dependent

Hund-Mulliken Hamiltonian. This way we can account for the orbital excitations and study

the gate errors caused by them.
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Our model of a time dependent interaction of electrons in a quantum gate is a Hund-

Mulliken Hamiltonian derived from the potential (3.14) with variable interdot distance a.

The model system are 20nm quantum dots in GaAs and we assumed that the fabrication

sets axial symmetry and produces the 2DEG corresponding to an electric field giving the

widest range of anisotropies in interaction in [Fig. 4.6].

Distance between the dots is described by parameter a of (3.14). It is time dependent

and

a(t) = a0

(

1 +

(

t

τ

)2
)

, (4.40)

where a0 is the value of parameter at the distance of closest approach. Pulse duration is set

by τ . At any time t the distance between dot centers is 2a(t). Variable distance produces a

time dependent Hund-Mulliken Hamiltonian HHM(t). At the beginning and end of a pulse,

as t→ ±∞, the dots are decoupled.

We are interested in independent control over integrated pulse strength λ and gate

anisotropy β. In order to set λ to a fixed value, we have to impose a relation between

the distance of closest approach a0 and the pulse duration τ . Integrated pulse strength λ is

to a good approximation equal to the integrated time dependent isotropic exchange coupling

strength J(a(t)). We have studied a set of pulses with integrated isotropic exchange strength

fixed to π
∫ ∞

−∞
J(a(t))dt = π. (4.41)

Since J(a) is roughly an exponential of a square of the interdot distance [52], condition (4.41)

will make the pulse duration grow very fast with the distance of closest approach a0. This

dependence is illustrated in [Fig. 4.7]. Very long pulses will present a problem, because of

decoherence. As the pulse times get comparable to the decoherence times, the error in a

gate will grow beyond the power of error correcting codes to repair it. Decoherence puts a

fundamental limit on the pulse duration on the side of long pulses.

By solving the Schrödinger equation for a time dependent Hund-Mulliken Hamiltonian

with the interdot distance set by (4.40) we can study both the gates produced by these pulses

and the errors caused by orbital excitations in a form of double occupancy at the end of a

pulse.
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Figure 4.7. Decoherence for slow pulses. Model pulses (4.40) that produce the gates with
fixed integrated isotropic exchange strength, λJ = π have their duration, measured by τ
fixed by the distance of closest approach. In this figure, the pulse duration is plotted against
the distance of closest approach. As pulse times get longer, the errors caused by decoherence
will prevent the gate from being correctly executed. The red vertical line is the bound on
the distance of closest approach, set by the error rate due to decoherence. To set this bound,
we used decoherence time τ ∼ 10µs and pth ∼ 10−4.

For short pulses another process will limit our ability to tailor them. As the distance of

closest approach gets smaller, the pulses will get faster. For fast pulses, the probability of

nonadiabatic transitions into orbitally excited states grows.

Numerical solution of the Schrödinger equation with a time dependent Hamiltonian

HHM(a(t)) is a unitary operator in the variational space of the Hund-Mulliken approxima-

tion. Probabilities for having orbital excitations at the end of a pulse are given by squared

moduli of the amplitudes for a system to be in one of doubly occupied states. We have solved
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Figure 4.8. Double occupancy for fast pulses. Double occupancy at the end of a π pulse
described in the caption of the previous figure. As the pulses get faster, the probability of
double occupancy caused error grows. If we want this probability to be smaller than the
error correction threshold, the pulses must be slower than the bound set by the vertical blue
line. Inset shows the details of error around the intersection with the error correction bound.

the Schrödinger equation for a range of pulses that satisfy (4.41). The results for a double

occupancy probability as a function of the distance of closest approach are given in [Fig.

4.8]. We see that the probability of errors due to double occupancy at the end of the pulse

grows very fast when the λT = π pulses get faster as the distance of closest approach gets

smaller. Beyond some distance of closest approach, double occupancy errors will overcome

quantum error correction, and the gate will again become inoperable.

Between the limits of very long pulses that make the gate inoperable due to decoherence,

and very short pulses that make the gate inoperable due to double occupancy in the final
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state, lyes the region of pulses that can drive the quantum gate. These pulses produce various

anisotropies β for the fixed integrated isotropic exchange strengths λ. They are a handle

for control over axially symmetric anisotropic gates. The range of anisotropies available

in the gates produced by these pulses spans the control wedge [Fig. 4.1] of width θm and

determines how much control over the anisotropic gates is available. If the intuition about

the gate anisotropy as an average of the interaction anisotropy is correct, the first estimate

of this control range is a variation of the anisotropic interaction strength β int between the

distances of closest approach corresponding to the fastest and the slowest pulse allowed by

the limited tolerance for errors.

There is a procedure for calculating a gate produced by a pulse of the Hund-Mulliken

Hamiltonian, even when the effective spin Hamiltonian does not exist throughout the pulse

application. This procedure was already used in chapter 3. We begin by solving the

Schrödinger equation with a time dependent Hund-Mulliken Hamiltonian for the unitary

evolution operator in the entire variational space. If the probability of double occupancy at

the end of the pulse is small, we can neglect it and obtain the parameters for the gate by

taking

i logU gate = λHgate, (4.42)

where U gate is a slightly nonunitary operator in a qubit space obtained by truncating

the orbitally excited states from the unitary evolution in the space of Hund-Mulliken

approximation. The gate parameter β is fitted from the gate Hamiltonian.

Results of such calculation are presented in [Fig. 4.9], together with the bounds on

pulses that can be implemented. For comparison the dependence of interaction anisotropy

βint obtained from effective spin interaction is plotted on the same graph. Intuition about

the gate anisotropy as an average of interaction anisotropy with a weight function pulling

strongly toward the short distance is valid in this case. Range of gate anisotropies predicted

in our calculation with optimistic prediction for error correction threshold of pth = 10−4 and

decoherence time T = 10µs is very large. We find ∆β ≈ 0.5. This result is not very sensitive

to the exact values of decoherence time and error correction threshold, because both curves

that limit the available closest approach distances for the pulses are very steep.

With this estimate of the available range of axially symmetric anisotropies, spin control

using control over anisotropy would be an attractive procedure for spin manipulation, either
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in a quantum computer or for any other purpose. However, numbers that came out of this

calculation, like ∆β = 0.5 should not be trusted as an accurate estimate for the control range

in a realistic device. But it does suggest that axially symmetric spin-orbit coupling caused

anisotropy may be a useful resource for spin manipulation.

4.3 Summary

This chapter shows that anisotropy caused by spin-orbit coupling can be a resource for

universal quantum computation. Applicability of anisotropy for the purpose of universal

quantum computing depends on the numerical values of different device parameter that are

hard to calculate. Applicability for spin manipulation is, however, clear. More importantly it

is clearly demonstrated that tailoring of the time dependence in voltage pulses implementing

the gate can control the effects of anisotropy. Requirements on pulse shape go beyond the

fixing of the integrated isotropic exchange strength, but, due to symmetry, do not go far

beyond that. It is enough to keep them symmetric in time and slightly change their shape

to influence the anisotropy of the resulting gate.
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Figure 4.9. Control of Anisotropy Using the Pulse Shape. Black dots represent the size of
anisotropic term in the gate, β is plotted against the distance of closest approach in a pulse
implementing an isotropic gate U(π, 0, 0, 0) in the limit of zero spin-orbit coupling. The
data points come from the numerical solutions to a time dependent Schrodinger equation.
As discussed in the text, the pulses with smaller distance of closest approach are faster and
the pulses with large distance of closest approach are slower. Limit on pulse duration that
come from the decoherence in the case of slow pulses is represented by a red line. For the
fast pulses, the limiting factor are errors caused by double occupancy in the final state and
the limit is represented by the blue line. The available range of gate parameters is denoted
by ∆β. For the reference, the dependence of interaction anisotropy β int as a function of the
interdot distance is plotted as a solid black line.
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APPENDIX A

AXIALLY SYMMETRIC GATE FOR CNOT

CONSTRUCTION

Discussion of two qubit gates is more convenient if we choose a basis consisting of

| ↑↓〉 = 1/
√

2(|0〉 + |1〉) and | ↓↑〉 = 1/
√

2(|0〉 − |1〉) in computational space for qubits.

If the qubits are in computational states, states of electron spins on the four dots that

encode two qubits are spanned by the vectors

| ↑↓↑↓〉 = 1/
√

2(|0〉 + |1〉) ⊗ 1/
√

2(|0〉 + |1〉), (A.1)

| ↑↓↓↑〉 = 1/
√

2(|0〉 + |1〉) ⊗ 1/
√

2(|0〉 − |1〉), (A.2)

| ↓↑↑↓〉 = 1/
√

2(|0〉 − |1〉) ⊗ 1/
√

2(|0〉 + |1〉), (A.3)

| ↓↑↓↑〉 = 1/
√

2(|0〉 − |1〉) ⊗ 1/
√

2(|0〉 − |1〉). (A.4)

Note that the two middle (we will call them interacting) spins upon which the elementary

gate is going to act do not lie in the computational space for a single qubit. Therefore, we

will need to care about states with both Sz = 0 and Sz = ±1. State of the interacting spins

uniquely determines the state of all four spins, provided that the state is computational.

An elementary gate acting on interacting spins may lead to the leakage of the state of

four spins outside of the computational space for two qubits. Specifically, if we change any of

the interacting spins configurations that appear in the basis (A.1) at least one of the qubits

will leak outside of the computational space. To stay within computational space, unitary

transformation on qubits, induced by applying an elementary gate to interacting spins, must

be diagonal in the basis (A.1). We call these transformations diagonal.

Axially symmetric gates will always be diagonal in the subspace spanned by states with

Sz = ±1, and eigenvalues corresponding to the two states will be equal.
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Therefore, the most general operator from SU(4) that is both diagonal and can be

implemented using axially symmetric gate is of the form

U = e−i
φ1+φ2

4









eiφ1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ2









, (A.5)

in the basis (A.1). It is parametrized by two real phases φ1 and φ2.

Since application of two qubit gates using elementaru gates acting on interacting spins

may lead to the leakage outside of computational space, we would like to minimize their

number in constructing a universal set of gates. Writing the gate in form (A.5) enables us to

find a set of operations on interacting spins that allow for the construction of CNOT gate

with a single application of unitary operation on interacting spins.

First we note that we can go from the computational basis of two qubits to the basis

(A.1) using single qubit Haddamard gates. Therefore, the set of operations that can be

implemented using (A.5) and single qubit gates is equal to the set of operations that can be

implemented using an operator V , defined as an operator with the same matrix form but in

computational basis, and single qubit gates.

Next we consider the condition the phases φ1 and φ2 have to fulfill in order to create

maximally entangling gate. Since the CNOT gate is maximally entangling gate, only some

other maximally entangling gate may produce it in single application, with the help of sigle

qubit gates.

Following Kraus and Cirac [70], [77], the entanglement capability can be extracted from

the eigenvalues of V TV , when transpose is taken in the magic basis. In the magic basis

operator V takes the form of Vm

Vm = e−i/4(φ1+φ2)









1
2
(eiφ1 + eiφ2) −i

2
(eiφ1 − eiφ2) 0 0

i
2
(eiφ1 − eiφ2) 1

2
(eiφ1 + eiφ2) 0 0

0 0 1 0
0 0 0 1









. (A.6)

Matrix V T
mVm is diagonal and magic basis vectors are its eigenvectors.

V T
mVm =











e
i
2
(φ1+φ2) 0 0 0

0 e
i
2
(φ1+φ2) 0 0

0 0 e−
i
2
(φ1+φ2) 0

0 0 0 e−
i
2
(φ1+φ2)











. (A.7)
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Double eigenvalues are vj = e−2iλj and we read of λs of Kraus and Cirak recipe:

λ1 = λ3 = −1

4
(φ1 + φ2) (A.8)

λ2 = λ4 =
1

4
(φ1 + φ2). (A.9)

This set of λs translates into (αx, αy, αz) = (1
4
(φ1 + φ2), 0, 0), using the convention of [77].

Criterion for the gate to be maximally entangling is either αx +αy ≥ π/4 and αy +αz ≤ π/4

or maxk,l| sin(λk −λl)| = 1. When we take into account the fact that entanglement capacity

is periodic with the period π/2 and symmetric around π/4 in αx, αy and αz, and also that

phases of the eigenvalues are periodic with the period 2π and subject to constraint that their

sum is equal to zero, we find that CNOT can be performed with a single application of a

two-qubit gate iff

φ1 + φ2 = (2n+ 1)π, (A.10)

where n is an arbitrary integer.
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APPENDIX B

MATRIX ELEMENTS OF HUND-MULLIKEN

HAMILTONIAN

We work in the basis

|2S〉 =
1√
2

(|Φ+aΦ+a〉 + |Φ−aΦ−a〉) (B.1)

|2A〉 =
1√
2

(|Φ+aΦ+a〉 − |Φ−aΦ−a〉) (B.2)

|1S〉 =
1√
2

(|Φ+aΦ−a〉 + |Φ−aΦ+a〉) (B.3)

|1A〉 =
1√
2

(|Φ+aΦ−a〉 − |Φ−aΦ+a〉) (B.4)

where Φ±a are orthogonalized Wannier states on the two dots.

The spin-orbit coupling term in the Hamiltonian is

HSO = h(k1) · S1 + h(k2) · S2 (B.5)

where

h(k) = (−fDkx + fRky, fDky − fRkx, 0). (B.6)

Here fD is the Dresselhaus term and fR is the Rashba term. In a magnetic field k is replaced

by the canonical momentum κ = k − (e/c)A.

In what follows we will assume the displacement of the dots is in the x direction. It is

trivial to rotate (B.6) if this is not the case, so nothing that follows hinges on this assumption.

Explicit calculation gives

〈Φ±a|κ|Φ±a〉 = 0 (B.7)

〈Φ−a|κy|Φ+a〉 = 0 (B.8)
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with the only nonvanishing matrix element being

〈Φ−a|κx|Φ+a〉 = −iamΩn2(1 − g2)

(

1 − 1

(2l2BmΩ)2

)

exp

(

−a2mΩ

(

1 +
1

(2l2BmΩ)2
)

))

(B.9)

where a is half the dot spacing, lB is the magnetic length, and Ω = ω0

√

1 + (ωL/ω0)2 and

ωL is the Larmor frequency, and n is the normalization constant of two-electron states.

Given these matrix elements, the Hund-Mulliken Hamiltonian matrix is

H =





V 0 −i2P
0 0 −2tH
i2P −2tH UH



 (B.10)

where the matrix is 3×3 because the state |2A〉 decouples and so we work only in the |1A〉,
|1S〉, |2S〉 basis. It is understood that the two other triplet states |1A, S = 1, Sz = ±1〉 have

decoupled from the problem and both have energy V . Note that we take the z axis in spin

space to be parallel to the vector (−fD,−fR, 0)

Here V , UH and tH are the matrix elements calculated in [52]. There is only one new

matrix element due to spin-orbit coupling,

2iP = 〈2S|HSO|1A〉 (B.11)

and

P =
ρ

2
amΩn2

(

1 − g2
)

(

1 − 1

(2l2BmΩ)2

)

exp

(

−a2mΩ

(

1 +
1

(2l2BmΩ)2

))

(B.12)

where ρ =
√
mω0(f

2
D + f 2

R) is a measure of the strength of spin-orbit coupling.

In summary, we have shown that the Hamiltonian of the electrons on coupled quantum

dots is of the form (B.10). Effects of the spin-orbit coupling in this system are described by

a single parameter P when we choose the appropriate axis of quantization for the total spin.
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